1
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
2
|
Endoplasmic reticulum stress inhibition ameliorated WFS1 expression alterations and reduced pancreatic islets' insulin secretion induced by high-fat diet in rats. Sci Rep 2023; 13:1860. [PMID: 36725880 PMCID: PMC9892558 DOI: 10.1038/s41598-023-28329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in the development of glucose homeostasis impairment. When ER stress occurs, the unfolded protein response (UPR) is activated to cope with it. One of the UPR components is WFS1 (Wolfram syndrome 1), which plays important roles in ER homeostasis and pancreatic islets glucose-stimulated insulin secretion (GSIS). Accordingly and considering that feeding high-fat food has a major contribution in metabolic disorders, this study aimed to investigate the possible involvement of pancreatic ER stress in glucose metabolism impairment induced by feeding high-fat diet (HFD) in male rats. After weaning, the rats were divided into six groups, and fed on normal diet and HFD for 20 weeks, then 4-phenyl butyric acid (4-PBA, an ER stress inhibitor) was administered. Subsequently, in all groups, after performing glucose tolerance test, the animals were dissected and their pancreases were removed to extract ER, islets isolation and assessment of GSIS. Moreover, the pancreatic ER stress [binding of immunoglobulin protein (BIP) and enhancer-binding protein homologous protein (CHOP)] and oxidative stress [malondialdehyde (MDA), glutathione (GSH) and catalase] biomarkers as well as WFS1 expression level were evaluated. HFD decreased pancreatic WFS1 protein and GSH levels, and enhanced pancreatic catalase activity, MDA content, BIP and CHOP protein and mRNA levels as well as Wfs1 mRNA amount. Accordingly, it increased BIP, CHOP and WFS1 protein levels in the extracted ER of pancreas. In addition, the HFD caused glucose intolerance, and decreased the islets' GSIS and insulin content. However, 4-PBA administration restored the alterations. It seems that, HFD consumption through inducing pancreatic ER stress, altered WFS1 expression levels, reduced the islets' GSIS and insulin content and finally impaired glucose homeostasis.
Collapse
|
3
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
4
|
Elumalai S, Karunakaran U, Moon JS, Won KC. Ferroptosis Signaling in Pancreatic β-Cells: Novel Insights & Therapeutic Targeting. Int J Mol Sci 2022; 23:13679. [PMID: 36430158 PMCID: PMC9690757 DOI: 10.3390/ijms232213679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Metabolic stress impairs pancreatic β-cell survival and function in diabetes. Although the pathophysiology of metabolic stress is complex, aberrant tissue damage and β-cell death are brought on by an imbalance in redox equilibrium due to insufficient levels of endogenous antioxidant expression in β-cells. The vulnerability of β-cells to oxidative damage caused by iron accumulation has been linked to contributory β-cell ferroptotic-like malfunction under diabetogenic settings. Here, we take into account recent findings on how iron metabolism contributes to the deregulation of the redox response in diabetic conditions as well as the ferroptotic-like malfunction in the pancreatic β-cells, which may offer insights for deciphering the pathomechanisms and formulating plans for the treatment or prevention of metabolic stress brought on by β-cell failure.
Collapse
Affiliation(s)
- Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
| | - Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|
5
|
Effects of Arachidonic Acid and Its Metabolites on Functional Beta-Cell Mass. Metabolites 2022; 12:metabo12040342. [PMID: 35448529 PMCID: PMC9031745 DOI: 10.3390/metabo12040342] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/26/2023] Open
Abstract
Arachidonic acid (AA) is a polyunsaturated 20-carbon fatty acid present in phospholipids in the plasma membrane. The three primary pathways by which AA is metabolized are mediated by cyclooxygenase (COX) enzymes, lipoxygenase (LOX) enzymes, and cytochrome P450 (CYP) enzymes. These three pathways produce eicosanoids, lipid signaling molecules that play roles in biological processes such as inflammation, pain, and immune function. Eicosanoids have been demonstrated to play a role in inflammatory, renal, and cardiovascular diseases as well type 1 and type 2 diabetes. Alterations in AA release or AA concentrations have been shown to affect insulin secretion from the pancreatic beta cell, leading to interest in the role of AA and its metabolites in the regulation of beta-cell function and maintenance of beta-cell mass. In this review, we discuss the metabolism of AA by COX, LOX, and CYP, the roles of these enzymes and their metabolites in beta-cell mass and function, and the possibility of targeting these pathways as novel therapies for treating diabetes.
Collapse
|
6
|
Isse FA, El-Sherbeni AA, El-Kadi AOS. The multifaceted role of cytochrome P450-Derived arachidonic acid metabolites in diabetes and diabetic cardiomyopathy. Drug Metab Rev 2022; 54:141-160. [PMID: 35306928 DOI: 10.1080/03602532.2022.2051045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding lipid metabolism is a critical key to understanding the pathogenesis of Diabetes Mellitus (DM). It is known that 60-90% of DM patients are obese or used to be obese. The incidence of obesity is rising owing to the modern sedentary lifestyle that leads to insulin resistance and increased levels of free fatty acids, predisposing tissues to utilize more lipids with less glucose uptake. However, the exact mechanism is not yet fully elucidated. Diabetic cardiomyopathy seems to be associated with these alterations in lipid metabolism. Arachidonic acid (AA) is an important fatty acid that is metabolized to several bioactive compounds by cyclooxygenases, lipoxygenases, and the more recently discovered, cytochrome P450 (P450) enzymes. P450 metabolizes AA to either epoxy-AA (EETs) or hydroxy-AA (HETEs). Studies showed that EETs could have cardioprotective effects and beneficial effects in reversing abnormalities in glucose and insulin homeostasis. Conversely, HETEs, most importantly 12-HETE and 20-HETE, were found to interfere with normal glucose and insulin homeostasis and thus, might be involved in diabetic cardiomyopathy. In this review, we highlight the role of P450-derived AA metabolites in the context of DM and diabetic cardiomyopathy and their potential use as a target for developing new treatments for DM and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fadumo Ahmed Isse
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ahmed A El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O S El-Kadi
- Departmet of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Luo Y, Jin M, Lou L, Yang S, Li C, Li X, Zhou M, Cai C. Role of arachidonic acid lipoxygenase pathway in Asthma. Prostaglandins Other Lipid Mediat 2021; 158:106609. [PMID: 34954219 DOI: 10.1016/j.prostaglandins.2021.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
The arachidonic acid (AA) metabolism pathways play a key role in immunological response and inflammation diseases, such as asthma, etc. AA in cell membranes can be metabolized by lipoxygenases (LOXs) to a screen of bioactive substances that include leukotrienes (LTs), lipoxins (LXs), and eicosatetraenoic acids (ETEs), which are considered closely related to the pathophysiology of respiratory allergic disease. Studies also verified that drugs regulating AA LOXs pathway have better rehabilitative intervention for asthma. This review aims to summarize the physiological and pathophysiological importance of AA LOXs metabolism pathways in asthma and to discuss its prospects of therapeutic strategies.
Collapse
Affiliation(s)
- Yacan Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Minli Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Lejing Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Song Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Chengye Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Meixi Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Chang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| |
Collapse
|
8
|
Hernandez-Perez M, Kulkarni A, Samala N, Sorrell C, El K, Haider I, Aleem AM, Holman TR, Rai G, Tersey SA, Mirmira RG, Anderson RM. A 12-lipoxygenase-Gpr31 signaling axis is required for pancreatic organogenesis in the zebrafish. FASEB J 2020; 34:14850-14862. [PMID: 32918516 PMCID: PMC7606739 DOI: 10.1096/fj.201902308rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
12-Lipoxygenase (12-LOX) is a key enzyme in arachidonic acid metabolism, and alongside its major product, 12-HETE, plays a key role in promoting inflammatory signaling during diabetes pathogenesis. Although 12-LOX is a proposed therapeutic target to protect pancreatic islets in the setting of diabetes, little is known about the consequences of blocking its enzymatic activity during embryonic development. Here, we have leveraged the strengths of the zebrafish-genetic manipulation and pharmacologic inhibition-to interrogate the role of 12-LOX in pancreatic development. Lipidomics analysis during zebrafish development demonstrated that 12-LOX-generated metabolites of arachidonic acid increase sharply during organogenesis stages, and that this increase is blocked by morpholino-directed depletion of 12-LOX. Furthermore, we found that either depletion or inhibition of 12-LOX impairs both exocrine pancreas growth and unexpectedly, the generation of insulin-producing β cells. We demonstrate that morpholino-mediated knockdown of GPR31, a purported G-protein-coupled receptor for 12-HETE, largely phenocopies both the depletion and the inhibition of 12-LOX. Moreover, we show that loss of GPR31 impairs pancreatic bud fusion and pancreatic duct morphogenesis. Together, these data provide new insight into the requirement of 12-LOX in pancreatic organogenesis and islet formation, and additionally provide evidence that its effects are mediated via a signaling axis that includes the 12-HETE receptor GPR31.
Collapse
Affiliation(s)
- Marimar Hernandez-Perez
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abhishek Kulkarni
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Niharika Samala
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cody Sorrell
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimberly El
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Isra Haider
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ansari Mukhtar Aleem
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sarah A Tersey
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Ryan M Anderson
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Injury factors alter miRNAs profiles of exosomes derived from islets and circulation. Aging (Albany NY) 2019; 10:3986-3999. [PMID: 30552311 PMCID: PMC6326691 DOI: 10.18632/aging.101689] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
Islets damage is a major abnormality underling diabetes. Recent studies suggested the value of exosomes in diagnosis. This study aimed to investigate the impact of injury factors on the miRNA profiles of islet exosomes and determine whether circulating exosomal miRNAs is suitable as biomarkers of islets damage. Islets were isolated from ICR mice and induced injury in vitro by mixed cytokines (Tumor Necrosis Factor-α, Interleukin -1β and Interferon-γ) or streptozotocin (STZ), and exosomes were derived from the cultural supernatant. Using miRNA microarray analysis, we found 22 and 11 differentially expressed miRNAs in islet exosomes of STZ and cytokines treatment, respectively, including 6 miRNAs as the intersection of two injured conditions. Thereinto, mmu-miR-375-3p and mmu-miR-129-5p could be validated by qRT-PCR. Then, Serum exosomes were isolated from STZ injected mice and subjects with various glucose metabolism states and diabetic duration. qRT-PCR demonstrated exosomal mmu-miR-375-3p dramatically increased in serum of STZ treated mouse prior to the disturbance of blood glucose and insulin. In human serum exosomes, hsa-miR-375-3p was elevated in new-onset diabetes patients. Overall, our results suggest that injury factors changed miRNA profiles of exosomes derived from islets and exosomal miR-375-3p showed promising potential as a biomarker of islets damage.
Collapse
|
10
|
Moreira V, Gutiérrez JM, Lomonte B, Vinolo MAR, Curi R, Lambeau G, Teixeira C. 12-HETE is a regulator of PGE 2 production via COX-2 expression induced by a snake venom group IIA phospholipase A 2 in isolated peritoneal macrophages. Chem Biol Interact 2019; 317:108903. [PMID: 31811862 DOI: 10.1016/j.cbi.2019.108903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/03/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
The snake venom miotoxin (MT)-III is a group IIA secreted phospholipase A2 (sPLA2) with pro-inflammatory activities. Previous studies have demonstrated that MT-III has the ability to stimulate macrophages to release inflammatory lipid mediators derived from arachidonic acid metabolism. Among them, we highlight prostaglandin (PG)E2 produced by the cyclooxygenase (COX)-2 pathway, through activation of nuclear factor (NF)-κB. However, the mechanisms coordinating this process are not fully understood. This study investigates the regulatory mechanisms exerted by other groups of bioactive eicosanoids derived from 12-lipoxygenase (12-LO), in particular 12-hydroxyeicosatetraenoic (12-HETE), on group IIA sPLA2-induced (i) PGE2 release, (ii) COX-2 expression, and (iii) activation of signaling pathways p38 mitogen-activated protein kinases(p38MAPK), protein C kinase (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-κB. Stimulation of macrophages with group IIA sPLA2 resulted in release of 12-HETE without modification of 12-LO protein levels. Pre-treatment of these cells with baicalein, a 12-LO inhibitor, decreased the sPLA2-induced PGE2 production, significantly reduced COX-2 expression, and inhibited sPLA2-induced ERK; however, it did not affect p38MAPK or PKC phosphorylation. In turn, sPLA2-induced PGE2 release and COX-2 expression, but not NF-κB activation, was attenuated by pre-treating macrophages with PD98059 an inhibitor of ERK1/2. These results suggest that, in macrophages, group IIA sPLA2-induced PGE2 release and COX-2 protein expression are distinctly mediated through 12-HETE followed by ERK1/2 pathway activation, independently of NF-κB activation. These findings highlight an as yet undescribed mechanism by which 12-HETE regulates one of the distinct signaling pathways for snake venom group IIA sPLA2-induced PGE2 release and COX-2 expression in macrophages.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Marco Aurélio Ramirez Vinolo
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade de Campinas, Campinas, SP, Brazil
| | - Rui Curi
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, IPMC, Valbonne Sophia Antipolis, France
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
12
|
Dobrian AD, Morris MA, Taylor-Fishwick DA, Holman TR, Imai Y, Mirmira RG, Nadler JL. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol Ther 2018; 195:100-110. [PMID: 30347209 DOI: 10.1016/j.pharmthera.2018.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
12-lipoxygenase (12-LOX) is one of several enzyme isoforms responsible for the metabolism of arachidonic acid and other poly-unsaturated fatty acids to both pro- and anti-inflammatory lipid mediators. Mounting evidence has shown that 12-LOX plays a critical role in the modulation of inflammation at multiple checkpoints during diabetes development. Due to this, interventions to limit pro-inflammatory 12-LOX metabolites either by isoform-specific 12-LOX inhibition, or by providing specific fatty acid substrates via dietary intervention, has the potential to significantly and positively impact health outcomes of patients living with both type 1 and type 2 diabetes. To date, the development of truly specific and efficacious inhibitors has been hampered by homology of LOX family members; however, improvements in high throughput screening have improved the inhibitor landscape. Here, we describe the function and role of human 12-LOX, and mouse 12-LOX and 12/15-LOX, in the development of diabetes and diabetes-related complications, and describe promise in the development of strategies to limit pro-inflammatory metabolites, primarily via new small molecule 12-LOX inhibitors.
Collapse
Affiliation(s)
- A D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - M A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - D A Taylor-Fishwick
- Department of Microbiology, Cell and Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - T R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Y Imai
- University of Iowa Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, city, IA, United States
| | - R G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
13
|
Heng XP, Li XJ, Li L, Yang LQ, Wang ZT, Huang SP. Therapy to Obese Type 2 Diabetes Mellitus: How Far Will We Go Down the Wrong Road? Chin J Integr Med 2018; 26:62-71. [PMID: 30328570 DOI: 10.1007/s11655-018-3053-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 01/19/2023]
Abstract
Traditional glucose-lowering chemical agents, including various types of insulin and insulin secretagogues, insulin sensitizers, gliptins, etc., are based on diabetic pathogenesis of insulin resistance (IR) and islet insufficiency. Numerous evidence-based medical studies have shown that these traditional hypoglycemic chemical agents do not provide cardiovascular benefit to patients with type 2 diabetes mellitus (T2DM) and may even increase the risk of all-cause mortality. Based on research evidence published to date, these studies show that overload of energy could increase the incidence and prevalence of T2DM, and reduction in the heat load can significantly reduce the incidence of T2DM. Therefore, the essence of T2DM is heat overload, meaning heat overload is the etiology of obese T2DM. At the same time, results of numerous studies show that heat overloading is the cause of IR. IR and islet dysfunction are protective factors in intervening with heat overload. These drugs, which are based on the mechanisms of IR and islet insufficiency, increase caloric reserve and cause or worsen obesity, which is equivalent to exacerbating the basic etiology and the cardiovascular risk factor of T2DM. Thus, a reasonable strategy for prevention and treatment of obese T2DM appears to promote the negative balance of calories and the elimination of caloric reserves. Chinese herbal medicines can promote negative balance of heat in many aspects, which can bring new hope for prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Xian-Pei Heng
- Department of Endocrinology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China.
| | - Xiu-Jun Li
- West China Medical Center of Sichuan Medical University (West China University of Medical Science), Chengdu, 610041, China
| | - Liang Li
- Department of Endocrinology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Liu-Qing Yang
- Department of Endocrinology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Zi-Ta Wang
- Department of Endocrinology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China
| | - Su-Ping Huang
- Academy of Integrative Medicine Fujian, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| |
Collapse
|
14
|
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules 2018; 23:molecules23061483. [PMID: 29921789 PMCID: PMC6100479 DOI: 10.3390/molecules23061483] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.
Collapse
|
15
|
Dobrian AD, Huyck RW, Glenn L, Gottipati V, Haynes BA, Hansson GI, Marley A, McPheat WL, Nadler JL. Activation of the 12/15 lipoxygenase pathway accompanies metabolic decline in db/db pre-diabetic mice. Prostaglandins Other Lipid Mediat 2018; 136:23-32. [PMID: 29605541 DOI: 10.1016/j.prostaglandins.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/06/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
The 12-lipoxygenase (12LO) pathway is a promising target to reduce islet dysfunction, adipose tissue (AT) inflammation and insulin resistance. Optimal pre-clinical models for the investigation of selective12LO inhibitors in this context have not yet been identified. The objective of this study was to characterize the time course of 12LO isoform expression and metabolite production in pancreatic islets and AT of C57BLKS/J-db/db obese diabetic mouse in a pre-diabetic state in order to establish a suitable therapeutic window for intervention with selective lipoxygenase inhibitors. Mice have 2 major 12LO isoforms -the leukocyte type (12/15LO) and the platelet type (p12LO) and both are expressed in islets and AT. We found a sharp increase in protein expression of 12/15LO in the pancreatic islets of 10-week old db-/- mice compared to 8- week old counterparts. Immunohistochemistry showed that the increase in islet 12/15LO parallels a decline in islet number. Analysis of 12- and 15-hydroperoxytetraeicosanoid acids (HETE)s showed a 2-3 fold increase especially in 12(S)-HETE that mirrored the increase in 12/15LO expression in islets. Analysis of AT and stromal vascular fraction (SVF) showed a significant increase of platelet 12LO gene expression along with 12- and 15- HETEs. The data demonstrate that the db/db mouse is a suitable model for investigation of 12/15LO inhibitors in the development of inflammatory mediated type 2 diabetes, with a narrow window of therapeutic intervention prior to 8 weeks of age.
Collapse
Affiliation(s)
- Anca D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States.
| | - Ryan W Huyck
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lindsey Glenn
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Vijay Gottipati
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Bronson A Haynes
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Göran I Hansson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Anna Marley
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca,Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - William L McPheat
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Jerry L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
16
|
Hernandez-Perez M, Chopra G, Fine J, Conteh AM, Anderson RM, Linnemann AK, Benjamin C, Nelson JB, Benninger KS, Nadler JL, Maloney DJ, Tersey SA, Mirmira RG. Inhibition of 12/15-Lipoxygenase Protects Against β-Cell Oxidative Stress and Glycemic Deterioration in Mouse Models of Type 1 Diabetes. Diabetes 2017; 66:2875-2887. [PMID: 28842399 PMCID: PMC5652601 DOI: 10.2337/db17-0215] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
Islet β-cell dysfunction and aggressive macrophage activity are early features in the pathogenesis of type 1 diabetes (T1D). 12/15-Lipoxygenase (12/15-LOX) is induced in β-cells and macrophages during T1D and produces proinflammatory lipids and lipid peroxides that exacerbate β-cell dysfunction and macrophage activity. Inhibition of 12/15-LOX provides a potential therapeutic approach to prevent glycemic deterioration in T1D. Two inhibitors recently identified by our groups through screening efforts, ML127 and ML351, have been shown to selectively target 12/15-LOX with high potency. Only ML351 exhibited no apparent toxicity across a range of concentrations in mouse islets, and molecular modeling has suggested reduced promiscuity of ML351 compared with ML127. In mouse islets, incubation with ML351 improved glucose-stimulated insulin secretion in the presence of proinflammatory cytokines and triggered gene expression pathways responsive to oxidative stress and cell death. Consistent with a role for 12/15-LOX in promoting oxidative stress, its chemical inhibition reduced production of reactive oxygen species in both mouse and human islets in vitro. In a streptozotocin-induced model of T1D in mice, ML351 prevented the development of diabetes, with coincident enhancement of nuclear Nrf2 in islet cells, reduced β-cell oxidative stress, and preservation of β-cell mass. In the nonobese diabetic mouse model of T1D, administration of ML351 during the prediabetic phase prevented dysglycemia, reduced β-cell oxidative stress, and increased the proportion of anti-inflammatory macrophages in insulitis. The data provide the first evidence to date that small molecules that target 12/15-LOX can prevent progression of β-cell dysfunction and glycemic deterioration in models of T1D.
Collapse
Affiliation(s)
- Marimar Hernandez-Perez
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Gaurav Chopra
- Department of Chemistry, Purdue Institute for Drug Discovery; Purdue Center for Cancer Research; Purdue Institute for Inflammation, Immunology and Infectious Disease; and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN
| | - Jonathan Fine
- Department of Chemistry, Purdue Institute for Drug Discovery; Purdue Center for Cancer Research; Purdue Institute for Inflammation, Immunology and Infectious Disease; and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN
| | - Abass M. Conteh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Ryan M. Anderson
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Amelia K. Linnemann
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Chanelle Benjamin
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jennifer B. Nelson
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Kara S. Benninger
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jerry L. Nadler
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Sarah A. Tersey
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G. Mirmira
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
17
|
Ma K, Xiao A, Park SH, Glenn L, Jackson L, Barot T, Weaver JR, Taylor-Fishwick DA, Luci DK, Maloney DJ, Mirmira RG, Imai Y, Nadler JL. 12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human Islets and Type 2 Diabetic Islets. J Clin Endocrinol Metab 2017; 102:2789-2797. [PMID: 28609824 PMCID: PMC5546865 DOI: 10.1210/jc.2017-00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT The 12-lipoxygenase (12-LO) pathway produces proinflammatory metabolites, and its activation is implicated in islet inflammation associated with type 1 and type 2 diabetes (T2D). OBJECTIVES We aimed to test the efficacy of ML355, a highly selective, small molecule inhibitor of 12-LO, for the preservation of islet function. DESIGN Human islets from nondiabetic donors were incubated with a mixture of tumor necrosis factor α , interluekin-1β, and interferon-γ to model islet inflammation. Cytokine-treated islets and human islets from T2D donors were incubated in the presence and absence of ML355. SETTING In vitro study. PARTICIPANTS Human islets from organ donors aged >20 years of both sexes and any race were used. T2D status was defined from either medical history or most recent hemoglobin A1c value >6.5%. INTERVENTION Glucose stimulation. MAIN OUTCOME MEASURES Static and dynamic insulin secretion and oxygen consumption rate (OCR). RESULTS ML355 prevented the reduction of insulin secretion and OCR in cytokine-treated human islets and improved both parameters in human islets from T2D donors. CONCLUSIONS ML355 was efficacious in improving human islet function after cytokine treatment and in T2D islets in vitro. The study suggests that the blockade of the 12-LO pathway may serve as a target for both form of diabetes and provides the basis for further study of this small molecule inhibitor in vivo.
Collapse
Affiliation(s)
- Kaiwen Ma
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - An Xiao
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - So Hyun Park
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Lindsey Glenn
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Laura Jackson
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Tatvam Barot
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica R. Weaver
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - David A. Taylor-Fishwick
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Diane K. Luci
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Raghavendra G. Mirmira
- Department of Pediatrics, IU Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Departments of Biochemistry and Molecular Biology, Medicine, and Cellular and Integrative Physiology, IU Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Indiana Biosciences Research Institute, Indianapolis, Indiana 46202
| | - Yumi Imai
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, The University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Jerry L. Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
18
|
Halade GV, Kain V, Ingle KA, Prabhu SD. Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing. Am J Physiol Heart Circ Physiol 2017; 313:H89-H102. [PMID: 28411230 PMCID: PMC5538863 DOI: 10.1152/ajpheart.00040.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
The metabolic transformation of fatty acids to form oxylipids using 12/15-lipoxygenase (LOX) can promote either resolving or nonresolving inflammation. However, the mechanism of how 12/15-LOX interacts with polyunsaturated fatty acids (PUFA) in postmyocardial infarction (post-MI) healing is unclear. Here, we reported the role of 12/15-LOX in post-MI cardiac remodeling in a PUFA [10% (wt/wt), 22 kcal]-enriched environment. Wild-type (WT; C57BL/6J) and 12/15-LOX-null (12/15-LOX-/-) male mice of 8-12 wk of age were fed a PUFA-enriched diet for 1 mo and subjected to permanent coronary artery ligation. Post-MI mice were monitored for day 1 or until day 5 along with standard diet-fed MI controls. No-MI surgery mice served as naïve controls. PUFA-fed WT and 12/15-LOX-/- mice improved ejection fraction and reduced lung edema greater than WT mice at day 5 post-MI (P < 0.05). Post-MI, neutrophil density was decreased in PUFA-fed WT and 12/15-LOX-/- mice at day 1 (P < 0.05). Deletion of 12/15-LOX in mice led to increased cytochrome P-450-derived bioactive lipid mediator epoxyeicosatrienoic acids (EETs), i.e., 11,12-EpETrE and 14,15-EpETrE, which were further enhanced by acute PUFA intake post-MI. Macrophage density was decreased in WT + PUFA and 12/15-LOX-/- mice compared with their respective standard diet-fed WT controls at day 5 post-MI. 12/15-LOX-/- + PUFA mice displayed an increased expression of chemokine (C-C motif) ligand 2 and reparative macrophages markers (Ym-1, Mrc-1, and Arg-1, all P < 0.05) in the infarcted area. Furthermore, 12/15-LOX-/- mice, with or without PUFA, showed reduced collagen deposition at day 5 post-MI compared with WT mice. In conclusion, deletion of 12/15-LOX and short-term exposure of PUFA promoted leukocyte clearance, thereby limiting cardiac remodeling and promoting an effective resolution of inflammation.NEW & NOTEWORTHY This study determined that 1) deletion of 12/15-lipoxygenase (LOX) promotes the generation of epoxyeicosatrienoic acids, the cytochrome P-450-derived metabolites in postmyocardial infarction (post-MI) healing; 2) acute exposure of fatty acids to 12/15-LOX-/- mice drives leukocyte (neutrophils and macrophages) clearance post-MI; and 3) metabolic transformation of fats is the significant contributor in leukocyte clearance to drive either resolving or nonresolving inflammation post-MI.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin A Ingle
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Jourdan T, Szanda G, Cinar R, Godlewski G, Holovac DJ, Park JK, Nicoloro S, Shen Y, Liu J, Rosenberg AZ, Liu Z, Czech MP, Kunos G. Developmental Role of Macrophage Cannabinoid-1 Receptor Signaling in Type 2 Diabetes. Diabetes 2017; 66:994-1007. [PMID: 28082458 PMCID: PMC5360301 DOI: 10.2337/db16-1199] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/08/2017] [Indexed: 01/19/2023]
Abstract
Islet inflammation promotes β-cell loss and type 2 diabetes (T2D), a process replicated in Zucker Diabetic Fatty (ZDF) rats in which β-cell loss has been linked to cannabinoid-1 receptor (CB1R)-induced proinflammatory signaling in macrophages infiltrating pancreatic islets. Here, we analyzed CB1R signaling in macrophages and its developmental role in T2D. ZDF rats with global deletion of CB1R are protected from β-cell loss, hyperglycemia, and nephropathy that are present in ZDF littermates. Adoptive transfer of CB1R-/- bone marrow to ZDF rats also prevents β-cell loss and hyperglycemia but not nephropathy. ZDF islets contain elevated levels of CB1R, interleukin-1β, tumor necrosis factor-α, the chemokine CCL2, and interferon regulatory factor-5 (IRF5), a marker of inflammatory macrophage polarization. In primary cultured rodent and human macrophages, CB1R activation increased Irf5 expression, whereas knockdown of Irf5 blunted CB1R-induced secretion of inflammatory cytokines without affecting CCL2 expression, which was p38MAPKα dependent. Macrophage-specific in vivo knockdown of Irf5 protected ZDF rats from β-cell loss and hyperglycemia. Thus, IRF5 is a crucial downstream mediator of diabetogenic CB1R signaling in macrophages and a potential therapeutic target.
Collapse
Affiliation(s)
- Tony Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Gergő Szanda
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - David J Holovac
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Sarah Nicoloro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Yuefei Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Avi Z Rosenberg
- Division of Renal Pathology, Department of Pathology, Johns Hopkins University, Baltimore, MD
- Kidney Diseases Section, National Institute on Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Abstract
Macrovascular complications of diabetes, including diabetic cardiovascular disease (CVD), occur through a number of hyperglycaemia-induced mechanisms that include generation of oxidative stress, accumulation of advanced glycation end-products (AGE) and activation of protein kinase C (PKC). Cardiac oxidative stress is associated with increased cardiac fibrosis and hypertrophy, and reduced cardiac performance and contractility, leading to severe cardiac dysfunction and potentially fatal cardiac events. It occurs under conditions of excessive synthesis of reactive oxygen species (ROS). The ensuing activation of transcription factors such as nuclear factor-κB produces inflammation, fibrosis, hypertrophy and further oxidative stress, which itself causes DNA and membrane damage. This review summarises the mechanisms that generate ROS in the diabetic heart: mitochondrial electron leakage, activity of ROS-generating enzymes such as NADPH oxidase, xanthine oxidase and 12/15 lipoxygenase, uncoupling of nitric oxide synthase, accumulation of AGEs and activation of PKC. There is interaction between many of these ROS-generating pathways, with data from a range of published studies indicating that a common upstream pathway is the interaction of AGEs with their receptor (RAGE), which further promotes ROS synthesis. Therefore, agents targeted at decreasing ROS production have been investigated for prevention or treatment of diabetic CVD through reducing oxidative stress, and this review considers some of the studies carried out with anti-oxidant therapies and the feasibility of this approach for protecting against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Alyssa Faria
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Shanta J Persaud
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
21
|
Honn KV, Guo Y, Cai Y, Lee MJ, Dyson G, Zhang W, Tucker SC. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression. FASEB J 2016; 30:2360-9. [PMID: 26965684 PMCID: PMC4871796 DOI: 10.1096/fj.201500076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/22/2016] [Indexed: 01/26/2023]
Abstract
Previously we identified and deorphaned G-protein-coupled receptor 31 (GPR31) as the high-affinity 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] receptor (12-HETER1). Here we have determined its distribution in prostate cancer tissue and its role in prostate tumorigenesis using in vitro and in vivo assays. Data-mining studies strongly suggest that 12-HETER1 expression positively correlates with the aggressiveness and progression of prostate tumors. This was corroborated with real-time PCR analysis of human prostate tumor tissue arrays that revealed the expression of 12-HETER1 positively correlates with the clinical stages of prostate cancers and Gleason scores. Immunohistochemistry analysis also proved that the expression of 12-HETER1 is positively correlated with the grades of prostate cancer. Knockdown of 12-HETER1 in prostate cancer cells markedly reduced colony formation and inhibited tumor growth in animals. To discover the regulatory factors, 5 candidate 12-HETER1 promoter cis elements were assayed as luciferase reporter fusions in Chinese hamster ovary (CHO) cells, where the putative cis element required for gene regulation was mapped 2 kb upstream of the 12-HETER1 transcriptional start site. The data implicate 12-HETER1 in a critical new role in the regulation of prostate cancer progression and offer a novel alternative target for therapeutic intervention.-Honn, K. V., Guo, Y., Cai, Y., Lee, M.-J., Dyson, G., Zhang, W., Tucker, S. C. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression.
Collapse
Affiliation(s)
- Kenneth V Honn
- Department of Pathology, Wayne State University, Detroit, Michigan, USA; Department of Chemistry, Wayne State University, Detroit, Michigan, USA Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Yande Guo
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Yinlong Cai
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Menq-Jer Lee
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Gregory Dyson
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA; Biostatics Core, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Wenliang Zhang
- Department of Pathology, Wayne State University, Detroit, Michigan, USA
| | - Stephanie C Tucker
- Department of Pathology, Wayne State University, Detroit, Michigan, USA;
| |
Collapse
|
22
|
Imai Y, Dobrian AD, Morris MA, Taylor-Fishwick DA, Nadler JL. Lipids and immunoinflammatory pathways of beta cell destruction. Diabetologia 2016; 59:673-8. [PMID: 26868492 PMCID: PMC4779407 DOI: 10.1007/s00125-016-3890-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 12/18/2022]
Abstract
Islet inflammation contributes to beta cell demise in both type 1 and type 2 diabetes. 12-Lipoxygenase (12-LO, gene expressed as ALOX12 in humans and 12-Lo in rodents in this manuscript) produces proinflammatory metabolites such as 12(S)-hydroxyeicosatetraenoic acids through dioxygenation of polyunsaturated fatty acids. 12-LO was first implicated in diabetes when the increase in 12-Lo expression and 12(S)-hydroxyeicosatetraenoic acid was noted in rodent models of diabetes. Subsequently, germline 12-Lo (-/-) was shown to prevent the development of hyperglycemia in mouse models of type 1 diabetes and in high-fat fed mice. More recently, beta cell-specific 12-Lo (-/-) was shown to protect mice against hyperglycaemia after streptozotocin and a high-fat diet. In humans, 12-LO expression is increased in pancreatic islets of autoantibody-positive, type 1 diabetic and type 2 diabetic organ donors. Interestingly, the high expression of ALOX12 is associated with the alteration in first-phase glucose-stimulated insulin secretion in human type 2 diabetic islets. To further clarify the role of islet 12-LO in diabetes and to validate 12-LO as a therapeutic target of diabetes, we have studied selective pharmacological inhibitors for 12-LO. The compounds we have identified show promise: they protect beta cell lines and human islets from apoptosis and preserve insulin secretion when challenged by proinflammatory cytokine mixture. Currently studies are underway to test the compounds in mouse models of diabetes. This review summarises a presentation given at the 'Islet inflammation in type 2 diabetes' symposium at the 2015 annual meeting of the EASD. It is accompanied two other mini-reviews on topics from this symposium (by Simone Baltrusch, DOI: 10.1007/s00125-016-3891-x and Marc Donath, DOI: 10.1007/s00125-016-3873-z ) and a commentary by the Session Chair, Piero Marchetti (DOI: 10.1007/s00125-016-3875-x ).
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Anca D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Margaret A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - David A Taylor-Fishwick
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jerry L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| |
Collapse
|
23
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
24
|
Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 2015; 56:1643-68. [PMID: 26023050 DOI: 10.1194/jlr.r058701] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/24/2022] Open
Abstract
Among the family of phospholipases A2 (PLA2s) are the Ca(2+)-independent PLA2s (iPLA2s) and they are designated group VI iPLA2s. In relation to secretory and cytosolic PLA2s, the iPLA2s are more recently described and details of their expression and roles in biological functions are rapidly emerging. The iPLA2s or patatin-like phospholipases (PNPLAs) are intracellular enzymes that do not require Ca(2+) for activity, and contain lipase (GXSXG) and nucleotide-binding (GXGXXG) consensus sequences. Though nine PNPLAs have been recognized, PNPLA8 (membrane-associated iPLA2γ) and PNPLA9 (cytosol-associated iPLA2β) are the most widely studied and understood. The iPLA2s manifest a variety of activities in addition to phospholipase, are ubiquitously expressed, and participate in a multitude of biological processes, including fat catabolism, cell differentiation, maintenance of mitochondrial integrity, phospholipid remodeling, cell proliferation, signal transduction, and cell death. As might be expected, increased or decreased expression of iPLA2s can have profound effects on the metabolic state, CNS function, cardiovascular performance, and cell survival; therefore, dysregulation of iPLA2s can be a critical factor in the development of many diseases. This review is aimed at providing a general framework of the current understanding of the iPLA2s and discussion of the potential mechanisms of action of the iPLA2s and related involved lipid mediators.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tomader Ali
- Undergraduate Research Office, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jason W Ashley
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert N Bone
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William D Hancock
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaoyong Lei
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
25
|
Tersey SA, Bolanis E, Holman TR, Maloney DJ, Nadler JL, Mirmira RG. Minireview: 12-Lipoxygenase and Islet β-Cell Dysfunction in Diabetes. Mol Endocrinol 2015; 29:791-800. [PMID: 25803446 DOI: 10.1210/me.2015-1041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The insulin producing islet β-cells have increasingly gained attention for their role in the pathogeneses of virtually all forms of diabetes. Dysfunction, de-differentiation, and/or death of β-cells are pivotal features in the transition from normoglycemia to hyperglycemia in both animal models of metabolic disease and humans. In both type 1 and type 2 diabetes, inflammation appears to be a central cause of β-cell derangements, and molecular pathways that modulate inflammation or the inflammatory response are felt to be prime targets of future diabetes therapy. The lipoxygenases (LOs) represent a class of enzymes that oxygenate cellular polyunsaturated fatty acids to produce inflammatory lipid intermediates that directly and indirectly affect cellular function and survival. The enzyme 12-LO is expressed in all metabolically active tissues, including pancreatic islets, and has received increasing attention for its role in promoting cellular inflammation in the setting of diabetes. Genetic deletion models of 12-LO in mice reveal striking protection from metabolic disease and its complications and an emerging body of literature has implicated its role in human disease. This review focuses on the evidence supporting the proinflammatory role of 12-LO as it relates to islet β-cells, and the potential for 12-LO inhibition as a future avenue for the prevention and treatment of metabolic disease.
Collapse
Affiliation(s)
- Sarah A Tersey
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Esther Bolanis
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Theodore R Holman
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - David J Maloney
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jerry L Nadler
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Raghavendra G Mirmira
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
26
|
Ehses JA, Donath MY. Targeting 12-lipoxygenase as a novel strategy to combat the effects of inflammation on beta cells in diabetes. Diabetologia 2015; 58:425-8. [PMID: 25537834 DOI: 10.1007/s00125-014-3482-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/04/2014] [Indexed: 01/24/2023]
Abstract
Inflammation is a pathological feature of the pancreatic islet in type 1 and 2 diabetes, contributing to islet endocrine cell failure and the onset of hyperglycaemia in both diseases. Indeed, numerous immune targets have recently been found to be altered in type 2 diabetes, but few have yet to be translated to the clinic. Taylor-Fishwick and colleagues aimed to change this by performing proof-of-concept studies investigating the efficacy of small molecule inhibitors of 12-lipoxygenase in rodent and human beta cells exposed to proinflammatory cytokines. The results of these studies, published in this issue of Diabetologia (DOI: 10.1007/s00125-014-3452-0), build on a wealth of preclinical data that have implicated 12-lipoxygenase in rodent models of type 1 and 2 diabetes. While there remain some unanswered mechanistic questions regarding how cytokines regulate 12-lipoxygenase activation and the downstream consequences of activation, it is hoped that future studies with newly identified selective inhibitors may overcome the in vitro limitations of this study and allow for the eventual clinical translation of these highly interesting findings.
Collapse
Affiliation(s)
- Jan A Ehses
- Faculty of Medicine, Department of Surgery and Department of Cellular & Physiological Sciences, The University of British Columbia, Child & Family Research Institute, Room A4-183, 950W 28th Avenue, Vancouver, BC, Canada, V5Z 4H4,
| | | |
Collapse
|