1
|
Sun X, Mijiti M, Huang C, Mei S, Fang K, Yang Y. The effect and mechanism of freeze-dried powder of Poecilobdella manillensis on improving inflammatory injury of rat glomerular mesangial cells through TXNIP / NLRP3 pathway. Heliyon 2024; 10:e38206. [PMID: 39364251 PMCID: PMC11447352 DOI: 10.1016/j.heliyon.2024.e38206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Objective Diabetic kidney disease (DKD) is a common complication of diabetes mellitus. The pathophysiological changes in platelet function and the hypercoagulable state associated with DKD are closely linked to inflammatory processes. Poecilobdella manillensis (PM), a type of leech known for its anticoagulant and antithrombotic properties, has the potential to modulate the inflammatory response in DKD. This study aims to investigate the effect of freeze-dried powder of PM on improving inflammatory injury in rat glomerular mesangial cells and to explore its underlying mechanism. Methods Lipopolysaccharide (LPS) stimulated HBZY-1 rat mesangial cells to establish an in vitro DKD inflammation model. After the intervention with the water extract of freeze-dried powder of PM (FDPM), cell viability, NO content, and the levels of inflammatory factors such as IL-1β, IL-18, and TNF-α were assessed. Finally, utilizing transcriptomics technology, RT-qPCR, and Western blot methods, the mechanism by which FDPM improves inflammatory injury in rat glomerular mesangial cells was explored and preliminarily validated. Results FDPM effectively enhances cell viability and inhibits the production of NO and related inflammatory factors. Transcriptomic analysis suggests that FDPM may exert these effects by regulating the TXNIP/NLRP3 signaling pathway. The mRNA and protein expressions of TXNIP, NLRP3, and MCP-1 in the model cells were reversed by FDPM. Conclusion FDPM may improve the micro-inflammatory state of DKD and slow the progression of the disease by regulating the TXNIP/NLRP3 signaling pathway. This study provides a scientific basis for the clinical application of PM DKD treatment.
Collapse
Affiliation(s)
- Xi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Maiheliya Mijiti
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Chuyin Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Shanshan Mei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Kexin Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| | - Yaojun Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Yangguang South Street and Baiyang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
2
|
Bondi CD, Hartman HL, Rush BM, Tan RJ. Podocyte-Specific Deletion of MCP-1 Fails to Protect against Angiotensin II- or Adriamycin-Induced Glomerular Disease. Int J Mol Sci 2024; 25:4987. [PMID: 38732210 PMCID: PMC11084322 DOI: 10.3390/ijms25094987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD.
Collapse
Affiliation(s)
- Corry D. Bondi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 152671, USA; (H.L.H.); (B.M.R.); (R.J.T.)
| | | | | | | |
Collapse
|
3
|
Swaminathan SM, Rao IR, Bhojaraja MV, Attur RP, Nagri SK, Rangaswamy D, Shenoy SV, Nagaraju SP. Role of novel biomarker monocyte chemo-attractant protein-1 in early diagnosis & predicting progression of diabetic kidney disease: A comprehensive review. J Natl Med Assoc 2024; 116:33-44. [PMID: 38195327 DOI: 10.1016/j.jnma.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Diabetic kidney disease (DKD) is the most devastating complication of diabetes mellitus. Identification of patients at the early stages of progression may reduce the disease burden. The limitation of conventional markers such as serum creatinine and proteinuria intensify the need for novel biomarkers. The traditional paradigm of DKD pathogenesis has expanded to the activation of the immune system and inflammatory pathways. Monocyte chemo-attractant protein-1 (MCP-1) is extensively studied, as a key inflammatory mediator that modulates the development of DKD. Recent evidence supports the diagnostic role of MCP-1 in patients with or without proteinuria in DKD, as well as a significant role in the early prediction and risk stratification of DKD. In this review, we will summarize and update present evidence for MCP-1 for diagnostic ability and predicting the progression of DKD.
Collapse
Affiliation(s)
- Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mohan V Bhojaraja
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ravindra Prabhu Attur
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shivashankara Kaniyoor Nagri
- Department of Medicine, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Dharshan Rangaswamy
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
4
|
Idasiak-Piechocka I, Miedziaszczyk M, Woźniak A, Pawliczak E, Kaczmarek E, Oko A. Interleukin-6 and epidermal growth factor as noninvasive biomarkers of progression in chronic glomerulonephritis. Am J Physiol Cell Physiol 2023; 325:C1267-C1275. [PMID: 37721004 DOI: 10.1152/ajpcell.00058.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Several cytokines and chemokines are involved in the pathogenesis and progressive injury of renal tissues in patients with primary chronic glomerulonephritis (CGN). The objective of this study was to determine whether the urinary excretion of interleukin-6 (IL-6), transforming growth factor β1 (TGFβ1), monocytes chemoattractant protein (MCP-1), soluble tumor necrosis factor receptor 1 (sTNFR1), and epidermal growth factor (EGF) in patients with newly recognized CGN can serve as prognostic biomarkers in patients with newly recognized CGN and whether they can be effective in predicting a progressive reduction of renal function in prospective observation. The study included 150 Caucasian patients. UIL-6, UTGFβ1, UMCP-1, UsTNFR1, and UEGF were measured using enzyme-linked immunosorbent assay (ELISA) methods (Quantikine R&D System). UIL-6, UTGFβ1, UMCP-1, and UsTNFR1 were significantly higher, yet UEGF excretion was significantly lower in nephrotic patients, in patients with estimated glomerular filtration rate (eGFR) < 60/min/1.73 m2 at presentation, as well as in the progressor (PG) subgroup. In a multivariate regression analysis basal eGFR correlated with UsTNFR1, UIL-6, and UEGF excretion, although in the follow-up, ΔeGFR (delta estimated glomerular filtration rate) significantly correlated only with UEGF excretion. A logistic regression analysis showed that the most significant independent risk factors for the deterioration of renal function with time are initial high (>11.8 pg/mgCr) UIL-6 excretion, initial low (<15.5 ng/mgCr) urinary UEGF excretion, and male gender. In patients with newly diagnosed CGN, UIL-6, and UEGF can serve as prognostic biomarkers for the progression of the disease.NEW & NOTEWORTHY Baseline high urinary interleukin-6 (IL-6) excretion and low urinary epidermal growth factor (EGF) excretion and particularly high IL-6/EGF ratio were stronger predictive factors of the progression of the deterioration of the kidney function than initial estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 or proteinuria. In patients with newly diagnosed chronic glomerulonephritis, UIL-6 and UEGF can serve as prognostic biomarkers for the progression of the disease.
Collapse
Affiliation(s)
- Ilona Idasiak-Piechocka
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Miłosz Miedziaszczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Aldona Woźniak
- Department of Pathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Elżbieta Pawliczak
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Elżbieta Kaczmarek
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Oko
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
5
|
Pan Y, Zhang Y, Li J, Zhang Z, He Y, Zhao Q, Yang H, Zhou P. A proteoglycan isolated from Ganoderma lucidum attenuates diabetic kidney disease by inhibiting oxidative stress-induced renal fibrosis both in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116405. [PMID: 36966849 DOI: 10.1016/j.jep.2023.116405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum) was regarded as "miraculous herb" by the Chinese and recorded detailly in the "Shen Nong Ben Cao Jing" as a tonic to improve health and prolong life. A proteoglycan (namely, FYGL) was extracted from Ganoderma lucidum, which was a water-soluble hyperbranched proteoglycan, and was found to be able to protect pancreatic tissue against oxidative stress damage. AIM OF THE STUDY Diabetic kidney disease (DKD) is a complication of diabetes, but the effective treatment is still lack. Chronic hyperglycemia in diabetic patients induce the accumulation of ROS, which injure the renal tissue and lead to the renal dysfunction. In this work, the efficacy and target mechanics of FYGL on diabetic renal function were investigated. MATERIALS AND METHODS In the present study, the mechanism of the reno-protection of FYGL was analyzed on diabetic db/db mice and rat glomerular mesangial cells (HBZY-1) induced by high glucose (HG) with palmitate (PA) (HG/PA). In vitro, the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were evaluated by commercial kits. the expressions of NOX1 and NOX4, phosphorylation of MAPK and NF-κB, and pro-fibrotic proteins were measured by Western blot. In vivo, diabetic db/db mice were gavaged with FYGL for 8 weeks, body weight and fasting blood glucose (FBG) were tested weekly. On 8th week, the serum, urine and renal tissue were collected for glucose tolerance test (OGTT), redox indicator (SOD, CAT, GSH and MDA), lipid metabolism (TC, TG, LDL and HDL), blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA), 8-oxo-deoxyguanosine (8-OHdG), and the changes of histopathology and expression of collagen IV and AGEs. RESULTS The results in vitro showed that FYGL significantly inhibited the HG/PA-induced HBZY-1 cells proliferation, ROS generation, MDA production, promoted SOD activity, and suppressed NOX1, NOX4, MAPK, NF-κB, and pro-fibrotic proteins expression. In addition, FYGL markedly alleviated blood glucose, antioxidant activity and lipid metabolism, improved renal functions, and relieved renal histopathological abnormalities, especially renal fibrosis. CONCLUSIONS The antioxidant activity of FYGL can reduce ROS caused by diabetes and protect renal from oxidative stress-induced dysfunction, thereby improving renal function. This study shows that FYGL has the potential to treat diabetic kidney disease.
Collapse
Affiliation(s)
- Yanna Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| | - Ying Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Zeng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China
| | - Qingjie Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China.
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
6
|
Qin W, Yang Z, Yin J, Chen D, Huo J, Wang J, Wang L, Zhuo Q. Effect Assessment of Aurantio-Obtusin on Novel Human Renal Glomerular Endothelial Cells Model Using a Microfluidic Chip. Nutrients 2022; 14:4615. [PMID: 36364876 PMCID: PMC9654768 DOI: 10.3390/nu14214615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 02/02/2024] Open
Abstract
Cassiae semen is widely used as a raw material of health food. Anthraquinone compounds, the main components in cassiae semen, have been reported to show nephrotoxicity. Aurantio-obtusin (AO) is a major anthraquinone compound extracted from cassiae semen. This study investigates the effects of AO on the morphology and physiological function of human renal glomerular endothelial cells (HRGECs) on a microfluidic chip device for the first time. HRGECs were cultured on a microfluidic plate and exposed to a series of AO concentrations. Compared with traditional 96-well culture, HRGECs cultured on the microfluidic chip appeared to better mimic the glomerular microenvironment in vivo. AO induced different degrees of damage to cellular morphology and physiological function. The leakage of lactate dehydrogenase (LDH), as well as the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and monocyte chemoattractant protein 1 (MCP-1), increased in the AO treated groups. At the same time, cell viability and expression of ZO-1 in the AO treated groups decreased in a dose-dependent manner. The innovative device enables direct visualization and quantification to evaluate the cytotoxic effects of AO on HRGECs, and provides a useful visual in vitro model for studying health effect of health food.
Collapse
Affiliation(s)
- Wen Qin
- Department of Central Laboratory, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zhuo Yang
- Department of Central Laboratory, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiyong Yin
- Department of Food Science and Technology, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Di Chen
- Department of Food Science and Technology, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Junsheng Huo
- Department of Central Laboratory, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jingbo Wang
- Department of Central Laboratory, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Liyuan Wang
- Department of Central Laboratory, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Qin Zhuo
- Department of Central Laboratory, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
7
|
Yang Y, Shi K, Patel DM, Liu F, Wu T, Chai Z. How to inhibit transforming growth factor beta safely in diabetic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:115-122. [PMID: 33229911 DOI: 10.1097/mnh.0000000000000663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is a leading cause of mortality and morbidity in diabetes. This review aims to discuss the major features of DKD, to identify the difficult barrier encountered in developing a therapeutic strategy and to provide a potentially superior novel approach to retard DKD. RECENT FINDINGS Renal inflammation and fibrosis are prominent features of DKD. Transforming growth factor beta (TGFβ) with its activity enhanced in DKD plays a key pathological profibrotic role in promoting renal fibrosis. However, TGFβ is a difficult drug target because it has multiple important physiological functions, such as immunomodulation. These physiological functions of TGFβ can be interrupted as a result of complete blockade of the TGFβ pathway if TGFβ is directly targeted, leading to catastrophic side-effects, such as fulminant inflammation. Cell division autoantigen 1 (CDA1) is recently identified as an enhancer of profibrotic TGFβ signaling and inhibitor of anti-inflammatory SIRT1. Renal CDA1 expression is elevated in human DKD as well as in rodent models of DKD. Targeting CDA1, by either genetic approach or pharmacological approach in mice, leads to concurrent attenuation of renal fibrosis and inflammation without any deleterious effects observed. SUMMARY Targeting CDA1, instead of directly targeting TGFβ, represents a superior approach to retard DKD.
Collapse
Affiliation(s)
- Yuxin Yang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Pathology, Zunyi maternity and Child Healthcare Hospital, Zunyi
| | - Kexin Shi
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devang M Patel
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Tieqiao Wu
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Pirklbauer M, Bernd M, Fuchs L, Staudinger P, Corazza U, Leierer J, Mayer G, Schramek H. Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells. Int J Mol Sci 2020; 21:ijms21218189. [PMID: 33139635 PMCID: PMC7663377 DOI: 10.3390/ijms21218189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
SGLT2 inhibitors (SGLT2i) slow the progression of chronic kidney disease; however, evidence for the underlying molecular mechanisms is scarce. We investigated SGLT2i-mediated effects on differential gene expression in two independent human proximal tubular cell (HPTC) lines (HK-2 and RPTEC/TERT1) at the mRNA and protein levels under normoglycemic conditions, utilizing IL-1β as a pro-inflammatory mediator. Microarray hybridization identified 259 genes that were uniformly upregulated by IL-1β (10 mg/mL) and downregulated by empagliflozin (Empa) (500 nM) after 24 h of stimulation in two independent HPTC lines (n = 2, each). The functional annotation of these genes identified eight pathway clusters. Among 12 genes annotated to the highest ranked cluster (enrichment score, 3.51), monocyte chemoattractant protein-1/CC-chemokine ligand 2 (MCP-1/CCL2) and endothelin-1 (ET-1) were selected for verification at mRNA and protein levels based on their established involvement in the early pathogenesis of chronic kidney disease: IL-1β upregulated basal MCP-1/CCL2 (15- and 19-fold) and ET-1 (3- and 8-fold) mRNA expression, while Empa downregulated basal MCP-1/CCL2 (0.6- and 0.5-fold) and ET-1 (0.3- and 0.2-fold) mRNA expression as early as 1 h after stimulation and for at least 24 h in HK-2 and RPTEC/TERT1 cells, respectively. The co-administration of Empa inhibited IL-1β-mediated MCP-1/CCL2 (0.2-fold, each) and ET-1 (0.2-fold, each) mRNA expression as early as 1 h after ligand stimulation and for at least 24 h in both HPTC lines, respectively. This inhibitory effect of Empa on basal and IL-1β-mediated MCP-1/CCL2 and ET-1 mRNA expression was corroborated at the protein level. Our study presents novel evidence for the interference of SGLT2 inhibition with tubular inflammatory response mechanisms under normoglycemic conditions that might account for SGLT2i-mediated nephroprotection.
Collapse
|
9
|
Sourris KC, Watson A, Jandeleit-Dahm K. Inhibitors of Advanced Glycation End Product (AGE) Formation and Accumulation. Handb Exp Pharmacol 2020; 264:395-423. [PMID: 32809100 DOI: 10.1007/164_2020_391] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of chemically different compounds are known to inhibit the formation and accumulation of advanced glycation end products (AGEs) or disrupt associated signalling pathways. There is evidence that some of these agents can provide end-organ protection in chronic diseases including diabetes. Whilst this group of therapeutics are structurally and functionally different and have a range of mechanisms of action, they ultimately reduce the deleterious actions and the tissue burden of advanced glycation end products. To date it remains unclear if this is due to the reduction in tissue AGE levels per se or the modulation of downstream signal pathways. Some of these agents either stimulate antioxidant defence or reduce the formation of reactive oxygen species (ROS), modify lipid profiles and inhibit inflammation. A number of existing treatments for glucose lowering, hypertension and hyperlipidaemia are also known to reduce AGE formation as a by-product of their action. Targeted AGE formation inhibitors or AGE cross-link breakers have been developed and have shown beneficial effects in animal models of diabetic complications as well as other chronic conditions. However, only a few of these agents have progressed to clinical development. The failure of clinical translation highlights the importance of further investigation of the advanced glycation pathway, the diverse actions of agents which interfere with AGE formation, cross-linking or AGE receptor activation and their effect on the development and progression of chronic diseases including diabetic complications. Advanced glycation end products (AGEs) are (1) proteins or lipids that become glycated as a result of exposure to sugars or (2) non-proteinaceous oxidised lipids. They are implicated in ageing and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney and Alzheimer's disease. Several antihypertensive and antidiabetic agents and statins also indirectly lower AGEs. Direct AGE inhibitors currently investigated include pyridoxamine and epalrestat, the inhibition of the formation of reactive dicarbonyls such as methylglyoxal as an important precursor of AGEs via increased activation of the detoxifying enzyme Glo-1 and inhibitors of NOX-derived ROS to reduce the AGE/RAGE signalling.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anna Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
The future of diabetic kidney disease management: what to expect from the experimental studies? J Nephrol 2020; 33:1151-1161. [PMID: 32221858 DOI: 10.1007/s40620-020-00724-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage renal disease. Intensive blood glucose and blood pressure control, particularly using inhibitors of the renin-angiotensin system, have long been mainstays of therapy in patients with DKD. Moreover, new anti-hyperglycemic drugs have recently shown renoprotective effects and this represents a major progress in the management of DKD. However, the risk of progression is still substantial and additional drugs are required. Recent preclinical studies have identified novel therapeutic targets that may optimize renoprotection in the near future. Besides strategies aimed to reduce oxidative stress and inflammation in the kidney, novel extra-renal approaches targeting stem cells, extracellular vesicles, and the microbiota are on the horizon with promising preclinical data. Herein, we will review these lines of research and discuss potential clinical applications. Given the poor yield of experimental studies in DKD in the past years, we will also discuss strategies to improve translation of preclinical research to humans.
Collapse
|
11
|
Chen F, Wei G, Zhou Y, Ma X, Wang Q. The Mechanism of miR-192 in Regulating High Glucose-Induced MCP-1 Expression in Rat Glomerular Mesangial Cells. Endocr Metab Immune Disord Drug Targets 2019; 19:1055-1063. [PMID: 30827272 DOI: 10.2174/1871530319666190301154640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Background: Although the pathogenetic mechanism of Diabetic Kidney Disease (DKD) has
not been elucidated, an inflammatory mechanism may be a potential contributor. Monocyte chemotactic
protein-1 (MCP-1) is suggested to be implicated in the development of DKD by playing a role in
the infiltration of monocyte/macrophage. The aim of this study was to investigate the expression of
MCP-1 under high glucose conditions, as well as the effects of microRNA-192 (miR-192) under these
conditions, and to study the regulatory mechanism of MCP-1 in DKD.
<p></p>
Methods: Rat glomerular mesangial cells were cultured in high glucose or isotonic mannitol. The
messenger RNA(mRNA) expression of miR-192, miR-200b, miR-200c, E-box-binding homeobox 1
(Zeb1), and MCP-1 was then detected by real-time PCR, and the protein expression of Zeb1 and MCP-
1 was assessed by western blotting. The rat mesangial cells were transfected with an miR-192 inhibitor,
NC inhibitor , and transfected with siRNA Zeb1, siNC. The cells were then cultured in high glucose
to detect the mRNA expression of miR-192, miR-200b, miR-200c, Zeb1, and MCP-1 using realtime
PCR, and Zeb1 and MCP-1 protein expression were determined by western blotting.
<p></p>
Results: MiR-192, miR-200b, miR-200c, and MCP-1 were overexpressed, whereas Zeb1 was downregulated
when cultured in high glucose (P < 0.05). After transfection with an miR-192 inhibitor, the
expression of miR-192, miR-200b, miR-200c, and MCP-1 was downregulated, whereas Zeb1 was
increased, and these differences were statistically significant (P < 0.05). The observed changes in the
expression in the NC inhibitor transfection group were similar to that of non-transfected cell lines.
Silencing the expression of Zeb1 resulted in a significant increase in the expression of miR-192, miR-
200b, miR-200c, and MCP-1 (P < 0.05). The observed changes in the SiNC transfection group were
similar to those of non-transfected cell lines.
<p></p>
Conclusions: MiR-192 expression was upregulated to increase the expression of inflammatory factor
MCP-1 by inhibiting the expression of Zeb1, which was mediated by breaking the regulatory loop of
Zeb1 and miR-200b/c in rat mesangial cells cultured in high glucose.
Collapse
Affiliation(s)
- Fenqin Chen
- Departments of Geriatric, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Guozhu Wei
- Department of Radiology, Orthopedic Hospital of Shenyang, Shenyang 110001, China
| | - Yang Zhou
- Department of Endocrinology, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Xiaoyu Ma
- Departments of Geriatric, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| |
Collapse
|
12
|
Zhang HX, Yuan J, Li YF, Li RS. Thalidomide decreases high glucose-induced extracellular matrix protein synthesis in mesangial cells via the AMPK pathway. Exp Ther Med 2019; 17:927-934. [PMID: 30651882 DOI: 10.3892/etm.2018.6995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/26/2018] [Indexed: 01/03/2023] Open
Abstract
A previous study demonstrated the renal-protective effect of thalidomide (Thd) in diabetic nephropathy rats through the activation of the adenosine monophosphate-activated protein kinase (AMPK) and inhibition of the nuclear factor κB (NF-κB)/monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor (TGF)-β1/mothers against decapentaplegic homolog signaling pathways. The association between AMPK inactivation and high glucose (HG)-induced meningeal cell (MC) proliferation and extracellular matrix (ECM) accumulation via NF-κB and TGF-β1 signaling remains unknown. The aim of the current study was to demonstrate the effects of Thd on cell proliferation and ECM expression in HG-cultured MCs and the underlying mechanisms. HG-cultured human MCs were treated with Thd. Cell proliferation was measured by MTT assay and quantification of cell proliferation was based on the measurement of bromodeoxyuridine incorporation. The differences in TGF-β1, fibronectin and MCP-1 protein expression levels were detected via ELISA and western blot analysis. The AMPK signaling pathway was also examined by western blot analysis in MCs. Compound C, an AMPK inhibitor and AICAR (5-aminoimidazole-4-carboxamide 1β-D-ribofuranoside), an AMPK agonist, were used to analyze the functional role of AMPK in MCs. Cell proliferation was significantly decreased in HG-cultured MCs following treatment with high concentrations of Thd (100 and 200 µg/ml) for 24 h compared with the HG-cultured MC group. Thd suppressed the inflammatory processes in HG-induced MCs. These effects were partially mediated through the activation of AMPK and inhibition of the NF-κB/MCP-1 signaling pathways. Taken together, these results suggest that Thd may have therapeutic potential in diabetic renal injury via the AMPK signaling pathway.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Jie Yuan
- Department of Radiology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Ya-Feng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Rong-Shan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
13
|
Tominaga T, Sharma I, Fujita Y, Doi T, Wallner AK, Kanwar YS. Myo-inositol oxygenase accentuates renal tubular injury initiated by endoplasmic reticulum stress. Am J Physiol Renal Physiol 2018; 316:F301-F315. [PMID: 30539651 DOI: 10.1152/ajprenal.00534.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Besides oxidant stress, endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of various metabolic disorders affecting the kidney. These two forms of stresses are not mutually exclusive to each other and may operate by a feedback loop in worsening the cellular injury. To attest to this contention, studies were performed to assess whether in such a setting, there is worsening of tubulointerstitial injury. We employed tunicamycin as a model of ER stress and used tubular cells and mice overexpressing myo-inositol oxygenase (MIOX), an enzyme involved in glycolytic events with excessive generation of ROS. Concomitant treatment of tunicamycin and transfection of cells with MIOX-pcDNA led to a marked generation of ROS, which was reduced by MIOX-siRNA. Likewise, an accentuated expression of ER stress sensors, GRP78, XBP1, and CHOP, was observed, which was reduced with MIOX-siRNA. These sensors were markedly elevated in MIOX-TG mice compared with WT treated with tunicamycin. This was accompanied with marked deterioration of tubular morphology, along with impairment of renal functions. Interestingly, minimal damage and elevation of ER stressors was observed in MIOX-KO mice. Downstream events that were more adversely affected in MIOX-TG mice included accentuated expression of proapoptogenic proteins, proinflammatory cytokines, and extracellular matrix constituents, although expression of these molecules was unaffected in MIOX-KO mice. Also, their tunicamycin-induced accentuated expression in tubular cells was notably reduced with MIOX-siRNA. These studies suggest that the biology of MIOX-induced oxidant stress and tunicamycin-induced ER stress are interlinked, and both of the events may feed into each other to amplify the tubulointerstitial injury.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yui Fujita
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
14
|
Barutta F, Bellini S, Mastrocola R, Gambino R, Piscitelli F, di Marzo V, Corbetta B, Vemuri VK, Makriyannis A, Annaratone L, Bruno G, Gruden G. Reversal of albuminuria by combined AM6545 and perindopril therapy in experimental diabetic nephropathy. Br J Pharmacol 2018; 175:4371-4385. [PMID: 30184259 DOI: 10.1111/bph.14495] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 07/21/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid (EC) system has been implicated in the pathogenesis of diabetic nephropathy (DN). We investigated the effects of peripheral blockade of the cannabinoid CB1 receptor as an add-on treatment to ACE-inhibition in type 1 diabetic mice (DM) with established albuminuria. EXPERIMENTAL APPROACH Renal functional parameters (albumin excretion rate, creatinine clearance), tubular injury, renal structure, both EC and CB receptor levels and markers of podocyte dysfunction, fibrosis and inflammation were studied in streptozotocin-induced DM treated for 14 weeks with vehicle, the ACE-inhibitor perindopril (2 mg·kg-1 ·day-1 ), peripherally-restricted CB1 receptor antagonist AM6545 (10 mg·kg-1 ·day-1 ) or both. Treatments began at 8 weeks after diabetes onset, when early DN is established. KEY RESULTS CB1 receptors were overexpressed in DM and neither perindopril nor AM6545 altered this effect, while both drugs abolished diabetes-induced overexpression of angiotensin AT1 receptors. Single treatment with either AM6545 or perindopril significantly reduced progression of albuminuria, down-regulation of nephrin and podocin, inflammation and expression of markers of fibrosis. However, reversal of albuminuria was only observed in mice administered both treatments. The ability of the combination therapy to completely abolish slit diaphragm protein loss, monocyte infiltration, overexpression of inflammatory markers and favour macrophage polarization towards an M2 phenotype may explain this greater efficacy. In vitro experiments confirmed that CB1 receptor activation directly inhibits retinoic acid-induced nephrin expression in podocytes and IL-4-induced M2 polarization in macrophages. CONCLUSION AND IMPLICATIONS Peripheral CB1 receptor blockade used as add-on treatment to ACE-inhibition reverses albuminuria, nephrin loss and inflammation in DM.
Collapse
Affiliation(s)
- F Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - S Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - R Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - R Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry - CNR, Pozzuoli, Italy
| | - V di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry - CNR, Pozzuoli, Italy
| | - B Corbetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - V K Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - A Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - L Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - G Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - G Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Zhang M, Yan Z, Bu L, An C, Wang D, Liu X, Zhang J, Yang W, Deng B, Xie J, Zhang B. Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-κB signaling pathways in diabetic nephropathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1255-1268. [PMID: 29795979 PMCID: PMC5958891 DOI: 10.2147/dddt.s162288] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction Kidney fibrosis is the main pathologic change in diabetic nephropathy (DN), which is the major cause of end-stage renal disease. Current therapeutic strategies slow down but cannot reverse the progression of renal dysfunction in DN. Plant-derived bioactive peptides in foodstuffs are widely used in many fields because of their potential pharmaceutical and nutraceutical benefits. However, this type of peptide has not yet been studied in renal fibrosis of DN. Previous studies have indicated that the peptide YWDHNNPQIR (named RAP), a natural peptide derived from rapeseed protein, has an antioxidative stress effect. The oxidative stress is believed to be associated with DN. The aim of this study was to evaluate the pharmacologic effects of RAP against renal fibrosis of DN and high glucose (HG)-induced mesangial dysfunction. Materials and methods Diabetes was induced by streptozotocin and high-fat diet in C57BL/6 mice and these mice were treated by subcutaneous injection of different doses of RAP (0.1 mg/kg and 0.5 mg/kg, every other day) or PBS for 12 weeks. Later, functional and histopathologic analyses were performed. Parallel experiments verifying the molecular mechanism by which RAP alleviates DN were carried out in HG-induced mesangial cells (MCs). Results RAP improved the renal function indices, including 24-h albuminuria, triglyceride, serum creatinine, and blood urea nitrogen levels, but did not lower blood glucose levels in DN mice. RAP also simultaneously attenuated extracellular matrix accumulation in DN mice and HG-induced MCs. Furthermore, RAP reduced HG-induced cell proliferation, but it showed no toxicity in MCs. Additionally, RAP inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. Conclusion RAP can attenuate fibrosis in vivo and in vitro by antagonizing the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Mingyan Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhibin Yan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lili Bu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunmei An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianfeng Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bochuan Deng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Beneficial Effects of 6-Month Supplementation with Omega-3 Acids on Selected Inflammatory Markers in Patients with Chronic Kidney Disease Stages 1-3. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1680985. [PMID: 29349065 PMCID: PMC5734005 DOI: 10.1155/2017/1680985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022]
Abstract
Introduction Chronic kidney disease (CKD) is accompanied by inflammation. The aim of this study was to evaluate the effect of 6-month supplementation with omega-3 acids on selected markers of inflammation in patients with CKD stages 1–3. Methods Six-month supplementation with omega-3 acids (2 g/day) was administered to 87 CKD patients and to 27 healthy individuals. At baseline and after follow-up, blood was taken for C-reactive protein (CRP) and monocyte chemotactic protein-1 (MCP-1) concentration and white blood cell (WBC) count. Serum concentration of omega-3 acids—eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA)—was determined using gas chromatography. And 24-hour urinary collection was performed to measure MCP-1 excretion. Results After six-month omega-3 supplementation, ALA concentration increased in CKD patients and in the reference group, while EPA and DHA did not change. At follow-up, a significant decrease in urinary MCP-1 excretion in CKD (p = 0.0012) and in the reference group (p = 0.001) was found. CRP, serum MCP-1, and WBC did not change significantly. The estimated glomerular filtration rate (eGFR) did not change significantly in the CKD group. Conclusions The reduction of urinary MCP-1 excretion in the absence of MCP-1 serum concentration may suggest a beneficial effect of omega-3 supplementation on tubular MCP-1 production. Trial Registration This study was registered in ClinicalTrials.gov (identifier: NCT02147002).
Collapse
|
17
|
|
18
|
Chen X, Wu R, Kong Y, Yang Y, Gao Y, Sun D, Liu Q, Dai D, Lu Z, Wang N, Ge S, Wang F. Tanshinone IIA attenuates renal damage in STZ-induced diabetic rats via inhibiting oxidative stress and inflammation. Oncotarget 2017; 8:31915-31922. [PMID: 28404881 PMCID: PMC5458258 DOI: 10.18632/oncotarget.16651] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation have been demonstrated to be involved in the onset and promotion of diabetic nephropathy (DN).Tanshinone IIA (Tan) possesses both antioxidant and anti-inflammatory properties. Here, the aim of the present study was to explore whether Tan could attenuate renal damage in the rats with streptozotocin (STZ)-induced diabetes and its potential mechanisms. Tan was gavaged to STZ-induced diabetic rats at the dose of 10mg/kg once a day for 12 weeks. Tan treatment significantly attenuated albuminuria and renal histopathology in diabetic rats. Besides, Tan treatment also effectively inhibited oxidative stress and inflammatory reaction in the kidneys of diabetic rats. Our study provided evidence that the protective effect of Tan on diabetes-induced renal injury is associated with inhibition of oxidative stress and inflammation. Tan may be a potential candidate for the treatment of DN.
Collapse
Affiliation(s)
- Xia Chen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwei Kong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuting Yang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yu Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dandan Sun
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qizhen Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dongjun Dai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zeyuan Lu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Sheng Ge
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Nephrology, Shanghai Eighth People's Hospital, Shanghai 200233, China
| |
Collapse
|
19
|
Ji X, Li C, Ou Y, Li N, Yuan K, Yang G, Chen X, Yang Z, Liu B, Cheung WW, Wang L, Huang R, Lan T. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway. Mol Cell Endocrinol 2016; 437:268-279. [PMID: 27378149 DOI: 10.1016/j.mce.2016.06.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023]
Abstract
Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial hypertrophy and extracellular matrix (ECM) accumulation. Our recent study found that andrographolide inhibited high glucose-induced mesangial cell proliferation and fibronectin expression through inhibition of AP-1 pathway. However, whether andrographolide has reno-protective roles in DN has not been fully elucidated. Here, we studied the pharmacological effects of andrographolide against the progression of DN and high glucose-induced mesangial dysfunction. Diabetes was induced in C57BL/6 mice by intraperitoneal injection of streptozotocin (STZ). After 1 weeks after STZ injection, normal diet was substituted with a high-fat diet (HFD). Diabetic mice were intraperitoneal injected with andrographolide (2 mg/kg, twice a week). After 8 weeks, functional and histological analyses were carried out. Parallel experiments uncovering the molecular mechanism by which andrographolide prevents from DN was performed in mesangial cells. Andrographolide inhibited the increases in fasting blood glucose, triglyceride, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. Andrographolide also prevented renal hypertrophy and ECM accumulation. Furthermore, andrographolide markedly attenuated NOX1 expression, ROS production and pro-inflammatory cytokines as well. Additionally, andrographolide inhibited Akt/NF-κB signaling pathway. These results demonstrate that andrographolide is protective against the progression of experimental DN by inhibiting renal oxidative stress, inflammation and fibrosis.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Changzheng Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yitao Ou
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ning Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kai Yuan
- Department of Endocrine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Guizhi Yang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyan Chen
- Department of Endocrine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhicheng Yang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wai W Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Lijing Wang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China.
| | - Tian Lan
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Recently, initial studies have been carried out in patients using monocyte chemoattractant protein-1 (MCP-1) inhibitors. This review summarizes the known function of MCP-1 in regulating monocytes during inflammation and its role in inflammatory disease of the kidney. RECENT FINDINGS MCP-1 is one of the first chemokines described and plays an important role in renal inflammatory disease. The function of MCP-1 has been investigated and analyzed in both animal models of renal disease and renal patients. MCP-1 mediates firstly the release of monocytes from the bone marrow, and then generates a gradient in the endothelial glycocalyx to direct monocytes to sites of inflammation, thereby alleviating the migration of blood leukocytes into the inflamed tissue. In addition, MCP-1 has direct signaling effects in monocytes and influences migration, proliferation, and differentiation of leukocytes. Blockade of MCP-1 in several models of renal disease has ameliorated the disease, suggesting that inhibition of MCP-1 is a promising and valid strategy to treat patients with renal inflammatory disease. SUMMARY Understanding the role of MCP-1 in monocyte homeostasis and the implications of MCP-1 inhibition in renal disease will help in designing better diagnostic and therapeutic strategies in patients with inflammatory renal disease.
Collapse
|
21
|
Brenneman J, Hill J, Pullen S. Emerging therapeutics for the treatment of diabetic nephropathy. Bioorg Med Chem Lett 2016; 26:4394-4402. [PMID: 27520943 DOI: 10.1016/j.bmcl.2016.07.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is the most common pathology contributing to the development of chronic kidney disease (CKD). DN caused by hypertension and unmitigated inflammation in diabetics, renders the kidneys unable to perform normally, and leads to renal fibrosis and organ failure. The increasing global prevalence of DN has been directly attributed to rising incidences of Type II diabetes, and is now the largest non-communicable cause of death worldwide. Despite the high morbidity, successful new treatments for DN are lacking. This review seeks to provide new insight on emerging clinical candidates under investigation for the treatment of DN.
Collapse
Affiliation(s)
- Jehrod Brenneman
- Small Molecule Discovery Research, Boehringer-Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA.
| | - Jon Hill
- Research Networking, Boehringer-Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Steve Pullen
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| |
Collapse
|
22
|
Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits. Life Sci 2016; 157:82-90. [DOI: 10.1016/j.lfs.2016.05.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022]
|
23
|
Zoja C, Locatelli M, Corna D, Villa S, Rottoli D, Nava V, Verde R, Piscitelli F, Di Marzo V, Fingerle J, Adam JM, Rothenhaeusler B, Ottaviani G, Bénardeau A, Abbate M, Remuzzi G, Benigni A. Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy. Nephron Clin Pract 2015; 132:59-69. [DOI: 10.1159/000442679] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/07/2015] [Indexed: 11/19/2022] Open
|
24
|
Yang X, Wang Y, Gao G. High glucose induces rat mesangial cells proliferation and MCP-1 expression via ROS-mediated activation of NF-κB pathway, which is inhibited by eleutheroside E. J Recept Signal Transduct Res 2015; 36:152-7. [PMID: 26644089 DOI: 10.3109/10799893.2015.1061002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glomerular hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy (DN). High glucose-induced oxidative stress is implicated in the etiology of DN. This study aims to investigate the effect of eleutheroside E (EE) on high glucose mediated rat mesangial cells (MCs) proliferation and monocyte chemoattractant protein-1 (MCP-1) expression and the underlying mechanism. MCs proliferation was assessed by MTT assay. Reactive oxygen species (ROS) level and MCP-1 expression were evaluated by ELISA kit. The protein expression of p47, NF-κB p65, p-NF-κB p65, IκBα, p-IκBα, IKKβ and p-IKKβ were determined by Western blot. The results showed that treatment with EE markedly attenuated high glucose induced MCs proliferation and in a dose-dependent manner. Intervention with EE also significantly blocked high glucose induced intracellular ROS production by decreasing NADPH oxidase activity. Meanwhile, EE administration could effectively alleviate the high glucose-stimulated activation of NF-κB, the degradation of IκBα and the expression of MCP-1. These results demonstrate that high glucose enhances MCs proliferation and MCP-1 expression by activating the ROS/NF-κB pathway and can be inhibited by EE. Our findings provide a new perspective for the clinical treatment of DN.
Collapse
Affiliation(s)
- Xiuqin Yang
- a Department of Nephrology , Linyi People's Hospital , Linyi , P.R. China
| | - Yangang Wang
- b Department of Endocrinology and Metabolism , The Affiliated Hospital of Qingdao University , Qingdao , P.R. China , and
| | - Guanqi Gao
- c Department of Endocrinology , Linyi People's Hospital , Linyi , P.R. China
| |
Collapse
|
25
|
Faulkner J, Pye C, Al-Shabrawey M, Elmarakby AA. Inhibition of 12/15-Lipoxygenase Reduces Renal Inflammation and Injury in Streptozotocin-Induced Diabetic Mice. ACTA ACUST UNITED AC 2015; 6. [PMID: 26823989 DOI: 10.4172/2155-6156.1000555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies suggest that 12/15 lipoxygenase (12/15-LO) is implicated in diabetic vascular complications. We hypothesize that 12/15-LO inhibition attenuates renal inflammation and injury in streptozotocin-induced diabetes. Diabetes was induced in wild-type C57BL/6J (WT) and 12/15-LO deficient mice using streptozotocin. Additionally, four groups of WT mice were also used; control non diabetic, diabetic, diabetic treated with the 12/15-LO inhibitor baicalein for 10 weeks and diabetic treated with baicalein only for the last 4 weeks of the experiment. After 10 weeks of induction of diabetes with streptozotocin, WT diabetic mice exhibited marked elevation in proteinuria together with elevation in the excretion levels of thiobarbituric acid reactive substance (TBARs), a marker of oxidative stress, and monocyte chemoattractant protein-1 (MCP-1), a marker of inflammation and these changes were significantly reduced in 12/15-LO deficient diabetic mice (P<0.05). Similarly, pharmacological inhibition of 12/15-LO with baicalein prevented the elevation in renal 12-HETE production, the major murine metabolic product of 12/15-LO, in diabetic mice, and this effect was associated with decreased proteinuria, TBARs excretion and renal collagen deposition compared to untreated diabetic mice. Interestingly, the protective effects of baicalein were not noticed when only administered in the last 4 weeks of diabetes compared to untreated diabetic mice. WT diabetic mice displayed elevation in renal interleukin-6 (IL-6) levels and these changes were only reduced in diabetic mice treated with baicalein for 10 weeks (P<0.05). The anti-inflammatory effects of baicalein or 12/15-LO deficiency were further confirmed in lipopolysaccharide (LPS)-induced acute renal inflammation as inhibition of 12/15-LO reduced the elevation in renal soluble epoxide hydrolase expression in LPS-injected mice. These results suggest that increased 12/15-LO activity and 12-HETE production contribute to the elevation of renal oxidative stress, inflammation and injury in streptozotocin-induced diabetic mice.
Collapse
Affiliation(s)
- Jessica Faulkner
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Chelsey Pye
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA; Department of Ophthalmology and Culver Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA
| | - Ahmed A Elmarakby
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA; Department of Pharmacology & Toxicology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
26
|
Li A, Wang J, Zhu D, Zhang X, Pan R, Wang R. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial–mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells. Free Radic Res 2015; 49:1095-113. [DOI: 10.3109/10715762.2015.1038258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 2015; 165:512-30. [PMID: 25176603 PMCID: PMC4326607 DOI: 10.1016/j.trsl.2014.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. Here, we review novel strategies targeting various components implicated in the fibrogenic pathway to inhibit or retard the loss of kidney function. We focus, in particular, on antifibrotic approaches that target transforming growth factor (TGF)-β1, a key mediator of kidney fibrosis, and exciting new data on the role of autophagy. Bone morphogenetic protein (BMP)-7 and connective tissue growth factor (CTGF) are highlighted as modulators of profibrotic TGF-β activity. BMP-7 has a protective role against TGF-β1 in kidney fibrosis, whereas CTGF enhances TGF-β-mediated fibrosis. We also discuss recent advances in the development of additional strategies for antifibrotic therapy. These include strategies targeting chemokine pathways via CC chemokine receptors 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide-cyclic 3',5'-guanosine monophosphate function, inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4 to suppress reactive oxygen species production, and inhibition of endothelin 1 or tumor necrosis factor α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis is currently being explored that may improve the ability to monitor antifibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel antifibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD.
Collapse
Affiliation(s)
- So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sung I Kim
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
28
|
Barutta F, Bruno G, Grimaldi S, Gruden G. Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine 2015; 48:730-42. [PMID: 25273317 DOI: 10.1007/s12020-014-0437-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/21/2014] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end stage renal failure and there is an urgent need to identify new clinical biomarkers and targets for treatment to effectively prevent and slow the progression of the complication. Many lines of evidence show that inflammation is a cardinal pathogenetic mechanism in DN. Studies in animal models of experimental diabetes have demonstrated that there is a low-grade inflammation in the diabetic kidney. Both pharmacological and genetic strategies targeting inflammatory molecules have been shown to be beneficial in experimental DN. In vitro studies have cast light on the cellular mechanisms whereby diabetes triggers inflammation and in turn inflammation magnifies the kidney injury. Translation of this basic science knowledge into potential practical clinical applications is matter of great interest for researchers today. This review focuses on key pro-inflammatory systems implicated in the development of DN: the tumor necrosis factor(TNF)-α/TNF-α receptor system, the monocyte chemoattractant protein-1/CC-chemokine receptor-2 system, and the Endocannabinoid system that have been selected as they appear particularly promising for future clinical applications.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, C/so AM Dogliotti 14, Turin, Italy
| | | | | | | |
Collapse
|
29
|
Yoon SP, Kim J. Poly(ADP-ribose) polymerase 1 activation links ischemic acute kidney injury to interstitial fibrosis. J Physiol Sci 2015; 65:105-11. [PMID: 25388944 PMCID: PMC10717313 DOI: 10.1007/s12576-014-0346-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/20/2014] [Indexed: 02/06/2023]
Abstract
Inactivation of poly(ADP-ribose) polymerase 1 (PARP1) has been found to be protective in several disease models; however, the role of PARP1 in acute kidney injury-induced interstitial fibrosis has not been studied. Herein, we tested whether PARP1 inactivation by treatment with PJ34 (a PARP1 inactivator; 10 mg/kg body weight/day, intraperitoneal implantation of a miniosmotic pump at 2 days after the onset) contributed to the decrease in interstitial fibrosis induced by ischemia-reperfusion injury (IRI) in mouse kidneys. IRI increased PARP1 activation represented by poly(ADP-ribose) expression from 4 to 16 days postinjury, whereas treatment with PJ34 at 2 days after the onset efficaciously abolished the increase in PARP1 activation at 4, 8 and 16 days after IRI. Pharmacological inactivation of PARP1 significantly reduced interstitial fibrosis as represented by the collagen deposition and transforming growth factor-β1 level at 8 and 16 days after IRI. Consistent with collagen deposition, myofibroblast activation represented by α-smooth muscle actin expression was also reduced by PARP1 inactivation at 8 and 16 days after IRI. Furthermore, IRI enhanced macrophage influx, but PARP1 inactivaton remarkably reduced macrophage influx for 4 through 16 days after the injury. Among the chemoattractants for monocytes/macrophages and neutrophils, monocyte chemotactic protein-1 (MCP-1) production in IRI kidneys was significantly reduced by PARP1 inactivation from 4 to 16 days postinjury. These data demonstrate that PARP1 activation contributes to IRI-induced MCP-1 production and in turn to macrophage influx, resulting in the promotion of interstitial fibrosis.
Collapse
Affiliation(s)
- Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, 690-756 Republic of Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, 690-756 Republic of Korea
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, 690-756 Republic of Korea
| |
Collapse
|
30
|
Hao J, Ren L, Zhang L, Kong D, Hao L. Aldosterone-induced inflammatory response of mesangial cells via angiotension II receptors. J Renin Angiotensin Aldosterone Syst 2014; 16:739-48. [PMID: 24464860 DOI: 10.1177/1470320313519486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jianbing Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liansheng Ren
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Deyang Kong
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, Bruno G, Cimino D, Taverna D, Deregibus MC, Rastaldi MP, Perin PC, Gruden G. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One 2013; 8:e73798. [PMID: 24223694 PMCID: PMC3817183 DOI: 10.1371/journal.pone.0073798] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/23/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-protein-encoding RNAs, regulate gene expression via suppression of target mRNAs. MiRNAs are present in body fluids in a remarkable stable form as packaged in microvesicles of endocytic origin, named exosomes. In the present study, we have assessed miRNA expression in urinary exosomes from type 1 diabetic patients with and without incipient diabetic nephropathy. Results showed that miR-130a and miR-145 were enriched, while miR-155 and miR-424 reduced in urinary exosomes from patients with microalbuminuria. Similarly, in an animal model of early experimental diabetic nephropathy, urinary exosomal miR-145 levels were increased and this was paralleled by miR-145 overexpression within the glomeruli. Exposure of cultured mesangial cells to high glucose increased miR-145 content in both mesangial cells and mesangial cells-derived exosomes, providing a potential mechanism for diabetes-induced miR-145 overexpression. In conclusion, urinary exosomal miRNA content is altered in type 1 diabetic patients with incipient diabetic nephropathy and miR-145 may represent a novel candidate biomarker/player in the complication.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
- * E-mail:
| | - Marinella Tricarico
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Alessandro Corbelli
- Renal Research Laboratory, Fondazione IRCCS, Ospedale Maggiore Policlinico and Fondazione D’Amico per la Ricerca sulle Malattie Renali, Milan, Italy
- MIA Consortium for Image Analysis, Milano Bicocca University, Milan, Italy
| | - Laura Annaratone
- Department of Biomedical Science and Human Oncology, University of Turin, Turin, Italy
| | - Silvia Pinach
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Serena Grimaldi
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Graziella Bruno
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Daniela Cimino
- Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- Laboratory of Renal and Vascular Pathophysiology, Department of Medical Science, University of Turin, Turin, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS, Ospedale Maggiore Policlinico and Fondazione D’Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Paolo Cavallo Perin
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Jia QQ, Wang JC, Long J, Zhao Y, Chen SJ, Zhai JD, Wei LB, Zhang Q, Chen Y, Long HB. Sesquiterpene lactones and their derivatives inhibit high glucose-induced NF-κB activation and MCP-1 and TGF-β1 expression in rat mesangial cells. Molecules 2013; 18:13061-77. [PMID: 24152676 PMCID: PMC6269856 DOI: 10.3390/molecules181013061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 09/12/2013] [Accepted: 10/14/2013] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common and serious chronic complications of diabetes mellitus, however, no efficient clinical drugs exist for the treatment of DN. We selected and synthesized several sesquiterpene lactones (SLs), and then used the MTT assay to detect rat mesangial cells (MCs) proliferation, ELISA to measure the expression level of monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta (TGF-β1) and fibronectin(FN), real-time fluorescent quantitative PCR analysis to measure the MCP-1 and TGF-β1 gene expression, western blot to detect the level of IκBα protein and EMSA to measure the activation of nuclear factor kappa B (NF-κB). We discovered that SLs, including parthenolide (PTL), micheliolide (MCL), arglabin, and isoalantolactone (IAL), as well as several synthetic analogs of these molecules, could effectively attenuate the high glucose-stimulated activation of NF-κB, the degradation of IκBα, and the expression of MCP-1, TGF-β1 and FN in rat mesangial cells (MCs). These findings suggest that SLs and their derivatives have potential as candidate drugs for the treatment of DN.
Collapse
Affiliation(s)
- Qian-Qian Jia
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; E-Mails: (Q.-Q.J.); (J.-C.W.); (Y.Z); (S.-J.C.); (L.-B.W.)
| | - Jian-Cheng Wang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; E-Mails: (Q.-Q.J.); (J.-C.W.); (Y.Z); (S.-J.C.); (L.-B.W.)
| | - Jing Long
- College of Pharmacy, the State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China; E-Mails: (J.L.); (J.-D.Z.); (Q.Z.); (Y.C.)
| | - Yan Zhao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; E-Mails: (Q.-Q.J.); (J.-C.W.); (Y.Z); (S.-J.C.); (L.-B.W.)
| | - Si-Jia Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; E-Mails: (Q.-Q.J.); (J.-C.W.); (Y.Z); (S.-J.C.); (L.-B.W.)
| | - Jia-Dai Zhai
- College of Pharmacy, the State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China; E-Mails: (J.L.); (J.-D.Z.); (Q.Z.); (Y.C.)
| | - Lian-Bo Wei
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; E-Mails: (Q.-Q.J.); (J.-C.W.); (Y.Z); (S.-J.C.); (L.-B.W.)
| | - Quan Zhang
- College of Pharmacy, the State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China; E-Mails: (J.L.); (J.-D.Z.); (Q.Z.); (Y.C.)
| | - Yue Chen
- College of Pharmacy, the State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China; E-Mails: (J.L.); (J.-D.Z.); (Q.Z.); (Y.C.)
| | - Hai-Bo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China; E-Mails: (Q.-Q.J.); (J.-C.W.); (Y.Z); (S.-J.C.); (L.-B.W.)
- Authors to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-20-6278-2305
| |
Collapse
|
33
|
Komers R, Mar D, Denisenko O, Xu B, Oyama TT, Bomsztyk K. Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes. J Transl Med 2013; 93:543-52. [PMID: 23508046 DOI: 10.1038/labinvest.2013.47] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Epigenetic processes are increasingly being recognized as factors in the pathophysiology of diabetes complications, but few chromatin studies have been done in diabetic nephropathy (DN). We hypothesized that changes in mRNA expression of DN-related genes are associated with epigenetic alterations and aberrant expression of histone-modifying enzymes. RT-PCR and a matrix-chromatin immunoprecipitation platform were used to examine renal mRNA expression, RNA polymerase II (Pol II) recruitment, and epigenetic marks at DN-related genes in the mouse (OVE26) and streptozotocin-induced rat models of type 1 diabetes. Diabetes induced renal expression of Cox2, S100A4/FSP-1, and vimentin genes in both the mouse and the rat models of DN. Mcp-1 and laminin γ1 (Lamc1) expression were increased in diabetic mice but not in rats. Comparison of mRNA and Pol II levels suggested that the diabetes-induced expression of these transcripts is mediated by transcriptional and posttranscriptional processes. Decreases in histone H3 lysine 27 tri-methylation (H3K27m3, silencing mark) and increases in H3 lysine 4 di-methylation (H3K4m2, activating mark) levels were the most consistent epigenetic alterations in the tested genes. In agreement with these results, immunoblot analysis showed increased protein abundance of renal H3K27m2/3 demethylase KDM6A, but no changes in cognate methyltransferase Ezh2 in kidneys of the OVE26 mice compared with controls. In diabetic rats, Ezh2 expression was higher without changes in KDM6A, demonstrating that mechanisms of DN-induced H3K27m3 loss could be species specific. In summary, we show that altered mRNA expression of some DN-related genes is associated with changes in Pol II recruitment and a corresponding decrease in repressive H3K27m3 at the selected loci, and at least in mice with equivalent changes in renal expression of cognate histone-modifying enzymes. This pattern could contribute to diabetes-mediated transitions in chromatin that facilitate transcriptional changes in the diabetic kidney.
Collapse
Affiliation(s)
- Radko Komers
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
34
|
Moresco RN, Sangoi MB, De Carvalho JAM, Tatsch E, Bochi GV. Diabetic nephropathy: traditional to proteomic markers. Clin Chim Acta 2013; 421:17-30. [PMID: 23485645 DOI: 10.1016/j.cca.2013.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 01/11/2023]
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes and it is defined as a rise in the urinary albumin excretion (UAE) rate and abnormal renal function. Currently, changes in albuminuria are considered a hallmark of onset or progression of DN. However, some patients with diabetes have advanced renal pathological changes and progressive kidney function decline even if urinary albumin levels are in the normal range, indicating that albuminuria is not the perfect marker for the early detection of DN. The present article provides an overview of the literature reporting some relevant biomarkers that have been found to be associated with DN and that potentially may be used to predict the onset and/or monitor the progression of nephropathy. In particular, biomarkers of renal damage, inflammation, and oxidative stress may be useful tools for detection at an early stage or prediction of DN. Proteomic-based biomarker discovery represents a novel strategy to improve diagnosis, prognosis and treatment of DN; however, proteomics-based approaches are not yet available in most of the clinical chemistry laboratories. The use of a panel with a combination of biomarkers instead of urinary albumin alone seems to be an interesting approach for early detection of DN, including markers of glomerular damage (e.g., albumin), tubular damage (e.g., NAG and KIM-1), inflammation (e.g., TNF-α) and oxidative stress (e.g., 8-OHdG) because these mechanisms contribute to the development and outcomes of this disease.
Collapse
Affiliation(s)
- Rafael N Moresco
- Laboratório de Pesquisa em Bioquímica Clínica, Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | |
Collapse
|
35
|
Chen FQ, Wang J, Liu XB, Ma XY, Zhang XB, Huang T, Ma DW, Wang QY. Levels of inflammatory cytokines in type 2 diabetes patients with different urinary albumin excretion rates and their correlation with clinical variables. J Diabetes Res 2013; 2013:138969. [PMID: 24350298 PMCID: PMC3848303 DOI: 10.1155/2013/138969] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/29/2013] [Indexed: 01/17/2023] Open
Abstract
Although the pathogenetic mechanism of DN has not been elucidated, an inflammatory mechanism has been suggested as a potential contributor. This study was designed to explore the relationship between low-grade inflammation and renal microangiopathy in T2DM. A total of 261 diabetic subjects were divided into three groups according to UAE: a normal albuminuria group, a microalbuminuria group, and a macroalbuminuria group. A control group was also chosen. Levels of hs-CRP, TNF-α, uMCP-1, SAA, SCr, BUN, serum lipid, blood pressure, and HbA1c were measured in all subjects. Compared with the normal controls, levels of hs-CRP, TNF-α, uMCP-1, and SAA in T2DM patients were significantly higher. They were also elevated in the normal albuminuria group, P < 0.05. Compared with the normal albuminuria group, levels of these inflammatory cytokines were significantly higher in the microalbuminuria and macroalbuminuria group, P < 0.01. The macroalbuminuria group also showed higher levels than the microalbuminuria group, P < 0.01. Also they were positively correlated with UAE, SBP, DBP, LDL-C, and TC. We noted no significance correlated with course, TG, or HDL-C. Only TNF-α; was positively correlated with HbA1c. This study revealed the importance of these inflammatory cytokines in DN pathogenesis. Further studies are needed to fully establish the potential of these cytokines as additional biomarkers for the development of DN.
Collapse
Affiliation(s)
- Fen-qin Chen
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Jiao Wang
- Department of Endocrinology, Fengtian Hospital of Shenyang Medical College, Shenyang 110000, China
| | - Xiao-bo Liu
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Xiao-yu Ma
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Xiu-bin Zhang
- Department of Endocrinology, The Fourth People's Hospital of Shenyang, Shenyang 110031, China
| | - Ting Huang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Dong-wei Ma
- Department of Endocrinology, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Qiu-yue Wang
- Department of Endocrinology, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
- *Qiu-yue Wang:
| |
Collapse
|
36
|
Lee SH, Kang HY, Kim KS, Nam BY, Paeng J, Kim S, Li JJ, Park JT, Kim DK, Han SH, Yoo TH, Kang SW. The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells. J Transl Med 2012; 92:1698-711. [PMID: 23007133 DOI: 10.1038/labinvest.2012.132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) has a role in the process of peritoneal fibrosis (PF), a serious complication in peritoneal dialysis (PD) patients. Even though monocyte chemoattractant protein-1 (MCP-1) was demonstrated to directly increase extracellular matrix (ECM) synthesis, the role of the MCP-1/CCR2 system in PD-related EMT and ECM synthesis in cultured human PMCs (HPMCs) and in an animal model of PD has never been elucidated. In vitro, HPMCs were exposed to 5.6 mM glucose (NG), NG+MCP-1 (10 ng/ml) (NG+MCP-1), or 100 mM glucose (HG) with or without CCR2 inhibitor (RS102895) (CCR2i) or a dominant-negative mutant MCP-1-expressing lentivirus (LV-mMCP-1). In vivo, PD catheters were inserted into 60 Sprague-Dawley rats, and saline (Control, C) (N=30) or 4.25% PD solution (PD) (N=30) was infused for 4 weeks. Twenty rats from each group were treated with empty LV or LV-mMCP-1 intraperitoneally. Snail, E-cadherin, α-smooth muscle actin (α-SMA), and fibronectin protein expression in HPMCs and the peritoneum was evaluated by western blot analysis. Compared with NG cells, Snail, α-SMA, and fibronectin expression was significantly increased, while E-cadherin expression was significantly decreased in HPMCs exposed to HG and NG+MCP-1, and these changes were significantly abrogated by CCR2i (P<0.05). In addition, MCP-1-induced EMT was significantly attenuated by anti-TGF-β1 antibody. In PD rats, Snail and fibronectin expression was significantly increased in the peritoneum, whereas the ratios of E-cadherin/α-SMA protein expression were significantly decreased (P<0.05). The thickness of the peritoneum and the intensity of Masson's trichrome staining in the peritoneum were also significantly higher in PD rats than in C rats (P<0.05). These changes in PD rats were significantly abrogated by LV-mMCP-1. These findings suggest that the MCP-1/CCR2 system is directly involved in PD-related EMT and ECM synthesis and that this is mediated, at least in part, via TGF-β1.
Collapse
Affiliation(s)
- Sun Ha Lee
- Department of Internal Medicine, College of Medicine, Brain Korea 21, Severance Biomedical Science Institute, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gnudi L. Cellular and molecular mechanisms of diabetic glomerulopathy. Nephrol Dial Transplant 2012; 27:2642-9. [DOI: 10.1093/ndt/gfs121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
38
|
El Mesallamy HO, Ahmed HH, Bassyouni AA, Ahmed AS. Clinical significance of inflammatory and fibrogenic cytokines in diabetic nephropathy. Clin Biochem 2012; 45:646-50. [PMID: 22421318 DOI: 10.1016/j.clinbiochem.2012.02.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/17/2012] [Accepted: 02/25/2012] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To study the role of inflammatory chemokine; monocyte chemoattractant protein-1 (MCP-1), and fibrogenic markers [transforming growth factor beta-1 (TGF-β(1)), connective tissue growth factor (CTGF) and fibronectin (FN)] in diabetic nephropathy (DN). DESIGN AND METHODS This study included 17 control and 65 type 2 diabetic subjects (18 normoalbuminuric, 22 microalbuminuric and 25 macroalbuminuric). Demographic characteristics, diabetic index and kidney function tests were monitored. Serum TGF-β(1), plasma CTGF, MCP-1 and FN levels were assayed. RESULTS Microalbuminuric and macroalbuminuric subjects showed a significant elevation in TGF-β(1), CTGF, MCP-1 and FN levels as compared with control and normoalbuminuric subjects. There was positive correlation between these markers and fasting plasma glucose, albumin excretion rate and with each other. CONCLUSION This study revealed the importance of these markers in DN pathogenesis which is powered by their association and thus the possibility of their use as biochemical markers in DN was suggested.
Collapse
|
39
|
Okamoto M, Fuchigami M, Suzuki T, Watanabe N. A Novel C–C Chemokine Receptor 2 Antagonist Prevents Progression of Albuminuria and Atherosclerosis in Mouse Models. Biol Pharm Bull 2012; 35:2069-74. [DOI: 10.1248/bpb.b12-00528] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Nam BY, Paeng J, Kim SH, Lee SH, Kim DH, Kang HY, Li JJ, Kwak SJ, Park JT, Yoo TH, Han SH, Kim DK, Kang SW. The MCP-1/CCR2 axis in podocytes is involved in apoptosis induced by diabetic conditions. Apoptosis 2011; 17:1-13. [DOI: 10.1007/s10495-011-0661-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G. Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 2011; 60:2386-96. [PMID: 21810593 PMCID: PMC3161308 DOI: 10.2337/db10-1809] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The cannabinoid receptor type 2 (CB2) has protective effects in chronic degenerative diseases. Our aim was to assess the potential relevance of the CB2 receptor in both human and experimental diabetic nephropathy (DN). RESEARCH DESIGN AND METHODS CB2 expression was studied in kidney biopsies from patients with advanced DN, in early experimental diabetes, and in cultured podocytes. Levels of endocannabinoids and related enzymes were measured in the renal cortex from diabetic mice. To assess the functional role of CB2, streptozotocin-induced diabetic mice were treated for 14 weeks with AM1241, a selective CB2 agonist. In these animals, we studied albuminuria, renal function, expression of podocyte proteins (nephrin and zonula occludens-1), and markers of both fibrosis (fibronectin and transforming growth factor-β1) and inflammation (monocyte chemoattractant protein-1 [MCP-1], CC chemokine receptor 2 [CCR2], and monocyte markers). CB2 signaling was assessed in cultured podocytes. RESULTS Podocytes express the CB2 receptor both in vitro and in vivo. CB2 was downregulated in kidney biopsies from patients with advanced DN, and renal levels of the CB2 ligand 2-arachidonoylglycerol were reduced in diabetic mice, suggesting impaired CB2 regulation. In experimental diabetes, AM1241 ameliorated albuminuria, podocyte protein downregulation, and glomerular monocyte infiltration, without affecting early markers of fibrosis. In addition, AM1241 reduced CCR2 expression in both renal cortex and cultured podocytes, suggesting that CB2 activation may interfere with the deleterious effects of MCP-1 signaling. CONCLUSIONS The CB2 receptor is expressed by podocytes, and in experimental diabetes, CB2 activation ameliorates both albuminuria and podocyte protein loss, suggesting a protective effect of signaling through CB2 in DN.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Silvia Pinach
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Graziella Bruno
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Roberto Gambino
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS, Ospedale Maggiore Policlinico and Fondazione D’Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Gennaro Salvidio
- Department of Cardionephrology, University of Genoa, Genoa, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Paolo Cavallo Perin
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
- Corresponding author: Gabriella Gruden,
| |
Collapse
|
42
|
Kuiper JW, Vaschetto R, Della Corte F, Plötz FB, Groeneveld ABJ. Bench-to-bedside review: Ventilation-induced renal injury through systemic mediator release--just theory or a causal relationship? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:228. [PMID: 21884646 PMCID: PMC3387589 DOI: 10.1186/cc10282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We review the current literature on the molecular mechanisms involved in the pathogenesis of acute kidney injury induced by plasma mediators released by mechanical ventilation. A comprehensive literature search in the PubMed database was performed and articles were identified that showed increased plasma levels of mediators where the increase was solely attributable to mechanical ventilation. A subsequent search revealed articles delineating the potential effects of each mediator on the kidney or kidney cells. Limited research has focused specifically on the relationship between mechanical ventilation and acute kidney injury. Only a limited number of plasma mediators has been implicated in mechanical ventilation-associated acute kidney injury. The number of mediators released during mechanical ventilation is far greater and includes pro- and anti-inflammatory mediators, but also mediators involved in coagulation, fibrinolysis, cell adhesion, apoptosis and cell growth. The potential effects of these mediators is pleiotropic and include effects on inflammation, cell recruitment, adhesion and infiltration, apoptosis and necrosis, vasoactivity, cell proliferation, coagulation and fibrinolysis, transporter regulation, lipid metabolism and cell signaling. Most research has focused on inflammatory and chemotactic mediators. There is a great disparity of knowledge of potential effects on the kidney between different mediators. From a theoretical point of view, the systemic release of several mediators induced by mechanical ventilation may play an important role in the pathophysiology of acute kidney injury. However, evidence supporting a causal relationship is lacking for the studied mediators.
Collapse
Affiliation(s)
- Jan Willem Kuiper
- Department of Pediatric Intensive Care, VUmc Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Kim MJ, Tam FWK. Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta 2011; 412:2022-30. [PMID: 21851811 DOI: 10.1016/j.cca.2011.07.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 01/17/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) has a critical role in the development of various renal diseases. Data from disease specific experimental animal models and clinical studies confirm that MCP-1 plays an important part in the pathogenesis of renal diseases. The action of MCP-1 in these studies has been shown to be more complex than the traditional concept of monocyte/macrophage recruitment to the inflammatory site. MCP-1 is expressed in renal tissues and it is detectable in urine of patients with a variety of renal diseases. Measurement of urinary levels of MCP-1 can provide valuable information not only for the diagnosis of active renal disease, but also for monitoring of response to therapy. Urinary MCP-1 measurement can provide help with evaluation of the prognosis in various renal diseases. Furthermore, selective targeting of MCP-1 could be an effective treatment in suppressing a number of renal diseases as blocking MCP-1 has already been shown to ameliorate renal diseases in experimental animal models. The advantage of measuring urinary MCP-1 rather than the conventional markers must now be validated using a larger cohort of patients in different renal diseases. Also the therapeutic potential of MCP-1 targeting agents needs to be investigated in clinical studies.
Collapse
Affiliation(s)
- Min Jeong Kim
- Imperial College Kidney and Transplant Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | |
Collapse
|
44
|
Kang YS, Cha JJ, Hyun YY, Cha DR. Novel C-C chemokine receptor 2 antagonists in metabolic disease: a review of recent developments. Expert Opin Investig Drugs 2011; 20:745-56. [PMID: 21466412 DOI: 10.1517/13543784.2011.575359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, and its receptor, C-C chemokine receptor 2 (CCR2), play important roles in various inflammatory diseases. Recently, it has been reported that the CCL2/CCR2 pathway also has an important role in the pathogenesis of metabolic syndrome through its association with obesity and related systemic complications. AREAS COVERED This review focuses on the roles of CCR2 in the pathogenesis of adipose tissue inflammation and other organ damage associated with metabolic syndrome, which is still a matter of debate in many studies. It also covers the use of novel CCR2 antagonists as therapies in such conditions. EXPERT OPINION There is abundant experimental evidence that the CCL2/CCR2 pathway may be involved in chronic low-grade inflammation of adipose tissue in obesity and related metabolic diseases. Although animal models of diabetes and obesity, as well as human trials, have produced controversial results, there is continued interest in the roles of CCR2 inhibition in metabolic disease. Further identification of the mechanisms for recruitment and activation of phagocytes and determination of the roles of other chemokines are needed. Future study of these fundamental questions will provide a clearer understanding of adipose tissue biology and potential therapeutic targets for treatment of obesity-related metabolic disease, including diabetic nephropathy.
Collapse
Affiliation(s)
- Young Sun Kang
- Medical College of Korea University, Ansan Hospital, Division of Nephrology, Department of Internal Medicine, Ansan City, Korea
| | | | | | | |
Collapse
|
45
|
Li J, Lim SS, Lee ES, Gong JH, Shin D, Kang IJ, Kang YH. Isoangustone A suppresses mesangial fibrosis and inflammation in human renal mesangial cells. Exp Biol Med (Maywood) 2011; 236:435-44. [DOI: 10.1258/ebm.2010.010325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Development of diabetic nephropathy with fibrosis is associated with hypereglycemia-linked inflammation. Increased levels of proinflammatory factors have been found in diabetic patients with nephropathy. The present study was to test the hypothesis that isoangustone A, a novel compound present in licorice, can inhibit renal fibrosis and inflammation inflamed by high glucose (HG) in human mesangial cells through disturbing transforming growth factor β (TGF- β) and nuclear facor κB (NF- κB) pathways. Serum-starved mesangial cells were cultured in 33 mmol/L glucose media. Cells were treated with 1–20 μmol/L isoangustone A isolated from Glycyrrhiza uralensis licorice for three days. Exposure of cells to HG elevated connective tissue growth factor and collagen production, which was dose-dependently reversed by isoangustone A. Isoangustone A boosted HG-plummeted membrane type matrix metalloproteinase (MMP)-1 expression and diminished HG-elevated tissue inhibitor of MMP-2 expression. HG activated mesangial TGF- β1-SMAD-responsive signaling, which was repealed by ≥10 μmol/L isoangustone A. Furthermore, HG upregulated intracellular cell adhesion molecule-1 (ICAM-1) level and monocyte chemoattractant protein-1 (MCP-1) mRNA expression, and such increases were dose-dependently suppressed by isoangustone A most likely through hampering TGF- β signaling pathways. Blockade of NF- κB signaling appeared to be responsible for attenuating HG-triggered induction of ICAM-1 and MCP-1. Our findings provide the first evidence that isoangustone A dampens mesangial sclerosis associated with inflammation in response to HG through hindering TGF- β and NF- κB signaling.
Collapse
Affiliation(s)
- Jing Li
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702, South Korea
| | - Soon Sung Lim
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702, South Korea
| | - Eun-Sook Lee
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702, South Korea
| | - Ju-Hyun Gong
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702, South Korea
| | - Daekeun Shin
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702, South Korea
| | - Il-Jun Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702, South Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702, South Korea
| |
Collapse
|
46
|
Klein J, Miravete M, Buffin-Meyer B, Schanstra JP, Bascands JL. La fibrose tubulo-interstitielle rénale. Med Sci (Paris) 2011; 27:55-61. [DOI: 10.1051/medsci/201127155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
47
|
Hu YY, Ye SD, Zhao LL, Zheng M, Wu FZ, Chen Y. Hydrochloride pioglitazone decreases urinary cytokines excretion in type 2 diabetes. Clin Endocrinol (Oxf) 2010; 73:739-43. [PMID: 20874769 DOI: 10.1111/j.1365-2265.2010.03878.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To observe the effects of hydrochloride pioglitazone on urinary cytokine excretion in type 2 diabetes and to explore its possible reno-protective mechanisms. DESIGN Subjects and Methods. Ninety-eight patients with type 2 diabetes and a fasting blood glucose (FBG) levels between 7.0 and 13.0 mm and glycated haemoglobin A1c (HbA1c) ≥ 7.0% were assigned randomly to receive either the pioglitazone (DP group) or a sulphonylurea (DS group). Another 49 healthy individuals were chosen as normal controls (group NC). At the start of the study and after 12 weeks of treatment, urinary cytokines including monocyte chemoattractant protein-1 (MCP-1), transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor were measured and were expressed as a ratio of urinary creatinine excretion. Urinary albumin/creatinine ratio, FBG and HbA1c were determined at the same time. RESULTS The excretion of each urinary cytokine, corrected for urinary creatinine, was significantly increased in both groups of patients with diabetes, compared with normal controls, and after a 12-week treatment were significantly decreased by both therapies but the effect of pioglitazone was statistically greater than with sulphonylureas. Urinary albumin/UCr and both systolic and diastolic blood pressure were decreased significantly by pioglitazone (P < 0.01 or P < 0.05) but not by sulphonylurea treatment (P < 0.05), while there was no significant difference in FBG or HbA1c between two groups. There was a positive correlation between the excretion of cytokines and urinary albumin /UCr (all P < 0.01). CONCLUSIONS This study indicates that pioglitazone reduces urinary albumin excretion by a mechanism that is at least partly independent of blood sugar control. The correlation of urinary albumin excretion with improvement in urinary cytokines suggests that this reno-protective effect of piogliazone in diabetes may be related to local reduction in cytokine activity within the kidney.
Collapse
Affiliation(s)
- Yuan-Yuan Hu
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui Province, China
| | | | | | | | | | | |
Collapse
|
48
|
Jia Y, Hwang SY, House JD, Ogborn MR, Weiler HA, O K, Aukema HM. Long-term high intake of whole proteins results in renal damage in pigs. J Nutr 2010; 140:1646-52. [PMID: 20668252 DOI: 10.3945/jn.110.123034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite evidence of potential antiobesity effects of high-protein (HP) diets, the impact of consuming diets with protein levels at the upper limit of the acceptable macronutrient distribution range (AMDR) on kidney health is unknown. To test whether HP diets affect renal health, whole plant and animal proteins in proportions that mimicked human diets were given to pigs, because their kidneys have a similar anatomy and function to those of humans. Adult female pigs received either normal-protein (NP) or HP (15 or 35% of energy from protein, respectively) isocaloric diets for either 4 or 8 mo. The higher protein in the HP diet was achieved by increasing egg and dairy proteins. Although there were initial differences in body weight and composition, after 8 mo these were similar in pigs consuming the NP and HP diets. The HP compared with NP diet, however, resulted in enlarged kidneys at both 4 and 8 mo. Renal and glomerular volumes were 60-70% higher by the end of the study. These enlarged kidneys had greater evidence of histological damage, with 55% more fibrosis and 30% more glomerulosclerosis. Renal monocyte chemoattractant protein-1 levels also were 22% higher in pigs given the HP diet. Plasma homocysteine levels were higher in the HP pigs at 4 mo and continued to be elevated by 35% at 8 mo of feeding. These findings suggest that long-term intakes of protein at the upper limit of the AMDR from whole protein sources may compromise renal health.
Collapse
Affiliation(s)
- Yong Jia
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Kang YS, Lee MH, Song HK, Ko GJ, Kwon OS, Lim TK, Kim SH, Han SY, Han KH, Lee JE, Han JY, Kim HK, Cha DR. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int 2010; 78:883-94. [PMID: 20686445 DOI: 10.1038/ki.2010.263] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemokine ligand 2 (CCL2) binds to its receptor C-C chemokine receptor 2 (CCR2), initiating tissue inflammation, and recent studies have suggested a beneficial effect of a blockade of this pathway in diabetic nephropathy. To investigate the mechanism of protection, we studied the effect of RS504393, a CCR2 antagonist, on insulin resistance and diabetic nephropathy in db/db mice. Administering this antagonist improved insulin resistance as confirmed by various biomarkers, including homeostasis model assessment index levels, plasma insulin levels, and lipid abnormalities. Mice treated with the antagonist had a significant decrease in epididymal fat mass as well as phenotypic changes of adipocytes into small differentiated forms with decreased CCL2 expression and lipid hydroperoxide levels. In addition, treatment with the CCR2 antagonist markedly decreased urinary albumin excretion, mesangial expansion, and suppressed profibrotic and proinflammatory cytokine synthesis. Furthermore, the CCR2 antagonist improved lipid metabolism, lipid hydroperoxide, cholesterol, and triglyceride contents of the kidney, and decreased urinary 8-isoprostane levels. Hence, our findings suggest that CCR2 antagonists can improve insulin resistance by modulation of the adipose tissue and restore renal function through both metabolic and anti-fibrotic effects in type 2 diabetic mice.
Collapse
Affiliation(s)
- Young Sun Kang
- Division of Nephrology, Department of Internal Medicine, Korea University, Ansan City, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ding GX, Zhang AH, Huang SM, Pan XQ, Chen RH. SP600125, an inhibitor of c-Jun NH2-terminal kinase, blocks expression of angiotensin II-induced monocyte chemoattractant protein-1 in human mesangial cells. World J Pediatr 2010; 6:169-76. [PMID: 20490773 DOI: 10.1007/s12519-010-0033-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 08/25/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND We investigated the role of c-Jun NH2-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, in the expression of angiotensin II (Ang II)-induced monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor-1 (TGF-1), and in the production of fibronectin (FN), by human mesangial cells (HMCs). METHODS JNK activation in cultured human mesangial cells was determined by Western blotting with an antibody against the phosphorylated Ser63 residue of c-Jun. Binding of the activator protein (AP-1) to the MCP-1 AP-1 motif was detected via the electrophoretic mobility shift assay (EMSA). The transient luciferase reporter was used to examine MCP-1 promoter activity; an RNase protection assay and ELISA were used respectively to detect the expression of MCP-1 mRNA and production of MCP-1, TGF-beta and FN. RESULTS Anthra (1,9-cd) pyrazol-6(2H)-one (SP600125), a pharmacological inhibitor of JNK, almost completely abolished Ang II-induced Ser63 phosphorylation of c-Jun at concentrations of 5-20 micromol/L: JNK activity was reduced by 75% with 10 micromol/L SP600125, and by 90% with 20 micromol/L. Ang II increased AP-1 binding to the MCP-1 AP-1 motif in a time-dependent manner, as detected by EMSA, while SP600125 effectively blocked this increased AP-1 binding in a concentration-dependent manner. Treatment with 100 nmol/L Ang II led to a steady increase in MCP-1 mRNA expression, and to an enhanced production of MCP-1, TGF-beta and FN. These effects were blocked by SP60025 in a dose-dependent manner. SP600125 also reduced MCP-1 mRNA stability: the halflife of MCP-1 mRNA was approximately 5 hours in cells treated with Ang II only, but was reduced to 2 hours when treated with a combination of Ang II and SP600125. CONCLUSIONS These results show that the JNK/AP-1 pathway is involved in the expression of MCP-1 and TGF-beta, and in extracellular matrix production. JNK is an important therapeutic target for glomerulonephritis and glomerulosclerosis.
Collapse
Affiliation(s)
- Gui-Xia Ding
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|