1
|
Au HCT, Lam PH, Lim PK, McIntyre RS. Role of Glucagon-Like Peptide-1 on Amyloid, Tau, and α-Synuclein: Target Engagement and Rationale for the Development in Neurodegenerative Disorders. Neurosci Biobehav Rev 2025; 173:106159. [PMID: 40252880 DOI: 10.1016/j.neubiorev.2025.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION Glucagon-like Peptide-1 (GLP-1) and Glucagon-Like Peptide-1 receptor agonist (GLP-1 RA) administration has been associated with neuroprotective effects in neurodegenerative disorders. We conducted a comprehensive synthesis of known effects of GLP-1 and GLP-1 RAs on the cognitive, cellular, and molecular changes in neurodegenerative diseases. METHODS We examined preclinical and clinical paradigms that investigated changes in neurodegenerative disease pathology following administration of GLP-1 and GLP-1 RAs. Relevant articles were retrieved through OVID (MedLine, Embase, AMED, PsychINFO, JBI EBP Database), PubMed, and Web of Science from database inception to September 27th, 2024. Primary studies investigating the aforementioned changes following GLP-1 and GLP-1 RA administration were retrieved for analysis (n = 62). RESULTS GLP-1 and GLP-1 RAs (i.e. dulaglutide, exenatide, liraglutide, lixisenatide, semaglutide, and tirzepatide) improved cognitive and motor function in neurodegenerative diseases in preclinical and clinical paradigms. Additionally, GLP-1 and GLP-1 RAs were associated with modulating changes in neuroinflammation, oxidative stress, and proliferative pathways. DISCUSSION We observed that GLP-1 and GLP-1 RAs modulate molecular and cellular changes known to govern the phenomenology of neurodegenerative diseases. Future research should examine the interaction between signaling molecules, neuronal subpopulations, and cognitive effects affected by GLP-1 and GLP-1 RA administration.
Collapse
Affiliation(s)
- Hezekiah C T Au
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Pak Ho Lam
- Institute of Epidemiology and Health Care, University College London, London, United Kingdom.
| | - Poh Khuen Lim
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Makassy D, Williams K, Karwi QG. The Evolving Role of Macrophage Metabolic Reprogramming in Obesity. Can J Cardiol 2025:S0828-282X(25)00320-4. [PMID: 40311669 DOI: 10.1016/j.cjca.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Recent research has extensively explored the critical role of energy metabolism in shaping the inflammatory response and polarization of macrophages in obesity. This rapidly growing field emphasizes the need to understand the connection between metabolic processes that support macrophage polarization in obesity. While most published research in this area has focused on glucose and fatty acids, how the flux through other metabolic pathways (such as ketone and amino acid oxidation) in macrophages is altered in obesity is not well defined. This review summarizes the main alterations in uptake, storage, and oxidation of oxidative substrates (glucose, fatty acids, ketone bodies and amino acids) in macrophages and how these alterations are linked to macrophage polarization and contribution to augmented inflammatory markers in obesity. The review also discusses how oxidative substrates could modulate macrophage energy metabolism and inflammatory responses via feeding into other non-oxidative pathways (such as the pentose phosphate pathway, triacylglycerol synthesis/accumulation), via acting as signalling molecules, or via mediating post-translational modifications (such as O-GlcNAcylation or β-hydroxybutyrylation). The review also identifies several critical unanswered questions regarding the characteristics (functional and metabolic) of macrophages from different origins (adipose tissue, skeletal muscle, bone marrow) in obesity and how these characteristics contribute to early vs late phases of obesity. We also identified a number of new therapeutic targets that could be evaluated in future investigations. Targeting macrophage metabolism in obesity is an exciting and active area of research with significant potential to help identify new treatments to limit the detrimental effects of inflammation in obesity.
Collapse
Affiliation(s)
- Dorcus Makassy
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, A1B 3V6, Canada
| | - Kyra Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, A1B 3V6, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
3
|
Gliozzi M, Coppoletta AR, Cardamone A, Carresi C, Mollace R, Musolino V, Mollace V. Modulation of GLP-1 signalling as an innovative strategy counteracting the onset of heart failure: Potential for natural compound supplementation. Pharmacol Res 2025; 216:107744. [PMID: 40268125 DOI: 10.1016/j.phrs.2025.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
The clinical continuum of heart failure (HF) is commonly divided into four stages (A, B, C and D), but despite the identification of its staging, to date, the management of the early phases remains an unmet need. In fact, the incomplete knowledge of the molecular mechanisms associated with the comorbidities leading to HF onset represents an obstacle to a targeted therapy. Recently, stages A and B have been further typified and, starting from this novel characterization, the aim of our review was to propose an alternative criterion to appropriately use GLP-1 RA in association with plant-derived polyphenolic extracts. This alternative approach is based on the selection of the main molecular mechanisms underlying the early and asymptomatic HF onset that might be further prevented or antagonized through the administration of natural extracts.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, CIS IRC-FSH, Department of Health Sciences - University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, CIS IRC-FSH, Department of Health Sciences - University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Antonio Cardamone
- Physiology Laboratory, CIS IRC-FSH, Department of Health Sciences - University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, CIS IRC-FSH, Department of Health Sciences - University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Rocco Mollace
- Department of Experimental Medicine, Tor Vergata University, Rome 00133, Italy; Cardiology Unit, Humanitas Gavazzeni, Bergamo 24125, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, CIS IRC-FSH, Department of Health Sciences - University "Magna Græcia" of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Mollace
- Pharmacology Laboratory, CIS IRC-FSH, Department of Health Sciences - University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
4
|
Fan W, Zhang Q, Wang C, Sun J, Zhang J, Yin Y. GLP-1 as a regulator of sepsis outcomes: Insights into cellular metabolism, inflammation, and therapeutic potential. Int Immunopharmacol 2025; 152:114390. [PMID: 40068523 DOI: 10.1016/j.intimp.2025.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) has been widely studied in the context of treating obesity and various forms of metabolic disease. Sepsis is a life-threatening medical emergency characterized by the widespread dysregulation of energy metabolism within cells. The potential for GLP-1 to improve sepsis patient outcomes through improvements in energy metabolism and inflammation has been a focus of growing research interest, with many studies of GLP-1 itself and related compounds, including GLP-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 (DPP-4) inhibitors, having explored the impact on sepsis in cells and organs. Such studies require that attention be paid to both the physiological and potential pathological effects of GLP-1 in sepsis. In many reports, researchers have demonstrated that endogenous GLP-1, GLP-1RAs, or DPP-4 inhibitors (a GLP-1 depressant) can modulate glucose homeostasis, inflammatory activity, immune function, and organ dysfunction in studies of sepsis model systems in vitro and in vivo. To date, GLP-1-based treatments have yet to be specifically used to manage sepsis, but its pleiotropic effects suggest its significant potential in sepsis treatment. This review provides an overview of the relationship between GLP-1 and its related compounds with sepsis, aiming to offer novel perspectives for the diagnosis and treatment of this condition. It highlights that GLP-1 may serve as a new biomarker for assessing the severity and prognosis of sepsis, and potentially contribute to improving clinical outcomes in septic patients. Meanwhile, GLP-1 may function as a messenger of metabolic reprogramming, shifting cellular energy production from oxidative phosphorylation to glycolysis, thereby modulating immune responses and influencing inflammatory reactions to enhance the clearance of pathogens. However, GLP-1 may act as a double-edged sword, the enhanced inflammatory response can potentially induce cytotoxic and organ-damaging effects while exerting beneficial actions.
Collapse
Affiliation(s)
- Weixuan Fan
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| | - Qiulei Zhang
- Department of Anesthesiology, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, People's Republic of China.
| | - Cong Wang
- Department of Anesthesiology, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, People's Republic of China.
| | - Jian Sun
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| | - Jingxiao Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| |
Collapse
|
5
|
Ren Y, Chen Y, Zheng W, Kong W, Liao Y, Zhang J, Wang M, Zeng T. The effect of GLP-1 receptor agonists on circulating inflammatory markers in type 2 diabetes patients: A systematic review and meta-analysis. Diabetes Obes Metab 2025. [PMID: 40230207 DOI: 10.1111/dom.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
AIM To investigate whether the antidiabetic agent glucagon-like peptide-1 receptor agonists (GLP-1 RAs) can exert anti-inflammatory effects while lowering blood glucose, we performed a meta-analysis and systematic review. METHODS We searched 4 online databases (Medline, Embase, Cochrane Library and the Web of Science) for randomised controlled trials (RCTs) that examined changes after GLP-1RAs intervention in commonly accepted biomarkers of inflammation: C-reactive protein (CRP), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), leptin, adiponectin, plasminogen activator inhibitor-1 (PAI-1), monocyte chemotactic protein-1(MCP-1) and advanced glycation end products (AGEs). RESULTS This meta-analysis included 52 eligible RCTs (n = 4734) with a median follow-up of 24 weeks, a mean age of 54.13 years, 44.46% females, body mass index (BMI) 29.80 kg/m2, glycated haemoglobin (HbA1c) 8.28% and diabetes duration 7.27 years. GLP-1 RAs treatment, compared to placebo or conventional diabetes therapies (including oral medicine and insulin), resulted in significant reductions in CRP, TNF-α, IL-6, IL-1β and leptin (standard mean difference [SMD] -0.63 [-1.03, -0.23]; SMD -0.92 [-1.57, -0.27]; SMD -0.76 [-1.32, -0.20], SMD -3.89 [-6.56, -1.22], SMD -0.67 [-1.09, -0.26], respectively), as well as significant increases in adiponectin (SMD 0.69 [0.19, 1.19]). CONCLUSIONS Our meta-analysis demonstrates that GLP-1 RAs exert significant anti-inflammatory effects in patients with T2DM. Our findings provide important insights that may guide the therapeutic application of GLP-1 RAs and inform the development of related therapies.
Collapse
Affiliation(s)
- Yifan Ren
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Yuzhang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Meng Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Wuhan, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan, China
| |
Collapse
|
6
|
Vear A, Heneka MT, Clemmensen C. Incretin-based therapeutics for the treatment of neurodegenerative diseases. Nat Metab 2025; 7:679-696. [PMID: 40211045 DOI: 10.1038/s42255-025-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Neurodegenerative diseases (NDDs) represent a heterogeneous group of disorders characterized by progressive neuronal loss, which results in significant deficits in memory, cognition, motor skills, and sensory functions. As the prevalence of NDDs rises, there is an urgent unmet need for effective therapies. Current drug development approaches primarily target single pathological features of the disease, which could explain the limited efficacy observed in late-stage clinical trials. Originally developed for the treatment of obesity and diabetes, incretin-based therapies, particularly long-acting GLP-1 receptor (GLP-1R) agonists and GLP-1R-gastric inhibitory polypeptide receptor (GIPR) dual agonists, are emerging as promising treatments for NDDs. Despite limited conclusive preclinical evidence, their pleiotropic ability to reduce neuroinflammation, enhance neuronal energy metabolism and promote synaptic plasticity positions them as potential disease-modifying NDD interventions. In anticipation of results from larger clinical trials, continued advances in next-generation incretin mimetics offer the potential for improved brain access and enhanced neuroprotection, paving the way for incretin-based therapies as a future cornerstone in the management of NDDs.
Collapse
Affiliation(s)
- Anika Vear
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Gera A, Latif F, Borra V, Naz S, Mittal V, Ayoobkhan FS, Kumar T, Wajid Z, Deb N, Prasad T, Mattumpuram J, Jaiswal V. Efficacy of glucagon-like peptide-1 receptor agonists for prevention of stroke among patients with and without diabetes: A meta-analysis with the SELECT and FLOW trails. IJC HEART & VASCULATURE 2025; 57:101638. [PMID: 40165866 PMCID: PMC11957674 DOI: 10.1016/j.ijcha.2025.101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have shown a reduction in major adverse cardiovascular events (MACE) among patients with type 2 diabetes mellitus (T2DM). However, its efficacy on cerebrovascular events is yet to be well established among diabetic and non diabetic patients. Objective We sought to evaluate the efficacy of GLP-1 RAs on stroke risk among its different types in patients with and without Diabetes. Methods We performed a systematic literature search on PubMed, EMBASE, and ClinicalTrials.gov for relevant randomized controlled trials (RCTs) from inspection until 15th July 2024, without any language restrictions. Odds ratios (OR) and 95 % confidence intervals (CI) were pooled using a random-effect model, and a p-value of < 0.05 was considered statistically significant. Results A total of 11 RCTs with 85,373 patients were included (43,339 in GLP-1 RA and 42,034 in the placebo group) in the analysis. The mean age of the patients in GLP-1 RAs and the placebo groups was 63.5 and 63.1 years, respectively. Pooled analysis of primary and secondary endpoints showed that GLP-1 RAs significantly reduced the risk of incidence of stroke by 15 % (OR, 0.85(95 %CI: 0.77-0.93), P < 0.001) and nonfatal stroke by 13 % (OR, 0.87(95 %CI: 0.79-0.95), P < 0.001) compared with placebo. However, the risk of fatal stroke (OR, 0.94(95 %CI: 0.75-1.17), P = 0.56) was comparable between both groups of patients. Similarly, the risk of serious adverse events such as cerebrovascular accident (OR, 0.75(95 %CI: 0.57-1.00), P = 0.05), hemorrhagic stroke (OR, 0.82(95 %CI: 0.42-1.60), P = 0.57, and ischemic stroke (OR, 0.85(95 %CI: 0.64-1.13), P = 0.26) was comparable between GLP-1RAs and placebo. Conclusion Treatment with GLP-1 receptor agonists has beneficial effects in reducing the risk of stroke, and nonfatal stroke in patients with and without diabetes. However, no such effect was observed for fatal stroke.
Collapse
Affiliation(s)
- Asmita Gera
- Department of Internal Medicine, Tianjin Medical University, Wuqing District, Tianjin 301700, China
| | - Fakhar Latif
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Vamsikalyan Borra
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Sidra Naz
- The University of Texas, MD Anderson Cancer Center, Texas, USA
| | - Vivek Mittal
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, MI, USA
| | | | - Tushar Kumar
- Department of Cardiothoracic and Abdominal Radiology, University of Washington, Seattle, Washington, USA
| | - Zarghoona Wajid
- Hennepin Healthcare/University of Minnesota, S8, Minneapolis, MN 55415, USA
| | - Novonil Deb
- Department of Medicine, North Bengal Medical College, West Bengal, India
| | - Tanisha Prasad
- Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | - Jishanth Mattumpuram
- Division of Cardiology, University of Louisville School of Medicine, KY 40202, United States
| | - Vikash Jaiswal
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, USA
| |
Collapse
|
8
|
Feng Y, Shang B, Yang Y, Zhang D, Liu C, Qin Z, Zhou Y, Meng J, Liu X. Impact of DPP-4 Inhibitors on Interleukin Levels in Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 2025; 110:1195-1204. [PMID: 39512193 PMCID: PMC11913085 DOI: 10.1210/clinem/dgae783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Accumulating evidence had implicated pathological involvement of interleukins (ILs) in progression and complications in patients with type 2 diabetes mellitus (T2DM). Dipeptidyl peptidase-4 inhibitors (DPP-4i) produced favorable effects on glucose homeostasis in T2DM. This study aimed to evaluate the impact of DPP-4i on IL concentrations in T2DM. DATA SOURCES PubMed, Embase, and the Cochrane library were systematically searched for relevant articles from inception to May 31, 2024. The search included DPP-4i, T2DM, and randomized controlled trials (RCTs) and related terms. STUDY SELECTION AND DATA EXTRACTION Placebo- or active agents-controlled human studies were screened. All the RCTs were identified if they provided detailed information on changes of ILs during DPP-4i treatment. DATA SYNTHESIS A total of 14 RCTs involving 850 participants were identified. Pooled estimates revealed that DPP-4i significantly lowered IL-6 concentrations (-0.54 pg/mL; 95% CI, -0.82 to -0.25; I2 = 10%, P = .0003) compared to placebo. Similar effects were demonstrated for IL-1β (-16.33 pg/mL; 95% CI, -19.56 to -13.11; I2 = 0%, P < .00001), whereas the effect on IL-18 was not statistically significant (-13.55 pg/mL; 95% CI, -76.95 to 49.85; I2 = 0%, P = .68). Subgroup analysis on IL-6 demonstrated that marked effects were found in groups of basal IL-6 concentrations (< 5 pg/mL), body mass index (≥ 28 kg/m2) and type of DPP-4i (linagliptin). CONCLUSION DPP-4i favorably decreased IL-6 levels in patients with T2DM. The impact of DPP-4i on IL-1β and IL-18 needed to be explored with more studies. Further trials should be performed to elucidate this anti-inflammatory effect of DPP-4i during treatment of T2DM.
Collapse
Affiliation(s)
- Yiduo Feng
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Beibei Shang
- Department of Pharmacy, Children's Hospital, Capital Institute of Paediatrics, Beijing 100020, China
| | - Yu Yang
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Donglei Zhang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Hubei 430000, China
| | - Changbin Liu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zheng Qin
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yilun Zhou
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jie Meng
- Department of Pathology, Beijing TongRen Hospital, Capital Medical University, Beijing 100005, China
| | - Xin Liu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
9
|
Ryan M, Megyeri S, Nuffer W, Trujillo JM. The potential role of GLP-1 receptor agonists in osteoarthritis. Pharmacotherapy 2025; 45:177-186. [PMID: 39980227 DOI: 10.1002/phar.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/22/2025]
Abstract
Osteoarthritis (OA) is the most common form of arthritis, affecting over 500 million people globally. Current treatments are primarily symptom-focused, with no approved therapies to halt disease progression. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), widely used in type 2 diabetes (T2D) and obesity, demonstrate significant weight loss and glucose-lowering effects and have been shown to possess anti-inflammatory properties. Given the central role of inflammation and metabolic dysfunction in OA, this review examines the potential utility of GLP-1 RAs in OA management, focusing on both indirect effects, such as weight reduction, and possible direct effects on inflammatory pathways and cartilage preservation. Clinical studies suggest that GLP-1 RAs may benefit people with OA by reducing weight, improving glycemic control, and modulating inflammatory markers relevant to OA progression. Notable findings include significant weight loss and pain reduction in people with knee OA (KOA) treated with semaglutide in the STEP-9 trial. In other studies, GLP-1 RAs have shown potential to lower oxidative stress and pro-inflammatory cytokines, such as tumor necrosis factor (TNF-α) and interleukin (IL)-6, with reductions in OA-related pain and functional impairment observed in some cohorts. However, results vary, with some studies showing limited effects, potentially linked to the degree of weight loss achieved. Although some studies report variability in pain relief, likely influenced by the degree of weight loss achieved, GLP-1 RAs have shown overall promise in reducing both OA symptoms and markers associated with disease progression. This emerging evidence supports the utility of GLP-1 RAs as a potential disease-modifying option for OA, offering a dual benefit in metabolic and joint health. Future research should focus on establishing the long-term efficacy and safety and elucidating the mechanism by which GLP-1 RAs influence OA pathology.
Collapse
Affiliation(s)
- Mackenzie Ryan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Saige Megyeri
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Wes Nuffer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Jennifer M Trujillo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
10
|
Subedi L, Bamjan AD, Phuyal S, Shim JH, Cho SS, Seo JB, Chang KY, Byun Y, Kweon S, Park JW. An oral liraglutide nanomicelle formulation conferring reduced insulin-resistance and long-term hypoglycemic and lipid metabolic benefits. J Control Release 2025; 378:637-655. [PMID: 39709071 DOI: 10.1016/j.jconrel.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Type 2 diabetes is a chronic disease characterized by insulin resistance and often worsened by obesity. Effective management involves the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) to assist with glycemic control and weight management. However, these drugs must be administered subcutaneously due to their low oral bioavailability. We developed an oral liraglutide (LRG) formulation by electrostatic complexation of GLP-1 RA with bile acid derivatives and nanomicelle (NM) formation, with non-ionic surfactant n-dodecyl-β-d-maltoside (DDM). The optimized formulation, LDD[1:2:4]-NM, had a mean particle size of 75.9 ± 5.60 nm and a permeability 1347 % higher than that of unformulated LRG when tested in Caco-2/HT29-MTX-E12 cell monolayers. In rats, oral bioavailability was 4.63-fold higher than that of unformulated LRG (1.11 ± 0.20 % vs. 5.14 ± 0.63 %). The absorption mechanism included clathrin-mediated endocytosis, macropinocytosis, and an ASBT-mediated pathway. A 12-week oral treatment consisting of a daily dose of 20 mg LDD[1:2:4]-NM/kg significantly reduced glycohemoglobin levels, a marker of diabetic control, and the HOMA-IR index, a marker of insulin resistance. The weight of epididymal and inguinal white adipose tissue and brown adipose tissue (BAT) was also reduced. Moreover, LDD[1:2:4]-NM had a greater impact on BAT activation, pro-inflammatory gene expression, and lipid metabolism than subcutaneous LRG. This study showed that an oral NM formulation can efficiently deliver LRG. Long-term treatment led to improved hyperglycemic effects, insulin resistance, and modulated lipid metabolism. LDD[1:2:4]-NM is thus a promising oral therapeutic option for the management of type 2 diabetes, potentially transforming treatment paradigms based on the availability of a more convenient administration route.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Arjun Dhwoj Bamjan
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Susmita Phuyal
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jong Bae Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | | | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
11
|
Targher G, Mantovani A, Byrne CD, Tilg H. Recent advances in incretin-based therapy for MASLD: from single to dual or triple incretin receptor agonists. Gut 2025; 74:487-497. [PMID: 39592207 DOI: 10.1136/gutjnl-2024-334023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024]
Abstract
Clinically effective pharmacological treatment(s) for metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form metabolic dysfunction-associated steatohepatitis (MASH) represent a largely unmet need in medicine. Since glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been licensed for the treatment of type 2 diabetes mellitus and obesity, they were one of the first drug classes to be examined in individuals with MASLD/MASH. Successful phase 2 randomised clinical trials with these agents have resulted in progression to phase 3 clinical trials (principally testing the long-term efficacy of subcutaneous semaglutide). Over the last few years, in addition to GLP-1RAs, newer agents with glucose-dependent insulinotropic peptide and/or glucagon receptor agonist functions have been tested, with increasing evidence from phase 2 randomised clinical trials of histological improvements in MASLD/MASH, as well as benefits on MASLD-related extrahepatic complications. Based on this background of evidence, single, dual or triple incretin receptor agonists are becoming an attractive and promising treatment option for MASLD or MASH, particularly in individuals with coexisting obesity or type 2 diabetes mellitus. In this narrative review, we examine the rapidly expanding body of clinical evidence supporting a role of incretin-based pharmacotherapies in delaying or reversing MASH progression. We also discuss the biology of incretins and the putative hepatoprotective mechanisms of incretin-based pharmacotherapies for managing MASLD or MASH.
Collapse
Affiliation(s)
- Giovanni Targher
- Metabolic Diseases Research Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Alessandro Mantovani
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Han L, Wu T, Zhang Q, Qi A, Zhou X. Immune Tolerance Regulation Is Critical to Immune Homeostasis. J Immunol Res 2025; 2025:5006201. [PMID: 39950084 PMCID: PMC11824399 DOI: 10.1155/jimr/5006201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/07/2024] [Indexed: 02/16/2025] Open
Abstract
The body's immune response plays a critical role in defending against external or foreign antigens while also preserving tolerance to self-antigens. This equilibrium, referred to as immune homeostasis, is paramount for overall health. The regulatory mechanisms governing the maintenance of this delicate immune balance are notably complex. It is currently accepted that immune tolerance is a dynamic outcome regulated by multiple factors, including central and peripheral mechanisms. Its induction or elimination plays a significant role in autoimmune diseases, organ transplantation, and cancer therapy, markedly impacting various major diseases in modern clinical practice. Overall, our current understanding of immune tolerance is still very limited. In this review article, we summarized the main mechanisms that have been known to mediate immune tolerance so far, including endogenous immune tolerance, adaptive immune tolerance, other immune tolerance mechanisms, and the homeostasis of immune tolerance, identified the key factors that regulate immune tolerance, and provided new clues for immune system recovery in many autoimmune diseases, organ transplantation, and tumor therapy.
Collapse
Affiliation(s)
- Lei Han
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu, China
| | - Tianxiang Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Qin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing, Jiangsu 211500, China
| | - Xiaohui Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
13
|
Ahmadi A, Gamboa J, Norman JE, Enkhmaa B, Tucker M, Bennett BJ, Zelnick LR, Fan S, Berglund LF, Ikizler TA, de Boer IH, Cummings BP, Roshanravan B. Impaired Incretin Homeostasis in Nondiabetic Moderate-to-Severe CKD. Clin J Am Soc Nephrol 2025; 20:12-22. [PMID: 39480994 PMCID: PMC11737449 DOI: 10.2215/cjn.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Key Points Total incretin levels and incretin response during oral glucose tolerance testing were significantly higher among patients with moderate-to-severe nondiabetic patients with CKD compared with healthy people. Unlike in healthy individuals, increased incretin response was not correlated with insulin response and coincided with persistently greater glucagon levels to oral glucose tolerance testing in CKD. Disruption in the incretin system and glucagon dynamics may contribute to metabolic complications in moderate-to-severe CKD. Background Incretins are regulators of insulin secretion and glucose homeostasis metabolized by dipeptidyl peptidase-4 (DPP-4). CKD may modify incretin release, metabolism, or response. Methods We performed 2-hour oral glucose tolerance testing in 59 people with nondiabetic CKD (eGFR <60 ml/min per 1.73 m2) and 39 matched controls. We measured total area under the curve and incremental area under the curve (iAUC) of plasma total glucagon-like peptide-1 (GLP-1) and total glucose-dependent insulinotropic polypeptide (GIP). Fasting DPP-4 levels and activity were measured. Linear regression was used to adjust for demographic, body composition, and lifestyle factors. Results Mean (SD) eGFR was 38±13 and 89±17 ml/min per 1.73 m2 in patients with CKD and controls, respectively. GLP-1 total area under the curve and GIP iAUC were higher in patients with CKD than controls with a mean of 1531±1452 versus 1364±1484 pM×min and 62,370±33,453 versus 42,365±25,061 pg×min/ml, respectively. After adjustment, CKD was associated with 15,271 pM×min/ml greater GIP iAUC (95% confidence intervals [CIs], 387 to 30,154) compared with controls. Adjustment for covariates attenuated associations of CKD with higher GLP-1 iAUC (adjusted difference, 122; 95% CI, −619 to 864). Plasma glucagon levels were higher at 30 minutes (mean difference, 1.6; 95% CI, 0.3 to 2.8 mg/dl) and 120 minutes (mean difference, 0.84; 95% CI, 0.2 to 1.5 mg/dl) in patients with CKD compared with controls. There were no differences in insulin levels or plasma DPP-4 activity or levels between groups. Conclusions Overall, incretin response to oral glucose is preserved or augmented in moderate-to-severe CKD, without apparent differences in circulating DPP-4 concentration or activity. However, neither insulin secretion nor glucagon suppression is enhanced.
Collapse
Affiliation(s)
- Armin Ahmadi
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Jorge Gamboa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer E Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California
| | - Bamba Enkhmaa
- Division of Endocrinology, Department of Internal Medicine, University of California, Davis, California
| | - Madelynn Tucker
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California Davis, Sacramento, California
| | - Brian J Bennett
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, USDA ARS, Davis, California
| | - Leila R Zelnick
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington
| | - Sili Fan
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California
| | - Lars F Berglund
- Department of Internal Medicine, University of California, Davis, California
| | - Talat Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ian H de Boer
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington
| | - Bethany P Cummings
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California Davis, Sacramento, California
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Baback Roshanravan
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| |
Collapse
|
14
|
Joshi N, Baloch KM, Rukh S, Khan AM, Muskan F, Kumari V, Khan H, Zeeshan M, Azam G, Khalid S, Anwar IB, Ahmed IF, Nishat SM, Gandhi F. Unlocking the potential of glucagon-like peptide-1 receptor agonists in revolutionizing type 2 diabetes management: a comprehensive review. Ann Med Surg (Lond) 2024; 86:7255-7264. [PMID: 39649934 PMCID: PMC11623894 DOI: 10.1097/ms9.0000000000002712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
Diabetes mellitus (DM) is a long-term metabolic disorder caused by inadequate production and resistance to insulin. The prevalence of DM is rapidly increasing, with type 2 diabetes (T2D) accounting for more than 90% of cases. Despite new treatments, many patients with T2D do not meet their glycemic targets due to clinical inertia. This review provides an overview of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) in the management of T2D. The review synthesizes data from clinical trials and meta-analyses on the efficacy, safety, and cost-effectiveness of GLP-1 RAs. It also discusses the mechanisms of action, classification, and barriers to adherence and persistence in therapy. GLP-1 RAs improve glycemic control by lowering A1C levels and promoting weight loss. They have cardioprotective effects and may reduce endothelial inflammation, oxidative stress, and blood pressure. Adherence to GLP-1 RAs is better with once-weekly injections, though gastrointestinal side effects and cost can affect persistence. Semaglutide and liraglutide have shown significant weight reduction, with semaglutide being particularly effective. GLP-1 RAs are cost-effective due to reduced healthcare costs associated with fewer hospitalizations and lower mortality rates. Safety concerns include gastrointestinal issues, pancreatitis, and rare cases of diabetic retinopathy and thyroid C-cell tumors. For clinical practice, GLP-1 RAs represent a valuable option not only for glycemic control but also for weight management and cardiovascular protection. Incorporating GLP-1 RAs into treatment plans can improve patient outcomes, and optimizing dosing regimens and addressing barriers such as cost and side effects are crucial to enhancing patient adherence and long-term treatment success.
Collapse
Affiliation(s)
- Nandan Joshi
- Department of Internal Medicine, Surat Municipal Institute of Medical Education and Research, Surat, India
| | - Kanwal Mir Baloch
- Department of Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Shah Rukh
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Abdul Moiz Khan
- Department of Internal Medicine, Sahiwal Medical College, Sahiwal, Pakistan
| | - Fnu Muskan
- Department of Internal Medicine, Khairpur Medical College, Khairpur, Pakistan
| | - Verkha Kumari
- Department of Internal Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Hasher Khan
- Department of Internal Medicine, Dow Medical College, Karachi, Pakistan
| | - Mohd Zeeshan
- Department of Internal Medicine, Career Institute of Medical Sciences and Hospital, Lucknow, India
| | - Ghufran Azam
- Department of Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Saif Khalid
- Department of Internal Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Insa Binte Anwar
- Department of Internal Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Iqra Furqan Ahmed
- Department of Internal Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Syeed Mahmud Nishat
- Department of Internal Medicine, Shaheed Suhrawardy Medical College, Dhaka, Bangladesh
| | - Fenil Gandhi
- Department of Family Medicine, PGY2, Lower Bucks Hospital, Bristol, PA, USA
| |
Collapse
|
15
|
Koirala S, Sunnaa M, Bernier T, Oktay AA. The Role of Obesity as a Cardiac Disease Risk Factor in Patients with Type 2 Diabetes. Curr Cardiol Rep 2024; 26:1309-1320. [PMID: 39235729 DOI: 10.1007/s11886-024-02129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is the leading cause of death globally and is closely associated with obesity and type 2 diabetes mellitus (T2DM). This review examines the interplay between obesity, T2DM, and CVD, highlighting the increasing prevalence and economic burden of these conditions. RECENT FINDINGS Pharmacologic therapies, particularly glucagon-like peptide-1 receptor agonists, show promise in substantial weight loss and subsequent reduction of adverse cardiovascular events in obese individuals with and without diabetes. Obesity significantly contributes to the development of insulin resistance and T2DM, further escalating CVD risk. The common co-occurrence of these three conditions may involve several other pathophysiological mechanisms, such as chronic inflammation, increased visceral adiposity, and endothelial dysfunction. Until recently, lifestyle modifications and bariatric surgery had been the primary methods for weight loss and mitigating obesity-associated cardiovascular risk. Newer pharmacological options have led to a paradigm shift in our approach to obesity management as they provide substantial benefits in weight loss, glycemic control, and cardiovascular risk reduction.
Collapse
Affiliation(s)
- Sushant Koirala
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Michael Sunnaa
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Thomas Bernier
- Division of Cardiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Ahmet Afsin Oktay
- Division of Cardiology, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Morrison L, Dyer AH, Dolphin H, Batten I, Reddy C, Widdowson M, Woods CP, Gibney J, Bourke NM, Kennelly SP. Circulating Interleukin-17A is associated with executive function in middle aged adults with and without type 2 diabetes. Brain Behav Immun Health 2024; 41:100862. [PMID: 39350951 PMCID: PMC11440310 DOI: 10.1016/j.bbih.2024.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Midlife cardiovascular risk factors such as Type 2 Diabetes (T2DM) and obesity are associated with the later development of cognitive impairment and dementia. Systemic inflammation is postulated as a crucial mechanism, yet there are few studies examining this at the earliest stages prior to overt cognitive impairment. To assess this, we recruited a cohort of middle-aged cognitively-unimpaired individuals with and without uncomplicated T2DM. Comprehensive neuropsychological assessment was performed at baseline and at 4-year follow-up. Ten serum chemokines and cytokines (Eotaxin, MCP-1, MIP-1β, CXCL10, IL-6, IL-10, IL12p70, IL-17A, IFN-γ and TNF-α) were measured at both baseline and follow-up using high-sensitivity assays. Overall, 136 participants were recruited including 90 with uncomplicated midlife T2DM (age 52.6 ± 8.3; 47% female) and 46 without (age 52.9 ± 8.03; 61% female). Cognitive trajectories were stable over time and did not differ with T2DM. Yet on cross-sectional analyses at both baseline and follow-up, greater circulating IL-17A was consistently associated with poorer performance on tests of executive function/attention (β: 0.21; -0.40, -0.02, p = 0.03 at baseline; β: 0.26; -0.46, -0.05, p = 0.02 at follow-up). Associations persisted on covariate adjustment and did not differ by T2DM status. In summary, we provide evidence that greater circulating IL-17A levels were associated with poorer executive function in midlife, independent of T2DM. Long-term follow-up of this and other cohorts will further elucidate the earliest stages in the relationship between systemic inflammation and cognitive decline to provide further mechanistic insights and potentially identify those at greatest risk for later cognitive decline.
Collapse
Affiliation(s)
- Laura Morrison
- Tallaght Institute for Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Adam H Dyer
- Tallaght Institute for Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Helena Dolphin
- Tallaght Institute for Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Isabella Batten
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Conor Reddy
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Matthew Widdowson
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Conor P Woods
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - James Gibney
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Nollaig M Bourke
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| | - Sean P Kennelly
- Tallaght Institute for Memory and Cognition, Tallaght University Hospital, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
17
|
Pellegrini V, La Grotta R, Carreras F, Giuliani A, Sabbatinelli J, Olivieri F, Berra CC, Ceriello A, Prattichizzo F. Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells 2024; 13:1662. [PMID: 39404426 PMCID: PMC11476093 DOI: 10.3390/cells13191662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Low-grade inflammation (LGI) represents a key driver of type 2 diabetes (T2D) and its associated cardiovascular diseases (CVDs). Indeed, inflammatory markers such as hs-CRP and IL-6 predict the development of T2D and its complications, suggesting that LGI already increases before T2D diagnosis and remains elevated even after treatment. Overnutrition, unhealthy diets, physical inactivity, obesity, and aging are all recognized triggers of LGI, promoting insulin resistance and sustaining the pathogenesis of T2D. Once developed, and even before frank appearance, people with T2D undergo a pathological metabolic remodeling, with an alteration of multiple CVD risk factors, i.e., glycemia, lipids, blood pressure, and renal function. In turn, such variables foster a range of inflammatory pathways and mechanisms, e.g., immune cell stimulation, the accrual of senescent cells, long-lasting epigenetic changes, and trained immunity, which are held to chronically fuel LGI at the systemic and tissue levels. Targeting of CVD risk factors partially ameliorates LGI. However, some long-lasting inflammatory pathways are unaffected by common therapies, and LGI burden is still increased in many T2D patients, a phenomenon possibly underlying the residual inflammatory risk (i.e., having hs-CRP > 2 mg/dL despite optimal LDL cholesterol control). On the other hand, selected disease-modifying drugs, e.g., GLP-1RA, seem to also act on the pathogenesis of T2D, curbing the inflammatory trajectory of the disease and possibly preventing it if introduced early. In addition, selected trials demonstrated the potential of canonical anti-inflammatory therapies in reducing the rate of CVDs in patients with this condition or at high risk for it, many of whom had T2D. Since colchicine, an inhibitor of immune cell activation, is now approved for the prevention of CVDs, it might be worth exploring a possible therapeutic paradigm to identify subjects with T2D and an increased LGI burden to treat them with this drug. Upcoming studies will reveal whether disease-modifying drugs reverse early T2D by suppressing sources of LGI and whether colchicine has a broad benefit in people with this condition.
Collapse
Affiliation(s)
- Valeria Pellegrini
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Rosalba La Grotta
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Francesca Carreras
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Angelica Giuliani
- Cardiac Rehabilitation Unit of Bari Institute, Istituti Clinici Scientifici Maugeri IRCCS, 70124 Bari, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60127 Ancona, Italy; (J.S.); (F.O.)
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60127 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60127 Ancona, Italy; (J.S.); (F.O.)
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60127 Ancona, Italy
| | | | - Antonio Ceriello
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | | |
Collapse
|
18
|
Panchagnula N, Brasher WP. Hyperglycemia and Venous Thromboembolism. Diagnostics (Basel) 2024; 14:1994. [PMID: 39272778 PMCID: PMC11393887 DOI: 10.3390/diagnostics14171994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Patients with diabetes mellitus (DM) have chronically increased blood glucose and multiple physiologic alterations that place them at elevated risk for vascular disease. Traditionally, this vascular risk has mainly referred to chronic atherosclerosis and embolic arterial disease. Retrospective studies have suggested an increased risk of a pulmonary embolism (PE) and deep vein thrombosis (DVT), collectively termed venous thromboembolism (VTE), in patients with DM, but this association has been difficult to demonstrate with comorbidities such as obesity in meta-analysis. Clinical studies have demonstrated worse outcomes for patients with DM who suffer from VTE. In vitro studies show multiple physiologic abnormalities with chronic inflammation, endothelial dysfunction, dysfunction in the coagulation cascade, as well as other changes that drive a vicious cycle of hypercoagulability. Aggressive medical management of DM can improve vascular outcomes, and some anti-hyperglycemic therapies may modify VTE risk as well. Anticoagulation strategies are similar for patients with DM, but with some added considerations, such as high rates of comorbid renal dysfunction. More research is needed to definitively categorize DM as a risk factor for VTE and elucidate specific therapeutic strategies.
Collapse
Affiliation(s)
- Neha Panchagnula
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - William Philip Brasher
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Shenker MN, Shalitin S. Use of GLP-1 Receptor Agonists for the Management of Type 1 Diabetes: A Pediatric Perspective. Horm Res Paediatr 2024:1-20. [PMID: 39222618 DOI: 10.1159/000541228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Despite all the technological advances in treatment of patients with type 1 diabetes (T1D), glucose control remains suboptimal in most patients. In addition, a relatively high percentage of patients with T1D, including children, have obesity. Therefore, new interventions are required that focus their effects on weight loss, in order to help with associated insulin resistance and improve glycemic control. SUMMARY GLP-1 receptor agonists (GLP-1 RAs) have proven to be effective and safe in adults with T1D, showing improvement in glycemic control, body weight and cardiorenal protection. GLP-1 RAs are also approved for children with obesity (above the age of 12 years) or type 2 diabetes (above the age of 10 years). However, currently these medications are not approved for use in children with T1D. Only a few published studies have evaluated their efficacy and safety for this indication. KEY MESSAGE This review presents the rationale and experience of add-on GLP-1 RA therapy to pediatric and adolescent patients with T1D, otherwise treated, from RCTs and real-world data. Results of studies of GLP-1 RA in children with T1D are still pending, while large multicenter randomized controlled trials (RCTs) in this population are lacking.
Collapse
Affiliation(s)
- Michal Nevo Shenker
- Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Shalitin
- Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Pantanetti P, Ronconi V, Sguanci M, Palomares SM, Mancin S, Tartaglia FC, Cangelosi G, Petrelli F. Oral Semaglutide in Type 2 Diabetes: Clinical-Metabolic Outcomes and Quality of Life in Real-World Practice. J Clin Med 2024; 13:4752. [PMID: 39200893 PMCID: PMC11355440 DOI: 10.3390/jcm13164752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a novel class of incretin mimetics for treating type 2 diabetes (T2D). This study evaluated the impact of semaglutide, the first oral GLP-1RA, on glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), and body composition and anthropometric parameters. Additionally, the effects on cardiovascular risk factors and quality of life (QoL) in T2D patients were assessed. Methods: A prospective observational study with a six-month follow-up was conducted. Clinical parameters, including HbA1c, FPG, anthropometric measurements, blood pressure, cardiovascular risk factors, Diabetes Treatment Satisfaction Questionnaire (DTSQ) responses, and Short Form (36) Health Survey (SF-36) responses, were collected at baseline (T0) and at six months (T1). Results: Sixty-one subjects were enrolled, with there being an average T2D duration of 4.67 ± 3.93 years. Significant decreases were observed in HbA1c (µ = -1.24; SD = 1.33; p < 0.05), FPG (µ = -31.01 mg/dL; SD = 41.71; p < 0.05), body composition and anthropometric parameters (p < 0.05), and cardiovascular risk factors (p < 0.05), with an increase in DTSQ scores (p < 0.05). Conclusions: The administration of 14 mg/day oral semaglutide improved several clinical parameters after six months of treatment. These findings suggest semaglutide is effective in improving glycemic control, weight management, and some cardiovascular risk factors in T2D patients.
Collapse
Affiliation(s)
- Paola Pantanetti
- Unit of Diabetology, Asur Marche–Area Vasta 4 Fermo, 63900 Fermo, FM, Italy; (P.P.); (G.C.)
| | - Vanessa Ronconi
- Units of Diabetology and Metabolic Diseases, Ast Ancona, 60044 Fabriano, AN, Italy;
| | - Marco Sguanci
- A.O. Polyclinic San Martino Hospital, Largo R. Benzi 10, 16132 Genova, CS, Italy;
| | - Sara Morales Palomares
- Department of Pharmacy, Health and Nutritional Sciences (DFSSN), University of Calabria, 87036 Rende, CS, Italy;
| | - Stefano Mancin
- IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | | | - Giovanni Cangelosi
- Unit of Diabetology, Asur Marche–Area Vasta 4 Fermo, 63900 Fermo, FM, Italy; (P.P.); (G.C.)
| | - Fabio Petrelli
- School of Pharmacy, Polo Medicina Sperimentale e Sanità Pubblica, 62032 Camerino, MC, Italy;
| |
Collapse
|
21
|
Tsukamoto S, Kobayashi K, Toyoda M, Tone A, Kawanami D, Suzuki D, Tsuriya D, Machimura H, Shimura H, Wakui H, Takeda H, Yokomizo H, Takeshita K, Chin K, Kanasaki K, Miyauchi M, Saburi M, Morita M, Yomota M, Kimura M, Hatori N, Nakajima S, Ito S, Murata T, Matsushita T, Furuki T, Hashimoto T, Umezono T, Muta Y, Takashi Y, Tamura K. Effect of preceding drug therapy on the renal and cardiovascular outcomes of combined sodium-glucose cotransporter-2 inhibitor and glucagon-like peptide-1 receptor agonist treatment in patients with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2024; 26:3248-3260. [PMID: 38764356 DOI: 10.1111/dom.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
AIM To conduct a post hoc subgroup analysis of patients with type 2 diabetes (T2D) from the RECAP study, who were treated with sodium-glucose cotransporter-2 (SGLT2) inhibitor and glucagon-like peptide 1 receptor agonist (GLP-1RA) combination therapy, focusing only on those patients who had chronic kidney disease (CKD), to examine whether the composite renal outcome differed between those who received SGLT2 inhibitor treatment first and those who received a GLP-1RA first. METHODS We included 438 patients with CKD (GLP-1RA-first group, n = 223; SGLT2 inhibitor-first group, n = 215) from the 643 T2D patients in the RECAP study. The incidence of the composite renal outcome, defined as progression to macroalbuminuria and/or a ≥50% decrease in estimated glomerular filtration rate (eGFR), was analysed using a propensity score (PS)-matched model. Furthermore, we calculated the win ratio for these composite renal outcomes, which were weighted in the following order: (1) both a ≥50% decrease in eGFR and progression to macroalbuminuria; (2) a decrease in eGFR of ≥50% only; and (3) progression to macroalbuminuria only. RESULTS Using the PS-matched model, 132 patients from each group were paired. The incidence of renal composite outcomes did not differ between the two groups (GLP-1RA-first group, 10%; SGLT2 inhibitor-first group, 17%; odds ratio 1.80; 95% confidence interval [CI] 0.85 to 4.26; p = 0.12). The win ratio of the GLP-1RA-first group versus the SGLT2 inhibitor-first group was 1.83 (95% CI 1.71 to 1.95; p < 0.001). CONCLUSION Although the renal composite outcome did not differ between the two groups, the win ratio of the GLP-1RA-first group versus the SGLT2 inhibitor-first group was significant. These results suggest that, in GLP-1RA and SGLT2 inhibitor combination therapy, the addition of an SGLT2 inhibitor to baseline GLP-1RA treatment may lead to more favourable renal outcomes.
Collapse
Affiliation(s)
- Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuo Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Atsuhito Tone
- Department of Internal Medicine, Diabetes Center, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Daisuke Tsuriya
- Division of Endocrinology and Metabolism, 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Hisashi Yokomizo
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kei Takeshita
- Division of Endocrinology and Metabolism, 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Keizo Kanasaki
- Department of Internal Medicine 1, Endocrinology and Metabolism, Shimane University Faculty of Medicine, Izumo, Japan
| | | | - Masuo Saburi
- Department of Diabetology, Endocrinology and Metabolism, Tokyo Medical University Hachioji Medical Center, Hachioji, Japan
| | - Miwa Morita
- Department of Internal Medicine 1, Endocrinology and Metabolism, Shimane University Faculty of Medicine, Izumo, Japan
| | - Miwako Yomota
- Department of Internal Medicine 1, Endocrinology and Metabolism, Shimane University Faculty of Medicine, Izumo, Japan
| | - Moritsugu Kimura
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | | | - Shun Ito
- Department of Internal Medicine, Sagamihara Red Cross Hospital, Sagamihara, Japan
| | - Takashi Murata
- Department of Clinical Nutrition, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Diabetes Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takaya Matsushita
- Department of Diabetology, Endocrinology and Metabolism, Tokyo Medical University Hachioji Medical Center, Hachioji, Japan
| | | | - Takuya Hashimoto
- Division of Endocrinology and Metabolism, 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Yoshimi Muta
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yuichi Takashi
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
22
|
Riemma MA, Mele E, Donniacuo M, Telesca M, Bellocchio G, Castaldo G, Rossi F, De Angelis A, Cappetta D, Urbanek K, Berrino L. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, anti-diabetic drugs in heart failure and cognitive impairment: potential mechanisms of the protective effects. Front Pharmacol 2024; 15:1422740. [PMID: 38948473 PMCID: PMC11212466 DOI: 10.3389/fphar.2024.1422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Heart failure and cognitive impairment emerge as public health problems that need to be addressed due to the aging global population. The conditions that often coexist are strongly related to advancing age and multimorbidity. Epidemiological evidence indicates that cardiovascular disease and neurodegenerative processes shares similar aspects, in term of prevalence, age distribution, and mortality. Type 2 diabetes increasingly represents a risk factor associated not only to cardiometabolic pathologies but also to neurological conditions. The pathophysiological features of type 2 diabetes and its metabolic complications (hyperglycemia, hyperinsulinemia, and insulin resistance) play a crucial role in the development and progression of both heart failure and cognitive dysfunction. This connection has opened to a potential new strategy, in which new classes of anti-diabetic medications, such as glucagon-like peptide-1 receptor (GLP-1R) agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, are able to reduce the overall risk of cardiovascular events and neuronal damage, showing additional protective effects beyond glycemic control. The pleiotropic effects of GLP-1R agonists and SGLT2 inhibitors have been extensively investigated. They exert direct and indirect cardioprotective and neuroprotective actions, by reducing inflammation, oxidative stress, ions overload, and restoring insulin signaling. Nonetheless, the specificity of pathways and their contribution has not been fully elucidated, and this underlines the urgency for more comprehensive research.
Collapse
Affiliation(s)
- Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Donniacuo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
23
|
Kataoka Y, Kitahara S, Funabashi S, Makino H, Matsubara M, Matsuo M, Omura-Ohata Y, Koezuka R, Tochiya M, Tamanaha T, Tomita T, Honda-Kohmo K, Noguchi M, Murai K, Sawada K, Iwai T, Matama H, Honda S, Fujino M, Nakao K, Yoneda S, Takagi K, Otsuka F, Asaumi Y, Hosoda K, Nicholls SJ, Yasuda S, Noguchi T. Glucagon-like Peptide-1 analogues and delipidation of coronary atheroma in statin-treated type 2 diabetic patients with coronary artery disease: The prespecified sub-analysis of the OPTIMAL randomized clinical trial. ATHEROSCLEROSIS PLUS 2024; 56:1-6. [PMID: 38617596 PMCID: PMC11015340 DOI: 10.1016/j.athplu.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
Background and aims Randomized clinical trials have demonstrated the ability of glucagon-like peptide-1 analogues (GLP-1RAs) to reduce atherosclerotic cardiovascular disease events in patients with type 2 diabetes (T2D). How GLP-1RAs modulate diabetic atherosclerosis remains to be determined yet. Methods The OPTIMAL study was a prospective randomized controlled study to compare the efficacy of 48-week continuous glucose monitoring- and HbA1c-guided glycemic control on near infrared spectroscopty (NIRS)/intravascular ultrasound (IVUS)-derived plaque measures in 94 statin-treated patients with T2D (jRCT1052180152, UMIN000036721). Of these, 78 patients with evaluable serial NIRS/IVUS images were analyzed to compare plaque measures between those treated with (n = 16) and without GLP-1RAs (n = 72). Results All patients received a statin, and on-treatment LDL-C levels were similar between the groups (66.9 ± 11.6 vs. 68.1 ± 23.2 mg/dL, p = 0.84). Patients receiving GLP-1RAs demonstrated a greater reduction of HbA1c [-1.0 (-1.4 to -0.5) vs. -0.4 (-0.6 to -0.2)%, p = 0.02] and were less likely to demonstrate a glucose level >180 mg/dL [-7.5 (-14.9 to -0.1) vs. 1.1 (-2.0 - 4.2)%, p = 0.04], accompanied by a significant decrease in remnant cholesterol levels [-3.8 (-6.3 to -1.3) vs. -0.1 (-0.8 - 1.1)mg/dL, p = 0.008]. On NIRS/IVUS imaging analysis, the change in percent atheroma volume did not differ between the groups (-0.9 ± 0.25 vs. -0.2 ± 0.2%, p = 0.23). However, GLP-1RA treated patients demonstrated a greater frequency of maxLCBI4mm regression (85.6 ± 0.1 vs. 42.0 ± 0.6%, p = 0.01). Multivariate analysis demonstrated that the GLP-1RA use was independently associated with maxLCBI4mm regression (odds ratio = 4.41, 95%CI = 1.19-16.30, p = 0.02). Conclusions In statin-treated patients with T2D and CAD, GLP-1RAs produced favourable changes in lipidic plaque materials, consistent with its stabilization.
Collapse
Affiliation(s)
- Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Satoshi Kitahara
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Kashiwa Kousei General Hospital, Kashiwa, Japan
| | - Sayaka Funabashi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Kyorin University, Mitaka, Tokyo, Japan
| | - Hisashi Makino
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Masaki Matsubara
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Miki Matsuo
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Yoko Omura-Ohata
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Ryo Koezuka
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Mayu Tochiya
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Tamiko Tamanaha
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Tsutomu Tomita
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Kyoko Honda-Kohmo
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Michio Noguchi
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Kota Murai
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Kenichiro Sawada
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Takamasa Iwai
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Hideo Matama
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Satoshi Honda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Masashi Fujino
- Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Kazuhiro Nakao
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Shuichi Yoneda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Kensuke Takagi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | | | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| |
Collapse
|
24
|
Jensen ASH, Ytting H, Werge MP, Rashu EB, Hetland LE, Thing M, Nabilou P, Burisch J, Bojsen-Møller KN, Junker AE, Hobolth L, Mortensen C, Tofteng F, Bendtsen F, Møller S, Vyberg M, Serizawa RR, Gluud LL, Wewer Albrechtsen NJ. Patients with autoimmune liver disease have glucose disturbances that mechanistically differ from steatotic liver disease. Am J Physiol Gastrointest Liver Physiol 2024; 326:G736-G746. [PMID: 38625142 DOI: 10.1152/ajpgi.00047.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Autoimmune liver diseases are associated with an increased risk of diabetes, yet the underlying mechanisms remain unknown. In this cross-sectional study, we investigated the glucose-regulatory disturbances in patients with autoimmune hepatitis (AIH, n = 19), primary biliary cholangitis (PBC, n = 15), and primary sclerosing cholangitis (PSC, n = 6). Healthy individuals (n = 24) and patients with metabolic dysfunction-associated steatotic liver disease (MASLD, n = 18) were included as controls. Blood samples were collected during a 120-min oral glucose tolerance test. We measured the concentrations of glucose, C-peptide, insulin, glucagon, and the two incretin hormones, glucose insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1). We calculated the homeostasis model assessment of insulin resistance (HOMA-IR), whole body insulin resistance (Matsuda index), insulin clearance, and insulinogenic index. All patient groups had increased fasting plasma glucose and impaired glucose responses compared with healthy controls. Beta-cell secretion was increased in AIH, PBC, and MASLD but not in PSC. Patients with AIH and MASLD had hyperglucagonemia and hepatic, as well as peripheral, insulin resistance and decreased insulin clearance, resulting in hyperinsulinemia. Patients with autoimmune liver disease had an increased GIP response, and those with AIH or PBC had an increased GLP-1 response. Our data demonstrate that the mechanism underlying glucose disturbances in patients with autoimmune liver disease differs from that underlying MASLD, including compensatory incretin responses in patients with autoimmune liver disease. Our results suggest that glucose disturbances are present at an early stage of the disease.NEW & NOTEWORTHY Patients with autoimmune liver disease but without overt diabetes display glucose disturbances early on in their disease course. We identified pathophysiological traits specific to these patients including altered incretin responses.
Collapse
Affiliation(s)
- Anne-Sofie H Jensen
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Ytting
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel P Werge
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Elias B Rashu
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Liv E Hetland
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Mira Thing
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Puria Nabilou
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Johan Burisch
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine N Bojsen-Møller
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Anders E Junker
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Lise Hobolth
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Christian Mortensen
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Flemming Tofteng
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Møller
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Mogens Vyberg
- Department of Pathology, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Reza R Serizawa
- Department of Pathology, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Lise L Gluud
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Hou Y, Fan Y, Cheng Y, Peng X, Shan C, Yang Y. Comparative Analysis of the Anti-Inflammatory Effects of Liraglutide and Dulaglutide. Int Heart J 2024; 65:548-556. [PMID: 38749748 DOI: 10.1536/ihj.23-576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Inflammation plays a pathophysiological role in atherosclerosis and its clinical consequences. In addition to glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are of wide concern for cardioprotective effects. The structure, half-life, homology, and clinical efficacy of GLP-1RAs exhibit remarkable disparity. Several studies have compared the disparities in anti-inflammatory effects between daily and weekly GLP-1RAs. This study aimed to compare the similarities and differences between liraglutide and dulaglutide in terms of inhibiting atherosclerotic inflammation and improving co-cultured endothelial cell function. The expression of inflammation markers was examined by immunofluorescence, Western blotting, and real-time PCR. The tube-forming ability of endothelial cells was tested on Matrigel. The results verify that 10/50/100 nmol/L liraglutide and 100 nmol/L dulaglutide markedly suppressed the expression of inflammatory factors in LPS-induced atherosclerosis after 24 and 72 hours, respectively. Moreover, they promoted the polarization of M1 macrophages toward the M2 phenotype and improved the function of co-cultured endothelial cells. Both liraglutide and dulaglutide ameliorate atherosclerosis development. The difference between the two resided in the extended intervention duration required to observe the effect of dulaglutide, and liraglutide demonstrated a superior dose-dependent manner. We provide a potential strategy to understand the dynamics of drug action and possible timing administration.
Collapse
Affiliation(s)
- Yi Hou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yini Fan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yuan Cheng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Xiaoyue Peng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| | - Yanhui Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University
| |
Collapse
|
26
|
Vieira IH, Carvalho TS, Saraiva J, Gomes L, Paiva I. Diabetes and Stroke: Impact of Novel Therapies for the Treatment of Type 2 Diabetes Mellitus. Biomedicines 2024; 12:1102. [PMID: 38791064 PMCID: PMC11117787 DOI: 10.3390/biomedicines12051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant risk factor for stroke. Nevertheless, the evidence supporting stringent glycemic control to reduce macrovascular complications, particularly stroke, is not as clear as for microvascular complications. Presently, risk reduction strategies are based on controlling multiple risk factors, including hypertension, dyslipidemia, glycemia, smoking, and weight. Since 2008, new pharmacological therapies for treating T2DM have been required to undergo trials to ensure their cardiovascular safety. Remarkably, several novel therapies have exhibited protective effects against the combined endpoint of major cardiovascular events. Evidence from these trials, with stroke as a secondary endpoint, along with real-world data, suggests potential benefits in stroke prevention, particularly with glucagon-like peptide 1 receptor agonists. Conversely, the data on sodium-glucose cotransporter type 2 inhibitors remains more controversial. Dipeptidyl peptidase 4 inhibitors appear neutral in stroke prevention. More recent pharmacological therapies still lack significant data on this particular outcome. This article provides a comprehensive review of the evidence on the most recent T2DM therapies for stroke prevention and their impact on clinical practice.
Collapse
Affiliation(s)
- Inês Henriques Vieira
- Department of Endocrinology Diabetes and Metabolism, Hospitais da Universidade de Coimbra—ULS Coimbra, 3004-561 Coimbra, Portugal; (T.S.C.)
| | - Tânia Santos Carvalho
- Department of Endocrinology Diabetes and Metabolism, Hospitais da Universidade de Coimbra—ULS Coimbra, 3004-561 Coimbra, Portugal; (T.S.C.)
| | - Joana Saraiva
- Department of Endocrinology Diabetes and Metabolism, Hospitais da Universidade de Coimbra—ULS Coimbra, 3004-561 Coimbra, Portugal; (T.S.C.)
- Faculty of Medicine, Universidade de Coimbra, 3004-531 Coimbra, Portugal
| | - Leonor Gomes
- Department of Endocrinology Diabetes and Metabolism, Hospitais da Universidade de Coimbra—ULS Coimbra, 3004-561 Coimbra, Portugal; (T.S.C.)
- Faculty of Medicine, Universidade de Coimbra, 3004-531 Coimbra, Portugal
| | - Isabel Paiva
- Department of Endocrinology Diabetes and Metabolism, Hospitais da Universidade de Coimbra—ULS Coimbra, 3004-561 Coimbra, Portugal; (T.S.C.)
| |
Collapse
|
27
|
Fularski P, Czarnik W, Dąbek B, Lisińska W, Radzioch E, Witkowska A, Młynarska E, Rysz J, Franczyk B. Broader Perspective on Atherosclerosis-Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int J Mol Sci 2024; 25:5212. [PMID: 38791250 PMCID: PMC11121693 DOI: 10.3390/ijms25105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
28
|
Grannes H, Ueland T, Simeone P, Liani R, Guagnano MT, Aukrust P, Michelsen AE, Birkeland K, di Castelnuovo A, Cipollone F, Consoli A, Halvorsen B, Gregersen I, Santilli F. Liraglutide and not lifestyle intervention reduces soluble CD163 after comparable weight loss in obese participants with prediabetes or type 2 diabetes mellitus. Cardiovasc Diabetol 2024; 23:146. [PMID: 38685051 PMCID: PMC11059692 DOI: 10.1186/s12933-024-02237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The GLP-1 receptor agonist liraglutide is used to treat hyperglycemia in type 2 diabetes but is also known to induce weight loss, preserve the beta cell and reduce cardiovascular risk. The mechanisms underlying these effects are however still not completely known. Herein we explore the effect of liraglutide on markers of immune cell activity in a population of obese individuals with prediabetes or newly diagnosed type 2 diabetes mellitus. METHOD Plasma levels of the monocyte/macrophage markers, soluble (s)CD163 and sCD14, the neutrophil markers myeloperoxidase (MPO) and neutrophil gelatinase-associated lipocalin (NGAL),the T-cell markers sCD25 and T-cell immunoglobulin mucin domain-3 (sTIM-3) and the inflammatory marker TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) were measured by enzyme-linked immunosorbent assays in obese individuals with prediabetes or diabetes diagnosed within the last 12 months, prior to and after comparable weight loss achieved with lifestyle changes (n = 20) or liraglutide treatment (n = 20), and in healthy subjects (n = 13). RESULTS At baseline, plasma levels of the macrophage marker sCD163, and the inflammatory marker LIGHT were higher in cases as compared to controls. Plasma levels of sCD14, NGAL, sTIM-3 and sCD25 did not differ at baseline between patients and controls. After weight reduction following lifestyle intervention or liraglutide treatment, sCD163 decreased significantly in the liraglutide group vs. lifestyle (between-group difference p = 0.023, adjusted for visceral adipose tissue and triglycerides basal values). MPO and LIGHT decreased significantly only in the liraglutide group (between group difference not significant). Plasma levels of MPO and in particular sCD163 correlated with markers of metabolic dysfunction and inflammation. After weight loss, only sCD163 showed a trend for decreased levels during OGTT, both in the whole cohort as in those of liraglutide vs lifestyle group. CONCLUSION Weight loss following treatment with liraglutide was associated with reduced circulating levels of sCD163 when compared to the same extent of weight loss after lifestyle changes. This might contribute to reduced cardiometabolic risk in individuals receiving treatment with liraglutide.
Collapse
Affiliation(s)
- Helene Grannes
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Paola Simeone
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rossella Liani
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria Teresa Guagnano
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Annika E Michelsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kåre Birkeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Francesco Cipollone
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Agostino Consoli
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
| | - Francesca Santilli
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
29
|
Lee J, Li Y, Cheng JT, Liu IM, Cheng KC. Development of Syringaldehyde as an Agonist of the GLP-1 Receptor to Alleviate Diabetic Disorders in Animal Models. Pharmaceuticals (Basel) 2024; 17:538. [PMID: 38675498 PMCID: PMC11054907 DOI: 10.3390/ph17040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The phenolic aldehyde syringaldehyde (SA) has been shown to have an antihyperglycemic effect in diabetic rats due to increased glucose utilization and insulin sensitivity. To understand the direct effect of SA on the GLP-1 receptor, STZ-induced diabetic rats were used. The levels of pro-inflammatory cytokines, liver enzymes, and renal function were measured using specific ELISA kits. The mechanisms of SA effects were investigated using CHO-K1 cells, pancreatic Min-6 cells, and cardiomyocyte H9c2 cells. The results indicated that the antihyperglycemic effect of SA in diabetic rats was abolished by blocking the GLP-1 receptor with an antagonist. SA has a direct effect on the GLP-1 receptor when using CHO-K1 cells transfected with the exogenous GLP-1 receptor gene. In addition, SA stimulated insulin production in Min-6 cells by activating GLP-1 receptors. SA caused a dose-dependent rise in GLP-1 receptor mRNA levels in cardiac H9c2 cells. These in vitro results support the notion that SA has a direct effect on the GLP-1 receptor. Otherwise, SA inhibited the increase of pro-inflammatory cytokines, including interleukins and tumor TNF-α, in type 1 diabetic rats in a dose-dependent manner. Moreover, as with liraglutide, SA reduced plasma lipid profiles, including total cholesterol and triglyceride, in mixed diet-induced type 2 diabetic rats. Intriguingly, chronic treatment with SA (as with liraglutide) reversed the functions of both the liver and the kidney in these diabetic rats. SA displayed less efficiency in reducing body weight and food consumption compared to liraglutide. In conclusion, SA effectively activates GLP-1 receptors, resulting in a reduction in diabetic-related complications in rats. Therefore, it is beneficial to develop SA as a chemical agonist for clinical applications in the future.
Collapse
Affiliation(s)
- Jenpei Lee
- Department of Neurosurgery, Da Chien General Hospital, Miaoli City 36052, Taiwan;
| | - Yingxiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City 970302, Taiwan;
| | - Juei-Tang Cheng
- Graduate Institute of Medical Science, Chang Jung Christian University, Tainan City 71101, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan;
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan;
| |
Collapse
|
30
|
Barry R, Murray G, Hellen R, Ní Raghallaigh S. Liraglutide, a GLP-1 agonist, as a new adjunct treatment in Hailey-Hailey disease: a case report. Clin Exp Dermatol 2024; 49:409-411. [PMID: 38039150 DOI: 10.1093/ced/llad429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Hailey–Hailey disease (HHD) is a rare, heritable blistering disorder with a predilection for intertriginous areas, and is caused by mutations in the ATP2C1 gene. We present a case of a 60-year-old woman who has had poorly controlled HHD for 45 years, despite various treatments. Her HHD has become very well controlled since commencing liraglutide, for newly diagnosed type 2 diabetes, with loss of HHD disease control on discontinuation.
Collapse
Affiliation(s)
- Rory Barry
- Department of Dermatology, Beaumont Hospital, Dublin, Ireland
| | - Gregg Murray
- Department of Dermatology, Beaumont Hospital, Dublin, Ireland
| | - Rebecca Hellen
- Department of Dermatology, Beaumont Hospital, Dublin, Ireland
| | | |
Collapse
|
31
|
Alqifari SF, Alkomi O, Esmail A, Alkhawami K, Yousri S, Muqresh MA, Alharbi N, Khojah AA, Aljabri A, Allahham A, Prabahar K, Alshareef H, Aldhaeefi M, Alrasheed T, Alrabiah A, AlBishi LA. Practical guide: Glucagon-like peptide-1 and dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonists in diabetes mellitus. World J Diabetes 2024; 15:331-347. [PMID: 38591071 PMCID: PMC10999055 DOI: 10.4239/wjd.v15.i3.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 03/15/2024] Open
Abstract
In 2005, exenatide became the first approved glucagon-like peptide-1 receptor agonist (GLP-1 RA) for type 2 diabetes mellitus (T2DM). Since then, numerous GLP-1 RAs have been approved, including tirzepatide, a novel dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, which was approved in 2022. This class of drugs is considered safe with no hypoglycemia risk, making it a common second-line choice after metformin for treating T2DM. Various considerations can make selecting and switching between different GLP-1 RAs challenging. Our study aims to provide a comprehensive guide for the usage of GLP-1 RAs and dual GIP and GLP-1 RAs for the management of T2DM.
Collapse
Affiliation(s)
- Saleh Fahad Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Omar Alkomi
- Department of Clinical Sciences, Sulaiman Alrajhi University - College of Medicine, Al Bukayriyah 52726, Saudi Arabia
| | - Abdullah Esmail
- Department of Clinical Sciences, Sulaiman Alrajhi University - College of Medicine, Al Bukayriyah 52726, Saudi Arabia
| | - Khadijeh Alkhawami
- Department of Clinical Sciences, Sulaiman Alrajhi University - College of Medicine, Al Bukayriyah 52726, Saudi Arabia
| | - Shahd Yousri
- Department of Clinical Sciences, Sulaiman Alrajhi University - College of Medicine, Al Bukayriyah 52726, Saudi Arabia
| | - Mohamad Ayham Muqresh
- Department of Clinical Sciences, Sulaiman Alrajhi University - College of Medicine, Al Bukayriyah 52726, Saudi Arabia
| | - Nawwarah Alharbi
- Department of Clinical Sciences, Sulaiman Alrajhi University - College of Medicine, Al Bukayriyah 52726, Saudi Arabia
| | - Abdullah A Khojah
- Department of Family Medicine, Dr. Soliman Fakeeh Hospital DSFH, Jeddah 21461, Saudi Arabia
| | - Ahmed Aljabri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abdulrahman Allahham
- Department of Clinical Sciences, Sulaiman Alrajhi University - College of Medicine, Al Bukayriyah 52726, Saudi Arabia
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hanan Alshareef
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed Aldhaeefi
- Clinical and Administrative Pharmacy Sciences, College of Pharmacy, Howard University, Washington, DC 20059, United States
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ali Alrabiah
- Department of Pharmacy Practice, Raabe College of Pharmacy, Ohio Northern University, Ohio, OH 45810, United States
| | - Laila A AlBishi
- Department of Pediatric, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
32
|
Caruso P, Maiorino MI, Longo M, Porcellini C, Matrone R, Digitale Selvaggio L, Gicchino M, Carbone C, Scappaticcio L, Bellastella G, Giugliano D, Esposito K. Liraglutide for Lower Limb Perfusion in People With Type 2 Diabetes and Peripheral Artery Disease: The STARDUST Randomized Clinical Trial. JAMA Netw Open 2024; 7:e241545. [PMID: 38470420 PMCID: PMC10933706 DOI: 10.1001/jamanetworkopen.2024.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/18/2024] [Indexed: 03/13/2024] Open
Abstract
Importance Peripheral artery disease (PAD) in diabetes may lead to diabetic foot ulcer and lower-extremities amputation. Glucagon-like peptide 1 receptor agonists have proven cardiovascular benefits in trials of people with type 2 diabetes at high cardiovascular risk. Objective To examine the effect of liraglutide on peripheral perfusion measured as peripheral transcutaneous oxygen pressure (TcPo2) in individuals with type 2 diabetes and PAD. Design, Setting, and Participants This open-label randomized clinical trial was conducted between February 1, 2021, and June 30, 2022, with a final follow-up on December 30, 2022, at University of Campania "Luigi Vanvitelli," Naples, Italy. Fifty-five individuals with type 2 diabetes, PAD, and TcPo2 between 30 and 49 mm Hg were included. Interventions Patients were randomized to receive 1.8 mg of subcutaneous liraglutide or conventional treatment of cardiovascular risk factors (control group) for 6 months. Main Outcomes and Measures Coprimary outcomes were the change from baseline of peripheral perfusion between groups and the comparison of the proportion of individuals who reached 10% increase of TcPo2 from baseline in each group. Results Fifty-five participants (mean [SD] age, 67.5 [8.5] years; 43 [78%] male) were randomized (27 to the liraglutide group and 28 to the control group) and analyzed. Participants had a median (IQR) hemoglobin A1c level of 6.9% (6.5%-7.8%) and a mean (SD) TcPo2 of 40.3 (5.7) mm Hg. Transcutaneous Po2 increased over time in both groups, with significant differences favoring the liraglutide group after 6 months (estimated treatment difference, 11.2 mm Hg; 95% CI, 8.0-14.5 mm Hg; P < .001). The 10% increase of TcPo2 occurred in 24 participants (89%) in the liraglutide group and 13 (46%) in the control group (relative risk, 1.91; 95% CI, 1.26-2.90; P < .001). Compared with the control group, individuals in the liraglutide group had a significant reduction of C-reactive protein (-0.4 mg/dL; 95% CI, -0.7 to -0.07 mg/dL; P = .02), urinary albumin to creatinine ratio (-119.4 mg/g; 95% CI, -195.0 to -43.8 mg/g; P = .003), and improvement of 6-minute walking distance (25.1 m; 95% CI, 21.8-28.3 m; P < .001). Conclusions and Relevance In this randomized clinical trial of people with type 2 diabetes and PAD, liraglutide increased peripheral perfusion detected by TcPo2 measurement during 6 months of treatment. These results support the use of liraglutide to prevent the clinical progression of PAD in individuals with type 2 diabetes. Trial Registration ClinicalTrials.gov Identifier: NCT04881110.
Collapse
Affiliation(s)
- Paola Caruso
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Maria Ida Maiorino
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Miriam Longo
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
- PhD Program of Translational Medicine, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Chiara Porcellini
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Rita Matrone
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Lucia Digitale Selvaggio
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Maurizio Gicchino
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Carla Carbone
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
- PhD Program of Translational Medicine, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Giuseppe Bellastella
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Dario Giugliano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Katherine Esposito
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli,” Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
| |
Collapse
|
33
|
Terenzi DC, Bakbak E, Teoh H, Krishnaraj A, Puar P, Rotstein OD, Cosentino F, Goldenberg RM, Verma S, Hess DA. Restoration of blood vessel regeneration in the era of combination SGLT2i and GLP-1RA therapy for diabetes and obesity. Cardiovasc Res 2024; 119:2858-2874. [PMID: 38367275 DOI: 10.1093/cvr/cvae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2024] Open
Abstract
Ischaemic cardiovascular diseases, including peripheral and coronary artery disease, myocardial infarction, and stroke, remain major comorbidities for individuals with type 2 diabetes (T2D) and obesity. During cardiometabolic chronic disease (CMCD), hyperglycaemia and excess adiposity elevate oxidative stress and promote endothelial damage, alongside an imbalance in circulating pro-vascular progenitor cells that mediate vascular repair. Individuals with CMCD demonstrate pro-vascular 'regenerative cell exhaustion' (RCE) characterized by excess pro-inflammatory granulocyte precursor mobilization into the circulation, monocyte polarization towards pro-inflammatory vs. anti-inflammatory phenotype, and decreased pro-vascular progenitor cell content, impairing the capacity for vessel repair. Remarkably, targeted treatment with the sodium-glucose cotransporter-2 inhibitor (SGLT2i) empagliflozin in subjects with T2D and coronary artery disease, and gastric bypass surgery in subjects with severe obesity, has been shown to partially reverse these RCE phenotypes. SGLT2is and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have reshaped the management of individuals with T2D and comorbid obesity. In addition to glucose-lowering action, both drug classes have been shown to induce weight loss and reduce mortality and adverse cardiovascular outcomes in landmark clinical trials. Furthermore, both drug families also act to reduce systemic oxidative stress through altered activity of overlapping oxidase and antioxidant pathways, providing a putative mechanism to augment circulating pro-vascular progenitor cell content. As SGLT2i and GLP-1RA combination therapies are emerging as a novel therapeutic opportunity for individuals with poorly controlled hyperglycaemia, potential additive effects in the reduction of oxidative stress may also enhance vascular repair and further reduce the ischaemic cardiovascular comorbidities associated with T2D and obesity.
Collapse
Affiliation(s)
- Daniella C Terenzi
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ehab Bakbak
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Hwee Teoh
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Pankaj Puar
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ori D Rotstein
- Division of General Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Solnavagen 1, 171 77 Solna, Sweden
| | | | - Subodh Verma
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cells Biology, Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
| |
Collapse
|
34
|
Puddu A, Maggi D. Special Issue: "Anti-inflammatory Effects of Glucagon-like Peptide-1". Int J Mol Sci 2024; 25:1997. [PMID: 38396675 PMCID: PMC10888676 DOI: 10.3390/ijms25041997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
From the failure of gut extracts in diabetic patients' therapy to the effective action in cardiovascular outcomes [...].
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| | | |
Collapse
|
35
|
Hachuła M, Kosowski M, Ryl S, Basiak M, Okopień B. Impact of Glucagon-Like Peptide 1 Receptor Agonists on Biochemical Markers of the Initiation of Atherosclerotic Process. Int J Mol Sci 2024; 25:1854. [PMID: 38339133 PMCID: PMC10855444 DOI: 10.3390/ijms25031854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis stands out as one of the leading causes of global mortality. The inflammatory response against vascular wall components plays a pivotal role in the atherogenic process. The initiation of this process is notably driven by oxidized low-density lipoprotein (oxLDL) and a range of pro-inflammatory cytokines, with interleukin-1β (Il-1β) and tumor necrosis factor α (TNFα) emerging as particularly significant in the early stages of atherosclerotic plaque formation. In recent years, researchers worldwide have been diligently exploring innovative therapeutic approaches for metabolic diseases, recognizing their impact on the atherogenesis process. Our study aimed to investigate the influence of glucagon-like peptide 1 receptor agonists (GLP-1RA) on cytokine concentrations associated with the initiation of atherosclerotic plaque formation in a group of patients with type 2 diabetes and dyslipidemia. The study encompassed 50 subjects aged 41-81 (mean: 60.7), all diagnosed with type 2 diabetes, dyslipidemia and confirmed atherosclerosis based on B-mode ultrasound. Following a 180-day treatment with dulaglutide or semaglutide, we observed a statistically significant reduction in biochemical markers (oxLDL, TNFα and Il-1β) associated with the initiation of the atherosclerotic process (p < 0.001) within our study group. In addition to the already acknowledged positive effects of GLP-1RA on the metabolic parameters of treated patients, these drugs demonstrated a notable reduction in proinflammatory cytokine concentrations and may constitute an important element of therapy aimed at reducing cardiovascular risk.
Collapse
Affiliation(s)
- Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Sabina Ryl
- Department of Anaesthesiology and Intensive Care, Municipal Hospital in Zabrze-Biskupice, Zamkowa 4, 41-803 Zabrze, Poland;
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| |
Collapse
|
36
|
Alicic RZ, Neumiller JJ. Incretin Therapies for Patients with Type 2 Diabetes and Chronic Kidney Disease. J Clin Med 2023; 13:201. [PMID: 38202209 PMCID: PMC10779638 DOI: 10.3390/jcm13010201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Since the early 2000s, an influx of novel glucose-lowering agents has changed the therapeutic landscape for treatment of diabetes and diabetes-related complications. Glucagon-like peptide-1 (GLP-1) receptor agonists represent an important therapeutic class for the management of type 2 diabetes (T2D), demonstrating benefits beyond glycemic control, including lowering of blood pressure and body weight, and importantly, decreased risk of development of new or worsening chronic kidney disease (CKD) and reduced rates of atherosclerotic cardiovascular events. Plausible non-glycemic mechanisms that benefit the heart and kidneys with GLP-1 receptor agonists include anti-inflammatory and antioxidant effects. Further supporting their use in CKD, the glycemic benefits of GLP-1 receptor agonists are preserved in moderate-to-severe CKD. Considering current evidence, major guideline-forming organizations recommend the use of GLP-1 receptor agonists in cases of T2D and CKD, especially in those with obesity and/or in those with high cardiovascular risk or established heart disease. Evidence continues to build that supports benefits to the heart and kidneys of the dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist tirzepatide. Ongoing outcome and mechanistic studies will continue to inform our understanding of the role of GLP-1 and dual GLP-1/GIP receptor agonists in diverse patient populations with kidney disease.
Collapse
Affiliation(s)
- Radica Z. Alicic
- Providence Medical Research Center, Providence Inland Northwest Health, 105 W. 8th Ave, Suite 250E, Spokane, WA 99204, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joshua J. Neumiller
- Providence Medical Research Center, Providence Inland Northwest Health, 105 W. 8th Ave, Suite 250E, Spokane, WA 99204, USA
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99164, USA
| |
Collapse
|
37
|
Ahmadi A, Gamboa J, Norman JE, Enkhmaa B, Tucker M, Bennett BJ, Zelnick LR, Fan S, Berglund LF, Ikizler TA, de Boer IH, Cummings BP, Roshanravan B. Impaired incretin homeostasis in non-diabetic moderate-severe CKD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.15.23300050. [PMID: 38196612 PMCID: PMC10775324 DOI: 10.1101/2023.12.15.23300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Incretins are regulators of insulin secretion and glucose homeostasis that are metabolized by dipeptidyl peptidase-4 (DPP-4). Moderate-severe CKD may modify incretin release, metabolism, or response. Methods We performed 2-hour oral glucose tolerance testing (OGTT) in 59 people with non-diabetic CKD (eGFR<60 ml/min per 1.73 m2) and 39 matched controls. We measured total (tAUC) and incremental (iAUC) area under the curve of plasma total glucagon-like peptide-1 (GLP-1) and total glucose-dependent insulinotropic polypeptide (GIP). Fasting DPP-4 levels and activity were measured. Linear regression was used to adjust for demographic, body composition, and lifestyle factors. Results Mean eGFR was 38 ±13 and 89 ±17ml/min per 1.73 m2 in CKD and controls. GLP-1 iAUC and GIP iAUC were higher in CKD than controls with a mean of 1531 ±1452 versus 1364 ±1484 pMxmin, and 62370 ±33453 versus 42365 ±25061 pgxmin/ml, respectively. After adjustment, CKD was associated with 15271 pMxmin/ml greater GIP iAUC (95% CI 387, 30154) compared to controls. Adjustment for covariates attenuated associations of CKD with higher GLP-1 iAUC (adjusted difference, 122, 95% CI -619, 864). Plasma glucagon levels were higher at 30 minutes (mean difference, 1.6, 95% CI 0.3, 2.8 mg/dl) and 120 minutes (mean difference, 0.84, 95% CI 0.2, 1.5 mg/dl) in CKD compared to controls. There were no differences in insulin levels or plasma DPP-4 activity or levels between groups. Conclusion Incretin response to oral glucose is preserved or augmented in moderate-severe CKD, without apparent differences in circulating DPP-4 concentration or activity. However, neither insulin secretion nor glucagon suppression are enhanced.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Internal Medicine, Division of Nephrology, University of California Davis, Davis, California, USA
| | - Jorge Gamboa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer E Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California, USA
| | - Byambaa Enkhmaa
- Department of Internal Medicine, Division of Endocrinology, University of California Davis, Davis, California, USA
| | - Madelynn Tucker
- School of Medicine, Department of Surgery, Center for Alimentary and Metabolic Sciences, University of California, Davis, Sacramento, CA, United States
| | - Brian J Bennett
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, USDA, ARS, Davis, California, USA
| | - Leila R Zelnick
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Sili Fan
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA, USA
| | - Lars F Berglund
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Talat Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ian H de Boer
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Bethany P Cummings
- School of Medicine, Department of Surgery, Center for Alimentary and Metabolic Sciences, University of California, Davis, Sacramento, CA, United States
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Baback Roshanravan
- Department of Internal Medicine, Division of Nephrology, University of California Davis, Davis, California, USA
| |
Collapse
|
38
|
Schleh MW, Caslin HL, Garcia JN, Mashayekhi M, Srivastava G, Bradley AB, Hasty AH. Metaflammation in obesity and its therapeutic targeting. Sci Transl Med 2023; 15:eadf9382. [PMID: 37992150 PMCID: PMC10847980 DOI: 10.1126/scitranslmed.adf9382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/29/2023] [Indexed: 11/24/2023]
Abstract
Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent among these is adipose tissue, where cells of the innate and adaptive immune system are markedly changed in obesity, implicating these cells in a range of processes linking immune memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected effects on adipose tissue immune populations. Here, we review the current literature on the roles of various immune cells in lean and obese adipose tissue. Within this context, we discuss pharmacological and nonpharmacological approaches to obesity treatment and their impact on systemic inflammation.
Collapse
Affiliation(s)
- Michael W. Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Heather L. Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gitanjali Srivastava
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
| | - Anna B. Bradley
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Weight Loss Center, Vanderbilt University Medical Center, Nashville, TN 37204 USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
39
|
Luna-Marco C, de Marañon AM, Hermo-Argibay A, Rodriguez-Hernandez Y, Hermenejildo J, Fernandez-Reyes M, Apostolova N, Vila J, Sola E, Morillas C, Rovira-Llopis S, Rocha M, Victor VM. Effects of GLP-1 receptor agonists on mitochondrial function, inflammatory markers and leukocyte-endothelium interactions in type 2 diabetes. Redox Biol 2023; 66:102849. [PMID: 37591012 PMCID: PMC10457591 DOI: 10.1016/j.redox.2023.102849] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is linked to metabolic, mitochondrial and inflammatory alterations, atherosclerosis development and cardiovascular diseases (CVDs). The aim was to investigate the potential therapeutic benefits of GLP-1 receptor agonists (GLP-1 RA) on oxidative stress, mitochondrial respiration, leukocyte-endothelial interactions, inflammation and carotid intima-media thickness (CIMT) in T2D patients. RESEARCH DESIGN AND METHODS Type 2 diabetic patients (255) and control subjects (175) were recruited, paired by age and sex, and separated into two groups: without GLP-1 RA treatment (196) and treated with GLP-1 RA (59). Peripheral blood polymorphonuclear leukocytes (PMNs) were isolated to measure reactive oxygen species (ROS) production by flow cytometry and oxygen consumption with a Clark electrode. PMNs were also used to assess leukocyte-endothelial interactions. Circulating levels of adhesion molecules and inflammatory markers were quantified by Luminex's technology, and CIMT was measured as surrogate marker of atherosclerosis. RESULTS Treatment with GLP-1 RA reduced ROS production and recovered mitochondrial membrane potential, oxygen consumption and MPO levels. The velocity of leukocytes rolling over endothelial cells increased in PMNs from GLP-1 RA-treated patients, whereas rolling and adhesion were diminished. ICAM-1, VCAM-1, IL-6, TNFα and IL-12 protein levels also decreased in the GLP-1 RA-treated group, while IL-10 increased. CIMT was lower in GLP-1 RA-treated T2D patients than in T2D patients without GLP-1 RA treatment. CONCLUSIONS GLP-1 RA treatment improves the redox state and mitochondrial respiration, and reduces leukocyte-endothelial interactions, inflammation and CIMT in T2D patients, thereby potentially diminishing the risk of atherosclerosis and CVDs.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Arantxa M de Marañon
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Cancer Research @UCC, College of Medicine and Health, University College Cork, Ireland.
| | - Alberto Hermo-Argibay
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Yohaly Rodriguez-Hernandez
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Jonathan Hermenejildo
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Meylin Fernandez-Reyes
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Nadezda Apostolova
- Department of Pharmacology, University of Valencia, Valencia, Spain; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain.
| | - Jose Vila
- Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| | - Eva Sola
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain; Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| |
Collapse
|
40
|
De Barra C, O'Shea D, Hogan AE. NK cells vs. obesity: A tale of dysfunction & redemption. Clin Immunol 2023; 255:109744. [PMID: 37604354 DOI: 10.1016/j.clim.2023.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Natural killer (NK) cells are critical in protecting the body against infection and cancer. NK cells can rapidly respond to these threats by directly targeting the infected or transformed cell using their cytotoxic machinery or by initiating and amplifying the immune response via their production of cytokines. Additionally, NK cells are resident across many tissues including adipose, were their role extends from host protection to tissue homeostasis. Adipose resident NK cells can control macrophage polarization via cytokine production, whilst also regulating stressed adipocyte fate using their cytotoxic machinery. Obesity is strongly associated with increased rates of cancer and a heightened susceptibility to severe infections. This is in part due to significant obesity-related immune dysregulation, including defects in both peripheral and adipose tissue NK cells. In this review, we detail the literature to date on NK cells in the setting of obesity - outlining the consequences, mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Conor De Barra
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St Vincent's University Hospital, University College, Dublin 4, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland; National Children's Research Centre, Dublin 12, Ireland.
| |
Collapse
|
41
|
Lee SH, Park H, Yang EK, Lee BR, Jung IH, Kim TH, Goo MJ, Chae Y, Kim MK. GPR119 activation by DA-1241 alleviates hepatic and systemic inflammation in MASH mice through inhibition of NFκB signaling. Biomed Pharmacother 2023; 166:115345. [PMID: 37657264 DOI: 10.1016/j.biopha.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND PURPOSE GPR119 activation has been suggested to improve hyperglycemia, dyslipidemia and hepatic steatosis. But its therapeutic potential for metabolic dysfunction-associated steatohepatitis (MASH) are underexplored. Here, we investigated the effects of DA-1241, a novel GPR119 agonist, on MASH and explored its underlying mechanism of anti-inflammatory effects. EXPERIMENTAL APPROACH The in vivo anti-MASH effect was assessed by examining the preventive effect in MS-MASH and Ob-MASH mice and the therapeutic effect in MASH with severe hyperglycemia and diet-induced obese (DIO)-MASH mice. Histological and biochemical changes in liver tissue were assessed. Both plasma and hepatic biomarkers related to inflammation and fibrosis were comprehensively analyzed. To understand its mode of action, changes in NFκB signaling were determined in HepG2 and THP-1 cells. KEY RESULTS DA-1241 attenuated MASH progression and alleviated the MASH phenotypes in MASH mouse models with different etiologies, regardless of glucose-lowering activity. In DIO-MASH mice, DA-1241 significantly reduced biochemical parameters related to steatosis, inflammation and fibrosis in the liver with reduced plasma liver enzymes. When used in combination with a dipeptidyl peptidase 4 (DPP4) inhibitor, DA-1241 further improved the MASH phenotype by increasing endogenous glucagon-like peptide-1 effect. Notably, DA-1241 alone and in combination reduced liver inflammation and restored inflammation-related hepatic gene expression, leading to remission of systemic inflammation as assessed by plasma inflammatory cytokines and chemokines. We demonstrated that DA-1241 reduces macrophage differentiation through downregulation of NFκB signaling by activating GPR119. CONCLUSION Our data suggest the therapeutic potential of DA-1241, alone and in combination with a DPP4 inhibitor, for MASH.
Collapse
Affiliation(s)
- Seung-Ho Lee
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Hansu Park
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Eun-Kyoung Yang
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Bo Ram Lee
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Il-Hoon Jung
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Tae-Hyoung Kim
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Moon Jung Goo
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Yuna Chae
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea
| | - Mi-Kyung Kim
- Research Headquarter, Dong-A ST Co., Ltd., Yongin 17073, Republic of Korea.
| |
Collapse
|
42
|
Candido R, Gaiotti S, Giudici F, Toffoli B, De Luca F, Velardi V, Petrucco A, Gottardi C, Manca E, Buda I, Fabris B, Bernardi S. Real-World Retrospective Study into the Effects of Oral Semaglutide (As a Switchover or Add-On Therapy) in Type 2 Diabetes. J Clin Med 2023; 12:6052. [PMID: 37762991 PMCID: PMC10532177 DOI: 10.3390/jcm12186052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Oral semaglutide represents the first oral GLP-1 RA approved for the treatment of type 2 diabetes mellitus (T2DM). This real-world retrospective study aimed at evaluating its effectiveness and tolerability in the treatment of patients with T2DM when patients switched from a glucose-lowering agent to it and when it was added to the usual therapy. (2) Methods: Adult patients with T2DM taking oral semaglutide and followed in the ASUGI Diabetes Center were identified with the use of electronic medical records between October 2022 and May 2023. (3) Results: A total of 129 patients were recruited. The median follow-up was 6 months. Be it as a switchover or as an add-on therapy, oral semaglutide significantly reduced HbA1c and BMI. Switching from DPPIV inhibitors to oral semaglutide was associated with a significant reduction in HbA1c and BMI, switching from SGLT2 inhibitors was associated with a significant reduction in HbA1c, and switching from sulphonylureas was associated with a significant reduction in BMI. The median HbA1c change was associated with baseline HbA1c. SBP significantly decreased in the add-on group. Oral semaglutide was well tolerated. (4) Conclusions: This study shows that in the real-world setting, oral semaglutide is effective and safe as a switchover or as an add-on therapy for the treatment of T2DM.
Collapse
Affiliation(s)
- Riccardo Candido
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Sara Gaiotti
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Fabiola Giudici
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Barbara Toffoli
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Federica De Luca
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Valerio Velardi
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Alessandra Petrucco
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Chiara Gottardi
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Elena Manca
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Iris Buda
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Bruno Fabris
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
- SS Endocrinologia Medicina Clinica, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy
| | - Stella Bernardi
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
- SS Endocrinologia Medicina Clinica, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy
| |
Collapse
|
43
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
44
|
Yan C, Ma X, Lam SM, Zhang Y, Cao Y, Dong Y, Su L, Shui G, Feng Y. Exendin-4 attenuates atherosclerosis progression via controlling hematopoietic stem/progenitor cell proliferation. J Mol Cell Biol 2023; 15:mjad014. [PMID: 36866528 PMCID: PMC10478625 DOI: 10.1093/jmcb/mjad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/01/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Beyond glycemic control, applications of glucagon-like peptide-1 receptor (GLP-1r) agonists (GLP-1 RAs) inhibit inflammation and plaque development in murine atherosclerotic models. However, whether they modulate hematopoietic stem/progenitor cells (HSPCs) to prohibit skewed myelopoiesis in hypercholesteremia remains unknown. In this study, GLP-1r expression in fluorescence-activated cell sorting (FACS)-sorted wild-type HSPCs was determined by capillary western blotting. Bone marrow cells (BMCs) of wild-type or GLP-1r-/- mice were transplanted into lethally irradiated low-density lipoprotein receptor deficient (LDLr-/-) recipients followed by high-fat diet (HFD) for chimerism analysis by FACS. In parallel, LDLr-/- mice were placed on HFD for 6 weeks and then treated with saline or Exendin-4 (Ex-4) for another 6 weeks. HSPC frequency and cell cycle were analyzed by FACS, and intracellular metabolite levels were assessed by targeted metabolomics. The results demonstrated that HSPCs expressed GLP-1r and transplantation of GLP-1r-/- BMCs resulted in skewed myelopoiesis in hypercholesterolemic LDLr-/- recipients. In vitro, Ex-4 treatment of FACS-purified HSPCs suppressed cell expansion and granulocyte production induced by LDL. In vivo, Ex-4 treatment inhibited plaque progression, suppressed HSPC proliferation, and modified glycolytic and lipid metabolism in HSPCs of hypercholesteremic LDLr-/- mice. In conclusion, Ex-4 could directly inhibit HSPC proliferation induced by hypercholesteremia.
Collapse
Affiliation(s)
- Cen Yan
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| | - Xiaojuan Ma
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuejie Zhang
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| | - Yu Cao
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| | - Yuan Dong
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| | - Li Su
- Neuroscience Research Institute, Peking University Center of Medical and Health Analysis, Peking University, Beijing 100191, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingmei Feng
- Department of Science and Development, Beijing Youan hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
45
|
De Barra C, Khalil M, Mat A, O'Donnell C, Shaamile F, Brennan K, O'Shea D, Hogan AE. Glucagon-like peptide-1 therapy in people with obesity restores natural killer cell metabolism and effector function. Obesity (Silver Spring) 2023. [PMID: 37157931 DOI: 10.1002/oby.23772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE People with obesity (PWO) have functionally defective natural killer (NK) cells, with a decreased capacity to produce cytokines and kill target cells, underpinned by defective cellular metabolism. It is plausible that the changes in peripheral NK cell activity are contributing to the multimorbidity in PWO, which includes an increased risk of cancer. This study investigated whether therapy with long-acting glucagon-like peptide-1 (GLP-1) analogues, which are an effective treatment for obesity, could restore NK cell functionality in PWO. METHODS In a cohort of 20 PWO, this study investigated whether 6 months of once weekly GLP-1 therapy (semaglutide) could restore human NK cell function and metabolism using multicolor flow cytometry, enzyme-linked immunosorbent assays, and cytotoxicity assays. RESULTS These data demonstrate that PWO who received GLP-1 therapy have improved NK cell function, as measured by cytotoxicity and interferon-γ/granzyme B production. In addition, the study demonstrates increases in a CD98-mTOR-glycolysis metabolic axis, which is critical for NK cell cytokine production. Finally, it shows that the reported improvements in NK cell function appear to be independent of weight loss. CONCLUSIONS The restoration, by GLP-1 therapy, of NK cell functionality in PWO may be contributing to the overall benefits being seen with this class of medication.
Collapse
Affiliation(s)
- Conor De Barra
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, County Kildare, Ireland
| | - Mohammed Khalil
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Arimin Mat
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Cliona O'Donnell
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Ferrah Shaamile
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | | | - Donal O'Shea
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, County Kildare, Ireland
| |
Collapse
|
46
|
Foer D, Beeler PE, Cui J, Snyder WE, Mashayekhi M, Nian H, Luther JM, Karlson EW, Boyce JA, Cahill KN. Glucagon-like peptide-1 receptor agonist use is associated with lower serum periostin. Clin Exp Allergy 2023; 53:469-473. [PMID: 36648098 PMCID: PMC10106378 DOI: 10.1111/cea.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Dinah Foer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Patrick E. Beeler
- Harvard Medical School, Boston, MA
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Occupational and Environmental Medicine; Epidemiology, Biostatistics and Prevention Institute, University of Zurich and University Hospital Zurich, Zurich, Switzerland and Center for Primary and Community Care, University of Lucerne, Lucerne, Switzerland
| | - Jing Cui
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - William E. Snyder
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - James M. Luther
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University Medical Center; Nashville, TN
| | - Elizabeth W. Karlson
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Katherine N. Cahill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
47
|
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2023; 245:108391. [PMID: 36963510 DOI: 10.1016/j.pharmthera.2023.108391] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), currently the leading cause of global chronic liver disease, has emerged as a major public health problem, more efficient therapeutics of which are thus urgently needed. Peroxisome proliferator-activated receptor γ (PPAR-γ), ligand-activated transcription factors of the nuclear hormone receptor superfamily, is considered a crucial metabolic regulator of hepatic lipid metabolism and inflammation. The role of PPAR-γ in the pathogenesis of NAFLD is gradually being recognized. Here, we outline the involvement of PPAR-γ in the pathogenesis of NAFLD through adipogenesis, insulin resistance, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In addition, the evidence for PPAR-γ- targeted therapy for NAFLD are summarized. Altogether, PPAR-γ is a promising therapeutic target for NAFLD, and the development of drugs that can balance the beneficial and undesirable effects of PPAR-γ will bring new light to NAFLD patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine / West China School of Nursing, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haichuan Wang
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Thomas MC, Coughlan MT, Cooper ME. The postprandial actions of GLP-1 receptor agonists: The missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab 2023; 35:253-273. [PMID: 36754019 DOI: 10.1016/j.cmet.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Department of Biochemistry, Monash University, Melbourne, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052 VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia.
| |
Collapse
|
49
|
Urinary Proteome Differences in Patients with Type 2 Diabetes Pre and Post Liraglutide Treatment. Curr Issues Mol Biol 2023; 45:1407-1421. [PMID: 36826037 PMCID: PMC9956006 DOI: 10.3390/cimb45020092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus is a chronic multisystem disease with a high global prevalence. The glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide is known to lower glucose levels and reduce weight. However, the mechanisms underlying the benefits of liraglutide treatment in patients with type 2 diabetes mellitus (T2DM) remain unclear. Twelve male patients with T2DM (pre and post liraglutide treatment) and HbA1c between 8% and 11% were recruited. In the present study, a two-dimensional difference gel electrophoresis (2D-DIGE) matrix-assisted laser desorption/ionization-time of flight (MALDI TOF) mass spectrometric approach combined with bioinformatics and network pathway analysis was used to explore the urine proteomic profile. The mean age of the patients was 52.4 ± 7.5 years. After treatment with liraglutide, a statistically significant change (p < 0.006) was observed in HbA1c with no significant changes in body weight or markers of dyslipidemia. Two-dimensional difference gel electrophoresis identified significant changes (≥1.5-fold change, ANOVA, p ≤ 0.05) in 32 proteins (4 down- and 28 upregulated) in liraglutide post treatment compared to the pre-treatment state. Albumin, serotransferrin, metallothionein-2 (MT-2), and keratins K1 and K10 were found to be upregulated after liraglutide treatment. The patients showed significant improvement in glycemic control after the 12-week treatment with liraglutide. The renoprotective effect of liraglutide may be linked to the increased urinary abundance of MT-2 and the decreased abundance of zinc alpha 2-glycoprotein (ZAG) and Alpha-1 antitrypsin (α1-AT). More studies are needed to elucidate the molecular mechanisms behind the renoprotective effects of liraglutide.
Collapse
|
50
|
Biesenbach IIA, Heinsen LJ, Overgaard KS, Andersen TR, Auscher S, Egstrup K. The Effect of Clinically Indicated Liraglutide on Pericoronary Adipose Tissue in Type 2 Diabetic Patients. Cardiovasc Ther 2023; 2023:5126825. [PMID: 36714196 PMCID: PMC9867582 DOI: 10.1155/2023/5126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Vascular inflammation can be detected in the pericoronary adipose tissue (PCAT) by coronary computed tomography angiography (CCTA) attenuation. Treatment with liraglutide is associated with anti-inflammatory effects and reduces cardiovascular risk in diabetic patients. This study is aimed at examining the effect of clinically indicated liraglutide on PCAT attenuation. Asymptomatic patients with type 2 diabetes mellitus (T2DM) and without known ischemic heart disease underwent clinical examination, blood analysis, and CCTA. The main coronary arteries were outlined and PCAT attenuation was measured on the proximal 40 mm. Patients treated with liraglutide on a clinical indication were compared to patients not receiving liraglutide. The study included 190 patients; 53 (28%) received liraglutide (Lira+) and 137 (72%) did not (Lira-). There were no significant differences in PCAT attenuation between the two groups in either artery. However, PCAT attenuation measured around the left anterior descending artery (LAD) was lower in the Lira+ group after adjustment for age, sex, body mass index, and T2DM duration (b coefficient -2.4, p = 0.029). In a population of cardiac asymptomatic T2DM patients, treatment with clinically indicated liraglutide was not associated with differences in PCAT attenuation compared to nonliraglutide treatment in the unadjusted model. An association was seen in the adjusted model for the left anterior descending artery, possibly indicating an anti-inflammatory effect.
Collapse
Affiliation(s)
- Irmelin I. A. Biesenbach
- Faculty of Health Science, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Laurits J. Heinsen
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Katrine S. Overgaard
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Thomas R. Andersen
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Søren Auscher
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Kenneth Egstrup
- Faculty of Health Science, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| |
Collapse
|