1
|
Cui J, Hao Z, Zhou Q, Qiu M, Liu Y, Liu Y, Teng X, Kang L. Chlorpyrifos induced autophagy and mitophagy in common carp livers through AMPK pathway activated by energy metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114983. [PMID: 37148751 DOI: 10.1016/j.ecoenv.2023.114983] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Water pollution caused by widely used agricultural pesticide chlorpyrifos (CPF) has aroused extensive public concern. While previous studies have reported on toxic effect of CPF on aquatic animal, little is known about its effect on common carp (Cyprinus carpio L.) livers. In this experiment, we exposed common carp to CPF (11.6 μg/L) for 15, 30, and 45 days to establish a poisoning model. Histological observation, biochemical assay, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and integrated biomarker response (IBR) were applied to assess the hepatotoxicity of CPF in common carp. Our results displayed that CPF exposure damaged histostructural integrity and induced liver injury in common carp. Furthermore, we found that CPF-induced liver injury may be associated with mitochondrial dysfunction and autophagy, as evidenced by swollen mitochondria, broken mitochondrial ridges, and increased the number of autophagosomes. Moreover, CPF exposure decreased the activities of ATPase (Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase), altered glucose metabolism-related genes (GCK, PCK2, PHKB, GYS2, PGM1, and DLAT), and activated energy-sensing AMPK, indicating that CPF caused energy metabolism disorder. The activation of AMPK further induced mitophagy via AMPK/Drp1 pathway, and induced autophagy via AMPK/mTOR pathway. Additionally, we found that CPF induced oxidative stress (abnormal levels of SOD, GSH, MDA, and H2O2) in common carp livers, which further contributed to the induction of mitophagy and autophagy. Subsequently, we confirmed a time-dependent hepatotoxicity caused by CPF in common carp via IBR assessment. Our findings presented a new insight into molecular mechanism of CPF induced-hepatotoxicity in common carp, and provided a theoretical basis for evaluating CPF toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, People's Republic of China.
| |
Collapse
|
2
|
Hong JY. Developmental Programming by Perinatal Glucocorticoids. Mol Cells 2022; 45:685-691. [PMID: 36254710 PMCID: PMC9589377 DOI: 10.14348/molcells.2022.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
Early-life environmental factors can have persistent effects on physiological functions by altering developmental procedures in various organisms. Recent experimental and epidemiological studies now further support the idea that developmental programming is also present in mammals, including humans, influencing long-term health. Although the mechanism of programming is still largely under investigation, the role of endocrine glucocorticoids in developmental programming is gaining interest. Studies found that perinatal glucocorticoids have a persistent effect on multiple functions of the body, including metabolic, behavioral, and immune functions, in adulthood. Several mechanisms have been proposed to play a role in long-term programming. In this review, recent findings on this topic are summarized and the potential biological rationale behind this phenomenon is discussed.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
3
|
Kobayashi T, Takeba Y, Ohta Y, Ootaki M, Kida K, Watanabe M, Iiri T, Matsumoto N. Prenatal glucocorticoid administration accelerates the maturation of fetal rat hepatocytes. Mol Biol Rep 2022; 49:5831-5842. [PMID: 35304682 DOI: 10.1007/s11033-022-07358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal glucocorticoid (GC) is clinically administered to pregnant women who are at risk of preterm birth for the maturation of cardiopulmonary function. Preterm and low-birth-weight infants often experience liver dysfunction after birth because their livers are immature. However, the effects of prenatal GC administration on the liver remain unclear. We aimed to investigate the effects of prenatal GC administration on the maturation of liver hepatocytes in preterm rats. METHODS AND RESULTS Dexamethasone (DEX) was administered to pregnant Wistar rats on gestational days 17 and 19 before cesarean section. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to determine the mRNA levels of albumin, hepatocyte nuclear factor-4 alpha (HNF4α), hepatocyte growth factor (HGF), thymus cell antigen 1 (Thy-1), cyclin B, and Cyclin-dependent kinase 1 (CDK1) in the liver samples. Immunohistochemical staining and enzyme-linked immunosorbent assay were performed to examine protein production. The hepatocytes enlarged because of growth and prenatal DEX administration. Albumin, HNF4α, and HGF levels increased secondary to growth and prenatal DEX administration. The levels of the cell cycle markers cyclin B and CDK1 gradually decreased during growth and with DEX administration. CONCLUSIONS The results suggest that prenatal GC administration leads to hepatocyte maturation via expression of HNF4α and HGF in preterm fetuses.
Collapse
Affiliation(s)
- Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
4
|
Wallensteen L, Karlsson L, Messina V, Gezelius A, Sandberg MT, Nordenström A, Hirvikoski T, Lajic S. Evaluation of behavioral problems after prenatal dexamethasone treatment in Swedish children and adolescents at risk of congenital adrenal hyperplasia. Horm Behav 2018; 98:219-224. [PMID: 29410007 DOI: 10.1016/j.yhbeh.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023]
Abstract
Prenatal dexamethasone (DEX) treatment in congenital adrenal hyperplasia (CAH) is effective in reducing virilization in affected girls, but potential long-term adverse effects are largely unknown. In this report we intended to explore potential side effects of DEX therapy to enhance the adequacy of future risk benefit analyses of DEX treatment. We investigated the long-term effects of first trimester prenatal DEX treatment on behavioral problems and temperament in children and adolescents aged 7-17 years. The study included 34 children and adolescents, without CAH, who had been exposed to DEX during the first trimester and 67 untreated controls. Standardized parent-completed questionnaires were used to evaluate adaptive functioning and behavioral/emotional problems (CBCL), social anxiety (SPAI-C-P), and temperament (EAS) in the child. Self-reports were used to assess the children's perception of social anxiety (SASC-R). No statistically significant differences were found between DEX-treated and control children and adolescents, suggesting that, in general, healthy children treated with DEX during early fetal life are well adjusted.
Collapse
Affiliation(s)
- Lena Wallensteen
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Leif Karlsson
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Valeria Messina
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anton Gezelius
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Malin Thomsen Sandberg
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Tatja Hirvikoski
- Department of Women's and Children's Health, KIND, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
5
|
H19 lncRNA alters methylation and expression of Hnf4α in the liver of metformin-exposed fetuses. Cell Death Dis 2017; 8:e3175. [PMID: 29215608 PMCID: PMC5827203 DOI: 10.1038/cddis.2017.392] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 07/02/2017] [Indexed: 12/28/2022]
Abstract
Metformin is the most widely used anti-diabetic medication worldwide. However, human and animal studies suggest that prenatal metformin exposure may increase the risk of metabolic disorders in adult offspring, yet the underpinning mechanism remains unclear. Here we report that metformin-exposed mouse fetuses exhibit elevated expression of the H19 long noncoding RNA, which induces hypomethylation and increased expression of hepatocyte nuclear factor 4α (HNF4α). As a transcription factor essential for morphological and functional differentiation of hepatocytes, HNF4α also has an indispensable role in the regulation of expression of gluconeogenic genes. Consistently, H19 overexpression in a human liver cell line leads to decreased methylation and increased expression of Hnf4α, with concomitant activation of the gluconeogenic program. Mechanistically, we show that the methylation change of Hnf4α is induced by H19-mediated regulation of S-adenosylhomocysteine hydrolase. We also provide evidence that altered H19 expression is a direct effect of metformin in the fetal liver. Our results suggest that metformin from the mother can directly act upon the fetal liver to modify Hnf4α expression, a key factor for both liver development and function, and that perturbation of this H19/Hnf4α-mediated pathway may contribute to the fetal origin of adult metabolic abnormalities.
Collapse
|
6
|
Wesolowski SR, Hay WW. Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Mol Cell Endocrinol 2016; 435:61-68. [PMID: 26723529 PMCID: PMC4921201 DOI: 10.1016/j.mce.2015.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
Glucose is the major fuel for fetal oxidative metabolism. A positive maternal-fetal glucose gradient drives glucose across the placenta and is sufficient to meet the demands of the fetus, eliminating the need for endogenous hepatic glucose production (HGP). However, fetuses with intrauterine growth restriction (IUGR) from pregnancies complicated by placental insufficiency have an early activation of HGP. Furthermore, this activated HGP is resistant to suppression by insulin. Here, we present the data demonstrating the activation of HGP in animal models, mostly fetal sheep, and human pregnancies with IUGR. We also discuss potential mechanisms and pathways that may produce and support HGP and hepatic insulin resistance in IUGR fetuses.
Collapse
Affiliation(s)
- Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Wallensteen L, Zimmermann M, Sandberg MT, Gezelius A, Nordenström A, Hirvikoski T, Lajic S. RETRACTED: Evaluation of behavioral problems after prenatal dexamethasone treatment in Swedish adolescents at risk of CAH. Horm Behav 2016; 85:5-11. [PMID: 27373757 DOI: 10.1016/j.yhbeh.2016.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors due to technical errors that have called into question the reliability of the data used to inform the author's conclusions. All data on cognitive and behavioral outcomes in CAH and non–CAH cases, treated or not treated with DEX prenatally, were put into a single Excel database. The authors had in total four different patient groups for each age group (5–6 y, 7–17 y and 18-35 y). The database consisted of 237 cases in total and there were multiple columns for the different outcome measures. When the behavioral data for the sub-cohort described in this paper (first trimester treated non-CAH cases and healthy population controls, age 7–17 y) were copied to another sheet and compressed/modified in preparation for statistical analysis in SPSS, an error occurred. This technological issue caused rows to shift and the data from the different groups got mixed up. In particular, the non–CAH group versus the control group were "contaminated" with cases from the wrong patient group. The authors discovered this mistake when they started to analyse the data from the other sub–groups of patients, the CAH cases and the adult cohort, which was after their original results had already been published in Hormones and Behavior in this manuscript "Evaluation of behavioral problems after prenatal dexamethasone treatment in Swedish adolescents at risk of CAH". It then became apparent that the entire data set was unreliable and needed to be re–analysed which is what has motivated the retraction of this article. The authors have recently completed this re–analysis and the results have been published here: https://www.sciencedirect.com/science/article/pii/S0018506X17300752
Collapse
Affiliation(s)
- Lena Wallensteen
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marius Zimmermann
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Malin Thomsen Sandberg
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anton Gezelius
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Tatja Hirvikoski
- Department of Women's and Children's Health, KIND, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Svetlana Lajic
- Department of Women's and Children's Health, Karolinska Institutet, Pediatric Endocrinology Unit (Q2:08), Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
8
|
Konstantakou P, Mastorakos G, Vrachnis N, Tomlinson JW, Valsamakis G. Dysregulation of 11beta-hydroxysteroid dehydrogenases: implications during pregnancy and beyond. J Matern Fetal Neonatal Med 2016; 30:284-293. [PMID: 27018008 DOI: 10.3109/14767058.2016.1171308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucococorticoids play a critical role in the developmental programing and fetal growth. Key molecules mediating and regulating tissue-specific glucocorticoid actions are 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 isozymes, both of which are expressed in the placenta and the fetal membranes. 11beta-HSD1 is implicated in the pathogenesis of metabolic syndrome and its dysregulation has been observed in pregnancy-related complications (pre-eclampsia, intrauterine growth restriction). Interestingly, preliminary clinical data have associated certain 11beta-HSD1 gene polymorphisms with hypertensive disorders in pregnancy, suggesting, if confirmed by further targeted studies, it's potential as a putative prognostic marker. Animal studies and observations in humans have confirmed that 11beta-HSD2 insufficiency is related with pregnancy adversity (pre-eclampsia, intrauterine growth restriction, preterm birth). Importantly, down-regulation or deficiency of placental 11beta-HSD2 is associated with significant restriction in fetal growth and low-birth weight, and unfavorable cardio-metabolic profile in adulthood. The potential association of 11beta-HSD1 tissue-specific dysregulation with gestational diabetes, as well as the plausible utility of 11beta-HSD2, as a biomarker of pregnancy adversity and later life morbidity, are emerging areas of intense scientific interest and future investigation.
Collapse
Affiliation(s)
- P Konstantakou
- a Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio Hospital , Athens , Greece
| | - G Mastorakos
- a Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio Hospital , Athens , Greece
| | - N Vrachnis
- b Department of Obstetrics and Gynecology , Aretaieio Hospital , Athens , Greece
| | - J W Tomlinson
- c Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital , Headington , UK
| | - G Valsamakis
- a Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio Hospital , Athens , Greece
| |
Collapse
|
9
|
Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, Rowe C, Gerrard DT, Sison-Young R, Jenkins R, Henry J, Berry AA, Mohamet L, Best M, Fenwick SW, Malik H, Kitteringham NR, Goldring CE, Piper Hanley K, Vallier L, Hanley NA. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol 2015; 62:581-9. [PMID: 25457200 PMCID: PMC4334496 DOI: 10.1016/j.jhep.2014.10.016] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. METHODS Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. RESULTS HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. CONCLUSIONS HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes.
Collapse
Affiliation(s)
- Melissa Baxter
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK
| | - Sarah Withey
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK
| | - Sean Harrison
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK
| | - Charis-Patricia Segeritz
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Institute for Regenerative Medicine, Department of Surgery, Robinson Way, Cambridge CB2 0SZ, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Fang Zhang
- Department of Pharmacology & Therapeutics and MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK
| | - Rebecca Atkinson-Dell
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK
| | - Cliff Rowe
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK; Department of Pharmacology & Therapeutics and MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK
| | - Dave T Gerrard
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK; Bioinformatics, Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester, UK
| | - Rowena Sison-Young
- Department of Pharmacology & Therapeutics and MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK
| | - Roz Jenkins
- Department of Pharmacology & Therapeutics and MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK
| | - Joanne Henry
- Department of Pharmacology & Therapeutics and MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK
| | - Andrew A Berry
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK
| | - Lisa Mohamet
- Stem Cell Research Group, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK
| | - Marie Best
- Human Genetics Division, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Stephen W Fenwick
- North Western Hepatobiliary Unit, Aintree University Hospital NHS Foundation Trust, Longmoor Lane, Liverpool L9 7AL, UK
| | - Hassan Malik
- North Western Hepatobiliary Unit, Aintree University Hospital NHS Foundation Trust, Longmoor Lane, Liverpool L9 7AL, UK
| | - Neil R Kitteringham
- Department of Pharmacology & Therapeutics and MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK
| | - Chris E Goldring
- Department of Pharmacology & Therapeutics and MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, UK
| | - Karen Piper Hanley
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Institute for Regenerative Medicine, Department of Surgery, Robinson Way, Cambridge CB2 0SZ, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Neil A Hanley
- Centre for Endocrinology & Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Oxford Road, Manchester, UK; Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Grafton St, Manchester, UK.
| |
Collapse
|
10
|
Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 2014; 324:55-67. [PMID: 25058043 DOI: 10.1016/j.tox.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/03/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA), a Fusarium mycotoxin that contaminates cereal crops worldwide, has been shown to affect the male reproductive system and trigger reactive oxygen species (ROS) generation. However, the mechanisms of its toxicity have not been fully understood. Because mitochondrion is a key organelle involved in producing ROS and generating metabolic intermediates for biosynthesis, an iTRAQ-based mitoproteomics approach was employed to identify the molecular mechanism of zearalenone toxicity using mitochondria of mouse Leydig tumor cells (MLTC-1). A total of 2014 nonredundant proteins were identified, among which 1401 proteins (69.56%) were overlapped. There were 52 differentially expressed proteins in response to ZEA, and they were primarily involved in energy metabolism, molecular transport and endocrine-related functions. Consistent with mitochondrial proteomic analysis, the ATP and intracellular Ca(2+) levels increased after ZEA treatment. The results suggest that lipid metabolism changed significantly after low-dose ZEA exposure, resulting in two alterations. One is the increase in energy production through promoted fatty acid uptake and β-oxidation, along with excessive oxidative stress; the other is an inhibition of steroidogenesis and esterification, possibly resulting in reduced hormone secretion. A hypothetical model of ZEA-induced mitochondrial damage is proposed to provide a framework for the mechanism of ZEA toxicity.
Collapse
|
11
|
Iozzo P, Holmes M, Schmidt MV, Cirulli F, Guzzardi MA, Berry A, Balsevich G, Andreassi MG, Wesselink JJ, Liistro T, Gómez-Puertas P, Eriksson JG, Seckl J. Developmental ORIgins of Healthy and Unhealthy AgeiNg: the role of maternal obesity--introduction to DORIAN. Obes Facts 2014; 7:130-51. [PMID: 24801105 PMCID: PMC5644840 DOI: 10.1159/000362656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/12/2014] [Indexed: 12/31/2022] Open
Abstract
Europe has the highest proportion of elderly people in the world. Cardiovascular disease, type 2 diabetes, sarcopenia and cognitive decline frequently coexist in the same aged individual, sharing common early risk factors and being mutually reinforcing. Among conditions which may contribute to establish early risk factors, this review focuses on maternal obesity, since the epidemic of obesity involves an ever growing number of women of reproductive age and children, calling for appropriate studies to understand the consequences of maternal obesity on the offspring's health and for developing effective measures and policies to improve people's health before their conception and birth. Though the current knowledge suggests that the long-term impact of maternal obesity on the offspring's health may be substantial, the outcomes of maternal obesity over the lifespan have not been quantified, and the molecular changes induced by maternal obesity remain poorly characterized. We hypothesize that maternal insulin resistance and reduced placental glucocorticoid catabolism, leading to oxidative stress, may damage the DNA, either in its structure (telomere shortening) or in its function (via epigenetic changes), resulting in altered gene expression/repair, disease during life, and pathological ageing. This review illustrates the background to the EU-FP7-HEALTH-DORIAN project.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pis
- *Patricia Iozzo, MD, PhD, Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa (Italy),
| | - Megan Holmes
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | - Tiziana Liistro
- Institute of Clinical Physiology, National Research Council (CNR), Pis
| | | | - Johan G. Eriksson
- Samfundet Folkhälsan i Svenska Finland rf (Folkhälsan), Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Jonathan Seckl
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93:1139-206. [PMID: 23899562 DOI: 10.1152/physrev.00020.2012] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Collapse
Affiliation(s)
- Karen Chapman
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
13
|
Paganelli S, Soncini E, Gargano G, Capodanno F, Vezzani C, La Sala GB. Retrospective analysis on the efficacy of corticosteroid prophylaxis prior to elective caesarean section to reduce neonatal respiratory complications at term of pregnancy: review of literature. Arch Gynecol Obstet 2013; 288:1223-9. [DOI: 10.1007/s00404-013-3035-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
|
14
|
Jiang X, Ma H, Wang Y, Liu Y. Early life factors and type 2 diabetes mellitus. J Diabetes Res 2013; 2013:485082. [PMID: 24455747 PMCID: PMC3876901 DOI: 10.1155/2013/485082] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease, and its aetiology involves a complex interplay between genetic, epigenetic, and environmental factors. In recent years, evidences from both human and animal experiments have correlated early life factors with programming diabetes risk in adult life. Fetal and neonatal period is crucial for organ development. Many maternal factors during pregnancy may increase the risk of diabetes of offsprings in later life, which include malnutrition, healthy (hyperglycemia and obesity), behavior (smoking, drinking, and junk food diet), hormone administration, and even stress. In neonates, catch-up growth, lactation, glucocorticoids administration, and stress have all been found to increase the risk of insulin resistance or T2DM. Unfavorable environments (socioeconomic situation and famine) or obesity also has long-term negative effects on children by causing increased susceptibility to T2DM in adults. We also address the potential mechanisms that may underlie the developmental programming of T2DM. Therefore, it might be possible to prevent or delay the risk for T2DM by improving pre- and/or postnatal factors.
Collapse
Affiliation(s)
- Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, Hebei 050051, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, Hebei 050017, China
| | - Yan Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, Hebei 050051, China
- Orthopaedic Biomechanical Laboratory of Hebei Province, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, Hebei 050051, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, Hebei 050051, China
- *Yan Liu:
| |
Collapse
|
15
|
Thorn SR, Brown LD, Rozance PJ, Hay WW, Friedman JE. Increased hepatic glucose production in fetal sheep with intrauterine growth restriction is not suppressed by insulin. Diabetes 2013; 62:65-73. [PMID: 22933111 PMCID: PMC3526037 DOI: 10.2337/db11-1727] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrauterine growth restriction (IUGR) increases the risk for metabolic disease and diabetes, although the developmental origins of this remain unclear. We measured glucose metabolism during basal and insulin clamp periods in a fetal sheep model of placental insufficiency and IUGR. Compared with control fetuses (CON), fetuses with IUGR had increased basal glucose production rates and hepatic PEPCK and glucose-6-phosphatase expression, which were not suppressed by insulin. In contrast, insulin significantly increased peripheral glucose utilization rates in CON and IUGR fetuses. Insulin robustly activated AKT, GSK3β, and forkhead box class O (FOXO)1 in CON and IUGR fetal livers. IUGR livers, however, had increased basal FOXO1 phosphorylation, nuclear FOXO1 expression, and Jun NH(2)-terminal kinase activation during hyperinsulinemia. Expression of peroxisome proliferator-activated receptor γ coactivator 1α and hepatocyte nuclear factor-4α were increased in IUGR livers during basal and insulin periods. Cortisol and norepinephrine concentrations were positively correlated with glucose production rates. Isolated IUGR hepatocytes maintained increased glucose production in culture. In summary, fetal sheep with IUGR have increased hepatic glucose production, which is not suppressed by insulin despite insulin sensitivity for peripheral glucose utilization. These data are consistent with a novel mechanism involving persistent transcriptional activation in the liver that seems to be unique in the fetus with IUGR.
Collapse
Affiliation(s)
- Stephanie R Thorn
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | | | | | | | | |
Collapse
|
16
|
Somm E, Vauthay DM, Guérardel A, Toulotte A, Cettour-Rose P, Klee P, Meda P, Aubert ML, Hüppi PS, Schwitzgebel VM. Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats. PLoS One 2012; 7:e50131. [PMID: 23166830 PMCID: PMC3500352 DOI: 10.1371/journal.pone.0050131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 10/16/2012] [Indexed: 01/03/2023] Open
Abstract
Poor fetal growth, also known as intrauterine growth restriction (IUGR), is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious “metabolic programming.” In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX) or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN). Physiological (glucose and insulin tolerance), morphometric (automated tissue image analysis) and transcriptomic (quantitative PCR) approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.
Collapse
Affiliation(s)
- Emmanuel Somm
- Department of Paediatrics, University of Geneva School of Medicine, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Epidemiological evidence suggests that exposure to an adverse environment in early life is associated with an increased risk of cardio-metabolic and behavioral disorders in adulthood, a phenomenon termed 'early life programming'. One major hypothesis for early life programming is fetal glucocorticoid overexposure. In animal studies, prenatal glucocorticoid excess as a consequence of maternal stress or through exogenous administration to the mother or fetus is associated with programming effects on cardiovascular and metabolic systems and on the brain. These effects can be transmitted to subsequent generations. Studies in humans provide some evidence that prenatal glucocorticoid exposure may exert similar programming effects on glucose/insulin homeostasis, blood pressure and neurodevelopment. The mechanisms by which glucocorticoids mediate these effects are unclear but may include a role for epigenetic modifications. This review discusses the evidence for glucocorticoid programming in animal models and in humans.
Collapse
Affiliation(s)
- Batbayar Khulan
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK.
| | | |
Collapse
|
18
|
Pretheeban M, Hammond G, Bandiera S, Riggs W, Rurak D. Ontogenesis of phase I hepatic drug metabolic enzymes in sheep. Reprod Fertil Dev 2012; 24:425-37. [DOI: 10.1071/rd11159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/05/2011] [Indexed: 12/23/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes are important for the metabolism of many drugs. While there is information on their identity and ontogeny in humans and rodents, similar data in sheep are lacking. In the present study, cDNA sequences of several CYP enzymes (CYP2A6, CYP2C19, CYP2D6) were cloned by rapid amplification of cDNA ends. In adult, newborn and fetal sheep the mRNA and protein levels of these CYPs and the regulatory factor, hepatic nuclear factor 4α (HNF4α) were determined in liver samples using real-time PCR and western blotting. The effect of antenatal glucocorticoid on these enzymes was also studied by i.v. infusion of cortisol (0.45 mg h–1; 80 h) to another group of fetuses. The mRNA and protein levels of the CYPs and HNF4α were low or absent in the fetus, followed by increasing levels in the newborn and adult. Fetal cortisol administration significantly increased the mRNA and protein levels of CYP2D6. Moreover, the correlation observed between the CYP and HNF4α mRNA levels suggests a possible regulatory role for this transcription factor. The findings suggest that fetal and newborn lambs have a low ability to metabolise drugs that are substrates of these enzymes, and that this ability increases with advancing postnatal age, similar to the situation in humans.
Collapse
|
19
|
Wyrwoll CS, Holmes MC, Seckl JR. 11β-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 2011; 32:265-86. [PMID: 21144857 PMCID: PMC3149101 DOI: 10.1016/j.yfrne.2010.12.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 12/11/2022]
Abstract
Glucocorticoids have profound effects on brain development and adult CNS function. Excess or insufficient glucocorticoids cause myriad abnormalities from development to ageing. The actions of glucocorticoids within cells are determined not only by blood steroid levels and target cell receptor density, but also by intracellular metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSD). 11β-HSD1 regenerates active glucocorticoids from their inactive 11-keto derivatives and is widely expressed throughout the adult CNS. Elevated hippocampal and neocortical 11β-HSD1 is observed with ageing and causes cognitive decline; its deficiency prevents the emergence of cognitive defects with age. Conversely, 11β-HSD2 is a dehydrogenase, inactivating glucocorticoids. The major central effects of 11β-HSD2 occur in development, as expression of 11β-HSD2 is high in fetal brain and placenta. Deficient feto-placental 11β-HSD2 results in a life-long phenotype of anxiety and cardiometabolic disorders, consistent with early life glucocorticoid programming.
Collapse
Affiliation(s)
- Caitlin S Wyrwoll
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | | | | |
Collapse
|
20
|
Tang JI, Seckl JR, Nyirenda MJ. Prenatal glucocorticoid overexposure causes permanent increases in renal erythropoietin expression and red blood cell mass in the rat offspring. Endocrinology 2011; 152:2716-21. [PMID: 21540288 DOI: 10.1210/en.2010-1443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoids promote maturation of fetal systems, including erythropoiesis, in preparation for extrauterine life. However, recent studies have shown that prenatal glucocorticoid excess can cause long-term deleterious cardiometabolic and other consequences to the offspring. Here, we examined the effect of prenatal treatment with the synthetic glucocorticoid dexamethasone (DEX) during the last week of gestation on red blood cell (RBC) mass in the rat offspring. DEX-treated offspring at 9 months of age had significantly higher RBC count (9.4 ± 0.1 vs. 8.8 ± 0.2 × 10(12) liter; P = 0.02), hematocrit (50.0 ± 0.5 vs. 46.7 ± 0.7%; P=0.004), hemoglobin (17.3 ± 0.2 vs. 16.2 ± 0.2 g/dl; P = 0.02) and number of reticulocytes (258.2 ± 8.8 vs. 235.7 ± 5.6 × 10(9) liter; P = 0.04), compared with offspring of vehicle-treated control pregnancies. White blood cells and platelets were unaltered. Renal mRNA expression and plasma concentrations of erythropoietin, the main regulator of erythropoiesis, were increased by nearly 100% in both newborn and adult DEX-treated rats (P < 0.01). This increase was accompanied by marked elevation in renal expression of hepatocyte nuclear factor 4α mRNA, whereas other erythropoietin-regulating transcription factors, such as hypoxia-inducible factor 1, hypoxia-inducible factor 2, and GATA2 were unchanged. These data indicate that RBC mass can be programmed by prenatal glucocorticoid excess, and if extrapolatable to humans, provide a novel mechanism for fetal origins of polycythemia and its associated complications.
Collapse
Affiliation(s)
- Justin I Tang
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4 TJ, Scotland, United Kingdom
| | | | | |
Collapse
|
21
|
Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 2011; 59:279-89. [PMID: 20591431 DOI: 10.1016/j.yhbeh.2010.06.007] [Citation(s) in RCA: 584] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/26/2010] [Accepted: 06/08/2010] [Indexed: 11/23/2022]
Abstract
An adverse foetal environment is associated with increased risk of cardiovascular, metabolic, neuroendocrine and psychological disorders in adulthood. Exposure to stress and its glucocorticoid hormone mediators may underpin this association. In humans and in animal models, prenatal stress, excess exogenous glucocorticoids or inhibition of 11β-hydroxysteroid dehydrogenase type 2 (HSD2; the placental barrier to maternal glucocorticoids) reduces birth weight and causes hyperglycemia, hypertension, increased HPA axis reactivity, and increased anxiety-related behaviour. Molecular mechanisms that underlie the 'developmental programming' effects of excess glucocorticoids/prenatal stress include epigenetic changes in target gene promoters. In the case of the intracellular glucocorticoid receptor (GR), this alters tissue-specific GR expression levels, which has persistent and profound effects on glucocorticoid signalling in certain tissues (e.g. brain, liver, and adipose). Crucially, changes in gene expression persist long after the initial challenge, predisposing the individual to disease in later life. Intriguingly, the effects of a challenged pregnancy appear to be transmitted possibly to one or two subsequent generations, suggesting that these epigenetic effects persist.
Collapse
Affiliation(s)
- Anjanette Harris
- University of Edinburgh, Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | |
Collapse
|
22
|
Matthews LC, Hanley NA. The stress of starvation: glucocorticoid restraint of beta cell development. Diabetologia 2011; 54:223-6. [PMID: 21072627 PMCID: PMC3017310 DOI: 10.1007/s00125-010-1963-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Developmental insults during gestation, such as under-nutrition, are known to restrict the number of beta cells that form in the fetal pancreas and are maintained in adulthood, leading to increased risk of type 2 diabetes. There are now substantial data indicating that glucocorticoids mediate this effect of under-nutrition on beta cell mass and that even at physiological levels they restrain fetal beta cell development in utero. There are emerging clues that this occurs downstream of endocrine commitment by neurogenin 3 but prior to terminal beta cell differentiation. Deciphering the precise mechanism will be important as it might unveil new pathways by which to manipulate beta cell mass that could be exploited as novel therapies for patients with diabetes.
Collapse
Affiliation(s)
- L. C. Matthews
- Endocrinology and Diabetes Group, School of Biomedicine, Manchester Academic Health Sciences Centre, AV Hill Building, University of Manchester, Manchester, M13 9PT UK
| | - N. A. Hanley
- Endocrinology and Diabetes Group, School of Biomedicine, Manchester Academic Health Sciences Centre, AV Hill Building, University of Manchester, Manchester, M13 9PT UK
| |
Collapse
|
23
|
Chowdhury S, Erickson SW, MacLeod SL, Cleves MA, Hu P, Karim MA, Hobbs CA. Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS One 2011; 6:e16506. [PMID: 21297937 PMCID: PMC3031146 DOI: 10.1371/journal.pone.0016506] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/03/2011] [Indexed: 12/31/2022] Open
Abstract
The majority of congenital heart defects (CHDs) are thought to result from the interaction between multiple genetic, epigenetic, environmental, and lifestyle factors. Epigenetic mechanisms are attractive targets in the study of complex diseases because they may be altered by environmental factors and dietary interventions. We conducted a population based, case-control study of genome-wide maternal DNA methylation to determine if alterations in gene-specific methylation were associated with CHDs. Using the Illumina Infinium Human Methylation27 BeadChip, we assessed maternal gene-specific methylation in over 27,000 CpG sites from DNA isolated from peripheral blood lymphocytes. Our study sample included 180 mothers with non-syndromic CHD-affected pregnancies (cases) and 187 mothers with unaffected pregnancies (controls). Using a multi-factorial statistical model, we observed differential methylation between cases and controls at multiple CpG sites, although no CpG site reached the most stringent level of genome-wide statistical significance. The majority of differentially methylated CpG sites were hypermethylated in cases and located within CpG islands. Gene Set Enrichment Analysis (GSEA) revealed that the genes of interest were enriched in multiple biological processes involved in fetal development. Associations with canonical pathways previously shown to be involved in fetal organogenesis were also observed. We present preliminary evidence that alterations in maternal DNA methylation may be associated with CHDs. Our results suggest that further studies involving maternal epigenetic patterns and CHDs are warranted. Multiple candidate processes and pathways for future study have been identified.
Collapse
Affiliation(s)
- Shimul Chowdhury
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
24
|
Reynolds RM. Corticosteroid-mediated programming and the pathogenesis of obesity and diabetes. J Steroid Biochem Mol Biol 2010; 122:3-9. [PMID: 20117209 DOI: 10.1016/j.jsbmb.2010.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/21/2009] [Accepted: 01/20/2010] [Indexed: 01/23/2023]
Abstract
Epidemiological studies have shown that low birthweight is associated with increased risk of development of diabetes and obesity in later life. Over-exposure of the developing fetus to glucocorticoids is one of the major hypotheses that has been proposed to explain this association. In animal models, a range of manipulations that increase fetal glucocorticoid load, 'programme' permanent changes in glucose and insulin metabolism and adiposity. This may be mediated by alterations in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. In humans, low birthweight is associated with increased circulating glucocorticoid levels, and an increased cortisol response to physiological and psychosocial stressors, in child- and adulthood. This activation of the HPA axis is also associated with increased risk of development of diabetes and obesity in later life.
Collapse
Affiliation(s)
- Rebecca M Reynolds
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| |
Collapse
|
25
|
Einstein F, Thompson RF, Bhagat TD, Fazzari MJ, Verma A, Barzilai N, Greally JM. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One 2010; 5:e8887. [PMID: 20126273 PMCID: PMC2811176 DOI: 10.1371/journal.pone.0008887] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/04/2010] [Indexed: 01/21/2023] Open
Abstract
Background Perturbations of the intrauterine environment can affect fetal development during critical periods of plasticity, and can increase susceptibility to a number of age-related diseases (e.g., type 2 diabetes mellitus; T2DM), manifesting as late as decades later. We hypothesized that this biological memory is mediated by permanent alterations of the epigenome in stem cell populations, and focused our studies specifically on DNA methylation in CD34+ hematopoietic stem and progenitor cells from cord blood from neonates with intrauterine growth restriction (IUGR) and control subjects. Methods and Findings Our epigenomic assays utilized a two-stage design involving genome-wide discovery followed by quantitative, single-locus validation. We found that changes in cytosine methylation occur in response to IUGR of moderate degree and involving a restricted number of loci. We also identify specific loci that are targeted for dysregulation of DNA methylation, in particular the hepatocyte nuclear factor 4α (HNF4A) gene, a well-known diabetes candidate gene not previously associated with growth restriction in utero, and other loci encoding HNF4A-interacting proteins. Conclusions Our results give insights into the potential contribution of epigenomic dysregulation in mediating the long-term consequences of IUGR, and demonstrate the value of this approach to studies of the fetal origin of adult disease.
Collapse
Affiliation(s)
- Francine Einstein
- Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Reid F. Thompson
- Department of Genetics (Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tushar D. Bhagat
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Melissa J. Fazzari
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Amit Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nir Barzilai
- Department of Medicine, and Center for Epigenomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (NB); (JMG)
| | - John M. Greally
- Department of Genetics (Computational Genetics), Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, and Center for Epigenomics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (NB); (JMG)
| |
Collapse
|
26
|
Einstein F, Thompson RF, Bhagat TD, Fazzari MJ, Verma A, Barzilai N, Greally JM. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One 2010. [PMID: 20126273 DOI: 10.1371/journal.pone.000887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Perturbations of the intrauterine environment can affect fetal development during critical periods of plasticity, and can increase susceptibility to a number of age-related diseases (e.g., type 2 diabetes mellitus; T2DM), manifesting as late as decades later. We hypothesized that this biological memory is mediated by permanent alterations of the epigenome in stem cell populations, and focused our studies specifically on DNA methylation in CD34+ hematopoietic stem and progenitor cells from cord blood from neonates with intrauterine growth restriction (IUGR) and control subjects. METHODS AND FINDINGS Our epigenomic assays utilized a two-stage design involving genome-wide discovery followed by quantitative, single-locus validation. We found that changes in cytosine methylation occur in response to IUGR of moderate degree and involving a restricted number of loci. We also identify specific loci that are targeted for dysregulation of DNA methylation, in particular the hepatocyte nuclear factor 4alpha (HNF4A) gene, a well-known diabetes candidate gene not previously associated with growth restriction in utero, and other loci encoding HNF4A-interacting proteins. CONCLUSIONS Our results give insights into the potential contribution of epigenomic dysregulation in mediating the long-term consequences of IUGR, and demonstrate the value of this approach to studies of the fetal origin of adult disease.
Collapse
Affiliation(s)
- Francine Einstein
- Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | | | | | | | | | | |
Collapse
|
27
|
O'Regan D, Kenyon CJ, Seckl JR, Holmes MC. Environmental disturbance confounds prenatal glucocorticoid programming experiments in Wistar rats. Lab Anim 2010; 44:199-205. [PMID: 20071412 DOI: 10.1258/la.2009.009032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low birth weight in humans is predictive of hypertension in adult life, and while the mechanisms underlying this link remain unknown, fetal overexposure to glucocorticoids has been implicated. We have previously shown that prenatal dexamethasone (DEX) exposure in the rat lowers birth weight and programmes adult hypertension. This current study aimed to unravel the molecular nature of this hypertension. However, unknowingly, post hoc investigations revealed that our animals had been subjected to environmental noise stresses from an adjacent construction site, which were sufficient to confound our prenatal DEX-programming experiments. This perinatal stress successfully established low birth weight, hypercorticosteronaemia, insulin resistance, hypertension and hypothalamic-pituitary-adrenal axis dysfunction in vehicle (VEH)-treated offspring, such that the typical distinctions between both treatment groups were ameliorated. The lack of an additional effect on DEX-treated offspring is suggestive of a maximal effect of perinatal stress and glucocorticoids, serving to prevent against the potentially detrimental effects of sustained glucocorticoid hyper-exposure. Finally, this paper serves to inform researchers of the potential detrimental effects of neighbouring construction sites to their experiments.
Collapse
Affiliation(s)
- D O'Regan
- Anaesthetics Department, The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| | | | | | | |
Collapse
|
28
|
Dean S, Tang JI, Seckl JR, Nyirenda MJ. Developmental and tissue-specific regulation of hepatocyte nuclear factor 4-alpha (HNF4-alpha) isoforms in rodents. Gene Expr 2010; 14:337-44. [PMID: 20635575 PMCID: PMC6042024 DOI: 10.3727/105221610x12717040569901] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4-alpha) regulates expression of a number of genes in several metabolic organs. The HNF4-alpha gene has two promoters and encodes at least nine isoforms through differential splicing. In mouse liver, transcription initiates at promoter 2 (P2) during fetal life, but switches to P1 at birth. Developmental and tissue-specific expression of HNF4-alpha in other organs is largely unknown. Here, we examined expression of P1- and P2-derived transcripts in a number of mouse and rat tissues. Both P1 and P2 were active in mouse fetal liver, but P2-derived isoforms were detected 50% more abundantly than P1 transcripts. Conversely, the adult mouse liver expressed significantly higher levels of P1- than P2-derived mRNA. In contrast, in the rat, P1 was used more predominantly in both fetal and adult liver. Exposure of fetal rats to the synthetic glucocorticoid dexamethasone caused suppression of P2 while enhancing hepatic expression of transcripts from P1. This was associated with increased expression of erythropoietin and phosphoenolpyruvate carboxykinase, which are key HNF4-alpha targets in the liver. Unlike liver, the kidney and stomach used promoters more selectively, so that only P1-derived isoforms were detected in fetal and adult kidneys in mice or rats, whereas the stomach in both species expressed P2-derived transcripts exclusively. No significant HNF4-alpha mRNA was detected in the spleen. These data reveal striking developmental and tissue-specific variation in expression of HNF4-alpha, and indicate that this can be influenced by environmental factors (such as exposure to glucocorticoid excess), with potential pathophysiological consequences.
Collapse
Affiliation(s)
- Samena Dean
- Endocrinology Unit, Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Justin I. Tang
- Endocrinology Unit, Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonathan R. Seckl
- Endocrinology Unit, Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Moffat J. Nyirenda
- Endocrinology Unit, Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Abstract
In mammals, including man, epidemiological and experimental studies have shown that a range of environmental factors acting during critical periods of early development can alter adult phenotype. Hormones have an important role in these epigenetic modifications and can signal the type, severity and duration of the environmental cue to the developing feto-placental tissues. They affect development of these tissues both directly and indirectly by changes in placental phenotype. They act to alter gene expression, hence the protein abundance in a wide range of different tissues, which has functional consequences for many physiological systems both before and after birth. By producing an epigenome specific to the prevailing condition in utero, hormones act as epigenetic signals in developmental programming, with important implications for adult health and disease. This review examines the role of hormones as epigenetic signals by considering their responses to environmental cues, their effects on phenotypical development and the molecular mechanisms by which they programme feto-placental development, with particular emphasis on the glucocorticoids.
Collapse
Affiliation(s)
- Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
30
|
Liu Y, Havinga R, VAN DER Leij FR, Boverhof R, Sauer PJJ, Kuipers F, Stellaard F. Dexamethasone exposure of neonatal rats modulates biliary lipid secretion and hepatic expression of genes controlling bile acid metabolism in adulthood without interfering with primary bile acid kinetics. Pediatr Res 2008; 63:375-81. [PMID: 18356742 DOI: 10.1203/pdr.0b013e318165b8af] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Literature suggests that glucocorticoid (GC) exposure during early life may have long-term consequences into adult life. GCs are known to influence hepatic bile acid synthesis and their transport within the enterohepatic circulation. This study addresses effects of early postnatal exposure to GC on hepatic expression of key genes in bile acid metabolism and bile acid kinetics in adult rats. Male rats were treated with either dexamethasone (DEX) or saline at days 1-3 d after birth. Liver tissue and blood were collected from 2 d to 50 wk of age. Bile acid kinetics were determined at week 8. DEX acutely induced hepatic mRNA levels of cholesterol 7alpha-hydroxylase (Cyp7a1), cholesterol 27-hydroxylase (Cyp27), and in particular sterol 12alpha-hydroxylase (Cyp8b1), whereas expression of the bile acid transporters bile salt export pump (Bsep) and sodium taurocholate cotransporting polypeptide (Ntcp) was moderately affected. Neonatal DEX administration led to increased bilary lipid secretion, decreased Cyp8B1 mRNA expression and a 3-fold higher Cyp7a1/Cyp8b1 mRNA ratio in rats at week 8 compared with age-matched controls without alterations in bile acid kinetics. Therefore, neonatal DEX administration causes altered gene expressions later in life that are not translated into quantitative changes in bile acid kinetics.
Collapse
Affiliation(s)
- Yan Liu
- Center for Liver, Digestive, and Metabolic Disease, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Rozance PJ, Limesand SW, Barry JS, Brown LD, Thorn SR, LoTurco D, Regnault TRH, Friedman JE, Hay WW. Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1alpha mRNA and phosphorylated CREB in fetal sheep. Am J Physiol Endocrinol Metab 2008; 294:E365-70. [PMID: 18056789 PMCID: PMC3857025 DOI: 10.1152/ajpendo.00639.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic glucose production is normally activated at birth but has been observed in response to experimental hypoglycemia in fetal sheep. The cellular basis for this process remains unknown. We determined the impact of 2 wk of fetal hypoglycemia during late gestation on enzymes responsible for hepatic gluconeogenesis, focusing on the insulin-signaling pathway, transcription factors, and coactivators that regulate gluconeogenesis. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNA increased 12-fold and 7-fold, respectively, following chronic hypoglycemia with no change in hepatic glycogen. Chronic hypoglycemia decreased fetal plasma insulin with no change in glucagon but increased plasma cortisol 3.5-fold. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha mRNA and phosphorylation of cAMP response element binding protein at Ser(133) were both increased, with no change in Akt, forkhead transcription factor FoxO1, hepatocyte nuclear factor-4alpha, or CCAAT enhancer binding protein-beta. These results demonstrate that chronic fetal hypoglycemia triggers signals that can activate gluconeogenesis in the fetal liver.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Baisden B, Sonne S, Joshi RM, Ganapathy V, Shekhawat PS. Antenatal dexamethasone treatment leads to changes in gene expression in a murine late placenta. Placenta 2007; 28:1082-90. [PMID: 17559929 PMCID: PMC2040329 DOI: 10.1016/j.placenta.2007.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/30/2007] [Accepted: 04/06/2007] [Indexed: 11/29/2022]
Abstract
Antenatal steroids like dexamethasone (DEX) are used to augment fetal lung maturity and there is a major concern that they impair fetal growth. If delivery is delayed after using antenatal DEX, placental function and hence fetal growth may be compromised even further. To investigate the effects of DEX on placental function, we treated 9 pregnant C57/BL6 mice with DEX and 9 pregnant mice were injected with saline to serve as controls. Placental gene expression was studied using microarrays in 3 pairs and other 6 pairs were used to confirm microarray results by semi-quantitative RT-PCR, real-time PCR, in situ hybridization, western blot analysis and Oligo ApopTaq assay. DEX-treated placentas were hydropic, friable, pale, and weighed less (80.0+/-15.1mg compared to 85.6.8+/-7.6mg, p=0.05) (n=62 placentas). Fetal weight was significantly reduced after DEX use (940+/-32mg compared to 1162+/-79mg, p=0.001) (n=62 fetuses). There was >99% similarity within and between the three gene chip data sets. DEX led to down-regulation of 1212 genes and up-regulation of 1382 genes. RT-PCR studies showed that DEX caused a decrease in expression of genes involved in cell division such as cyclins A2, B1, D2, cdk 2, cdk 4 and M-phase protein kinase along with growth-promoting genes such as EGF-R, BMP4 and IGFBP3. Oligo ApopTaq assay and western blot studies showed that DEX-treatment increased apoptosis of trophoblast cells. DEX-treatment led to up-regulation of aquaporin 5 and tryptophan hydroxylase genes as confirmed by real-time PCR, and in situ hybridization studies. Thus antenatal DEX treatment led to a reduction in placental and fetal weight, and this effect was associated with a decreased expression of several growth-promoting genes and increased apoptosis of trophoblast cells.
Collapse
Affiliation(s)
- B Baisden
- Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
33
|
Drake AJ, Tang JI, Nyirenda MJ. Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease. Clin Sci (Lond) 2007; 113:219-32. [PMID: 17663659 DOI: 10.1042/cs20070107] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Compelling epidemiological evidence suggests that exposure to an adverse intrauterine environment, manifested by low-birth weight, is associated with cardiometabolic and behavioural disorders in adulthood. These observations have led to the concept of 'fetal programming'. The molecular mechanisms that underlie this relationship remain unclear, but are being extensively investigated using a number of experimental models. One major hypothesis for early life physiological programming implicates fetal overexposure to stress (glucocorticoid) hormones. Several animal studies have shown that prenatal glucocorticoid excess, either from endogenous overproduction with maternal stress or through exogenous administration to the mother or fetus, reduces birth weight and causes lifelong hypertension, hyperglycaemia and behavioural abnormality in the offspring. Intriguingly, these effects are transmitted across generations without further exposure to glucocorticoids, which suggests an epigenetic mechanism. These animal observations could have huge implications if extrapolated to humans, where glucocorticoids have extensive therapeutic use in obstetric and neonatal practice.
Collapse
Affiliation(s)
- Amanda J Drake
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
34
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Ozanne SE, Constância M. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. NATURE CLINICAL PRACTICE. ENDOCRINOLOGY & METABOLISM 2007; 3:539-46. [PMID: 17581623 DOI: 10.1038/ncpendmet0531] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 02/09/2007] [Indexed: 12/14/2022]
Abstract
There is accumulating evidence that many chronic diseases such as type 2 diabetes and coronary heart disease might originate during early life. This evidence gives rise to the developmental origins of disease hypothesis, and is supported by epidemiological data in humans and experimental animal models. A perturbed environment in early life is thought to elicit a range of physiological and cellular adaptive responses in key organ systems. These adaptive changes result in permanent alterations and might lead to pathology in later life. Aging organs and cells seem therefore to retain a 'memory' of their fetal history and adaptive responses. The mechanisms underlying the developmental origins of disease remain poorly defined. Epigenetic tagging of genes, such as DNA methylation and histone modification, controls the function of the genome at different levels and maintains cellular memory after many cellular divisions; importantly, tagging can be modulated by the environment and is involved in onset of diseases such as cancer. Here we review the evidence for the developmental origins of disease and discuss the role of the epigenotype as a contributing mechanism. Environmentally induced changes in the epigenotype might be key primary events in the developmental origins of disease, with important clinical implications.
Collapse
Affiliation(s)
- Susan E Ozanne
- Department of Clinical Biochemistry, University of Cambridge, Level 4, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|
36
|
Meaney MJ, Szyf M, Seckl JR. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 2007; 13:269-77. [PMID: 17544850 DOI: 10.1016/j.molmed.2007.05.003] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 04/24/2007] [Accepted: 05/16/2007] [Indexed: 11/25/2022]
Abstract
Environmental effects on the materno-foetal interaction determine birth outcomes that predict health over the lifespan. Thus, maternal undernutrition or stress associate with low birth weight, leading to an increased risk of metabolic and cardiovascular illness in the offspring. We argue that these effects are, in part, mediated by direct and indirect effects on the hypothalamic-pituitary-adrenal (HPA) axis such that (i) the effect of maternal adversity on foetal growth is mediated by adrenal glucocorticoids and (ii) environmental adversity alters maternal physiology and behaviour, which then programs HPA activity in the offspring.
Collapse
Affiliation(s)
- Michael J Meaney
- McGill Program for Study of Genes, Environment and Health, McGill University, Montreal, Canada.
| | | | | |
Collapse
|
37
|
Seckl JR, Holmes MC. Mechanisms of Disease: glucocorticoids, their placental metabolism and fetal 'programming' of adult pathophysiology. ACTA ACUST UNITED AC 2007; 3:479-88. [PMID: 17515892 DOI: 10.1038/ncpendmet0515] [Citation(s) in RCA: 509] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 12/22/2006] [Indexed: 11/09/2022]
Abstract
Epidemiological evidence suggests that an adverse prenatal environment permanently 'programs' physiology and increases the risk of cardiovascular, metabolic, neuroendocrine and psychiatric disorders in adulthood. Prenatal stress or exposure to excess glucocorticoids might provide the link between fetal maturation and adult pathophysiology. In a variety of animal models, prenatal stress, glucocorticoid exposure and inhibition (or knockout of) 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2)--the fetoplacental barrier to maternal glucocorticoids--reduce birth weight and cause increases in adult blood pressure, glucose levels, hypothalamic-pituitary-adrenal (HPA) axis activity and anxiety-related behaviors. In humans, mutations in the gene that encodes 11beta- hydroxysteroid dehydrogenase type 2 are associated with low birth weight. Babies with low birth weight have higher plasma cortisol levels throughout life, which indicates HPA-axis programming. In human pregnancy, severe maternal stress affects the offspring's HPA axis and is associated with neuropsychiatric disorders; moreover, maternal glucocorticoid therapy alters offspring brain function. The molecular mechanisms that underlie prenatal programming might reflect permanent changes in the expression of specific transcription factors, including the glucocorticoid receptor; tissue specific effects reflect modification of one or more of the multiple alternative first exons or promoters of the glucocorticoid receptor gene. Intriguingly, some of these effects seem to be inherited by subsequent generations that are unexposed to exogenous glucocorticoids at any point in their lifespan from fertilization, which implies that these epigenetic effects persist.
Collapse
Affiliation(s)
- Jonathan R Seckl
- College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| | | |
Collapse
|
38
|
Abstract
It is widely accepted that an association exists between the intrauterine environment in which a fetus grows and develops and the subsequent development of type 2 diabetes. Any disturbance in maternal ability to provide nutrients and oxygen to the fetus can lead to fetal intrauterine growth restriction (IUGR). Here we will review IUGR in rodent models, in which maternal metabolism has been experimentally manipulated to investigate the molecular basis of the relationship between IUGR and development of type 2 diabetes in later life, and the identification of the molecular derangements in specific metabolically - sensitive organs/tissues.
Collapse
Affiliation(s)
- M S Martin-Gronert
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
39
|
de Vries A, Holmes MC, Heijnis A, Seier JV, Heerden J, Louw J, Wolfe-Coote S, Meaney MJ, Levitt NS, Seckl JR. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest 2007; 117:1058-67. [PMID: 17380204 PMCID: PMC1821070 DOI: 10.1172/jci30982] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/30/2007] [Indexed: 01/08/2023] Open
Abstract
Prenatal stress or glucocorticoid administration has persisting "programming" effects on offspring in rodents and other model species. Multiple doses of glucocorticoids are in widespread use in obstetric practice. To examine the clinical relevance of glucocorticoid programming, we gave 50, 120, or 200 microg/kg/d of dexamethasone (dex50, dex120, or dex200) orally from mid-term to a singleton-bearing nonhuman primate, Chlorocebus aethiops (African vervet). Dexamethasone dose-dependently reduced maternal cortisol levels without effecting maternal blood pressure, glucose, electrolytes, or weight gain. Birth weight was unaffected by any dexamethasone dose, although postnatal growth was attenuated after dex120 and dex200. At 8 months of age, dex120 and dex200 offspring showed impaired glucose tolerance and hyperinsulinemia, with reduced (approximately 25%) pancreatic beta cell number at 12 months. Dex120 and dex200 offspring had increased systolic and diastolic blood pressures at 12 months. Mild stress produced an exaggerated cortisol response in dex200 offspring, implying hypothalamic-pituitary-adrenal axis programming. The data are compatible with the extrapolation of the glucocorticoid programming hypothesis to primates and indicate that repeated glucocorticoid therapy and perhaps chronic stress in humans may have long-term effects.
Collapse
Affiliation(s)
- Annick de Vries
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Megan C. Holmes
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Areke Heijnis
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jürgen V. Seier
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joritha Heerden
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Johan Louw
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sonia Wolfe-Coote
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael J. Meaney
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Naomi S. Levitt
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan R. Seckl
- Endocrinology Unit, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, United Kingdom.
Primate Unit, Diabetes Research Group, South African Medical Research Council, Cape Town, South Africa.
Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.
Endocrine and Diabetes Unit, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
40
|
Glucocorticoids, developmental ‘programming’ and the risk of affective dysfunction. PROGRESS IN BRAIN RESEARCH 2007; 167:17-34. [DOI: 10.1016/s0079-6123(07)67002-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Burns SP, Cohen RD. Comment on: Nyirenda MJ, Dean S, Lyons V, Chapman KE, Seckl JR (2006) Prenatal programming of hepatocyte nuclear factor 4a in the rat: a key mechanism in the 'foetal origins of hyperglycaemia'? Diabetologia 49: 1412-1420, and on: McCurdy CE, Friedman JE (2006) Early foetal programming of hepatic gluconeogenesis: glucocorticoids strike back. Diabetologia 49:1138-1141. Diabetologia 2006; 49:2809-10. [PMID: 17047920 DOI: 10.1007/s00125-006-0423-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
|
42
|
Affiliation(s)
- C E McCurdy
- Department of Pediatrics, University of Colorado School of Medicine, Mail Stop 8106, Aurora, CO, 80045, USA.
| | | |
Collapse
|