1
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Zhang Y, Yang S, Wang P. Gluten-free diets for metabolic control of type 1 diabetes mellitus in children and adolescents: a systematic review and meta-analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 68:e240165. [PMID: 40215289 PMCID: PMC11995883 DOI: 10.20945/2359-4292-2024-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 04/16/2025]
Abstract
The aim of this review is to comprehensively assess the association between a gluten-free diet (GFD) and metabolic control of type 1 diabetes mellitus (T1DM) in children and adolescents with T1DM and with T1DM plus coeliac disease (CD). PubMed, Embase, Cochrane Library, and Web of Science were searched until June 19, 2023. Primary outcomes were hemoglobin A1c (HbA1c), insulin dose, insulin dose adjusted A1c (IDAA1c), blood glucose (B-glu) at 90 min during Mixed Meal Tolerance Test (MMTT), C-peptide area under the curve (AUC), and C-peptide. Seven studies involving 355 T1DM patients were included. Three studies involving 141 patients compared a GFD to a standard diet in children and adolescents withT1DM without CD. Additionally, two studies with 164 patients examined the same diet comparison in those with T1DM and concurrent CD. A comparison between T1DM with CD and T1DM alone, using a GFD, was conducted in two studies encompassing 50 patients. Patients withT1DM alone had similar HbA1c [pooled weighted mean difference (WMD) = -0.5, 95% confidence interval (CI): -1.0 to 0.1, P = 0.079] and IDAA1c (pooled WMD = -0.4, 95%CI: -0.9 to 0.1, P = 0.095) levels after a GFD and a standard diet. In children and adolescents withT1DM and CD, a GFD was associated with a significantly lower HbA1c compared with a standard diet (pooled WMD = -0.64, 95%CI: -1.22 to -0.05, P = 0.034). Insulin dose was significantly lower in T1DM combined with CD patients having a GFD vs a standard diet (pooled WMD = -0.34, 95%CI: -0.66 to -0.03, P = 0.032). Our study suggests that a GFD may offer significant benefits for children and adolescents with both T1DM and CD over a standard diet. While the evidence indicates improved glycemic control with a GFD, the quality of this evidence is low, highlighting the need for rigorous, randomized trials to confirm these preliminary findings. In the interim, enhancing dietary awareness and providing tailored nutritional guidance could be pivotal for optimizing glucose management in this patient population.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology, Hangzhou Children’s Hospital, Zhejiang, China
| | - Suhong Yang
- Department of Endocrinology, Hangzhou Children’s Hospital, Zhejiang, China
| | - Pingping Wang
- Department of Endocrinology, Hangzhou Children’s Hospital, Zhejiang, China
| |
Collapse
|
3
|
Falkenberg C, Sørensen DB, Hansen CH, Toft MF, Hansen AK. Pre-immunization of diet-induced obese male mice with inactivated pathogens increases power in a liraglutide intervention study. Lab Anim 2025; 59:203-214. [PMID: 39696895 DOI: 10.1177/00236772241279058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Pre-immunization with inactivated antigens has been developed as an alternative to the use of 'dirty' mice, which in contrast to specific pathogen free (SPF) mice, harbour a range of pathogens. Within certain research areas, such mice are considered better models for humans than SPF mice, as they have an immune system that better mirrors human immunity. We inactivated murine adenovirus type 1 (FL), minute virus of mice, mouse hepatitis virus (A59), respirovirus muris (Sendai), Theiler's encephalomyelitis virus (GD7) and Mycoplasma pulmonis by ultraviolet irradiation. We show that pre-immunization with these inactivated pathogens combined with adjuvant prior to the dietary induction of obesity in C57BL/6NTac mice substantially reduced the group sizes needed for showing an effect of the GLP-1 receptor analogue, liraglutide. Nesting, open field and novel object behaviours of the mice were unaffected. We conclude that pre-immunization with inactivated pathogens may be a simple tool to increase power in this type of intervention study on the DIO mouse model.
Collapse
Affiliation(s)
- Caroline Falkenberg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Dorte B Sørensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Camilla Hf Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Zhang Z, Wang J, Dang S, Liu X, Zhang Y, Zhang H. The worldview of Akkermansia muciniphila, a bibliometric analysis. Front Microbiol 2025; 16:1500893. [PMID: 40104597 PMCID: PMC11913835 DOI: 10.3389/fmicb.2025.1500893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Akkermansia muciniphila (A. muciniphila), a critical bacterium within the gut microbiota, plays a key role in human health and immunomodulation. Since its identification in 2004, A. muciniphila has emerged as a significant agent in treating metabolic diseases, gastroenterological diseases, and tumor immunotherapy. Its rapid ascent in scientific translation underscores its importance in gut microbiome research. However, there has been a lack of visualization and analysis of the rapidly occurring commercialization in this field, which has critically hindered insights into the current knowledge structure and understanding of the cutting-edge of the discipline. This study employs the Web of Science Core Collection (WOSCC) and Innography platforms to provide the first comprehensive analysis of A. muciniphila's academic progresses and commercialization over the past two decades, highlighting its growing prominence in global health research. Our analysis delineates that, following the academic trajectory, the evolution of A. muciniphila patents from foundational research through to application development and maturity, with particular emphasis on its expansive potential in emerging fields, including gastroenterological disorders, non-alcoholic fatty liver disease, cancer immunotherapy, stress management, and neurodegenerative disease treatment. Concluding, A. muciniphila presents as a next-generation probiotic with vast implications for human health. Our findings provide essential insights for future research and product development, contributing to the advancement of this burgeoning field.
Collapse
Affiliation(s)
- Zhao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaoqing Dang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Yang Y, Shi X. Big lessons from the little Akkermansia muciniphila in hepatocellular carcinoma. Front Immunol 2025; 16:1524563. [PMID: 40028328 PMCID: PMC11868108 DOI: 10.3389/fimmu.2025.1524563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently occurring type of liver tumor and is considered one of the most common primary malignant neoplasms. The prognosis for HCC is dismal because of its complicated etiology and high level of medication resistance. Immunotherapy is presently regarded as one of the most effective therapeutic options for HCC; nevertheless, because of the disturbance of intestinal flora, immunotherapy shows low antitumor efficacy. An increasing body of research indicates that intestinal flora, particularly Akkermansia muciniphila (A. muciniphila), is vital for the treatment of tumors. Studies have demonstrated that the diminished effectiveness of immunotherapy in cancer patients is associated with a reduction in A. muciniphila levels, suggesting that increasing A. muciniphila levels significantly enhance the efficacy of immunotherapy. A. muciniphila functions as a gut probiotic and can treat and prevent a wide range of illnesses, including cancer. Consequently, preserving A. muciniphila abundance is enough to prevent and lower the danger of developing cancer disorders. In this review, we critically evaluate the current body of research on A. muciniphila, with a primary focus on its biological properties and functions. The different illnesses that A. muciniphila treats were then discussed, particularly the way it works with liver cancer. This review aims to give a novel treatment plan for patients with HCC as well as a theoretical foundation for improving HCC immunotherapy.
Collapse
Affiliation(s)
- Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
6
|
Agudelo C, Kateete DP, Nasinghe E, Kamulegeya R, Lubega C, Mbabazi M, Baker N, Lin KY, Liu CC, Kasambula AS, Kigozi E, Komakech K, Mukisa J, Mulumba K, Mwachan P, Nakalanda BS, Nalubega GP, Nsubuga J, Sitenda D, Ssenfuka H, Cirolia GT, Gustafson JT, Wang R, Nsubuga ML, Yiga F, Stanley SA, Bagaya BS, Elliott A, Joloba M, Wolf AR. Enterococcus and Eggerthella species are enriched in the gut microbiomes of COVID-19 cases in Uganda. Gut Pathog 2025; 17:9. [PMID: 39905557 DOI: 10.1186/s13099-025-00678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Infection with the COVID-19-causing pathogen SARS-CoV-2 is associated with disruption in the human gut microbiome. The gut microbiome enables protection against diverse pathogens and exhibits dysbiosis during infectious and autoimmune disease. Studies based in the United States and China have found that severe COVID-19 cases have altered gut microbiome composition when compared to mild COVID-19 cases. We present the first study to investigate the gut microbiome composition of COVID-19 cases in a population from Sub-Saharan Africa. Given the impact of geography and cultural traditions on microbiome composition, it is important to investigate the microbiome globally and not draw broad conclusions from homogenous populations. RESULTS We used stool samples in a Ugandan biobank collected from COVID-19 cases during 2020-2022. We profiled the gut microbiomes of 83 symptomatic individuals who tested positive for SARS-CoV-2 along with 43 household contacts who did not present any symptoms of COVID-19. The inclusion of healthy controls enables us to generate hypotheses about bacterial strains potentially related to susceptibility to COVID-19 disease, which is highly heterogeneous. Comparison of the COVID-19 patients and their household contacts revealed decreased alpha diversity and blooms of Enterococcus and Eggerthella in COVID-19 cases. CONCLUSIONS Our study finds that the microbiome of COVID-19 individuals is more likely to be disrupted, as indicated by decreased diversity and increased pathobiont levels. This is either a consequence of the disease or may indicate that certain microbiome states increase susceptibility to COVID-19 disease. Our findings enable comparison with cohorts previously published in the Global North, as well as support new hypotheses about the interaction between the gut microbiome and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carolina Agudelo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Emmanuel Nasinghe
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Rogers Kamulegeya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Christopher Lubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Monica Mbabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Noah Baker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kathryn Y Lin
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chang C Liu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Arthur Shem Kasambula
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kevin Komakech
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Mukisa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kassim Mulumba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Patricia Mwachan
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Brenda Sharon Nakalanda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Gloria Patricia Nalubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Julius Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Henry Ssenfuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Giana T Cirolia
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Biophysics PhD Program, University of California, Berkeley, Berkeley, CA, USA
| | - Jeshua T Gustafson
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ruohong Wang
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Moses Luutu Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Fahim Yiga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Alison Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda.
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda.
| | - Ashley R Wolf
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Quraishi MN, Cheesbrough J, Rimmer P, Mullish BH, Sharma N, Efstathiou E, Acharjee A, Gkoutus G, Patel A, Marchesi JR, Camuzeaux S, Chappell K, Valdivia-Garcia MA, Ferguson J, Brookes MJ, Walmsley M, Rossiter AE, van Schaik W, McInnes RS, Cooney R, Trauner M, Beggs AD, Iqbal TH, Trivedi PJ. Open Label Vancomycin in Primary Sclerosing Cholangitis-Inflammatory Bowel Disease: Improved Colonic Disease Activity and Associations With Changes in Host-Microbiome-Metabolomic Signatures. J Crohns Colitis 2025; 19:jjae189. [PMID: 39673746 PMCID: PMC11831226 DOI: 10.1093/ecco-jcc/jjae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND We conducted a single-arm interventional study, to explore mucosal changes associated with clinical remission under oral vancomycin (OV) treatment, in primary sclerosing cholangitis-associated inflammatory bowel disease (PSC-IBD); NCT05376228. METHODS Fifteen patients with PSC and active colitis (median fecal calprotectin 459 µg/g; median total Mayo score 5) were treated with OV (125 mg QID) for 4 weeks and followed-up for a further 4 weeks of treatment withdrawal (8 weeks, end-of-study). Colonic biopsies were obtained at baseline and Week 4. Clinical assessments, and serum and stool samples (metagenomics, metatranscriptomics, and metabolomics) were collected at Weeks 0, 2, 4, and 8. The primary efficacy outcome measure was the induction of clinical remission. RESULTS Oral vancomycin resulted in clinical remission in 12/15 patients and significant reductions in fecal calprotectin. Oral vancomycin was associated with reduced abundances of Lachnospiraceae, genera Blautia and Bacteroides; and enrichment of Enterobacteriaceae, and genera Veillonella, Akkermansia, and Escherichia. Oral vancomycin treatment was associated with the downregulation of multiple metatranscriptomic pathways (including short-chain fatty acid [SCFA] metabolism and bile acid [BA] biotransformation), along with host genes and multiple pathways involved in inflammatory responses and antimicrobial defence; and an upregulation of genes associated with extracellular matrix repair. Oral vancomycin use resulted in the loss of specific fecal SCFAs and secondary BAs, including lithocholic acid derivatives. Colitis activity relapsed following OV withdrawal, with host mucosal and microbial changes trending toward baseline. CONCLUSIONS Four weeks of OV induces remission in PSC-IBD activity, associated with a reduction in gut bacterial diversity and compositional changes relating to BA and SCFA homeostasis.
Collapse
Affiliation(s)
- Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, Inflammatory Bowel Disease Center, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Jonathan Cheesbrough
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Peter Rimmer
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Elena Efstathiou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Translational Medicine, University Hospitals Birmingham, Birmingham, UK
- MRC Health Data Research UK (HDR UK), Birmingham, UK
| | - Georgios Gkoutus
- Institute of Translational Medicine, University Hospitals Birmingham, Birmingham, UK
- MRC Health Data Research UK (HDR UK), Birmingham, UK
| | - Arzoo Patel
- Liver Unit, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Julian R Marchesi
- Department of Gastroenterology, Inflammatory Bowel Disease Center, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | | | | | - Maria A Valdivia-Garcia
- Department of Metabolism, Digestion and Reproduction, National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, IRDB Building, Imperial College London, London, UK
| | - James Ferguson
- Liver Unit, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Matthew J Brookes
- Department of Gastroenterology, University of Wolverhampton, Wolverhampton, UK
| | | | - Amanda E Rossiter
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Ross S McInnes
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Rachel Cooney
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, UK
| | - Palak J Trivedi
- Liver Unit, University Hospitals Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Gao F, Cheng C, Li R, Chen Z, Tang K, Du G. The role of Akkermansia muciniphila in maintaining health: a bibliometric study. Front Med (Lausanne) 2025; 12:1484656. [PMID: 39967592 PMCID: PMC11833336 DOI: 10.3389/fmed.2025.1484656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Background Akkermansia muciniphila, as a probiotic, is negatively linked to IBD, obesity, and T2DM. The aim of this study was to comprehensively assess the research status of Akkermansia muciniphila over the past decade and explore the relationships between this bacterium and various health-related aspects. Methods Tools VOSviewer, Bibliometrix, and CiteSpace were used to analyze various aspects including publication metrics, contributors, institutions, geography, journals, funding, and keywords. Results Over the past decade, research on Akkermansia muciniphila has demonstrated a consistent annual growth in the number of publications, with a notable peak in 2021. China led in the number of publications, totaling 151, whereas the United States exhibited a higher centrality value. Among the 820 institutions involved in the research, the University of California (from the United States) and the Chinese Academy of Sciences (from China) occupied central positions. Willem M. De Vos ranked at the top, with 12 publications and 1,108 citations. The journal GUT, which had 5,125 citations and an Impact Factor of 23.0 in 2024, was the most highly cited. The most cited articles deepened the understanding of the bacterium's impact on human health, spanning from basic research to translational medicine. Thirty-nine high-frequency keywords were grouped into five clusters, illustrating Akkermansia muciniphila's associations with metabolic diseases, chronic kidney disease, the gut-brain axis, intestinal inflammation, and Bacteroidetes-Firmicutes shifts. Conclusion Given Akkermansia muciniphila's anti-inflammatory and gut-barrier-strengthening properties, it holds promise as a therapeutic for obesity, metabolic disorders, and inflammatory conditions. Therefore, future research should explore its potential further by conducting clinical trials, elucidating its mechanisms of action, and investigating its efficacy and safety in diverse patient populations.
Collapse
Affiliation(s)
- Fangfang Gao
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Canyu Cheng
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Runwei Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Zongcun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Endocrinology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ke Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
9
|
He K, An F, Zhang H, Yan D, Li T, Wu J, Wu R. Akkermansia muciniphila: A Potential Target for the Prevention of Diabetes. Foods 2024; 14:23. [PMID: 39796314 PMCID: PMC11720440 DOI: 10.3390/foods14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Akkermansia muciniphila, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of A. muciniphila abundance. Thus, A. muciniphil and its components, including the outer membrane protein Amuc_1100, A. muciniphila-derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus. Diabetes treatments that rely on altering changes in A. muciniphila abundance are also reviewed, including the identification of A. muciniphila active ingredients, and dietary and pharmacological interventions for A. mucinihila abundance. The potential and challenges of using A. muciniphila are also highlighted, and it is anticipated that this work will serve as a reference for more in-depth studies on A. muciniphila and diabetes development, as well as the creation of new therapeutic targets by colleagues domestically and internationally.
Collapse
Affiliation(s)
- Kairu He
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Danli Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (K.H.)
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
| |
Collapse
|
10
|
Zhao Y, Yang H, Wu P, Yang S, Xue W, Xu B, Zhang S, Tang B, Xu D. Akkermansia muciniphila: A promising probiotic against inflammation and metabolic disorders. Virulence 2024; 15:2375555. [PMID: 39192579 PMCID: PMC11364076 DOI: 10.1080/21505594.2024.2375555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic disease is a worldwide epidemic that has become a public health problem. Gut microbiota is considered to be one of the important factors that maintain human health by regulating host metabolism. As an abundant bacterium in the host gut, A. muciniphila regulates metabolic and immune functions, and protects gut health. Multiple studies have indicated that alterations in the abundance of A. muciniphila are associated with various diseases, including intestinal inflammatory diseases, obesity, type 2 diabetes mellitus, and even parasitic diseases. Beneficial effects were observed not only in live A. muciniphila, but also in pasteurized A. muciniphila, A. muciniphila-derived extracellular vesicles, outer membrane, and secreted proteins. Although numerous studies have only proven the simple correlation between multiple diseases and A. muciniphila, an increasing number of studies in animal models and preclinical models have demonstrated that the beneficial impacts shifted from correlations to in-depth mechanisms. In this review, we provide a comprehensive view of the beneficial effects of A. muciniphila on different diseases and summarize the potential mechanisms of action of A. muciniphila in the treatment of diseases. We provide a comprehensive understanding of A. muciniphila for improving host health and discuss the perspectives of A. muciniphila in the future studies.
Collapse
Affiliation(s)
- Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huijun Yang
- The First School of Clinical Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Wu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkun Xue
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Biao Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sirui Zhang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bin Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
11
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
12
|
Vergalito F, Bagnoli D, Maiuro L, Pannella G, Palombo V, Testa B, Coppola F, Di Marco RMA, Tremonte P, Lombardi SJ, Iorizzo M, Coppola R, Succi M. Akkermansia muciniphila: new insights into resistance to gastrointestinal stress, adhesion, and protein interaction with human mucins through optimised in vitro trials and bioinformatics tools. Front Microbiol 2024; 15:1462220. [PMID: 39564479 PMCID: PMC11573778 DOI: 10.3389/fmicb.2024.1462220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
According to the FAO/WHO guidelines, selection of probiotics requires the assessment of survival under gastrointestinal stress and adhesion to human epithelial cells. These attributes were evaluated on Akkermansia muciniphila ATCC BAA-835 simulating the gastrointestinal transit (GIT) immediately followed by adhesion to human intestinal cell lines (CaCo2, HT-29, and HT-29-MTX) as an alternative approach to in vitro methods performed with fresh cells in each trial. The survival rate after GIT, as determined by plate counts and fluorescent probes, was significantly higher for A. muciniphila (about 8 Log CFU/mL) than for the probiotic Lacticaseibacillus rhamnosus GG ATCC 53103 (about 3 Log CFU/mL). The use of Live/Dead assay highlighted that A. muciniphila forms cell aggregates in the gastric phase as protective mechanism, explaining its high viability in the intestine. The rate of adhesion to human cell lines was always lower for strains tested after simulated GIT than for strains that did not undergo simulated GIT. Akkermansia muciniphila exhibited significantly higher adhesion than Lbs. rhamnosus GG, particularly to the mucus-secreting HT-29-MTX cells across a range of concentrations (2-8 Log CFU/mL). Finally, the bioinformatic analysis of A. muciniphila proteome confirmed the Amuc_1434 as a potential factor in binding to the human MUC2 protein.
Collapse
Affiliation(s)
- Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Diletta Bagnoli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Lucia Maiuro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Rome, Italy
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Francesca Coppola
- Italian National Research Council (CNR), Institute of Food Sciences (ISA), Avellino, Italy
| | - Roberto M A Di Marco
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Silvia J Lombardi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
13
|
Favero F, Re A, Dason MS, Gravina T, Gagliardi M, Mellai M, Corazzari M, Corà D. Characterization of gut microbiota dynamics in an Alzheimer's disease mouse model through clade-specific marker-based analysis of shotgun metagenomic data. Biol Direct 2024; 19:100. [PMID: 39478626 PMCID: PMC11524029 DOI: 10.1186/s13062-024-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder significantly impairing cognitive faculties, memory, and physical abilities. To characterize the modulation of the gut microbiota in an in vivo AD model, we performed shotgun metagenomics sequencing on 3xTgAD mice at key time points (i.e., 2, 6, and 12 months) of AD progression. Fecal samples from both 3xTgAD and wild-type mice were collected, DNA extracted, and sequenced. Quantitative taxon abundance assessment using MetaPhlAn 4 ensured precise microbial community representation. The analysis focused on species-level genome bins (SGBs) including both known and unknown SGBs (kSGBs and uSGBs, respectively) and also comprised higher taxonomic categories such as family-level genome bins (FGBs), class-level genome bins (CGBs), and order-level genome bins (OGBs). Our bioinformatic results pinpointed the presence of extensive gut microbial diversity in AD mice and showed that the largest proportion of AD- and aging-associated microbiome changes in 3xTgAD mice concern SGBs that belong to the Bacteroidota and Firmicutes phyla, along with a large set of uncharacterized SGBs. Our findings emphasize the need for further advanced bioinformatic studies for accurate classification and functional analysis of these elusive microbial species in relation to their potential bridging role in the gut-brain axis and AD pathogenesis.
Collapse
Affiliation(s)
- Francesco Favero
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Angela Re
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Mohammed Salim Dason
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Teresa Gravina
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Mara Gagliardi
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marta Mellai
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marco Corazzari
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy.
| | - Davide Corà
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy.
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
| |
Collapse
|
14
|
Lee M, Ahn KS, Kim M. Effects of Artemisia asiatica ex on Akkermansia muciniphila dominance for modulation of Alzheimer's disease in mice. PLoS One 2024; 19:e0312670. [PMID: 39466764 PMCID: PMC11516174 DOI: 10.1371/journal.pone.0312670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
The gut microbiome influences neurological disorders through bidirectional communication between the gut and the brain, i.e., the gut-brain axis. Artemisia asiatica ex, an extract of Artemisia asiatica Nakai (Stillen®, DA-9601) has been reported to improve depression by increasing brain-derived neurotropic factor. Therefore, we hypothesized that DA-9601 can be a potential therapeutic candidate for Alzheimer's disease (AD) acting through the gut-brain axis. Four groups of Tg2576 mice were used as the animal model for AD: wild type mice (n = 6), AD mice (n = 6), and DA-9601-administered AD mice given dosages of 30mg/kg/day (DA_30mg; n = 6) or 100mg/kg/day (DA_100mg; n = 6). Microglial activation, blood‒brain barrier integrity, amyloid beta accumulation, cognitive behavior, and changes in the gut microbiome were analyzed. DA-9601 improved the cognitive behavior of mice (DA_30mg **p<0.01; DA_100mg **p<0.01) and reduced amyloid beta accumulation (DA_30mg ***p<0.001; DA_100mg **p<0.01). Increased Iba-1 and upregulation of claudin-5 (DA_30mg *p<0.05) and occludin (DA_30mg **p<0.01; DA_100mg ***p<0.001) indicated altered microglial activation and improved blood‒brain barrier integrity. Akkermansia muciniphila was dramatically increased by DA-9601 administration (DA_30mg 47%; DA_100mg 61%). DA-9601 improved AD pathology with Akkermansia muciniphila dominance in the gut microbiome in a mouse model of AD, inferring that DA-9601 can affect AD through the gut-brain axis.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kwang-Sung Ahn
- Functional Genome Institute, PDXen. Biosystem Co., Gyeongi-do, South Korea
| | - Manho Kim
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Neuroscience Dementia Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
15
|
Yang H, Song X, Huang X, Yu B, Lin C, Du J, Yang J, Luo Q, Li J, Feng Y, Zhan R, Yan P. Mesona chinensis Benth. Extract Ameliorates Hyperlipidemia in High-Fat Diet-Fed Mice and Rats by Regulating the Gut Microbiota. Foods 2024; 13:3383. [PMID: 39517167 PMCID: PMC11545744 DOI: 10.3390/foods13213383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Mesona chinensis Benth. (or Platostoma palustre (Blume) A. J. Paton), an edible and medicinal plant, is the main ingredient in black jelly, Hsian-tsao tea, and beverages, and its processed products are popular in China as well as in Southeast Asian countries. Previous studies have shown that the alcohol extract of Mesona chinensis Benth. (MC) can reduce the accumulation of oleic acid and ameliorate hyperlipidemia. However, researchers have not yet determined whether it could improve intestinal permeability and metabolic dysfunction by controlling gut microbial dysbiosis and thus reducing hyperlipidemia. This study aimed to explore the potential mechanism by which MC regulates metabolic function disorders in hyperlipidemic high-fat diet (HFD)-fed rats and mice from the perspective of gut microbiota. This study analyzed the effects of MC on metabolic indices related to hyperlipidemia in HFD-fed rats and the abundance and diversity of the gut microbiota via 16S rRNA V3-4 region pyrosequencing to investigate the regulation of the gut microbiota by MC. We further confirmed that MC ameliorates hyperlipidemia by regulating the gut microbiota by simultaneously administering antibiotics and MC to C57BL/6 mice and measuring their metabolic indices. These results indicate that MC reduces the lipid concentration in the serum of HFD-fed rats, thereby significantly alleviating hyperlipidemia, and regulates the abundance ratio and diversity of the gut microbiota, thereby exerting a beneficial effect on hyperlipidemia. Our further antibiotic experiments in mice revealed that the administration of MC was unable to reduce body weight or serum and organ lipid concentrations in the antibiotic-treated group of hyperlipidemic mice. This study provides evidence that the microbiota is an alternative target for the antihyperlipidemic effect of MC.
Collapse
Affiliation(s)
- Huilin Yang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Xiaojuan Song
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Xiaofang Huang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Bilian Yu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Cuiqing Lin
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Jialin Du
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Jiehui Yang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Qing Luo
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Jingwen Li
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Yinshan Feng
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
| | - Ruoting Zhan
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Ping Yan
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (H.Y.); (X.S.); (X.H.); (B.Y.); (C.L.); (J.D.); (J.Y.); (Q.L.); (J.L.); (Y.F.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
16
|
Hong J, Fu T, Liu W, Yu M, Lin Y, Min C, Lin D. Gut microbiota dynamics in KK-Ay mice: restoration following antibiotic treatment. Folia Microbiol (Praha) 2024; 69:1159-1173. [PMID: 38536641 DOI: 10.1007/s12223-024-01157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/11/2024] [Indexed: 09/07/2024]
Abstract
The primary aim of this study was to investigate the alterations in the microbial community of KK-Ay mice following antibiotic treatment. A comparative analysis of the gut microbiota was conducted between KK-Ay mice treated with antibiotics and those without treatment. The microbial community dynamics in antibiotic-treated KK-Ay mice were meticulously assessed over an eight-week period using 16S rDNA sequencing analysis. Simultaneously, dynamic renal function measurements were performed. The results demonstrated a marked decrease in bacterial DNA abundance following antibiotic intervention, coupled with a substantial reduction in bacterial diversity and a profound alteration in microbial composition. These observed microbiota changes persisted in the KK-Ay mice throughout the eight-week post-antibiotic treatment period. Particularly noteworthy was the reemergence of bacterial populations after two weeks or more, resulting in a microbiota composition resembling that of untreated KK-Ay mice. This transition was characterized by a significant increase in the abundance of clostridia at the class level, Lachnospirales and Oscillospirales at the order level, and Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Concurrently, there was a notable decrease in Clostridia_UCG-014. The observed alterations in the gut microbiota of antibiotic-treated KK-Ay mice suggest a dynamic response to antibiotic intervention and subsequent restoration towards the original untreated state.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Ma X, Zhu N, Yu X, Wang W, Wu W. Research on preventive effect of Akkermansia muciniphilaAKK PROBIO on acute gouty arthritis in mice. Food Sci Nutr 2024; 12:7644-7656. [PMID: 39479687 PMCID: PMC11521663 DOI: 10.1002/fsn3.4367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 11/02/2024] Open
Abstract
In mice with acute gouty arthritis, this study intends to examine the mechanism of action of Akkermansia muciniphila AKK PROBIO. We developed a mouse model of acute gouty arthritis using sodium urate. The efficiency and mechanism of AKK PROBIO in preventing acute gouty arthritis in mice were then determined by examining the degree of foot swelling, pain threshold, blood biochemical indicators, histological alterations, and messenger RNA (mRNA) expression changes. The results of the animal experiment showed that AKK PROBIO can lessen mouse foot edema severity and increase pain threshold. AKK PROBIO can enhance the enzyme activity of superoxide dismutase (SOD) and the level of glutathione (GSH) in the ankle joint tissues of mice with acute arthritis while decreasing the enzyme activity of myeloperoxidase (MPO) and the level of malondialdehyde (MDA). Interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels are all reduced by AKK PROBIO in the blood of mice with acute arthritis. Results from histopathology showed that AKK PROBIO reduced tissue damage in the mouse ankle and foot joints. In the tissues of the ankle joints of mice with acute arthritis, the results of the quantitative polymerase chain reaction (qPCR) and Western blot experiments suggested that AKK PROBIO may inhibit the mRNA and protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in the tissues. AKK PROBIO can also regulate gut microbiota, inhibit harmful bacteria, and enhance valeric acid in the intestine, isobutyric acid, and isovaleric acid. Therefore, it is evident that AKK PROBIO prevents acute gouty arthritis better than glucosamine sulfate. It is a strain that has probiotic potential.
Collapse
Affiliation(s)
- Xin Ma
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Na Zhu
- Department of AnesthesiaFirst Affiliated Hospital of Chengdu Medical CollegeChengduChina
| | - Xueping Yu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Wei Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Wenzhong Wu
- Heilongjiang Red Cross Sengong General HospitalHarbinHeilongjiangChina
| |
Collapse
|
18
|
Fernandez Trigo N, Kalbermatter C, Yilmaz B, Ganal-Vonarburg SC. The protective effect of the intestinal microbiota in type-1 diabetes in NOD mice is limited to a time window in early life. Front Endocrinol (Lausanne) 2024; 15:1425235. [PMID: 39391872 PMCID: PMC11464356 DOI: 10.3389/fendo.2024.1425235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The incidence of type-1 diabetes is on the rise, particularly in developed nations, and predominantly affects the youth. While genetic predisposition plays a substantial role, environmental factors, including alterations in the gut microbiota, are increasingly recognized as significant contributors to the disease. Methods In this study, we utilized germ-free non-obese diabetic mice to explore the effects of microbiota colonization during early life on type-1 diabetes susceptibility. Results Our findings reveal that microbiota introduction at birth, rather than at weaning, significantly reduces the risk of type-1 diabetes, indicating a crucial window for microbiota-mediated modulation of immune responses. This protective effect was independent of alterations in intestinal barrier function but correlated with testosterone levels in male mice. Additionally, early life colonization modulated T cell subset frequencies, particularly T helper cells and regulatory T cells, in the intestine, potentially shaping type-1 diabetes predisposition. Discussion Our findings underscore the pivotal role of early-life microbial interactions in immune regulation and the development of autoimmune diseases.
Collapse
Affiliation(s)
- Nerea Fernandez Trigo
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Cristina Kalbermatter
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stephanie C. Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Jiang P, Ji S, Su D, Zhao Y, Goncalves VBE, Xu G, Zhang M. The biofunction of Akkermansia muciniphila in intestinal-related diseases. MICROBIOME RESEARCH REPORTS 2024; 3:47. [PMID: 39741950 PMCID: PMC11684987 DOI: 10.20517/mrr.2024.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 01/03/2025]
Abstract
Intestinal homeostasis is essential for maintaining human health, and its dysfunction is related to the onset and progression of various diseases, including immune and metabolic disorders, and even tumorigenesis. Intestinal microbiota plays a critical role in intestinal homeostasis, with Akkermansia muciniphila (A. muciniphila) emerging as a key commensal bacterium utilizing mucin as its sole carbon and nitrogen source. A. muciniphila has been recognized in both experimental and clinical studies for its beneficial role in managing intestinal inflammation, tumors, functional gastrointestinal disorders, and secondary conditions such as liver and metabolic diseases. This review provides a comprehensive overview of the research history and current understanding of A. muciniphila, its association with various intestinal-related diseases, and the potential mechanisms behind its effects. This paper also explores the possibilities of leveraging the probiotic enzyme such as the active ingredients of A. muciniphila for the innovative clinical treatment of intestinal-related diseases.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
- Authors contributed equally
| | - Siqi Ji
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
- Authors contributed equally
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, MA 02472, USA
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL 60637, USA
| | - Viriania Berta Esperanca Goncalves
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
20
|
Li J, Zhang Z, Xu Y, Li W, Jiang S, Zhang J, Xue H. Limosilactobacillus fermentum HNU312 alleviates lipid accumulation and inflammation induced by a high-fat diet: improves lipid metabolism pathways and increases short-chain fatty acids in the gut microbiome. Food Funct 2024; 15:8878-8892. [PMID: 39129481 DOI: 10.1039/d4fo02390k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A high-fat diet can cause health problems, such as hyperlipidemia, obesity, cardiovascular disease, and metabolic disorders. Dietary supplementation with beneficial microbes might reduce the detrimental effects of a high-fat diet by modulating the gut microbiome, metabolic pathways and metabolites. This study assessed the effects of Limosilactobacillus fermentum HNU312 (L. fermentum HNU312) on blood lipid levels, fat accumulation, inflammation and the gut microbiome in mice on a high-fat diet. The results indicate that L. fermentum HNU312 supplementation to high-fat diet-fed mice led to decreases of 7.52% in the final body weight, 22.30% in total triglyceride, 24.87% in total cholesterol, and 27.3% in low-density lipoprotein cholesterol. Furthermore, the addition of L. fermentum HNU312 significantly reduced the fat accumulation in the liver and adipose tissue by 18.99% and 32.55%, respectively, and decreased chronic inflammation induced by a high-fat diet. Further analysis of the gut microbiome revealed that on the one hand, L. fermentum HNU312 changed the structure of the intestinal microbiota, increased the abundance of beneficial intestinal bacteria related to lipid metabolism, and reversed the enrichment of lipid-related metabolic pathways. On the other hand, L. fermentum HNU312 increased the production of short-chain fatty acids, which can reduce liver inflammation and chronic inflammation induced by a high-fat diet. In summary, by regulating gut microbiota, L. fermentum HNU312 improved lipid metabolism pathways and increased short-chain fatty acids, which reduced body weight, blood lipids, fat accumulation and chronic inflammation caused by high-fat diets. Therefore, L. fermentum HNU312 could be a good candidate probiotic for ameliorating metabolic syndrome.
Collapse
Affiliation(s)
- Jiahe Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuan Xu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Wanggao Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Hui Xue
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
21
|
Agarwal R, Gupta M, Sen R, Panchal A, E S N, Raychoudhury R. Investigation into how Odontotermes obesus maintains a predominantly Termitomyces monoculture in their fungus combs suggests a potential partnership with both fungi and bacteria. Commun Biol 2024; 7:1010. [PMID: 39154098 PMCID: PMC11330501 DOI: 10.1038/s42003-024-06708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Fungus-growing termites, like Odontotermes obesus, cultivate Termitomyces as their sole food source on fungus combs which are continuously maintained with foraged plant materials. This necessary augmentation also increases the threat of introducing non-specific fungi capable of displacing Termitomyces. The magnitude of this threat and how termites prevent the invasion of such fungi remain largely unknown. This study identifies these non-specific fungi by establishing the pan-mycobiota of O. obesus from the fungus comb and termite castes. Furthermore, to maximize the identification of such fungi, the mycobiota of the decaying stages of the unattended fungus comb were also assessed. The simultaneous assessment of the microbiota and the mycobiota of these stages identified possible interactions between the fungal and bacterial members of this community. Based on these findings, we propose possible interactions among the crop fungus Termitomyces, the weedy fungus Pseudoxylaria and some bacterial symbiotes. These possibilities were then tested with in vitro interaction assays which suggest that Termitomyces, Pseudoxylaria and certain potential bacterial symbiotes possess anti-fungal capabilities. We propose a multifactorial interaction model of these microbes, under the care of the termites, to explain how their interactions can maintain a predominantly Termitomyces monoculture.
Collapse
Affiliation(s)
- Renuka Agarwal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Manisha Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Ruchira Sen
- PG Department of Zoology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Aanchal Panchal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Nimisha E S
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India
| | - Rhitoban Raychoudhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali IISER Mohali, Knowledge City, Manauli, Punjab, India.
| |
Collapse
|
22
|
Dwyer AJ, Shaheen ZR, Fife BT. Antigen-specific T cell responses in autoimmune diabetes. Front Immunol 2024; 15:1440045. [PMID: 39211046 PMCID: PMC11358097 DOI: 10.3389/fimmu.2024.1440045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting β-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.
Collapse
Affiliation(s)
- Alexander J. Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zachary R. Shaheen
- Center for Immunology, Department of Pediatrics, Pediatric Rheumatology, Allergy, & Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
23
|
Khalili L, Park G, Nagpal R, Salazar G. The Role of Akkermansia muciniphila on Improving Gut and Metabolic Health Modulation: A Meta-Analysis of Preclinical Mouse Model Studies. Microorganisms 2024; 12:1627. [PMID: 39203469 PMCID: PMC11356609 DOI: 10.3390/microorganisms12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila) and its derivatives, including extracellular vesicles (EVs) and outer membrane proteins, are recognized for enhancing intestinal balance and metabolic health. However, the mechanisms of Akkermansia muciniphila's action and its effects on the microbiome are not well understood. In this study, we examined the influence of A. muciniphila and its derivatives on gastrointestinal (GI) and metabolic disorders through a meta-analysis of studies conducted on mouse models. A total of 39 eligible studies were identified through targeted searches on PubMed, Web of Science, Science Direct, and Embase until May 2024. A. muciniphila (alive or heat-killed) and its derivatives positively affected systemic and gut inflammation, liver enzyme level, glycemic response, and lipid profiles. The intervention increased the expression of tight-junction proteins in the gut, improving gut permeability in mouse models of GI and metabolic disorders. Regarding body weight, A. muciniphila and its derivatives prevented weight loss in animals with GI disorders while reducing body weight in mice with metabolic disorders. Sub-group analysis indicated that live bacteria had a more substantial effect on most analyzed biomarkers. Gut microbiome analysis using live A. muciniphila identified a co-occurrence cluster, including Desulfovibrio, Family XIII AD3011 group, and Candidatus Saccharimonas. Thus, enhancing the intestinal abundance of A. muciniphila and its gut microbial clusters may provide more robust health benefits for cardiometabolic, and age-related diseases compared with A. muciniphila alone. The mechanistic insight elucidated here will pave the way for further exploration and potential translational applications in human health.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gwoncheol Park
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Ravinder Nagpal
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gloria Salazar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
24
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Abbasi A, Bazzaz S, Da Cruz AG, Khorshidian N, Saadat YR, Sabahi S, Ozma MA, Lahouty M, Aslani R, Mortazavian AM. A Critical Review on Akkermansia muciniphila: Functional Mechanisms, Technological Challenges, and Safety Issues. Probiotics Antimicrob Proteins 2024; 16:1376-1398. [PMID: 37432597 DOI: 10.1007/s12602-023-10118-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Due to its physiological benefits from in vitro and in vivo points of view, Akkermansia muciniphila, a common colonizer in the human gut mucous layer, has consistently been identified as an option for the next-generation probiotic. A. muciniphila is a significant bacterium that promotes host physiology. However, it also has a great deal of potential to become a probiotic due to its physiological advantages in a variety of therapeutic circumstances. Therefore, it can be established that the abundance of A. muciniphila in the gut environment, which is controlled by many genetic and dietary variables, is related to the biological behaviors of the intestinal microbiota and gut dysbiosis/eubiosis circumstances. Before A. muciniphila is widely utilized as a next-generation probiotic, regulatory obstacles, the necessity for significant clinical trials, and the sustainability of manufacturing must be eliminated. In this review, the outcomes of recent experimental and clinical reports are comprehensively reviewed, and common colonization patterns, main factors involved in the colonization of A. muciniphila in the gut milieu, their functional mechanisms in establishing homeostasis in the metabolic and energy pathways, the promising delivery role of microencapsulation, potential genetic engineering strategies, and eventually safety issues of A. muciniphila have been discussed.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adriano G Da Cruz
- Department of Food Processing, Federal Institute of Science and Technology Education of Rio de Janeiro (IFRJ) - Campus Maracanã, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nasim Khorshidian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir M Mortazavian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Hasnain MA, Kang D, Moon GS. Research trends of next generation probiotics. Food Sci Biotechnol 2024; 33:2111-2121. [PMID: 39130671 PMCID: PMC11315851 DOI: 10.1007/s10068-024-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024] Open
Abstract
Gut represents one of the largest interfaces for the interaction of host factors and the environmental ones. Gut microbiota, largely dominated by bacterial community, plays a significant role in the health status of the host. The healthy gut microbiota fulfills several vital functions such as energy metabolism, disease protection, and immune modulation. Dysbiosis, characterized by microbial imbalance, can contribute to the development of various disorders, including intestinal, systemic, metabolic, and neurodegenerative conditions. Probiotics offer the potential to address dysbiosis and improve overall health. Advancements in high-throughput sequencing, bioinformatics, and omics have enabled mechanistic studies for the development of bespoke probiotics, referred to as next generation probiotics. These tailor-made probiotics have the potential to ameliorate specific disease conditions and thus fulfill the specific consumer needs. This review discusses recent updates on the most promising next generation probiotics, along with the challenges that must be addressed to translate this concept into reality.
Collapse
Affiliation(s)
- Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
| | - Dae‑Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Gi-Seong Moon
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju, 27469 Republic of Korea
- Major in Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| |
Collapse
|
27
|
Suslov AV, Panas A, Sinelnikov MY, Maslennikov RV, Trishina AS, Zharikova TS, Zharova NV, Kalinin DV, Pontes-Silva A, Zharikov YO. Applied physiology: gut microbiota and antimicrobial therapy. Eur J Appl Physiol 2024; 124:1631-1643. [PMID: 38683402 DOI: 10.1007/s00421-024-05496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The gut microbiota plays an important role in maintaining human health and in the pathogenesis of several diseases. Antibiotics are among the most commonly prescribed drugs and have a significant impact on the structure and function of the gut microbiota. The understanding that a healthy gut microbiota prevents the development of many diseases has also led to its consideration as a potential therapeutic target. At the same time, any factor that alters the gut microbiota becomes important in this approach. Exercise and antibacterial therapy have a direct effect on the microbiota. The review reflects the current state of publications on the mechanisms of intestinal bacterial involvement in the pathogenesis of cardiovascular, metabolic, and neurodegenerative diseases. The physiological mechanisms of the influence of physical activity on the composition of the gut microbiota are considered. The mechanisms of the common interface between exercise and antibacterial therapy will be considered using the example of several socially important diseases. The aim of the study is to show the physiological relationship between the effects of exercise and antibiotics on the gut microbiota.
Collapse
Affiliation(s)
- Andrey V Suslov
- Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, 117418, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alin Panas
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology, Radiotherapy and Reconstructive Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119048, Russia
| | - Roman V Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Aleksandra S Trishina
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nataliya V Zharova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, 115093, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), Universidade Federal de São Carlos (UFSCar), São Carlos (SP), Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| |
Collapse
|
28
|
Chen L, Zhao L, Zhang G, Li Z, Qu L, Luo L. Long-term administration of royal jelly regulates age-related disorders and improves gut function in naturally aging mice. Food Funct 2024; 15:5272-5286. [PMID: 38629388 DOI: 10.1039/d4fo00781f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
A natural aging mouse model can exhibit physiological characteristics that closely resemble those of human aging. Through long-term observation, it reflects the occurrence and development of the aging process more accurately. Although numerous beneficial effects of royal jelly (RJ) have been extensively demonstrated in multiple experimental models, the effects of RJ on naturally aging mice have not yet been investigated. In this study, middle-aged male C57BL/6J mice were given RJ for 9 consecutive months to investigate its impact on the intestinal barrier function, gut microbiota, short-chain fatty acids (SCFAs) content and possible mechanisms. The results confirmed that RJ modulated serum lipids by reducing the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Additionally, it protected the liver by increasing antioxidant enzyme levels while decreasing inflammatory cytokines TNF-α (by 51.97%), IL-6 (by 29.73%), and IL-1β (by 43.89%). Furthermore, RJ inhibited the expression of cell cycle-dependent kinase inhibitors including p16, p21, and p53. Importantly, RJ ameliorated gut dysfunctions by inhibiting reduction of tight junction proteins and reducing inflammatory cytokines content in the colon. We also observed an alteration in gut microbiota characterized by an elevated ratio of Firmicutes to Bacteroides (F/B) along with increased abundance of beneficial bacteria, i.e., Lachnospiraceae NK4A136 and Akkermansia. Correlation analysis revealed positive associations between most bacterial genera and SCFAs production. Functional profiling of gut microbiota composition indicated that RJ intervention regulated amino acid metabolism, glycan biosynthesis, and cofactor/vitamin metabolism. Overall, our findings provide an effective dietary intervention strategy for modulating age-associated frailty through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Li Zhao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Gaowei Zhang
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Liangliang Qu
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
29
|
Thøgersen MS, Zervas A, Stougaard P, Ellegaard-Jensen L. Investigating eukaryotic and prokaryotic diversity and functional potential in the cold and alkaline ikaite columns in Greenland. Front Microbiol 2024; 15:1358787. [PMID: 38655082 PMCID: PMC11035741 DOI: 10.3389/fmicb.2024.1358787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
The ikaite columns in the Ikka Fjord, SW Greenland, represent a permanently cold and alkaline environment known to contain a rich bacterial diversity. 16S and 18S rRNA gene amplicon and metagenomic sequencing was used to investigate the microbial diversity in the columns and for the first time, the eukaryotic and archaeal diversity in ikaite columns were analyzed. The results showed a rich prokaryotic diversity that varied across columns as well as within each column. Seven different archaeal phyla were documented in multiple locations inside the columns. The columns also contained a rich eukaryotic diversity with 27 phyla representing microalgae, protists, fungi, and small animals. Based on metagenomic sequencing, 25 high-quality MAGs were assembled and analyzed for the presence of genes involved in cycling of nitrogen, sulfur, and phosphorous as well as genes encoding carbohydrate-active enzymes (CAZymes), showing a potentially very bioactive microbial community.
Collapse
|
30
|
Lu XR, Tao Q, Qin Z, Liu XW, Li SH, Bai LX, Ge WB, Liu YX, Li JY, Yang YJ. A combined transcriptomics and proteomics approach to reveal the mechanism of AEE relieving hyperlipidemia in ApoE -/- mice. Biomed Pharmacother 2024; 173:116400. [PMID: 38484560 DOI: 10.1016/j.biopha.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Hyperlipidemia caused by abnormal lipid metabolism has reached epidemic proportions. This phenomenon is also common in companion animals. Previous studies showed that AEE significantly improves abnormal blood lipids in hyperlipidemia rats and mice, but its mechanism is still not clear enough. In this study, the mechanism and potential key pathways of AEE on improving hyperlipidemia in mice were investigated through the transcriptome and proteome study of ApoE-/- mice liver and the verification study on high-fat HepG2 cells. The results showed that AEE significantly decreased the serum TC and LDL-C levels of hyperlipidemia ApoE-/- mice, and significantly increased the enzyme activity of CYP7A1. After AEE intervention, the results of mice liver transcriptome and proteome showed that differential genes and proteins were enriched in lipid metabolism-related pathways. The results of RT-qPCR showed that AEE significantly regulated the expression of genes related to lipid metabolism in mice liver tissue. AEE significantly upregulated the protein expression of CYP7A1 in hyperlipidemia ApoE-/- mice liver tissue. The results in vitro showed that AEE significantly decreased the levels of TC and TG, and improved lipid deposition in high-fat HepG2 cells. AEE significantly increased the expression of CYP7A1 protein in high-fat HepG2 cells. AEE regulates the expression of genes related to lipid metabolism in high-fat HepG2 cells, mainly by FXR-SHP-CYP7A1 and FGF19-TFEB-CYP7A1 pathways. To sum up, AEE can significantly improve the hyperlipidemia status of ApoE-/- mice and the lipid deposition of high-fat HepG2 cells, and its main pathway is probably the bile acid metabolism-related pathway centered on CYP7A1.
Collapse
Affiliation(s)
- Xiao-Rong Lu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Qi Tao
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Zhe Qin
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Shi-Hong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Li-Xia Bai
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Wen-Bo Ge
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Ya-Xian Liu
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jian-Yong Li
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug of Gansu Province,Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| |
Collapse
|
31
|
Zhang L, Liu J, Wang Y, Wei M, Liu X, Jiang Y, Wang X, Zhu Z, Niu C, Liu S, Cui J, Chu T, Lu W, Zhang X, An X, Song Y. Mechanisms by which sheep milk consumption ameliorates insulin resistance in high-fat diet-fed mice. Food Res Int 2024; 179:114021. [PMID: 38342541 DOI: 10.1016/j.foodres.2024.114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Sheep milk is rich in fat, protein, vitamins and minerals and is also one of the most important sources of natural bioactives. Several biopeptides in sheep milk have been reported to possess antibacterial, antiviral and anti-inflammatory properties, and they may prevent type 2 diabetes (T2D), disease and cancer. However, the precise mechanism(s) underlying the protective role of sheep milk against T2D development remains unclear. Therefore, in the current study, we investigated the effect of sheep milk on insulin resistance and glucose intolerance in high-fat diet (HFD)-fed mice, by conducting intraperitoneal glucose tolerance tests, metabolic cage studies, genomic sequencing, polymerase chain reaction, and biochemical assays. Hyperinsulinemic-euglycemic clamp-based experiments revealed that mice consuming sheep milk exhibited lower hepatic glucose production than mice in the control group. These findings further elucidate the mechanism by which dietary supplementation with sheep milk alleviates HFD-induced systemic glucose intolerance.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiaxin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongliang Wang
- Zhongzhou Laboratory, Zhengzhou, Henan, 450002, China; Huaihe Hospital of Henan University, Kaifeng, Henan, 475004, China
| | - Mengyao Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaorui Liu
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhongshi Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiyun Zhang
- Gansu Yuansheng Zhongxin Milk Sheep Industry Research Institute, Yongchang, Gansu 737200, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Lee HJ, Tran MTH, Le MH, Justine EE, Kim YJ. Paraprobiotic derived from Bacillus velezensis GV1 improves immune response and gut microbiota composition in cyclophosphamide-treated immunosuppressed mice. Front Immunol 2024; 15:1285063. [PMID: 38455053 PMCID: PMC10918466 DOI: 10.3389/fimmu.2024.1285063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Paraprobiotics that benefit human health have the capacity to modulate innate and adaptive immune systems. In this study, we prepared the paraprobiotic from Bacillus velezensis GV1 using the heat-killing method and investigated its effects on immunity and gut microbiota in vitro and in vivo. The morphology of inactivated strain GV1 was observed using scanning electron microscopy. Treatment with GV1 promoted nitric oxide production and augmented cytokine (IL-6, IL-1β, and TNF-α) expression and secretion in RAW 264.7 macrophages. Moreover, the strain GV1 could alleviate cyclophosphamide monohydrate (CTX)-induced immunosuppression by reversing spleen damage and restoring the immune organ index, as well as by increasing the expression of immune-related cytokines (TNF-α, IL-1β, IFN-γ, and IL-2) in the spleen and thymus, respectively. Furthermore, GV1 treatment dramatically healed the CTX-damaged colon and regulated gut microbiota by increasing the relative abundance of beneficial bacterial families (Lactobacillaceae, Akkermansiaceae, and Coriobacteriaceae) and decreasing that of harmful bacterial families (Desulfovibrionaceae, Erysipelotrichaceae, and Staphylococcaceae). Thus, the heat-killed GV1 can be considered a potential immunoregulatory agent for use as a functional food or immune-enhancing medicine.
Collapse
Affiliation(s)
| | | | | | | | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
33
|
Hajra D, Kirthivasan N, Chakravortty D. Symbiotic Synergy from Sponges to Humans: Microflora-Host Harmony Is Crucial for Ensuring Survival and Shielding against Invading Pathogens. ACS Infect Dis 2024; 10:317-336. [PMID: 38170903 DOI: 10.1021/acsinfecdis.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gut microbiota plays several roles in the host organism's metabolism and physiology. This phenomenon holds across different species from different kingdoms and classes. Different species across various classes engage in continuous crosstalk via various mechanisms with their gut microbiota, ensuring homeostasis of the host. In this Review, the diversity of the microflora, the development of the microflora in the host, its regulations by the host, and its functional implications on the host, especially in the context of dysbiosis, are discussed across different organisms from sponges to humans. Overall, our review aims to address the indispensable nature of the microbiome in the host's survival, fitness, and protection against invading pathogens.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Nikhita Kirthivasan
- Undergraduate Programme, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
34
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
35
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
36
|
Wu H, Qi S, Yang R, Pan Q, Lu Y, Yao C, He N, Huang S, Ling X. Strategies for high cell density cultivation of Akkermansia muciniphila and its potential metabolism. Microbiol Spectr 2024; 12:e0238623. [PMID: 38059626 PMCID: PMC10782997 DOI: 10.1128/spectrum.02386-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Currently, there is significant interest in Akkermansia muciniphila as a promising next-generation probiotic, making it a hot topic in scientific research. However, to achieve efficient industrial production, there is an urgent need to develop an in vitro culture method to achieve high biomass using low-cost carbon sources such as glucose. This study aims to explore the high-density fermentation strategy of A. muciniphila by optimizing the culture process. This study also employs techniques such as LC-MS and RNA-Seq to explain the possible regulatory mechanism of high-density cell growth and increased cell surface hydrophobicity facilitating cell colonization of the gut in vitro culture. Overall, this research sheds light on the potential of A. muciniphila as a probiotic and provides valuable insights for future industrial production.
Collapse
Affiliation(s)
- Haiting Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Shuhua Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Ruixiong Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Qihua Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, People's Republic of China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| | - Song Huang
- Department of Microbiome and Health, Bluepha Co., Ltd, Shenzhen, People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
37
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
38
|
Sun QY, Wang XY, Huang ZP, Song J, Zheng ED, Gong FH, Huang XW. Depletion of gut microbiota facilitates fibroblast growth factor 21-mediated protection against acute pancreatitis in diabetic mice. World J Diabetes 2023; 14:1824-1838. [PMID: 38222783 PMCID: PMC10784798 DOI: 10.4239/wjd.v14.i12.1824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 11/25/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21), primarily secreted by the pancreas, liver, and adipose tissues, plays a pivotal role in regulating glucose and lipid metabolism. Acute pancreatitis (AP) is a common inflammatory disease with specific clinical manifestations. Many patients with diabetes present with concurrent inflammatory symptoms. Diabetes exacerbates intestinal permeability and intestinal inflammation, thus leading to the progression to AP. Our previous study indicated that FGF21 significantly attenuated susceptibility to AP in mice. AIM To investigate the potential protective role of FGF21 against AP in diabetic mice. METHODS In the present study, a mouse model of AP was established in diabetic (db)/db diabetic mice through ceruletide injections. Thereafter, the protective effects of recombinant FGF21 protein against AP were evaluated, with an emphasis on examining serum amylase (AMS) levels and pancreatic and intestinal inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor-alpha (TNF-), and intestinal IL-1β]. Additionally, the impact of this treatment on the histopathologic changes of the pancreas and small intestinal was examined to elucidate the role of FGF21 in diabetic mice with AP. An antibiotic (Abx) cocktail was administered in combination with FGF21 therapy to investigate whether the effect of FGF21 on AP in diabetic mice with AP was mediated through the modulation of the gut microbiota. Subsequently, the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), a bioinformatics software package, was used to predict different pathways between the groups and to explore the potential mechanisms by which the gut microbiota influenced the protective effect of FGF21. RESULTS The results indicated that FGF21 notably diminished the levels of serum AMS (944.5 ± 15.9 vs 1732 ± 83.9, P < 0.01) and inflammatory factors including IL-6 (0.2400 ± 0.55 vs 1.233 ± 0.053, P < 0.01), TNF- (0.7067 ± 0.22 vs 1.433 ± 0.051, P < 0.01), and IL-1β (1.377 ± 0.069 vs 0.3328 ± 0.02542, P < 0.01) in diabetic mice with AP. Moreover, notable signs of recovery were observed in the pancreatic structure of the mice. The histologic evidence of inflammation in the small intestine, including edema and villous damage, was significantly alleviated. FGF21 also significantly altered the composition of the gut microbiota, reestablishing the Bacteroidetes/Firmicutes ratio. Upon treatment with an Abx cocktail to deplete the gut microbiota, the FGF21 + Abx group showed lower levels of serum AMS (0.9328 ± 0.075 vs 0.2249 ± 0.023, P < 0.01) and inflammatory factors (1.083 ± 0.12 vs 0.2799 ± 0.032, p < 0.01) than the FGF21 group. Furthermore, the FGF21 + Abx group exhibited diminished injury to the pancreatic and small intestinal tissues, accompanied by a significant decrease in blood glucose levels (17.50 ± 1.1 vs 9.817 ± 0.69 mmol/L, P < 0.001). These findings underscored the superior protective effects of the combination therapy involving an Abx cocktail with FGF21 over the FGF21 treatment alone in diabetic mice with AP. The gut microbiota composition across different groups was further characterized, and a differential expression analysis of gene functions was undertaken using the PICRUSt2 prediction method. These findings suggested that FGF21 could potentially confer therapeutic effects on diabetic mice with AP by modulating the sulfate reduction I pathway and the superpathway of n-acetylceramide degradation in the gut microbiota. CONCLUSION This study reveals the potential of FGF21 in improving pancreatic and intestinal damage recovery, reducing blood glucose levels, and reshaping gut microbiota composition in diabetic mice with AP. Notably, the protective effects of FGF21 are augmented when combined with the Abx cocktail.
Collapse
Affiliation(s)
- Qi-Yan Sun
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- Zhejiang Medical Products Service Center, Hangzhou 310012, Zhejiang Province, China
| | - Xu-Ye Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zu-Pin Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| | - Jing Song
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| | - En-Dong Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| | - Fang-Hua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| | - Xiao-Wang Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, Zhejiang Province, China
| |
Collapse
|
39
|
Zachariassen LF, Ebert MBB, Mentzel CMJ, Deng L, Krych L, Nielsen DS, Stokholm J, Hansen CHF. Cesarean section induced dysbiosis promotes type 2 immunity but not oxazolone-induced dermatitis in mice. Gut Microbes 2023; 15:2271151. [PMID: 37889696 PMCID: PMC10730161 DOI: 10.1080/19490976.2023.2271151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Delivery by cesarean section (CS) is associated with an altered gut microbiota (GM) colonization and a higher risk of later chronic inflammatory diseases. Studies investigating the association between CS and atopic dermatitis (AD) are contradictive and often biased by confounding factors. The aim of this study was therefore to provide experimental evidence for the association between CS and AD in a mouse model and clarify the role of the GM changes associated with CS. It was hypothesized that CS-delivered mice, and human CS-GM transplanted mice develop severe dermatitis due to early dysbiosis. BALB/c mice delivered by CS or vaginally (VD) as well as BALB/c mice transplanted with GM from CS or VD human donors were challenged with oxazolone on the ear. The severity of dermatitis was evaluated by ear thickness and clinical and histopathological assessment which were similar between all groups. The immune response was assessed by serum IgE concentration, local cytokine response, and presence of immune cells in the draining lymph node. Both CS-delivered mice and mice inoculated with human CS-GM had a higher IgE concentration. A higher proportion of Th2 cells were also found in the CS-GM inoculated mice, but no differences were seen in the cytokine levels in the affected ears. In support of the experimental findings, a human cohort analysis from where the GM samples were obtained found that delivery mode did not affect the children's risk of developing AD. In conclusion, CS-GM enhanced a Th2 biased immune response, but had no effect on oxazolone-induced dermatitis in mice.
Collapse
Affiliation(s)
- Line Fisker Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Bernadette Bergh Ebert
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Caroline Märta Junker Mentzel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Deng
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Jakob Stokholm
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
40
|
Khawar MM, Ijaz S, Goyal P, Kandambige D, Sharifa M, Maslamani ANJ, Al Kutabi S, Saleh I, Albshir MM, I Kh Almadhoun MK, Soomro SN, Kumari N. The Gut-Brain Axis in Autoimmune Diseases: Emerging Insights and Therapeutic Implications. Cureus 2023; 15:e48655. [PMID: 38090441 PMCID: PMC10712442 DOI: 10.7759/cureus.48655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 05/04/2025] Open
Abstract
The gut-brain axis (GBA) is a two-way communication system that is influenced by signals from the nervous system, hormones, metabolism, the immune system, and microbes. The GBA may play a key role in gastrointestinal and neurological illnesses. Signaling events from the gut can regulate brain function. As a result, mounting data point to a connection between autoimmune disorders (AIDs), both neuroinflammatory and neurodegenerative diseases, and the GBA. Clinical, epidemiological, and experimental studies have shown that a variety of neurological illnesses are linked to alterations in the intestinal environment, which are suggestive of disease-mediated inter-organ communication between the gut and the brain. This review's objective is to draw attention to the clinical and biological relationship between the gut and the brain, as well as the clinical importance of this relationship for AIDs, neurodegeneration, and neuroinflammation. We also discuss the dysbiosis in the gut microbiota that has been linked to various AIDs, and we make some assumptions about how dietary changes such as prebiotics and probiotics may be able to prevent or treat AIDs by restoring the composition of the gut microbiota and regulating metabolites.
Collapse
Affiliation(s)
| | - Sami Ijaz
- Internal Medicine, North China University of Science & Technology, Tangshan, CHN
| | - Priya Goyal
- Internal Medicine, Dayanand Medical College & Hospital, Ludhiana, IND
| | | | | | | | | | - Inam Saleh
- Pediatrics, University of Kentucky College of Medicine, Lexington, USA
| | | | | | | | - Neelam Kumari
- Internal Medicine, Jinnah Medical & Dental College, Karachi, PAK
| |
Collapse
|
41
|
Jaarsma AH, Sipes K, Zervas A, Jiménez FC, Ellegaard-Jensen L, Thøgersen MS, Stougaard P, Benning LG, Tranter M, Anesio AM. Exploring microbial diversity in Greenland Ice Sheet supraglacial habitats through culturing-dependent and -independent approaches. FEMS Microbiol Ecol 2023; 99:fiad119. [PMID: 37791411 PMCID: PMC10580271 DOI: 10.1093/femsec/fiad119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/22/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
The microbiome of Greenland Ice Sheet supraglacial habitats is still underinvestigated, and as a result there is a lack of representative genomes from these environments. In this study, we investigated the supraglacial microbiome through a combination of culturing-dependent and -independent approaches. We explored ice, cryoconite, biofilm, and snow biodiversity to answer: (1) how microbial diversity differs between supraglacial habitats, (2) if obtained bacterial genomes reflect dominant community members, and (3) how culturing versus high throughput sequencing changes our observations of microbial diversity in supraglacial habitats. Genomes acquired through metagenomic sequencing (133 high-quality MAGs) and whole genome sequencing (73 bacterial isolates) were compared to the metagenome assemblies to investigate abundance within the total environmental DNA. Isolates obtained in this study were not dominant taxa in the habitat they were sampled from, in contrast to the obtained MAGs. We demonstrate here the advantages of using metagenome SSU rRNA genes to reflect whole-community diversity. Additionally, we demonstrate a proof-of-concept of the application of in situ culturing in a supraglacial setting.
Collapse
Affiliation(s)
- Ate H Jaarsma
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Katie Sipes
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Mariane S Thøgersen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Liane G Benning
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
42
|
Schill EM, Joyce EL, Floyd AN, Udayan S, Rusconi B, Gaddipati S, Barrios BE, John V, Kaye ME, Kulkarni DH, Pauta JT, McDonald KG, Newberry RD. Vancomycin-induced gut microbial dysbiosis alters enteric neuron-macrophage interactions during a critical period of postnatal development. Front Immunol 2023; 14:1268909. [PMID: 37901245 PMCID: PMC10602895 DOI: 10.3389/fimmu.2023.1268909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Vancomycin is a broad-spectrum antibiotic widely used in cases of suspected sepsis in premature neonates. While appropriate and potentially lifesaving in this setting, early-life antibiotic exposure alters the developing microbiome and is associated with an increased risk of deadly complications, including late-onset sepsis (LOS) and necrotizing enterocolitis (NEC). Recent studies show that neonatal vancomycin treatment disrupts postnatal enteric nervous system (ENS) development in mouse pups, which is in part dependent upon neuroimmune interactions. This suggests that early-life antibiotic exposure could disrupt these interactions in the neonatal gut. Notably, a subset of tissue-resident intestinal macrophages, muscularis macrophages, has been identified as important contributors to the development of postnatal ENS. We hypothesized that vancomycin-induced neonatal dysbiosis impacts postnatal ENS development through its effects on macrophages. Using a mouse model, we found that exposure to vancomycin in the first 10 days of life, but not in adult mice, resulted in an expansion of pro-inflammatory colonic macrophages by increasing the recruitment of bone-marrow-derived macrophages. Single-cell RNA sequencing of neonatal colonic macrophages revealed that early-life vancomycin exposure was associated with an increase in immature and inflammatory macrophages, consistent with an influx of circulating monocytes differentiating into macrophages. Lineage tracing confirmed that vancomycin significantly increased the non-yolk-sac-derived macrophage population. Consistent with these results, early-life vancomycin exposure did not expand the colonic macrophage population nor decrease enteric neuron density in CCR2-deficient mice. Collectively, these findings demonstrate that early-life vancomycin exposure alters macrophage number and phenotypes in distinct ways compared with vancomycin exposure in adult mice and results in altered ENS development.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisabeth L. Joyce
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexandria N. Floyd
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sreeram Udayan
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brigida Rusconi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Shreya Gaddipati
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Bibiana E. Barrios
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Vini John
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mitchell E. Kaye
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Devesha H. Kulkarni
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jocelyn T. Pauta
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Keely G. McDonald
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Rodney D. Newberry
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
43
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
44
|
Dong Y, Song H, J Holmes A, Yan J, Ren C, Zhang Y, Zhao W, Yuan J, Cheng Y, Raubenheimer D, Cui Z. Normal diet ameliorates obesity more safely and effectively than ketogenic diet does in high-fat diet-induced obesity mouse based on gut microbiota and lipid metabolism. Int J Food Sci Nutr 2023; 74:589-605. [PMID: 37475128 DOI: 10.1080/09637486.2023.2235899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Growing evidence supports the efficacy of ketogenic diets for inducing weight loss, but there are also potential health risks due to their unbalanced nutrient composition. We aim at assessing relative effectiveness of a balanced diet and ketogenic diet for reversing metabolic syndrome in a diet-induced C57BL/6J mouse model. Mice were fed high-fat diet to induce obesity. Obese individuals were then fed either ketogenic or balanced diets as an obesity intervention. Serum, liver, fat and faecal samples were analysed. We observed that both diet interventions led to significant decrease in body weight. The ketogenic intervention was less effective in reducing adipocyte cell size and led to dyslipidaemia. The composition of the gut microbiome in the balanced diet intervention was more similar to the non-obese control group and had improved functional attributes. Our results indicate intervention with balanced diets ameliorates obesity more safely and effectively than ketogenic diets in diet-induced obesity mouse model.
Collapse
Affiliation(s)
- Yunlong Dong
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Hongjie Song
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Andrew J Holmes
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Jiabao Yan
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Cuiru Ren
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Ying Zhang
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Wei Zhao
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Jianhui Yuan
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Yuyang Cheng
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Zhenwei Cui
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Zhao K, Pang H, Shao K, Yang Z, Li S, He N. The function of human milk oligosaccharides and their substitute oligosaccharides as probiotics in gut inflammation. Food Funct 2023; 14:7780-7798. [PMID: 37575049 DOI: 10.1039/d3fo02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gut inflammation seriously affects the healthy life of patients, and has a trend of increasing incidence rate. However, the current methods for treating gut inflammation are limited to surgery and drugs, which can cause irreversible damage to patients, especially infants. As natural oligosaccharides in human breast milk, human milk oligosaccharides (HMOs) function as probiotics in treating and preventing gut inflammation: improving the abundance of the gut microbiota, increasing the gut barrier function, and reducing the gut inflammatory reaction. Meanwhile, due to the complexity and high cost of their synthesis, people are searching for functional oligosaccharides that can replace HMOs as a food additive in infants milk powder and adjuvant therapy for chronic inflammation. The purpose of this review is to summarize the therapeutic and preventive effects of HMOs and their substitute functional oligosaccharides as probiotics in gut inflammation, and to summarize the prospect of their application in infant breast milk replacement in the future.
Collapse
Affiliation(s)
- Kunyi Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Hao Pang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Kaidi Shao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
46
|
Yamaguchi M, Yamamoto K. Mucin glycans and their degradation by gut microbiota. Glycoconj J 2023; 40:493-512. [PMID: 37318672 DOI: 10.1007/s10719-023-10124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Organic Bio Chemistry, Faculty of Education, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan.
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
47
|
Cui J, Wang J, Wang Y. The role of short-chain fatty acids produced by gut microbiota in the regulation of pre-eclampsia onset. Front Cell Infect Microbiol 2023; 13:1177768. [PMID: 37600950 PMCID: PMC10432828 DOI: 10.3389/fcimb.2023.1177768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Preeclampsia (PE) is a common pregnancy-related disorder characterized by disrupted maternal-fetal immune tolerance, involving diffuse inflammatory responses and vascular endothelial damage. Alterations in the gut microbiota (GM) during pregnancy can affect intestinal barrier function and immune balance. Aims and purpose This comprehensive review aims to investigate the potential role of short-chain fatty acids (SCFAs), essential metabolites produced by the GM, in the development of PE. The purpose is to examine their impact on colonic peripheral regulatory T (Treg) cells, the pathogenic potential of antigen-specific helper T (Th) cells, and the inflammatory pathways associated with immune homeostasis. Key insights An increasing body of evidence suggests that dysbiosis in the GM can lead to alterations in SCFA levels, which may significantly contribute to the development of PE. SCFAs enhance the number and function of colonic Treg cells, mitigate the pathogenic potential of GM-specific Th cells, and inhibit inflammatory progression, thereby maintaining immune homeostasis. These insights highlight the potential significance of GM dysregulation and SCFAs produced by GM in the pathogenesis of PE. While the exact causes of PE remain elusive, and definitive clinical treatments are lacking, the GM and SCFAs present promising avenues for future clinical applications related to PE, offering a novel approach for prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Sonomoto K, Song R, Eriksson D, Hahn AM, Meng X, Lyu P, Cao S, Liu N, Taudte RV, Wirtz S, Tanaka Y, Winkler TH, Schett G, Soulat D, Bozec A. High-fat-diet-associated intestinal microbiota exacerbates psoriasis-like inflammation by enhancing systemic γδ T cell IL-17 production. Cell Rep 2023; 42:112713. [PMID: 37421628 PMCID: PMC10391630 DOI: 10.1016/j.celrep.2023.112713] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
Although it is known that psoriasis is strongly associated with obesity, the mechanistic connection between diet and skin lesions is not well established. Herein, we showed that only dietary fat, not carbohydrates or proteins, exacerbates psoriatic disease. Enhanced psoriatic skin inflammation was associated with changes in the intestinal mucus layer and microbiota composition by high-fat diet (HFD). Change of intestinal microbiota by vancomycin treatment effectively blocked activation of psoriatic skin inflammation by HFD, inhibited the systemic interleukin-17 (IL-17) response, and led to increased mucophilic bacterial species such as Akkermansia muciniphila. By using IL-17 reporter mice, we could show that HFD facilitates IL-17-mediated γδ T cell response in the spleen. Notably, oral gavage with live or heat-killed A. muciniphila effectively inhibited HFD-induced enhancement of psoriatic disease. In conclusion, HFD exacerbates psoriatic skin inflammation through changing the mucus barrier and the intestine microbial composition, which leads to an enhanced systemic IL-17 response.
Collapse
Affiliation(s)
- Koshiro Sonomoto
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; The Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Rui Song
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniel Eriksson
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anne M Hahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pang Lyu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Shan Cao
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ning Liu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Verena Taudte
- Institute for Experimental und Clinical Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1 - Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yoshiya Tanaka
- Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Didier Soulat
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsche Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
49
|
Devi MB, Sarma HK, Mukherjee AK, Khan MR. Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10087-1. [PMID: 37171690 DOI: 10.1007/s12602-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.
Collapse
Affiliation(s)
- M Bidyarani Devi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Ashis K Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| |
Collapse
|
50
|
Saksida T, Paunović V, Koprivica I, Mićanović D, Jevtić B, Jonić N, Stojanović I, Pejnović N. Development of Type 1 Diabetes in Mice Is Associated with a Decrease in IL-2-Producing ILC3 and FoxP3 + Treg in the Small Intestine. Molecules 2023; 28:molecules28083366. [PMID: 37110604 PMCID: PMC10141349 DOI: 10.3390/molecules28083366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Recent data indicate the link between the number and function of T regulatory cells (Treg) in the gut immune tissue and initiation and development of autoimmunity associated with type 1 diabetes (T1D). Since type 3 innate lymphoid cells (ILC3) in the small intestine are essential for maintaining FoxP3+ Treg and there are no data about the possible role of ILC3 in T1D pathogenesis, the aim of this study was to explore ILC3-Treg link during the development of T1D. Mature diabetic NOD mice had lower frequencies of IL-2-producing ILC3 and Treg in small intestine lamina propria (SILP) compared to prediabetic NOD mice. Similarly, in multiple low doses of streptozotocin (MLDS)-induced T1D in C57BL/6 mice, hyperglycemic mice exhibited lower numbers of ILC3, IL-2+ ILC3 and Treg in SILP compared to healthy controls. To boost T1D severity, mice were treated with broad-spectrum antibiotics (ABX) for 14 days prior to T1D induction by MLDS. The higher incidence of T1D in ABX-treated mice was associated with significantly lower frequencies of IL-2+ ILC3 and FoxP3+ Treg in SILP compared with mice without ABX treatment. The obtained findings show that the lower proportions of IL-2-expressing ILC3 and FoxP3+ Treg in SILP coincided with diabetes progression and severity.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Verica Paunović
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Dragica Mićanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Natalija Jonić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|