1
|
Lietzén MS, Guzzardi MA, Ojala R, Hentilä J, Heiskanen MA, Honkala SM, Lautamäki R, Löyttyniemi E, Kirjavainen AK, Rajander J, Malm T, Lahti L, Rinne JO, Pietiläinen KH, Iozzo P, Hannukainen JC. Regular Exercise Training Induces More Changes on Intestinal Glucose Uptake from Blood and Microbiota Composition in Leaner Compared to Heavier Individuals in Monozygotic Twins Discordant for BMI. Nutrients 2024; 16:3554. [PMID: 39458548 PMCID: PMC11510543 DOI: 10.3390/nu16203554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity impairs intestinal glucose uptake (GU) (intestinal uptake of circulating glucose from blood) and alters gut microbiome. Exercise improves intestinal insulin-stimulated GU and alters microbiome. Genetics influence the risk of obesity and gut microbiome. However, the role of genetics on the effects of exercise on intestinal GU and microbiome is unclear. METHODS Twelve monozygotic twin pairs discordant for BMI (age 40.4 ± 4.5 years, BMI heavier 36.7 ± 6.0, leaner 29.1 ± 5.7, 8 female pairs) performed a six-month-long training intervention. Small intestine and colonic insulin-stimulated GU was studied using [18F]FDG-PET and microbiota from fecal samples with 16s rRNA. RESULTS Ten pairs completed the intervention. At baseline, heavier twins had lower small intestine and colonic GU (p < 0.05). Response to exercise differed between twins (p = 0.05), with leaner twins increasing colonic GU. Alpha and beta diversity did not differ at baseline. During the intervention, beta diversity changed significantly, most prominently at the mid-point (p < 0.01). Beta diversity changes were only significant in the leaner twins when the twin groups were analyzed separately. Exercise was associated with changes at the phylum level, mainly at the mid-point (pFDR < 0.05); at the genus level, several microbes increased, such as Lactobacillus and Sellimonas (pFDR < 0.05). In type 1 analyses, many genera changes were associated with exercise, and fewer, such as Lactobacillus, were also associated with dietary sugar consumption (p < 0.05). CONCLUSIONS Obesity impairs insulin-stimulated intestinal GU independent of genetics. Though both twin groups exhibited some microbiota changes, most changes in insulin-stimulated colon GU and microbiota were significant in the leaner twins.
Collapse
Affiliation(s)
- Martin S. Lietzén
- Turku PET Centre, University of Turku, 20521 Turku, Finland (J.C.H.)
| | | | - Ronja Ojala
- Turku PET Centre, University of Turku, 20521 Turku, Finland (J.C.H.)
| | - Jaakko Hentilä
- Turku PET Centre, University of Turku, 20521 Turku, Finland (J.C.H.)
| | - Marja A. Heiskanen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20521 Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Sanna M. Honkala
- Turku PET Centre, University of Turku, 20521 Turku, Finland (J.C.H.)
| | | | | | - Anna K. Kirjavainen
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, 20521 Turku, Finland
| | - Johan Rajander
- Turku PET Centre, Accelerator Laboratory, Åbo Akademi University, 20500 Turku, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, 20521 Turku, Finland
| | - Juha O. Rinne
- Turku PET Centre, University of Turku, 20521 Turku, Finland (J.C.H.)
- Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
| | - Kirsi H. Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Abdominal Center, Obesity Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | | |
Collapse
|
2
|
Ke Z, Lu Z, Li Q, Tong W. Intestinal glucose excretion: A potential mechanism for glycemic control. Metabolism 2024; 152:155743. [PMID: 38007149 DOI: 10.1016/j.metabol.2023.155743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The gut has been increasingly recognized in recent years as a pivotal organ in the maintenance of glucose homeostasis. Specifically, the profound and enduring improvement in glucose metabolism achieved through metabolic surgery to modify the anatomy of the gut has prompted scholars to acknowledge that the most effective strategy for treating type 2 diabetes mellitus (T2DM) involves the gut. The mechanisms underlying the regulation of glucose metabolism by the gut encompass gut hormones, bile acids, intestinal gluconeogenesis, gut microbiota, and signaling interactions between the gut and other organs (liver, brain, adipose, etc.). Recent studies have also revealed a novel phenomenon of glucose lowering through the gut: metabolic surgery and metformin promote the excretion of glucose from the circulation into the intestinal lumen by enterocytes. However, there is still limited understanding regarding the underlying mechanisms of intestinal glucose excretion and its contribution to glycemic control. This article reviews current research on intestinal glucose excretion while focusing on its role in T2DM management as well as potential mechanisms.
Collapse
Affiliation(s)
- Zhigang Ke
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qing Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Weidong Tong
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
3
|
Zhang B, Li J, Fu J, Shao L, Yang L, Shi J. Interaction between mucus layer and gut microbiota in non-alcoholic fatty liver disease: Soil and seeds. Chin Med J (Engl) 2023; 136:1390-1400. [PMID: 37200041 PMCID: PMC10278733 DOI: 10.1097/cm9.0000000000002711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 05/19/2023] Open
Abstract
ABSTRACT The intestinal mucus layer is a barrier that separates intestinal contents and epithelial cells, as well as acts as the "mucus layer-soil" for intestinal flora adhesion and colonization. Its structural and functional integrity is crucial to human health. Intestinal mucus is regulated by factors such as diet, living habits, hormones, neurotransmitters, cytokines, and intestinal flora. The mucus layer's thickness, viscosity, porosity, growth rate, and glycosylation status affect the structure of the gut flora colonized on it. The interaction between "mucus layer-soil" and "gut bacteria-seed" is an important factor leading to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Probiotics, prebiotics, fecal microbiota transplantation (FMT), and wash microbial transplantation are efficient methods for managing NAFLD, but their long-term efficacy is poor. FMT is focused on achieving the goal of treating diseases by enhancing the "gut bacteria-seed". However, a lack of effective repair and management of the "mucus layer-soil" may be a reason why "seeds" cannot be well colonized and grow in the host gut, as the thinning and destruction of the "mucus layer-soil" is an early symptom of NAFLD. This review summarizes the existing correlation between intestinal mucus and gut microbiota, as well as the pathogenesis of NAFLD, and proposes a new perspective that "mucus layer-soil" restoration combined with "gut bacteria-seed" FMT may be one of the most effective future strategies for enhancing the long-term efficacy of NAFLD treatment.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jinlong Fu
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li Shao
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Luping Yang
- Department of Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
4
|
Moritz E, Dadson P, Saukko E, Honka MJ, Koskensalo K, Seppälä K, Pekkarinen L, Moriconi D, Helmiö M, Salminen P, Nuutila P, Rebelos E. Renal Sinus Fat Is Expanded in Patients with Obesity and/or Hypertension and Reduced by Bariatric Surgery Associated with Hypertension Remission. Metabolites 2022; 12:metabo12070617. [PMID: 35888741 PMCID: PMC9320187 DOI: 10.3390/metabo12070617] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Renal sinus fat is a fat depot at the renal hilum. Because of its location around the renal artery, vein, and lymphatic vessels, an expanded renal sinus fat mass may have hemodynamic and renal implications. We studied whether renal sinus fat area (RSF) associates with hypertension and whether following bariatric surgery a decrease in RSF associates with improvement of hypertension. A total of 74 severely obese and 46 lean controls were studied with whole-body magnetic resonance imaging (MRI). A total of 42 obese subjects were re-studied six months after bariatric surgery. RSF was assessed by two independent researchers using sliceOmatic. Glomerular filtration rate (eGFR) was estimated according to the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). Patients with obesity accumulated more RSF compared to lean controls (2.3 [1.7–3.1] vs. 1.8 [1.4–2.5] cm2, p = 0.03). Patients with hypertension (N = 36) had a larger RSF depot compared to normotensive subjects (2.6 [2.0–3.3] vs. 2.0 [1.4–2.5] cm2, p = 0.0007) also after accounting for body mass index (BMI). In the pooled data, RSF was negatively associated with eGFR (r = −0.20, p = 0.03), whereas there was no association with systolic or diastolic blood pressure. Following bariatric surgery, RSF was reduced (1.6 [1.3–2.3] vs. 2.3 [1.7–3.1] cm2, p = 0.03) along with other markers of adiposity. A total of 9/27 of patients achieved remission from hypertension. The remission was associated with a larger decrease in RSF, compared to patients who remained hypertensive (−0.68 [−0.74 to −0.44] vs. −0.28 [−0.59 to 0] cm2, p = 0.009). The accumulation of RSF seems to be involved in the pathogenesis of hypertension in obesity. Following bariatric surgery, loss of RSF was associated with remission from hypertension.
Collapse
Affiliation(s)
- Emilia Moritz
- Turku PET Centre, University of Turku, 20520 Turku, Finland; (E.M.); (P.D.); (M.-J.H.); (K.S.); (L.P.); (P.N.)
| | - Prince Dadson
- Turku PET Centre, University of Turku, 20520 Turku, Finland; (E.M.); (P.D.); (M.-J.H.); (K.S.); (L.P.); (P.N.)
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, 20521 Turku, Finland;
| | - Miikka-Juhani Honka
- Turku PET Centre, University of Turku, 20520 Turku, Finland; (E.M.); (P.D.); (M.-J.H.); (K.S.); (L.P.); (P.N.)
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, 20521 Turku, Finland;
| | - Kerttu Seppälä
- Turku PET Centre, University of Turku, 20520 Turku, Finland; (E.M.); (P.D.); (M.-J.H.); (K.S.); (L.P.); (P.N.)
- Department of Medical Physics, Turku University Hospital, 20521 Turku, Finland;
| | - Laura Pekkarinen
- Turku PET Centre, University of Turku, 20520 Turku, Finland; (E.M.); (P.D.); (M.-J.H.); (K.S.); (L.P.); (P.N.)
- Department of Endocrinology, Turku University Hospital, 20521 Turku, Finland
| | - Diego Moriconi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Mika Helmiö
- Division of Digestive Surgery and Urology, Turku University Hospital, 20521 Turku, Finland; (M.H.); (P.S.)
- Department of Surgery, University of Turku, 20520 Turku, Finland
| | - Paulina Salminen
- Division of Digestive Surgery and Urology, Turku University Hospital, 20521 Turku, Finland; (M.H.); (P.S.)
- Department of Surgery, University of Turku, 20520 Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, 20520 Turku, Finland; (E.M.); (P.D.); (M.-J.H.); (K.S.); (L.P.); (P.N.)
- Department of Endocrinology, Turku University Hospital, 20521 Turku, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, 20520 Turku, Finland; (E.M.); (P.D.); (M.-J.H.); (K.S.); (L.P.); (P.N.)
- National Research Council, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-3488454140
| |
Collapse
|
5
|
Rebelos E, Rissanen E, Bucci M, Jääskeläinen O, Honka MJ, Nummenmaa L, Moriconi D, Laurila S, Salminen P, Herukka SK, Singhal T, Nuutila P. Circulating neurofilament is linked with morbid obesity, renal function, and brain density. Sci Rep 2022; 12:7841. [PMID: 35551210 PMCID: PMC9098484 DOI: 10.1038/s41598-022-11557-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Neurofilament light chain (NfL) is a novel biomarker reflecting neuroaxonal damage and associates with brain atrophy, and glial fibrillary acidic protein (GFAP) is a marker of astrocytic activation, associated with several neurodegenerative diseases. Since obesity is associated with increased risk for several neurodegenerative disorders, we hypothesized that circulating NfL and GFAP levels could reflect neuronal damage in obese patients. 28 morbidly obese and 18 lean subjects were studied with voxel based morphometry (VBM) MRI to assess gray and white matter densities. Serum NfL and GFAP levels were determined with single-molecule array. Obese subjects were re-studied 6 months after bariatric surgery. Morbidly obese subjects had lower absolute concentrations of circulating NfL and GFAP compared to lean individuals. Following bariatric surgery-induced weight loss, both these levels increased. Both at baseline and after weight loss, circulating NfL and GFAP values correlated inversely with eGFR. Cross-sectionally, circulating NfL levels correlated inversely with gray matter (GM) density, and this association remained significant also when accounting for age and total eGFR. GFAP values did not correlate with GM density. Our data suggest that when determining circulating NfL and GFAP levels, eGFR should also be measured since renal function can affect these measurements. Despite the potential confounding effect of renal function on NfL measurement, NfL correlated inversely with gray matter density in this group of subjects with no identified neurological disorders, suggesting that circulating NfL level may be a feasible biomarker of cerebral function even in apparently neurologically healthy subjects.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland. .,CNR, Pisa, Italy.
| | - Eero Rissanen
- Turku PET Centre, University of Turku, Turku, Finland.,PET Imaging Program in Neurologic Diseases, Singhal Lab, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marco Bucci
- Turku PET Centre, University of Turku, Turku, Finland.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Olli Jääskeläinen
- Institute of Clinical Medicine-Neurology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Psychology, University of Turku, Turku, Finland
| | - Diego Moriconi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
| | - Paulina Salminen
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland.,Department of Surgery, University of Turku, Turku, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine-Neurology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| | - Tarun Singhal
- PET Imaging Program in Neurologic Diseases, Singhal Lab, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Hepatic Positron Emission Tomography: Applications in Metabolism, Haemodynamics and Cancer. Metabolites 2022; 12:metabo12040321. [PMID: 35448508 PMCID: PMC9026326 DOI: 10.3390/metabo12040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Evaluating in vivo the metabolic rates of the human liver has been a challenge due to its unique perfusion system. Positron emission tomography (PET) represents the current gold standard for assessing non-invasively tissue metabolic rates in vivo. Here, we review the existing literature on the assessment of hepatic metabolism, haemodynamics and cancer with PET. The tracer mainly used in metabolic studies has been [18F]2-fluoro-2-deoxy-D-glucose (18F-FDG). Its application not only enables the evaluation of hepatic glucose uptake in a variety of metabolic conditions and interventions, but based on the kinetics of 18F-FDG, endogenous glucose production can also be assessed. 14(R,S)-[18F]fluoro-6-thia-Heptadecanoic acid (18F-FTHA), 11C-Palmitate and 11C-Acetate have also been applied for the assessment of hepatic fatty acid uptake rates (18F-FTHA and 11C-Palmitate) and blood flow and oxidation (11C-Acetate). Oxygen-15 labelled water (15O-H2O) has been used for the quantification of hepatic perfusion. 18F-FDG is also the most common tracer used for hepatic cancer diagnostics, whereas 11C-Acetate has also shown some promising applications in imaging liver malignancies. The modelling approaches used to analyse PET data and also the challenges in utilizing PET in the assessment of hepatic metabolism are presented.
Collapse
|
7
|
Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord 2022; 27:449-461. [PMID: 33895917 PMCID: PMC8933374 DOI: 10.1007/s40519-021-01194-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
Bariatric surgery determines a rearrangement of the gastrointestinal tract that influences nutrient handling and plays a role in the metabolic changes observed after surgery. Most of the changes depend on the accelerated gastric emptying observed in Roux-en-Y gastric bypass (RYGB) and, to a lesser extent, in sleeve gastrectomy (SG). The rapid delivery of meal into the jejunum, particularly after RYGB, contributes to the prompt appearance of glucose in peripheral circulation. Glucose increase is the principal determinant of GLP-1 increase with the consequent stimulation of insulin secretion, the latter balanced by a paradoxical glucagon increase that stimulates EGP to prevent hypoglycaemia. Protein digestion and amino acid absorption appear accelerated after RYGB but not after SG. After RYGB, the adaptation of the gut to the new condition participates to the metabolic change. The intestinal transit is delayed, the gut microbioma is changed, the epithelium becomes hypertrophic and increases the expression of glucose transporter and of the number of cell secreting hormones. These changes are not observed after SG. After RYGB-less after SG-bile acids (BA) increase, influencing glucose metabolism probably modulating FXR and TGR5 with an effect on insulin sensitivity. Muscle, hepatic and adipose tissue insulin sensitivity improve, and the gut reinforces the recovery of IS by enhancing glucose uptake and through the effect of the BA. The intestinal changes observed after RYGB result in a light malabsorption of lipid but not of carbohydrate and protein. In conclusion, functional and morphological adaptations of the gut after RYGB and SG activate inter-organs cross-talk that modulates the metabolic changes observed after surgery.Level of evidence Level V, narrative literature review.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy. .,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Maria Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Guzzardi MA, La Rosa F, Campani D, Cacciato Insilla A, Nannipieri M, Brunetto MR, Bonino F, Iozzo P. Evidence of a Gastro-Duodenal Effect on Adipose Tissue and Brain Metabolism, Potentially Mediated by Gut-Liver Inflammation: A Study with Positron Emission Tomography and Oral 18FDG in Mice. Int J Mol Sci 2022; 23:2659. [PMID: 35269799 PMCID: PMC8910830 DOI: 10.3390/ijms23052659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Interventions affecting gastrointestinal (GI) physiology suggest that the GI tract plays an important role in modulating the uptake of ingested glucose by body tissues. We aimed at validating the use of positron emission tomography (PET) with oral 18FDG administration in mice, and to examine GI effects on glucose metabolism in adipose tissues, brain, heart, muscle, and liver, and interfering actions of oral lipid co-administration. We performed sequential whole-body PET studies in 3 groups of 10 mice, receiving i.p. glucose and 18FDG or oral glucose and 18FDG ± lipids, to measure tissue glucose uptake (GU) and GI transit, and compute the absorption lumped constant (LCa) as ratio of oral 18FDG-to-glucose incremental blood levels. GI and liver histology and circulating hormones were tested to generate explanatory hypothesis. Median LCa was 1.18, constant over time and not significantly affected by lipid co-ingestion. Compared to the i.p. route, the oral route (GI effect) resulted in lower GU rates in adipose tissues and brain, and a greater steatohepatitis score (+17%, p = 0.03). Lipid co-administration accelerated GI transit, in relation to the suppression in GIP, GLP1, glucagon, PP, and PYY (GI motility regulators), abolishing GI effects on subcutaneous fat GU. Duodenal crypt size, gastric wall 18FDG uptake, and macro-vesicular steatosis were inversely related to adipose tissue GU, and positively associated with liver GU. We conclude that 18FDG-PET is a suitable tool to examine the role of the GI tract on glucose transit, absorption, and bio-distribution. The GI effect consists in the suppression of glucose metabolism selectively in organs responsible for energy intake and storage, and is blunted by lipid ingestion. Modulation of gut and liver inflammation, as reflected by high GU, may be involved in the acute signalling of the energy status.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.)
| | - Federica La Rosa
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.)
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Andrea Cacciato Insilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (D.C.); (A.C.I.)
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.N.); (M.R.B.)
| | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.N.); (M.R.B.)
- Hepatology Unit, Department of Medical Specialties, Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, 56124 Pisa, Italy
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (M.A.G.); (F.L.R.)
| |
Collapse
|
9
|
Bini J, Norcross M, Cheung M, Duffy A. The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review. Obes Surg 2021; 31:4592-4606. [PMID: 34304378 DOI: 10.1007/s11695-021-05576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Bariatric surgery, initially understood as restricting or bypassing the amount of food that reaches the stomach to reduce food intake and/or increase malabsorption of food to promote weight loss, is now recognized to also affect incretin signaling in the gut and promote improvements in system-wide metabolism. Positron emission tomography (PET) is an imaging technique whereby patients are injected with picomolar concentrations of radioactive molecules, below the threshold of having physiological effects, to measure spatial distributions of blood flow, metabolism, receptor, and enzyme pharmacology. Recent advances in both whole-body PET imaging and radioligand development will allow for novel research that may help clarify the roles of peripheral and central receptor/enzyme systems in treating obesity with bariatric surgery.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, USA.
| | | | - Maija Cheung
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Ferrannini E. A Journey in Diabetes: From Clinical Physiology to Novel Therapeutics: The 2020 Banting Medal for Scientific Achievement Lecture. Diabetes 2021; 70:338-346. [PMID: 33472943 PMCID: PMC7881861 DOI: 10.2337/dbi20-0028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Insulin resistance and β-cell dysfunction are the core pathophysiological mechanisms of all hyperglycemic syndromes. Advances in in vivo investigative techniques have made it possible to quantify insulin resistance in multiple sites (skeletal and myocardial muscle, subcutaneous and visceral fat depots, liver, kidney, vascular tissues, brain and intestine), to clarify its consequences for tissue substrate selection, and to establish its relation to tissue perfusion. Physiological modeling of β-cell function has provided a uniform tool to measure β-cell glucose sensitivity and potentiation in response to a variety of secretory stimuli, thereby allowing us to establish feedbacks with insulin resistance, to delineate the biphasic time course of conversion to diabetes, to gauge incretin effects, and to identify primary insulin hypersecretion. As insulin resistance also characterizes several of the comorbidities of diabetes (e.g., obesity, hypertension, dyslipidemia), with shared genetic and acquired influences, the concept is put forward that diabetes is a systemic disease from the outset, actually from the prediabetic stage. In fact, early multifactorial therapy, particularly with newer antihyperglycemic agents, has shown that the burden of micro- and macrovascular complications can be favorably modified despite the rising pressure imposed by protracted obesity.
Collapse
Affiliation(s)
- Ele Ferrannini
- National Research Council (CNR) Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
11
|
Hankir MK, Langseder T, Bankoglu EE, Ghoreishi Y, Dischinger U, Kurlbaum M, Kroiss M, Otto C, le Roux CW, Arora T, Seyfried F, Schlegel N. Simulating the Post-gastric Bypass Intestinal Microenvironment Uncovers a Barrier-Stabilizing Role for FXR. iScience 2020; 23:101777. [PMID: 33294786 PMCID: PMC7689555 DOI: 10.1016/j.isci.2020.101777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Regional changes to the intestinal microenvironment brought about by Roux-en-Y gastric bypass (RYGB) surgery may contribute to some of its potent systemic metabolic benefits through favorably regulating various local cellular processes. Here, we show that the intestinal contents of RYGB-operated compared with sham-operated rats region-dependently confer superior glycemic control to recipient germ-free mice in association with suppression of endotoxemia. Correspondingly, they had direct barrier-stabilizing effects on an intestinal epithelial cell line which, bile-exposed intestinal contents, were partly farnesoid X receptor (FXR)-dependent. Further, circulating fibroblast growth factor 19 levels, a readout of intestinal FXR activation, negatively correlated with endotoxemia severity in longitudinal cohort of RYGB patients. These findings suggest that various host- and/or microbiota-derived luminal factors region-specifically and synergistically stabilize the intestinal epithelial barrier following RYGB through FXR signaling, which could potentially be leveraged to better treat endotoxemia-induced insulin resistance in obesity in a non-invasive and more targeted manner.
Collapse
Affiliation(s)
- Mohammed K. Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Theresa Langseder
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Yalda Ghoreishi
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Ulrich Dischinger
- Department of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Max Kurlbaum
- Department of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Matthias Kroiss
- Department of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Carel W. le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin 4, Ireland
| | - Tulika Arora
- Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Center of Operative Medicine, Oberduerrbacherstrasse 6, Wuerzburg, Bavaria 97080, Germany
| |
Collapse
|
12
|
Wallenius V, Elias E, Elebring E, Haisma B, Casselbrant A, Larraufie P, Spak E, Reimann F, le Roux CW, Docherty NG, Gribble FM, Fändriks L. Suppression of enteroendocrine cell glucagon-like peptide (GLP)-1 release by fat-induced small intestinal ketogenesis: a mechanism targeted by Roux-en-Y gastric bypass surgery but not by preoperative very-low-calorie diet. Gut 2020; 69:1423-1431. [PMID: 31753852 PMCID: PMC7347417 DOI: 10.1136/gutjnl-2019-319372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Food intake normally stimulates release of satiety and insulin-stimulating intestinal hormones, such as glucagon-like peptide (GLP)-1. This response is blunted in obese insulin resistant subjects, but is rapidly restored following Roux-en-Y gastric bypass (RYGB) surgery. We hypothesised this to be a result of the metabolic changes taking place in the small intestinal mucosa following the anatomical rearrangement after RYGB surgery, and aimed at identifying such mechanisms. DESIGN Jejunal mucosa biopsies from patients undergoing RYGB surgery were retrieved before and after very-low calorie diet, at time of surgery and 6 months postoperatively. Samples were analysed by global protein expression analysis and Western blotting. Biological functionality of these findings was explored in mice and enteroendocrine cells (EECs) primary mouse jejunal cell cultures. RESULTS The most prominent change found after RYGB was decreased jejunal expression of the rate-limiting ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMGCS), corroborated by decreased ketone body levels. In mice, prolonged high-fat feeding induced the expression of mHMGCS and functional ketogenesis in jejunum. The effect of ketone bodies on gut peptide secretion in EECs showed a ∼40% inhibition of GLP-1 release compared with baseline. CONCLUSION Intestinal ketogenesis is induced by high-fat diet and inhibited by RYGB surgery. In cell culture, ketone bodies inhibited GLP-1 release from EECs. Thus, we suggest that this may be a mechanism by which RYGB can remove the inhibitory effect of ketone bodies on EECs, thereby restituting the responsiveness of EECs resulting in increased meal-stimulated levels of GLP-1 after surgery.
Collapse
Affiliation(s)
- Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden .,Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Östra, University of Gothenburg, Gothenburg, Sweden
| | - Erik Elias
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden,Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Erik Elebring
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Bauke Haisma
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anna Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Larraufie
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Emma Spak
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| | - Frank Reimann
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College of Dublin, Dublin, Ireland
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, University College of Dublin, Dublin, Ireland
| | - Fiona M Gribble
- Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Lars Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital/Sahlgrenska, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Iqbal Z, Adam S, Ho JH, Syed AA, Ammori BJ, Malik RA, Soran H. Metabolic and cardiovascular outcomes of bariatric surgery. Curr Opin Lipidol 2020; 31:246-256. [PMID: 32618731 DOI: 10.1097/mol.0000000000000696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Bariatric surgery is an effective therapy for morbid obesity that also improves weight-related metabolic parameters and reduces morbidity and mortality. The purpose of this review is to consolidate our current understanding of metabolic, macrovascular and microvascular benefits of bariatric surgery and to provide an update. RECENT FINDINGS Early resolution of insulin resistance and type 2 diabetes mellitus (T2DM) varies by type of bariatric surgery and appears to be mediated by changes in secretion of gut hormones, metabolism of bile acids, expression of glucose transporters and the gut microbiome. Dyslipidaemia, atherosclerosis, microvascular complications of obesity and diabetes, systemic and tissue-level inflammation show evidence of regression and hypertension improves significantly after bariatric surgery. SUMMARY Bariatric surgery leads to improvements in obesity-related metabolic comorbidities such as dyslipidaemia, HDL functionality, hypertension, T2DM, insulin resistance and inflammation. It slows the atherosclerotic process and reduces cardiovascular and all-cause mortality. Recent data have demonstrated regression of the microvascular complications of obesity and diabetes including the regeneration of small nerve fibres. The magnitude of change in short-term metabolic effects depends on the surgical procedure whilst longer term effects are related to the amount of sustained excess weight loss.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust
| | - Safwaan Adam
- Faculty of Biology, Medicine and Health, University of Manchester
- The Christie Hospital NHS Foundation Trust, Manchester
| | - Jan H Ho
- Faculty of Biology, Medicine and Health, University of Manchester
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust
| | - Akheel A Syed
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Diabetes, Endocrinology and Obesity Medicine
| | - Basil J Ammori
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Surgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester
- Weill-Cornell Medicine-Qatar, Doha, Qatar
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- The Christie Hospital NHS Foundation Trust, Manchester
| |
Collapse
|
14
|
Rebelos E, Mari A, Bucci M, Honka M, Hannukainen JC, Virtanen KA, Hirvonen J, Nummenmaa L, Heni M, Iozzo P, Ferrannini E, Nuutila P. Brain substrate metabolism and ß-cell function in humans: A positron emission tomography study. Endocrinol Diabetes Metab 2020; 3:e00136. [PMID: 32704559 PMCID: PMC7375082 DOI: 10.1002/edm2.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/06/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Recent clinical studies have shown enhanced brain glucose uptake during clamp and brain fatty acid uptake in insulin-resistant individuals. Preclinical studies suggest that the brain may be involved in the control of insulin secretion. The aim of this study was to investigate whether brain metabolism assessed as brain glucose and fatty acid uptake is associated with the parameters of β-cell function in humans. MATERIALS AND METHODS We analysed cross-sectional data of 120 subjects across a wide range of BMI and insulin sensitivity. Brain glucose uptake (BGU) was measured during euglycaemic-hyperinsulinaemic clamp (n = 67) and/or during fasting (n = 45) using [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). In another group of subjects (n = 34), brain fatty acid uptake was measured using [18F]-fluoro-6-thia-heptadecanoic acid (FTHA) PET during fasting. The parameters of β-cell function were derived from OGTT modelling. Statistical analysis was performed with whole-brain voxel-based statistical parametric mapping. RESULTS In non-diabetics, BGU during euglycaemic hyperinsulinaemic clamp correlated positively with basal insulin secretion rate (r = 0.51, P = .0008) and total insulin output (r = 0.51, P = .0008), whereas no correlation was found in type 2 diabetics. BGU during clamp correlated positively with potentiation in non-diabetics (r = 0.33, P = .02) and negatively in type 2 diabetics (r = -0.61, P = .02). The associations in non-diabetics were not explained with whole-body insulin sensitivity or BMI. No correlations were found between baseline (fasting) BGU and basal insulin secretion rate, whereas baseline brain fatty acid uptake correlated directly with basal insulin secretion rate (r = 0.39, P = .02) and inversely with potentiation (r = -0.36, P = .04). CONCLUSIONS Our study provides coherent, though correlative, evidence that, in humans, the brain may be involved in the control of insulin secretion independently of insulin sensitivity.
Collapse
Affiliation(s)
| | - Andrea Mari
- Institute of NeuroscienceNational Research CouncilPaduaItaly
| | - Marco Bucci
- Turku PET CentreUniversity of TurkuTurkuFinland
| | | | | | - Kirsi A. Virtanen
- Turku PET CentreUniversity of TurkuTurkuFinland
- Clinical NutritionInstitute of Public Health and Clinical NutritionUniversity of Eastern Finland (UEF)KuopioFinland
| | - Jussi Hirvonen
- Department of RadiologyTurku University Hospital and University of TurkuTurkuFinland
| | - Lauri Nummenmaa
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of PsychologyUniversity of TurkuTurkuFinland
| | - Martin Heni
- Department of Internal MedicineDivision of EndocrinologyDiabetology, Angiology, Nephrology and Clinical ChemistryEberhard Karls University TuebingenTuebingenGermany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz CenterMunich at the University of TuebingenTuebingenGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Patricia Iozzo
- Turku PET CentreUniversity of TurkuTurkuFinland
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Ele Ferrannini
- Institute of Clinical PhysiologyNational Research Council (CNR)PisaItaly
| | - Pirjo Nuutila
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of EndocrinologyTurku University HospitalTurkuFinland
| |
Collapse
|
15
|
Stahel P, Xiao C, Nahmias A, Lewis GF. Role of the Gut in Diabetic Dyslipidemia. Front Endocrinol (Lausanne) 2020; 11:116. [PMID: 32231641 PMCID: PMC7083132 DOI: 10.3389/fendo.2020.00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD). In insulin resistant states such as the metabolic syndrome, overproduction and impaired clearance of liver-derived very-low-density lipoproteins and gut-derived chylomicrons (CMs) contribute to hypertriglyceridemia and elevated atherogenic remnant lipoproteins. Although ingested fat is the major stimulus of CM secretion, intestinal lipid handling and ultimately CM secretory rate is determined by numerous additional regulatory inputs including nutrients, hormones and neural signals that fine tune CM secretion during fasted and fed states. Insulin resistance and T2D represent perturbed metabolic states in which intestinal sensitivity to key regulatory hormones such as insulin, leptin and glucagon-like peptide-1 (GLP-1) may be altered, contributing to increased CM secretion. In this review, we describe the evidence from human and animal models demonstrating increased CM secretion in insulin resistance and T2D and discuss the molecular mechanisms underlying these effects. Several novel compounds are in various stages of preclinical and clinical investigation to modulate intestinal CM synthesis and secretion. Their efficacy, safety and therapeutic utility are discussed. Similarly, the effects of currently approved lipid modulating therapies such as statins, ezetimibe, fibrates, and PCSK9 inhibitors on intestinal CM production are discussed. The intricacies of intestinal CM production are an active area of research that may yield novel therapies to prevent atherosclerotic CVD in insulin resistance and T2D.
Collapse
|
16
|
Malbert CH, Horowitz M, Young RL. Low-calorie sweeteners augment tissue-specific insulin sensitivity in a large animal model of obesity. Eur J Nucl Med Mol Imaging 2019; 46:2380-2391. [PMID: 31338548 DOI: 10.1007/s00259-019-04430-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
PURPOSES Whether low-calorie sweeteners (LCS), such as sucralose and acesulfame K, can alter glucose metabolism is uncertain, particularly given the inconsistent observations relating to insulin resistance in recent human trials. We hypothesized that these discrepancies are accounted for by the surrogate tools used to evaluate insulin resistance and that PET 18FDG, given its capacity to quantify insulin sensitivity in individual organs, would be more sensitive in identifying changes in glucose metabolism. Accordingly, we performed a comprehensive evaluation of the effects of LCS on whole-body and organ-specific glucose uptake and insulin sensitivity in a large animal model of morbid obesity. METHODS Twenty mini-pigs with morbid obesity were fed an obesogenic diet enriched with LCS (sucralose 1 mg/kg/day and acesulfame K 0.5 mg/kg/day, LCS diet group), or without LCS (control group), for 3 months. Glucose uptake and insulin sensitivity were determined for the duodenum, liver, skeletal muscle, adipose tissue and brain using dynamic PET 18FDG scanning together with direct measurement of arterial input function. Body composition was also measured using CT imaging and energy metabolism quantified with indirect calorimetry. RESULTS The LCS diet increased subcutaneous abdominal fat by ≈ 20% without causing weight gain, and reduced insulin clearance by ≈ 40%, while whole-body glucose uptake and insulin sensitivity were unchanged. In contrast, glucose uptake in the duodenum, liver and brain increased by 57, 66 and 29% relative to the control diet group (P < 0.05 for all), while insulin sensitivity increased by 53, 55 and 28% (P < 0.05 for all), respectively. In the brain, glucose uptake increased significantly only in the frontal cortex, associated with improved metabolic connectivity towards the hippocampus and the amygdala. CONCLUSIONS In miniature pigs, the combination of sucralose and acesulfame K is biologically active. While not affecting whole-body insulin resistance, it increases insulin sensitivity and glucose uptake in specific tissues, mimicking the effects of obesity in the adipose tissue and in the brain.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, Department of Human Nutrition, INRA, 16, le clos, 35590, Saint-Gilles, France.
| | - Michael Horowitz
- Center of Research Excellence in Translating Nutrition to Good Health, The University of Adelaide, Adelaide, 5005, Australia
| | - Richard L Young
- Center of Research Excellence in Translating Nutrition to Good Health, The University of Adelaide, Adelaide, 5005, Australia
- Nutrition & Metabolism, South Australia Health & Medical Research Institute, Adelaide, 5000, Australia
| |
Collapse
|
17
|
Browning MG, Pessoa BM, Khoraki J, Campos GM. Changes in Bile Acid Metabolism, Transport, and Signaling as Central Drivers for Metabolic Improvements After Bariatric Surgery. Curr Obes Rep 2019; 8:175-184. [PMID: 30847736 DOI: 10.1007/s13679-019-00334-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We review current evidence regarding changes in bile acid (BA) metabolism, transport, and signaling after bariatric surgery and how these might bolster fat mass loss and energy expenditure to promote improvements in type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS The two most common bariatric techniques, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), increase the size and alter the composition of the circulating BA pool that may then impact energy metabolism through altered activities of BA targets in the many tissues perfused by systemic blood. Recent reports in human patients indicate that gene expression of the major BA target, the farnesoid X receptor (FXR), is increased in the liver but decreased in the small intestine after RYGB. In contrast, intestinal expression of the transmembrane G protein-coupled BA receptor (TGR5) is upregulated after surgery. Despite these apparent conflicting changes in receptor transcription, changes in BAs after both RYGB and VSG are associated with elevated postprandial systemic levels of fibroblast growth factor 19 (from FXR activation) and glucagon-like peptide 1 (from TGR5 activation). These signaling activities are presumed to support fat mass loss and related metabolic benefits of bariatric surgery, and this supposition is in agreement with findings from rodent models of RYGB and VSG. However, inter-species differences in BA physiology limit direct translation and mechanistic understanding of how changes in individual BA species contribute to post-operative improvements of T2D and NAFLD in humans. Thus, details of all these changes and their influences on BAs' biological actions are still under scrutiny. Changes in BA physiology and receptor activities after RYGB and VSG likely support weight loss and promote sustained metabolic improvements.
Collapse
Affiliation(s)
- Matthew G Browning
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1200 East Broad Street, PO Box 980519, Richmond, VA, 23298, USA
| | - Bernardo M Pessoa
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1200 East Broad Street, PO Box 980519, Richmond, VA, 23298, USA
| | - Jad Khoraki
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1200 East Broad Street, PO Box 980519, Richmond, VA, 23298, USA
| | - Guilherme M Campos
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1200 East Broad Street, PO Box 980519, Richmond, VA, 23298, USA.
| |
Collapse
|
18
|
Savolainen AM, Karmi A, Immonen H, Soinio M, Saunavaara V, Pham T, Salminen P, Helmiö M, Ovaska J, Löyttyniemi E, Heiskanen MA, Lehtimäki T, Mari A, Nuutila P, Hannukainen JC. Physical Activity Associates with Muscle Insulin Sensitivity Postbariatric Surgery. Med Sci Sports Exerc 2019; 51:278-287. [PMID: 30247434 PMCID: PMC6336486 DOI: 10.1249/mss.0000000000001778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Bariatric surgery is considered as an effective therapeutic strategy for weight loss in severe obesity. Remission of type 2 diabetes is often achieved after the surgery. We investigated whether increase in self-reported habitual physical activity associates with improved skeletal muscle insulin sensitivity and reduction of fat depots after bariatric surgery. METHODS We assessed self-reported habitual physical activity using Baecke questionnaire in 18 diabetic and 28 nondiabetic patients with morbid obesity (median age, 46 yr; body mass index, 42.0 kg·m) before and 6 months after bariatric surgery operation. Insulin-stimulated femoral muscle glucose uptake was measured using fluorodeoxyglucose positron emission tomography method during hyperinsulinemia. In addition, abdominal subcutaneous and visceral fat masses were quantified using magnetic resonance imaging and liver fat content using magnetic resonance spectroscopy. Also, serum proinflammatory cytokines were measured. RESULTS Patients lost on average 22.9% of weight during the follow-up period of 6 months (P < 0.001). Self-reported habitual physical activity level increased (P = 0.017). Improvement in skeletal muscle insulin sensitivity was observed only in those patients who reported increase in their physical activity postoperatively (P = 0.018). The increase in self-reported physical activity associated with the loss of visceral fat mass (P = 0.029). Postoperative self-reported physical activity correlated also positively with postoperative hepatic insulin clearance (P = 0.02) and tended to correlate negatively with liver fat content (P = 0.076). Postoperative self-reported physical activity also correlated negatively with serum TNFα, methyl-accepting chemotaxis protein and interleukin 6 levels. CONCLUSIONS Self-reported physical activity is associated with reversal of skeletal muscle insulin resistance after bariatric surgery as well as with the loss of visceral fat content and improved postoperative metabolism in bariatric surgery patients. TRIAL REGISTRATION Clinicaltrials.gov, NCT00793143 (SLEEVEPASS), NCT01373892 (SLEEVEPET2).
Collapse
Affiliation(s)
| | - Anna Karmi
- Turku PET Centre, University of Turku, Turku, FINLAND
| | - Heidi Immonen
- Turku PET Centre, University of Turku, Turku, FINLAND.,Department of Medicine, Turku University Hospital, Turku, FINLAND
| | - Minna Soinio
- Turku PET Centre, University of Turku, Turku, FINLAND.,Department of Medicine, Turku University Hospital, Turku, FINLAND
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Turku, FINLAND.,Department of Medical Physics, Turku University Hospital, Turku, FINLAND
| | - Tam Pham
- Turku PET Centre, University of Turku, Turku, FINLAND
| | - Paulina Salminen
- Department of Digestive Surgery and Urology, Turku University Hospital, Turku, FINLAND
| | - Mika Helmiö
- Department of Digestive Surgery and Urology, Turku University Hospital, Turku, FINLAND
| | - Jari Ovaska
- Department of Digestive Surgery and Urology, Turku University Hospital, Turku, FINLAND
| | | | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Faculty of Medicine and Life Sciences, University of Tampere, FINLAND
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, ITALY
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, FINLAND.,Department of Medicine, Turku University Hospital, Turku, FINLAND.,Turku PET Centre, Turku University Hospital, Turku, FINLAND.,Turku PET Centre, Åbo Akademi University, Turku, FINLAND
| | | |
Collapse
|
19
|
Rebelos E, Immonen H, Bucci M, Hannukainen JC, Nummenmaa L, Honka M, Soinio M, Salminen P, Ferrannini E, Iozzo P, Nuutila P. Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes Obes Metab 2019; 21:218-226. [PMID: 30098134 PMCID: PMC6586041 DOI: 10.1111/dom.13501] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
AIMS To investigate further the finding that insulin enhances brain glucose uptake (BGU) in obese but not in lean people by combining BGU with measures of endogenous glucose production (EGP), and to explore the associations between insulin-stimulated BGU and peripheral markers, such as metabolites and inflammatory markers. MATERIALS AND METHODS A total of 20 morbidly obese individuals and 12 lean controls were recruited from the larger randomized controlled SLEEVEPASS study. All participants were studied under fasting and euglycaemic hyperinsulinaemic conditions using fluorodeoxyglucose-positron emission tomography. Obese participants were re-evaluated 6 months after bariatric surgery and were followed-up for ~3 years. RESULTS In obese participants, we found a positive association between BGU and EGP during insulin stimulation. Across all participants, insulin-stimulated BGU was associated positively with systemic inflammatory markers and plasma levels of leucine and phenylalanine. Six months after bariatric surgery, the obese participants had achieved significant weight loss. Although insulin-stimulated BGU was decreased postoperatively, the association between BGU and EGP during insulin stimulation persisted. Moreover, high insulin-stimulated BGU at baseline predicted smaller improvement in fasting plasma glucose at 2 and 3 years of follow-up. CONCLUSIONS Our findings suggest the presence of a brain-liver axis in morbidly obese individuals, which persists postoperatively. This axis might contribute to further deterioration of glucose homeostasis.
Collapse
Affiliation(s)
| | | | - Marco Bucci
- Turku PET CentreUniversity of TurkuTurkuFinland
| | | | - Lauri Nummenmaa
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of PsychologyUniversity of TurkuTurkuFinland
| | | | - Minna Soinio
- Department of EndocrinologyTurku University HospitalTurkuFinland
| | - Paulina Salminen
- Department of Digestive Surgery and UrologyTurku University HospitalTurkuFinland
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council (CNR)PisaItaly
| | - Patricia Iozzo
- Turku PET CentreUniversity of TurkuTurkuFinland
- Institute of Clinical Physiology, National Research Council (CNR)PisaItaly
| | - Pirjo Nuutila
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of EndocrinologyTurku University HospitalTurkuFinland
| |
Collapse
|
20
|
Franquet E, Watts G, Kolodny GM, Goldfine AB, Patti ME. PET-CT reveals increased intestinal glucose uptake after gastric surgery. Surg Obes Relat Dis 2019; 15:643-649. [PMID: 30773442 DOI: 10.1016/j.soard.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mechanisms of metabolic improvement after bariatric surgery remain incompletely understood. Intestinal glucose uptake is increased after gastric bypass in rodents, potentially contributing to reduced blood glucose and type 2 diabetes remission. OBJECTIVE We assessed whether intestinal glucose uptake is increased in humans after gastric surgery. SETTING University Hospital, United States. METHODS In a retrospective, case-control cohort study, positron emission tomography-computerized tomography scans performed for clinical indications were analyzed to quantify intestinal glucose uptake in patients with or without history of gastric surgery. We identified 19 cases, defined as patients over age 18 with prior gastric surgery (Roux-en-Y gastric bypass [n = 10], sleeve gastrectomy [n = 1], or Billroth I [n = 2] or II gastrectomy [n = 6]), and 43 controls without gastric surgery, matched for age, sex, and indication for positron emission tomography-computerized tomography. Individuals with gastrointestinal malignancy or metformin treatment were excluded. Images were obtained 60 minutes after 18F-fluorodeoxyglucose injection (4.2 MBq/kg), and corrected by attenuation; noncontrast low-dose computerized tomography was obtained in parallel. Fused and nonfused images were analyzed; standardized uptake values were calculated for each region by volumes of interest at the region of highest activity. RESULTS Both standardized uptake values maximum and mean were significantly increased by 41% to 98% in jejunum, ascending, and transverse colon in patients with prior gastric surgery (P < .05 versus controls). CONCLUSION Intestinal glucose uptake is increased in patients with prior gastric surgery. Prospective studies are important to dissect the contributions of weight loss, dietary factors, and systemic metabolism, and to determine the relationship with increased insulin-independent glucose uptake and reductions in glycemia.
Collapse
Affiliation(s)
- Elisa Franquet
- Division of Nuclear Medicine, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - George Watts
- Division of Nuclear Medicine, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Gerald M Kolodny
- Division of Nuclear Medicine, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Allison B Goldfine
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, Massachusetts
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
21
|
Pérez-Pevida B, Escalada J, Miras AD, Frühbeck G. Mechanisms Underlying Type 2 Diabetes Remission After Metabolic Surgery. Front Endocrinol (Lausanne) 2019; 10:641. [PMID: 31608010 PMCID: PMC6761227 DOI: 10.3389/fendo.2019.00641] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
Type 2 diabetes prevalence is increasing dramatically worldwide. Metabolic surgery is the most effective treatment for selected patients with diabetes and/or obesity. When compared to intensive medical therapy and lifestyle intervention, metabolic surgery has shown superiority in achieving glycemic improvement, reducing number of medications and cardiovascular risk factors, which translates in long-term benefits on cardiovascular morbidity and mortality. The mechanisms underlying diabetes improvement after metabolic surgery have not yet been clearly understood but englobe a complex interaction among improvements in beta cell function and insulin secretion, insulin sensitivity, intestinal gluconeogenesis, changes in glucose utilization, and absorption by the gut and changes in the secretory pattern and morphology of adipose tissue. These are achieved through different mediators which include an enhancement in gut hormones release, especially, glucagon-like peptide 1, changes in bile acids circulation, gut microbiome, and glucose transporters expression. Therefore, this review aims to provide a comprehensive appraisal of what is known so far to better understand the mechanisms through which metabolic surgery improves glycemic control facilitating future research in the field.
Collapse
Affiliation(s)
- Belén Pérez-Pevida
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Campus, London, United Kingdom
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- *Correspondence: Belén Pérez-Pevida
| | - Javier Escalada
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Alexander D. Miras
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), ISCIII, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Gema Frühbeck
| |
Collapse
|
22
|
Shannon C, Merovci A, Xiong J, Tripathy D, Lorenzo F, McClain D, Abdul-Ghani M, Norton L, DeFronzo RA. Effect of Chronic Hyperglycemia on Glucose Metabolism in Subjects With Normal Glucose Tolerance. Diabetes 2018; 67:2507-2517. [PMID: 30213826 PMCID: PMC6245228 DOI: 10.2337/db18-0439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Chronic hyperglycemia causes insulin resistance, but the inheritability of glucotoxicity and the underlying mechanisms are unclear. We examined the effect of 3 days of hyperglycemia on glucose disposal, enzyme activities, insulin signaling, and protein O-GlcNAcylation in skeletal muscle of individuals without (FH-) or with (FH+) family history of type 2 diabetes. Twenty-five subjects with normal glucose tolerance received a [3-3H]glucose euglycemic insulin clamp, indirect calorimetry, and vastus-lateralis biopsies before and after 3 days of saline (n = 5) or glucose (n = 10 FH- and 10 FH+) infusion to raise plasma glucose by ∼45 mg/dL. At baseline, FH+ had lower insulin-stimulated glucose oxidation and total glucose disposal (TGD) but similar nonoxidative glucose disposal and basal endogenous glucose production (bEGP) compared with FH- After 3 days of glucose infusion, bEGP and glucose oxidation were markedly increased, whereas nonoxidative glucose disposal and TGD were lower versus baseline, with no differences between FH- and FH+ subjects. Hyperglycemia doubled skeletal muscle glycogen content and impaired activation of glycogen synthase (GS), pyruvate dehydrogenase, and Akt, but protein O-GlcNAcylation was unchanged. Insulin resistance develops to a similar extent in FH- and FH+ subjects after chronic hyperglycemia, without increased protein O-GlcNAcylation. Decreased nonoxidative glucose disposal due to impaired GS activation appears to be the primary deficit in skeletal muscle glucotoxicity.
Collapse
Affiliation(s)
- Chris Shannon
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Aurora Merovci
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Juan Xiong
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Devjit Tripathy
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Felipe Lorenzo
- Center on Diabetes, Obesity, and Metabolism, Wake Forest University, Winston-Salem, NC
| | - Donald McClain
- Center on Diabetes, Obesity, and Metabolism, Wake Forest University, Winston-Salem, NC
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Luke Norton
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| |
Collapse
|
23
|
Honkala SM, Johansson J, Motiani KK, Eskelinen JJ, Virtanen KA, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC. Short-term interval training alters brain glucose metabolism in subjects with insulin resistance. J Cereb Blood Flow Metab 2018; 38:1828-1838. [PMID: 28959911 PMCID: PMC6168908 DOI: 10.1177/0271678x17734998] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain insulin-stimulated glucose uptake (GU) is increased in obese and insulin resistant subjects but normalizes after weight loss along with improved whole-body insulin sensitivity. Our aim was to study whether short-term exercise training (moderate intensity continuous training (MICT) or sprint interval training (SIT)) alters substrates for brain energy metabolism in insulin resistance. Sedentary subjects ( n = 21, BMI 23.7-34.3 kg/m2, age 43-55 y) with insulin resistance were randomized into MICT ( n = 11, intensity≥60% of VO2peak) or SIT ( n = 10, all-out) groups for a two-week training intervention. Brain GU during insulin stimulation and fasting brain free fatty acid uptake (FAU) was measured using PET. At baseline, brain GU was positively associated with the fasting insulin level and negatively with the whole-body insulin sensitivity. The whole-body insulin sensitivity improved with both training modes (20%, p = 0.007), while only SIT led to an increase in aerobic capacity (5%, p = 0.03). SIT also reduced insulin-stimulated brain GU both in global cortical grey matter uptake (12%, p = 0.03) and in specific regions ( p < 0.05, all areas except the occipital cortex), whereas no changes were observed after MICT. Brain FAU remained unchanged after the training in both groups. These findings show that short-term SIT effectively decreases insulin-stimulated brain GU in sedentary subjects with insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juhani Knuuti
- 3 Turku PET Centre, Åbo Akademi University, Turku, Finland.,4 Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- 1 Turku PET Centre, University of Turku, Turku, Finland.,4 Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | | |
Collapse
|
24
|
Koffert J, Ståhle M, Karlsson H, Iozzo P, Salminen P, Roivainen A, Nuutila P. Morbid obesity and type 2 diabetes alter intestinal fatty acid uptake and blood flow. Diabetes Obes Metab 2018; 20:1384-1390. [PMID: 29352513 PMCID: PMC5969261 DOI: 10.1111/dom.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/31/2017] [Accepted: 01/06/2018] [Indexed: 12/01/2022]
Abstract
AIMS Bariatric surgery is the most effective treatment to tackle morbid obesity and type 2 diabetes, but the mechanisms of action are still unclear. The objective of this study was to investigate the effects of bariatric surgery on intestinal fatty acid (FA) uptake and blood flow. MATERIALS AND METHODS We recruited 27 morbidly obese subjects, of whom 10 had type 2 diabetes and 15 were healthy age-matched controls. Intestinal blood flow and fatty acid uptake from circulation were measured during fasting state using positron emission tomography (PET). Obese subjects were re-studied 6 months after bariatric surgery. The mucosal location of intestinal FA retention was verified in insulin resistant mice with autoradiography. RESULTS Compared to lean subjects, morbidly obese subjects had higher duodenal and jejunal FA uptake (P < .001) but similar intestinal blood flow (NS). Within 6 months after bariatric surgery, obese subjects had lost 24% of their weight and 7/10 diabetic subjects were in remission. Jejunal FA uptake was further increased (P < .03). Conversely, bariatric surgery provoked a decrease in jejunal blood flow (P < .05) while duodenal blood flow was preserved. Animal studies showed that FAs were taken up into enterocytes, for the most part, but were also transferred, in part, into the lumen. CONCLUSIONS In the obese, the small intestine actively takes up FAs from circulation and FA uptake remains higher than in controls post-operatively. Intestinal blood flow was not enhanced before or after bariatric surgery, suggesting that enhanced intestinal FA metabolism is not driven by intestinal perfusion.
Collapse
MESH Headings
- Absorption, Physiological
- Adult
- Animals
- Bariatric Surgery
- Body Mass Index
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Dietary Fats/metabolism
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Female
- Fluorine Radioisotopes
- Glucose Intolerance/blood
- Glucose Intolerance/complications
- Glucose Intolerance/metabolism
- Glucose Intolerance/therapy
- Humans
- Insulin Resistance
- Intestinal Absorption
- Intestinal Mucosa/blood supply
- Intestinal Mucosa/diagnostic imaging
- Intestinal Mucosa/metabolism
- Intestine, Small/blood supply
- Intestine, Small/diagnostic imaging
- Intestine, Small/metabolism
- Mice
- Mice, Knockout
- Middle Aged
- Obesity, Morbid/complications
- Obesity, Morbid/metabolism
- Obesity, Morbid/surgery
- Obesity, Morbid/therapy
- Positron-Emission Tomography
- Regional Blood Flow
- Weight Loss
- Weight Reduction Programs
Collapse
Affiliation(s)
- Jukka Koffert
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Gastroenterology, Turku University Hospital, Turku, Finland
| | - Mia Ståhle
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Paulina Salminen
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
25
|
Wilms B, Ernst B, Thurnheer M, Schmid SM, Spengler CM, Schultes B. Resting energy expenditure after Roux-en Y gastric bypass surgery. Surg Obes Relat Dis 2018; 14:191-199. [DOI: 10.1016/j.soard.2017.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/07/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
|
26
|
Mulla CM, Middelbeek RJW, Patti ME. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci 2017; 1411:53-64. [PMID: 28868615 DOI: 10.1111/nyas.13409] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
Abstract
Bariatric surgery is increasingly recognized as one of the most effective interventions to help patients achieve significant and sustained weight loss, as well as improved metabolic and overall health. Unfortunately, the cellular and physiological mechanisms by which bariatric surgery achieves weight loss have not been fully elucidated, yet are critical to understanding the central role of the intestinal tract in whole-body metabolism and to developing novel strategies for the treatment of obesity. In this review, we provide an overview of potential mechanisms contributing to weight loss, including effects on regulation of energy balance and both central and peripheral nervous system regulation of appetite and metabolism. Moreover, we highlight the importance of the gastrointestinal tract, including alterations in bile acid physiology, secretion of intestinally derived hormones, and the microbiome, as a potent mediator of improved metabolism in postbariatric patients.
Collapse
Affiliation(s)
- Christopher M Mulla
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Roeland J W Middelbeek
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mary-Elizabeth Patti
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Koffert JP, Mikkola K, Virtanen KA, Andersson AMD, Faxius L, Hällsten K, Heglind M, Guiducci L, Pham T, Silvola JMU, Virta J, Eriksson O, Kauhanen SP, Saraste A, Enerbäck S, Iozzo P, Parkkola R, Gomez MF, Nuutila P. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial. Diabetes Res Clin Pract 2017; 131:208-216. [PMID: 28778047 DOI: 10.1016/j.diabres.2017.07.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022]
Abstract
AIMS Metformin therapy is associated with diffuse intestinal 18F-fluoro-deoxyglucose (FDG) accumulation in clinical diagnostics using routine FDG-PET imaging. We aimed to study whether metformin induced glucose uptake in intestine is associated with the improved glycaemic control in patients with type 2 diabetes. Therefore, we compared the effects of metformin and rosiglitazone on intestinal glucose metabolism in patients with type 2 diabetes in a randomized placebo controlled clinical trial, and further, to understand the underlying mechanism, evaluated the effect of metformin in rats. METHODS Forty-one patients with newly diagnosed type 2 diabetes were randomized to metformin (1g, b.i.d), rosiglitazone (4mg, b.i.d), or placebo in a 26-week double-blind trial. Tissue specific intestinal glucose uptake was measured before and after the treatment period using FDG-PET during euglycemic hyperinsulinemia. In addition, rats were treated with metformin or vehicle for 12weeks, and intestinal FDG uptake was measured in vivo and with autoradiography. RESULTS Glucose uptake increased 2-fold in the small intestine and 3-fold in the colon for the metformin group and associated with improved glycemic control. Rosiglitazone increased only slightly intestinal glucose uptake. In rodents, metformin treatment enhanced intestinal FDG retention (P=0.002), which was localized in the mucosal enterocytes of the small intestine. CONCLUSIONS Metformin treatment significantly enhances intestinal glucose uptake from the circulation of patients with type 2 diabetes. This intestine-specific effect is associated with improved glycemic control and localized to mucosal layer. These human findings demonstrate directs effect of metformin on intestinal metabolism and elucidate the actions of metformin. Clinical trial number NCT02526615.
Collapse
Affiliation(s)
- Jukka P Koffert
- Turku PET Centre, University of Turku, Turku, Finland; Department of Gastroenterology, Turunmaa Hospital, Southwest Finland Hospital District, Turku, Finland
| | - Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland
| | | | | | - Linda Faxius
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Sweden
| | | | - Mikael Heglind
- Department of Clinical and Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 40530 Gothenburg, Sweden
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Tam Pham
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Jenni Virta
- Turku PET Centre, University of Turku, Turku, Finland
| | - Olof Eriksson
- Turku PET Centre, University of Turku, Turku, Finland; Department of Biosciences, Åbo Akademi University, Turku, Finland; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Saila P Kauhanen
- Turku PET Centre, University of Turku, Turku, Finland; Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, Turku, Finland
| | - Sven Enerbäck
- Department of Clinical and Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 40530 Gothenburg, Sweden
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Riitta Parkkola
- Department of Radiology, Turku University, Finland; Department of Radiology, Turku University Hospital, Finland
| | - Maria F Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Sweden
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
28
|
Jensen SR, Wheeler SE, Hvid H, Ahnfelt-Rønne J, Hansen BF, Nishimura E, Olsen GS, Brubaker PL. Elucidating the Biological Roles of Insulin and Its Receptor in Murine Intestinal Growth and Function. Endocrinology 2017; 158:2453-2469. [PMID: 28591779 DOI: 10.1210/en.2017-00195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022]
Abstract
The role of the intestinal insulin receptor (IR) is not well understood. We therefore explored the effect of insulin (300 nmol/kg per day for 12 days) on the intestine in sex-matched C57Bl/6J mice. The intestinal and metabolic profiles were also characterized in male and female intestinal-epithelial IR knockout (IE-irKO) mice compared with all genetic controls on a chow diet or Western diet (WD) for 4 to 12 weeks. Insulin treatment did not affect intestinal size, intestinal resistance, or metabolic genes, but it reduced proximal-colon crypt depth and acutely increased colonic serine/threonine-specific protein kinase B (AKT) activation. Feeding with a WD increased body weight and fasting insulin level and decreased oral glucose tolerance in C57Bl/6J and IE-irKO mice. However, although the overall responses of the IE-irKO mice were not different from those of Villin-Cre (Vil-Cre):IRfl/+ and IRfl/fl controls, profound differences were found for female control Vil-Cre mice, which demonstrated reduced food intake, body weight, jejunal glucose transport, oral glucose tolerance, and fasting insulin and cholesterol levels. Vil-Cre mice also had smaller intestines compared with those of IE-irKO and IRfl/fl mice and greater insulin-mediated activation of jejunal IR and AKT. In summary, gain- and loss-of-function studies, with and without caloric overload, indicate that insulin did not exert remarkable effects on intestinal metabolic or morphologic phenotype except for a small effect on the colon. However, the transgenic control Vil-Cre mice displayed a distinct phenotype compared with other control and knockout animals, emphasizing the importance of thoroughly characterizing genetically modified mouse models.
Collapse
Affiliation(s)
- Stina Rikke Jensen
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Metabolic Disease Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Sarah E Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Henning Hvid
- Metabolic Disease Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | | | - Bo Falck Hansen
- Metabolic Disease Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | - Erica Nishimura
- Metabolic Disease Research, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | | | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
29
|
Wang X, Häring MF, Rathjen T, Lockhart SM, Sørensen D, Ussar S, Rasmussen LM, Bertagnolli MM, Kahn CR, Rask-Madsen C. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation. Oncogene 2017; 36:4987-4996. [PMID: 28459466 PMCID: PMC5578899 DOI: 10.1038/onc.2017.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/20/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022]
Abstract
The risk of several cancers, including colorectal cancer, is increased in patients with obesity and type 2 diabetes, conditions characterized by hyperinsulinemia and insulin resistance. Because hyperinsulinemia itself is an independent risk factor for cancer development, we examined tissue-specific insulin action in intestinal tumor formation. In vitro, insulin increased proliferation of primary cultures of intestinal tumor epithelial cells from ApcMin/+ mice by over 2-fold. Surprisingly, targeted deletion of insulin receptors in intestinal epithelial cells in ApcMin/+ mice did not change intestinal tumor number or size distribution on either a low or high-fat diet. We therefore asked whether cells in the tumor stroma might explain the association between tumor formation and insulin resistance. To this end, we generated ApcMin/+ mice with loss of insulin receptors in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumors than controls, no change in tumor angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumor endothelial cells. Insulin decreased VCAM-1 expression and leukocyte adhesion in quiescent tumor endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumor necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules and increased the frequency of neutrophils in tumors. We conclude that although insulin is mitogenic for intestinal tumor cells in vitro, its action on tumor cells in vivo is via signals from the tumor microenvironment. Insulin resistance in tumor endothelial cells produces an activated, proinflammatory state that promotes tumorigenesis. Improvement of endothelial dysfunction may reduce colorectal cancer risk in patients with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- X Wang
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA.,Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - M-F Häring
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA.,Division of Clinical Chemistry and Pathobiochemistry, Department of Internal Medicine IV, University Hospital Tuebingen, Tuebingen, Germany
| | - T Rathjen
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA.,Novo Nordisk A/S, Måløv, Denmark
| | - S M Lockhart
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA.,Queen's University Belfast, Belfast, UK
| | - D Sørensen
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA.,Odense University Hospital, University of Southern Denmark, Odense, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - S Ussar
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA.,JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich-Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - L M Rasmussen
- Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - M M Bertagnolli
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - C R Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| | - C Rask-Madsen
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Abstract
The metabolic syndrome is a cluster of risk factors (central obesity, hyperglycaemia, dyslipidaemia and arterial hypertension), indicating an increased risk of diabetes, cardiovascular disease and premature mortality. The gastrointestinal tract is seldom discussed as an organ system of principal importance for metabolic diseases. The present overview connects various metabolic research lines into an integrative physiological context in which the gastrointestinal tract is included. Strong evidence for the involvement of the gut in the metabolic syndrome derives from the powerful effects of weight-reducing (bariatric) gastrointestinal surgery. In fact, gastrointestinal surgery is now recommended as a standard treatment option for type 2 diabetes in obesity. Several gut-related mechanisms that potentially contribute to the metabolic syndrome will be presented. Obesity can be caused by hampered release of satiety-signalling gut hormones, reduced meal-associated energy expenditure and microbiota-assisted harvest of energy from nondigestible food ingredients. Adiposity per se is a well-established risk factor for hyperglycaemia. In addition, a leaky gut mucosa can trigger systemic inflammation mediating peripheral insulin resistance that together with a blunted incretin response aggravates the hyperglycaemic state. The intestinal microbiota is strongly associated with obesity and the related metabolic disease states, although the mechanisms involved remain unclear. Enterorenal signalling has been suggested to be involved in the pathophysiology of hypertension and postprandial triglyceride-rich chylomicrons; in addition, intestinal cholesterol metabolism probably contributes to atherosclerosis. It is likely that in the future, the metabolic syndrome will be treated according to novel pharmacological principles interfering with gastrointestinal functionality.
Collapse
Affiliation(s)
- L Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Honka H, Koffert J, Kauhanen S, Teuho J, Hurme S, Mari A, Lindqvist A, Wierup N, Groop L, Nuutila P. Bariatric Surgery Enhances Splanchnic Vascular Responses in Patients With Type 2 Diabetes. Diabetes 2017; 66:880-885. [PMID: 28096259 DOI: 10.2337/db16-0762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022]
Abstract
Bariatric surgery results in notable weight loss and alleviates hyperglycemia in patients with type 2 diabetes (T2D). We aimed to characterize the vascular effects of a mixed meal and infusion of exogenous glucose-dependent insulinotropic polypeptide (GIP) in the splanchnic region in 10 obese patients with T2D before and after bariatric surgery and in 10 lean control subjects. The experiments were carried out on two separate days. Pancreatic and intestinal blood flow (BF) were measured at baseline, 20 min, and 50 min with 15O-water by using positron emission tomography and MRI. Before surgery, pancreatic and intestinal BF responses to a mixed meal did not differ between obese and lean control subjects. Compared with presurgery, the mixed meal induced a greater increase in plasma glucose, insulin, and GIP concentrations after surgery, which was accompanied by a marked augmentation of pancreatic and intestinal BF responses. GIP infusion decreased pancreatic but increased small intestinal BF similarly in all groups both before and after surgery. Taken together, these results demonstrate that bariatric surgery leads to enhanced splanchnic vascular responses as a likely consequence of rapid glucose appearance and GIP hypersecretion.
Collapse
Affiliation(s)
- Henri Honka
- Turku PET Centre, University of Turku, Turku, Finland
| | - Jukka Koffert
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Gastroenterology, Turunmaa Hospital, Turku, Finland
| | - Saila Kauhanen
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Jarmo Teuho
- Turku PET Centre, University of Turku, Turku, Finland
| | - Saija Hurme
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andreas Lindqvist
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
32
|
Koffert J, Honka H, Teuho J, Kauhanen S, Hurme S, Parkkola R, Oikonen V, Mari A, Lindqvist A, Wierup N, Groop L, Nuutila P. Effects of meal and incretins in the regulation of splanchnic blood flow. Endocr Connect 2017; 6:179-187. [PMID: 28258126 PMCID: PMC5428912 DOI: 10.1530/ec-17-0015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/03/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Meal ingestion is followed by a redistribution of blood flow (BF) within the splanchnic region contributing to nutrient absorption, insulin secretion and glucose disposal, but factors regulating this phenomenon in humans are poorly known. The aim of the present study was to evaluate the organ-specific changes in BF during a mixed-meal and incretin infusions. DESIGN A non-randomized intervention study of 10 healthy adults to study splanchnic BF regulation was performed. METHODS Effects of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) infusions and mixed-meal were tested in 10 healthy, glucose tolerant subjects using PET-MRI multimodal imaging technology. Intestinal and pancreatic BF and blood volume (BV) were measured with 15O-water and 15O-carbon monoxide, respectively. RESULTS Ingestion of a mixed-meal led to an increase in pancreatic and jejunal BF, whereas duodenal BF was unchanged. Infusion of GIP and GLP-1 reduced BF in the pancreas. However, GIP infusion doubled blood flow in the jejunum with no effect of GLP-1. CONCLUSION Together, our data suggest that meal ingestion leads to increases in pancreatic BF accompanied by a GIP-mediated increase in jejunal but not duodenal blood flow.
Collapse
Affiliation(s)
- Jukka Koffert
- Department of GastroenterologyTurunmaa Hospital, Turku, Finland
- Turku PET CentreUniversity of Turku, Turku, Finland
| | - Henri Honka
- Turku PET CentreUniversity of Turku, Turku, Finland
| | - Jarmo Teuho
- Department of GastroenterologyTurunmaa Hospital, Turku, Finland
| | - Saila Kauhanen
- Division of Digestive Surgery and UrologyTurku University Hospital, Turku, Finland
| | - Saija Hurme
- Institute of BiostatisticsUniversity of Turku, Turku, Finland
| | - Riitta Parkkola
- Turku PET CentreUniversity of Turku, Turku, Finland
- Department of RadiologyUniversity of Turku and Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET CentreUniversity of Turku, Turku, Finland
| | - Andrea Mari
- Institute of NeuroscienceNational Research Council, Padua, Italy
| | - Andreas Lindqvist
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Leif Groop
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Pirjo Nuutila
- Turku PET CentreUniversity of Turku, Turku, Finland
- Department of EndocrinologyTurku University Hospital, Turku, Finland
| |
Collapse
|
33
|
Motiani KK, Savolainen AM, Eskelinen JJ, Toivanen J, Ishizu T, Yli-Karjanmaa M, Virtanen KA, Parkkola R, Kapanen J, Grönroos TJ, Haaparanta-Solin M, Solin O, Savisto N, Ahotupa M, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC. Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake. J Appl Physiol (1985) 2017; 122:1188-1197. [PMID: 28183816 PMCID: PMC5451533 DOI: 10.1152/japplphysiol.00431.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
This is the first study where the effects of exercise training on the intestinal substrate uptake have been investigated using the most advanced techniques available. We also show the importance of exercise intensity in inducing these changes. Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy, middle-aged, sedentary men were randomized for 2 wk of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [18F]FDG and [18F]FTHA. In addition, effects of HIIT and MICT on intestinal GLUT2 and CD36 protein expression were studied in rats. Training improved aerobic capacity (P = 0.001) and whole body insulin sensitivity (P = 0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon (HIIT = 0%; MICT = 37%) (P = 0.02 for time × training) and tended to increase in the jejunum (HIIT = −4%; MICT = 13%) (P = 0.08 for time × training). Fasting free fatty acid uptake decreased in the duodenum in both groups (HIIT = −6%; MICT = −48%) (P = 0.001 time) and tended to decrease in the colon in the MICT group (HIIT = 0%; MICT = −38%) (P = 0.08 for time × training). In rats, both training groups had higher GLUT2 and CD36 expression compared with control animals. This study shows that already 2 wk of MICT enhances insulin-stimulated glucose uptake, while both training modes reduce fasting free fatty acid uptake in the intestine in healthy, middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism. NEW & NOTEWORTHY This is the first study where the effects of exercise training on the intestinal substrate uptake have been investigated using the most advanced techniques available. We also show the importance of exercise intensity in inducing these changes.
Collapse
Affiliation(s)
| | | | | | | | - Tamiko Ishizu
- Turku PET Centre, University of Turku, Turku, Finland.,Medicity Research Laboratory, University of Turku, Turku, Finland.,Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, Turku, Finland
| | | | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland.,Medicity Research Laboratory, University of Turku, Turku, Finland
| | | | - Olof Solin
- Turku PET Centre, Abo Akademi University, Turku, Finland
| | - Nina Savisto
- Turku PET Centre, University of Turku, Turku, Finland
| | - Markku Ahotupa
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | | | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| | | | | |
Collapse
|
34
|
Chondronikola M, Harris LLS, Klein S. Bariatric surgery and type 2 diabetes: are there weight loss-independent therapeutic effects of upper gastrointestinal bypass? J Intern Med 2016; 280:476-486. [PMID: 27739136 PMCID: PMC5117433 DOI: 10.1111/joim.12527] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a major worldwide public health concern. Despite a large armamentarium of T2D medications, a large proportion of patients fail to achieve recommended treatment goals for glycemic control. Weight loss has profound beneficial effects on the metabolic abnormalities involved in the pathogenesis of T2D. Accordingly, bariatric surgery, which is the most effective available weight loss therapy, is also the most effective therapy for treating patients with T2D. Surgical procedures that bypass the upper gastrointestinal (UGI) tract are particularly effective in achieving partial and even complete remission of T2D, suggesting that UGI bypass has weight loss-independent effects on glycemic control. Although a number of hypotheses (e.g. a role for multiorgan insulin sensitivity, β-cell function, incretin response, the gut microbiome, bile acid metabolism, intestinal glucose metabolism and browning of adipose tissue) have been proposed to explain the potential unique effects of UGI tract bypass surgery, none has yet been adequately evaluated to determine therapeutic importance in patients with T2D. Here, we review the efficacy of UGI bypass surgery in treating T2D and the mechanisms that have been proposed to explain its potential weight loss-independent therapeutic effects.
Collapse
Affiliation(s)
- M Chondronikola
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO, USA.,Department of Nutritional Sciences and Dietetics, Harokopio University of Athens, Athens, Greece
| | - L L S Harris
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - S Klein
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
35
|
Mitra S, Fernandez-Del-Valle M, Hill JE. The role of MRI in understanding the underlying mechanisms in obesity associated diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1115-1131. [PMID: 27639834 DOI: 10.1016/j.bbadis.2016.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Obesity and its possible association with diseases including diabetes and cardiovascular diseases have been studied for decades for its impact on healthcare. Recent studies clearly indicate the need for developing accurate and reproducible methodologies for assessing body fat content and distribution. Body fat distribution plays a significant role in developing an insight in the underlying mechanisms in which adipose tissue is linked with various diseases. Among imaging technologies including computerized axial tomography (CAT or CT), magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS), MRI and MRS seem to be the best emerging techniques and together are being considered as the gold standard for body fat content and distribution. This paper reviews studies up to the present time involving different methodologies of these two emerging technologies and presents the basic concepts of MRI and MRS with required novel image analysis techniques in accurate, quantitative, and direct assessment of body fat content and distribution. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
| | | | - Jason E Hill
- Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
36
|
Naftalin RJ. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states. F1000Res 2016; 5:647. [PMID: 27347379 PMCID: PMC4909112 DOI: 10.12688/f1000research.8299.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption. Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism. This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP-1 agonist or glucagon antagonist usage.
Collapse
Affiliation(s)
- Richard J Naftalin
- Departments of Physiology and Vascular Biology, BHF centre of research excellence, King's College London School of Medicine, London, UK
| |
Collapse
|
37
|
Mechanisms of improved glucose handling after metabolic surgery: the big 6. Surg Obes Relat Dis 2016; 12:1192-8. [PMID: 27568470 DOI: 10.1016/j.soard.2016.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
For some time, it has been clear that elevated glucose is detrimental to the organism. A plethora of medicines have been introduced to reduce the fasting and postprandial glucose levels (including insulin, glucagon-like peptide receptor 1 [GLP-1] agonists, and sodium-glucose co-transporter 2 [SGLT2] inhibitors, among others). Although these medications are useful to reduce tissue exposure to glucose, no single compound and no combination have been able to totally normalize the blood sugar. Thus, it was astonishing when it was reported that surgery of the gastrointestinal tract could not only reduce obesity but also normalize the blood sugar. These discoveries have transformed diabetes research. What is it about bariatric surgery that causes the remarkable amelioration of glucose homeostasis dysregulation? The answer to this million dollar question is a billion dollar answer. However, a new perspective could shed some light and help provide a clear path for investigation. Instead of asking what does bariatric surgery do to change the pathophysiology, we can ask what pathophysiology and risk factors confer a greater success with remission and improved disease state after surgery. Work from our laboratory and others can help to offer a physiologic basis for which mechanisms may be put into play when the anatomy is altered during surgery. Here, we do not offer an explanation of the mechanism of action of bariatric surgery, but rather provide a background on the regulation of blood glucose and how it is altered during both the diseased state and, as available, the remission state.
Collapse
|
38
|
Wang Y, Zhang X, Zhong M, Liu T, Zhang G, Liu S, Guo W, Wei M, He Q, Sun D, Hu S. Improvements of Glucose and Lipid Metabolism After Jejuno-ileal Circuit Procedure in a Non-obese Diabetic Rat Model. Obes Surg 2015; 26:1768-76. [PMID: 26660687 DOI: 10.1007/s11695-015-1997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In a recent study, we showed a jejuno-ileal circuit (JIC) procedure that effectively improved glucose homeostasis, but the intrinsic mechanism requires further studies. Furthermore, the role of JIC in lipid metabolism is also unknown. Given that adiposity aggravates insulin sensitivity, we hypothesize that the JIC procedure improves fat metabolism and thus further contributes to diabetic remission. The aim of this study was to investigate the effects of JIC surgery on lipid metabolism and glucose homeostasis in a non-obese diabetic rat model. METHODS Fourteen high-fat diet and low-dose streptozotocin-induced diabetic rats were randomly divided into JIC and sham-JIC groups. Body weight, food intake, glucose tolerance, insulin resistance, serum lipid parameters, glucagon-like peptide 1 (GLP-1), and adipose-derived hormones were measured. At 12 weeks postoperatively, the expressions of hepatic fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were measured by Western blot. The lipid content of liver was assessed by hematoxylin-eosin staining and Oil Red O staining. The enteroendocrine cells in the distal ileum were examined by immunohistochemical staining. RESULTS Relative to the sham group, the JIC rats exhibited significant improvements in glucose tolerance, insulin resistance, and dyslipidemia without weight loss, showing increased GLP-1 and adiponectin and decreased leptin. JIC also reduced the expression of FAS and ACC in the liver, exhibited improved hepatic fat content, and raised the levels of GLP-1 and chromogranin A in the distal gut. CONCLUSIONS JIC alleviated lipometabolic disorders in hyperglycemic rats, which may contribute to the amelioration of insulin sensitivity and glycemic control.
Collapse
Affiliation(s)
- Yanmin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Teng Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Wei Guo
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Qingsi He
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China.
| |
Collapse
|
39
|
Iozzo P. Metabolic imaging in obesity: underlying mechanisms and consequences in the whole body. Ann N Y Acad Sci 2015; 1353:21-40. [PMID: 26335600 DOI: 10.1111/nyas.12880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Obesity is a phenotype resulting from a series of causative factors with a variable risk of complications. Etiologic diversity requires personalized prevention and treatment. Imaging procedures offer the potential to investigate the interplay between organs and pathways underlying energy intake and consumption in an integrated manner, and may open the perspective to classify and treat obesity according to causative mechanisms. This review illustrates the contribution provided by imaging studies to the understanding of human obesity, starting with the regulation of food intake and intestinal metabolism, followed by the role of adipose tissue in storing, releasing, and utilizing substrates, including the interconversion of white and brown fat, and concluding with the examination of imaging risk indicators related to complications, including type 2 diabetes, liver pathologies, cardiac and kidney diseases, and sleep disorders. The imaging modalities include (1) positron emission tomography to quantify organ-specific perfusion and substrate metabolism; (2) computed tomography to assess tissue density as an indicator of fat content and browning/ whitening; (3) ultrasounds to examine liver steatosis, stiffness, and inflammation; and (4) magnetic resonance techniques to assess blood oxygenation levels in the brain, liver stiffness, and metabolite contents (triglycerides, fatty acids, glucose, phosphocreatine, ATP, and acetylcarnitine) in a variety of organs.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy.,The Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|