1
|
Grothoff W, Khodakivskyi I, Shin A, Little R, Connolly S, Kabytaev K. MRM-based LC-MS method for accurate C-peptide quantitation. J Mass Spectrom Adv Clin Lab 2025; 36:1-8. [PMID: 40093566 PMCID: PMC11904604 DOI: 10.1016/j.jmsacl.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/21/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction C-peptide secretion mirrors beta-cell function and has emerged as a valuable clinical biomarker for diabetes mellitus. C-peptide measurements can provide estimates of insulin secretory capacity, aiding in clinical decision-making and differentiation between diabetes types. Unfortunately, C-peptide assays are still not standardized, which may limit their practical clinical use. We have developed an MRM-based LC-MS method that demonstrated accuracy close to our reference method. Objective To develop and validate a mass spectrometry method for accurate quantitation of C-peptide. Method A serum sample was spiked with isotope-labeled C-peptide as a standard. The enrichment process involved protein precipitation with methanol, solid-phase extraction, and anion exchange for C-peptide enrichment followed by Glu-C digestion. The peptide LGGGPGAGSLQPLALE was quantitated using MRM in positive ion mode. The calibration process includes C-peptide CRM material to ensure a complete traceability chain for the measurement. Results The assay exhibited linearity across a wide range of C-peptide concentrations and a limit of quantitation of 0.058 nmol/L. The inter-day imprecision was less than 9.6 % CV, and the intra-day imprecision was less than 8.9 % CV. Spiking with bilirubin, triglycerides, and hemoglobin demonstrated no interference, except for triglycerides at very high levels. The method exhibited a strong correlation to the C-peptide reference method (r2 = 0.95). Conclusion The developed mass spectrometry method has demonstrated accurate results in C-peptide quantitation and can serve as a supplemental method to the existing C-peptide reference method. This ensures sustained stability over time and ultimately refines the existing reference system.
Collapse
Affiliation(s)
- Will Grothoff
- Pathology & Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO 65211, USA
| | - Ivan Khodakivskyi
- Pathology & Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO 65211, USA
| | - Aleks Shin
- Pathology & Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO 65211, USA
| | - Randie Little
- Pathology & Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO 65211, USA
| | - Shawn Connolly
- Pathology & Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO 65211, USA
| | - Kuanysh Kabytaev
- Pathology & Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Kwon SY, Park J, Park SH, Lee YB, Kim G, Hur KY, Kim JH, Jin SM. Plasma C-Peptide Levels and the Continuous Glucose Monitoring-Defined Coefficient of Variation in Risk Prediction for Hypoglycemia in Korean People with Diabetes Having Normal and Impaired Kidney Function. Endocrinol Metab (Seoul) 2025; 40:268-277. [PMID: 40012130 PMCID: PMC12061746 DOI: 10.3803/enm.2024.2083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/14/2024] [Accepted: 11/13/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGRUOUND We aimed to investigate the predictive values of plasma C-peptide levels and the continuous glucose monitoring (CGM)-defined coefficient of variation (CV) in risk prediction for hypoglycemia in Korean people with diabetes with normal and impaired kidney function. METHODS We analyzed data from 1,185 participants diagnosed with type 1 and type 2 diabetes who underwent blinded professional CGM between January 2009 and May 2021 at outpatient clinics. We explored correlations among CGM-defined CV, plasma C-peptide levels, and time below range at <70 and 54 mg/dL across different kidney function categories. RESULTS In patients with chronic kidney disease (CKD) stages 1-2 (n=934), 89.3% who had a random plasma C-peptide level higher than 600 pmol/L exhibited a CV of ≤36%. Among those in CKD stage 3 (n=161) with a random plasma C-peptide level exceeding 600 pmol/L, 66.7% showed a CV of ≤36%. In stages 4-5 of CKD (n=90), the correlation between random C-peptide levels and CV was not significant (r=-0.05, P=0.640), including cases with a CV greater than 36% despite very high random plasma C-peptide levels. Random plasma C-peptide levels and CGM-assessed CV significantly predicted hypoglycemia in CKD stages 1-2 and 1-5, respectively. CONCLUSION The established C-peptide criteria in Western populations are applicable to Korean people with diabetes for hypoglycemic risk prediction, unless kidney function is impaired equivalent to CKD stage 3-5. The CGM-defined CV is informative for hypoglycemic risk prediction regardless of kidney function.
Collapse
Affiliation(s)
- So Yoon Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Daegu Catholic University Medical Center, Daegu, Korea
| | - Jiyun Park
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Hee Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Alan MS, Tayebi A, Afshar EJ, Alan SS, Alan MS, Fazeli R, Sohbatzade T, Samimisedeh P, Rastad H. Association of detectable C-peptide levels with glycemic control and chronic complications in individuals with type 1 diabetes mellitus: A systematic review and meta-analysis. J Diabetes Complications 2025; 39:108867. [PMID: 39879848 DOI: 10.1016/j.jdiacomp.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 01/31/2025]
Abstract
AIMS Multiple studies have addressed the association between detectable levels of C-peptide and glycemic control, as well as the development of chronic complications of type 1 diabetes mellitus (T1DM), including both macrovascular and microvascular diseases. We aimed to summarize the available evidence on the clinical significance of detectable levels of C-peptide in T1DM. METHOD A systematic search was performed on online databases using the following key terms: T1DM, C-peptide, diabetes mellitus complications, and glycemic parameters. We pooled standardized mean difference (SMD) and odds ratios (OR). RESULTS Of the 1519 articles retrieved from the initial search, 38 (12 cohort and 26 cross-sectional studies) met our eligibility criteria. Individuals with T1DM in the detectable C-peptide group, compared with the undetectable C-peptide group, had lower mean HbA1c [pooled SMD (95 % confidence interval (95 % CI)): -0.08 (-0.13 to -0.02), I2 = 0 %, p. VALUE 0.005] and daily insulin dose [-0.41 (-0.65 to -0.18), I2 = 83 %, p.value < 0.001]. They also showed lower odds for retinopathy [pooled crude OR (95 % CI): 0.53 (0.41 to 0.69), I2 = 65 %, p.value < 0.001] and nephropathy complications [0.62 (0.55 to 0.70), I2 = 19 %, p.value < 0.001]; however, the two groups were similar regarding neuropathy [0.92 (0.65 to 1.31), I2 = 0 %, p. VALUE 0.31]. CONCLUSIONS The available evidence suggests that individuals with T1DM in the detectable C-peptide group may experience better clinical outcomes.
Collapse
Affiliation(s)
- Mahin Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Tayebi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elmira Jafari Afshar
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sanaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ramina Fazeli
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Tooba Sohbatzade
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Amendolara R, Zampetti S, Siena A, D'Onofrio L, De Vita F, Barbaro F, Notarnicola D, Sessa RL, Luverà D, Risi R, Maddaloni E, Buzzetti R. Residual C-peptide secretion is associated with better CGM-metrics in adults with short-lasting type 1 diabetes. Diabetes Res Clin Pract 2025; 221:112006. [PMID: 39863081 DOI: 10.1016/j.diabres.2025.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
AIM To investigate whether the risk of hypoglycemia is associated with residual β-cell function in adults with type 1 diabetes (T1D). METHODS This cross-sectional study included 61 subjects with T1D duration <15 years using continuous glucose monitoring (CGM). Random C-peptide levels were compared between participants with time below range (TBR) ≥3 % (n = 15) and TBR <3 % (n = 45). The associations of C-peptide levels with other CGM metrics and clinical characteristics of the study participants were also tested. Analyses were adjusted for disease duration. RESULTS Median [25th - 75th percentiles] C-peptide levels were generally low: 49.3 [15.7-152] pmol/L. Participants in the low-TBR group had significantly higher C-peptide levels compared to those in the high-TBR group (52.9 [19.5-176.3] vs. 21.0 [9.4-106.6] pmol/L, p = 0.036), independently from disease duration. Higher C-peptide levels were associated with better CGM-metrics (p < 0.05). A C-peptide threshold of 15.1 pmol/L was the best cut-off to distinguish people at high risk of hypoglycemia. CONCLUSIONS C-peptide microsecretion is associated with a low risk of hypoglycemia and improved CGM metrics. Therapeutic approaches aimed at preserving minimal C-peptide secretion could potentially enhance glycemic outcomes and reduce hypoglycemic risk in individual with T1D.
Collapse
Affiliation(s)
- Rocco Amendolara
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Simona Zampetti
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Antonio Siena
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Francesco De Vita
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Federica Barbaro
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Dario Notarnicola
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Rosario Luigi Sessa
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Daniela Luverà
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | |
Collapse
|
5
|
Infante M, Silvestri F, Padilla N, Pacifici F, Pastore D, Pinheiro MM, Caprio M, Tesauro M, Fabbri A, Novelli G, Alejandro R, De Lorenzo A, Ricordi C, Della-Morte D. Unveiling the Therapeutic Potential of the Second-Generation Incretin Analogs Semaglutide and Tirzepatide in Type 1 Diabetes and Latent Autoimmune Diabetes in Adults. J Clin Med 2025; 14:1303. [PMID: 40004833 PMCID: PMC11856673 DOI: 10.3390/jcm14041303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the immune-mediated destruction of insulin-producing pancreatic beta cells, resulting in the lifelong need for exogenous insulin. Over the last few years, overweight and obesity have recently emerged as growing health issues also afflicting patients with T1D. In this context, the term "double diabetes" has been coined to indicate patients with T1D who have a family history of type 2 diabetes mellitus (T2D) and/or patients with T1D who are affected by insulin resistance and/or overweight/obesity and/or metabolic syndrome. At the same time, the use of second-generation incretin analogs semaglutide and tirzepatide has substantially increased on a global scale over the last few years, given the remarkable clinical benefits of these drugs (in terms of glucose control and weight loss) in patients with T2D and/or overweight/obesity. Although the glucagon-like peptide-1 (GLP-1) receptor agonists and the novel dual GIP (glucose-dependent insulinotropic polypeptide)/GLP-1 receptor agonist tirzepatide are currently not approved for the treatment of T1D, a growing body of evidence over the last few years has shown that these medications may serve as valid add-on treatments to insulin with substantial efficacy in improving glucose control, promoting weight loss, preserving residual beta-cell function and providing other beneficial metabolic effects in patients with T1D, double diabetes and latent autoimmune diabetes in adults (LADA). This manuscript aims to comprehensively review the currently available literature (mostly consisting of real-world studies) regarding the safety and therapeutic use (for different purposes) of semaglutide and tirzepatide in patients with T1D (at different stages of the disease), double diabetes and LADA.
Collapse
Affiliation(s)
- Marco Infante
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), Department of Surgery, University of Miami Miller School of Medicine, 1450 NW 10th Ave., Miami, FL 33136, USA; (N.P.); (R.A.); (C.R.)
| | - Francesca Silvestri
- Pediatric Endocrinology Outpatient Clinic, Via dell’Alpinismo 24, 00135 Rome, Italy;
| | - Nathalia Padilla
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), Department of Surgery, University of Miami Miller School of Medicine, 1450 NW 10th Ave., Miami, FL 33136, USA; (N.P.); (R.A.); (C.R.)
| | - Francesca Pacifici
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.P.); (D.P.); (M.C.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ on-Chip Applications (IC-LOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Donatella Pastore
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.P.); (D.P.); (M.C.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ on-Chip Applications (IC-LOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marcelo Maia Pinheiro
- UNIVAG, Centro Universitário de Várzea Grande, Av. Dom Orlando Chaves, 2655-Cristo Rei, Várzea Grande 78118-000, MT, Brazil;
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.P.); (D.P.); (M.C.); (D.D.-M.)
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.T.); (A.F.)
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.T.); (A.F.)
| | - Giuseppe Novelli
- Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- Department of Pharmacology, Reno School of Medicine, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Rodolfo Alejandro
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), Department of Surgery, University of Miami Miller School of Medicine, 1450 NW 10th Ave., Miami, FL 33136, USA; (N.P.); (R.A.); (C.R.)
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Camillo Ricordi
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), Department of Surgery, University of Miami Miller School of Medicine, 1450 NW 10th Ave., Miami, FL 33136, USA; (N.P.); (R.A.); (C.R.)
| | - David Della-Morte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.P.); (D.P.); (M.C.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ on-Chip Applications (IC-LOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL 33136, USA
| |
Collapse
|
6
|
Krivova Y, Proshchina A, Otlyga D, Kharlamova A, Saveliev S. Detection of Insulin in Insulin-Deficient Islets of Patients with Type 1 Diabetes. Life (Basel) 2025; 15:125. [PMID: 39860066 PMCID: PMC11766825 DOI: 10.3390/life15010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion. The present study aimed to test the ability of various antibodies to detect insulin in insulin-deficient islets of T1D patients. Pancreatic autopsies from two children with recent-onset T1D, two adults with longstanding T1D, and three control subjects were examined using double immunofluorescent labeling with antibodies to insulin, glucagon and somatostatin. Immunoreactivity to insulin in glucagon+ cells of insulin-deficient islets was revealed using polyclonal antibodies and monoclonal antibodies simultaneously recognizing insulin and proinsulin. Along with this, immunoreactivity to insulin was observed in the majority of glucagon+ cells of insulin-containing islets of control subjects and children with recent-onset T1D. These results suggest that islet α-cells may contain insulin and/or other insulin-like proteins (proinsulin, C-peptide). Future studies are needed to evaluate the role of α-cells in insulin secretion and diabetes pathogenesis.
Collapse
Affiliation(s)
- Yuliya Krivova
- Laboratory of Nervous System Development, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Tsurupi Street, 3, 117418 Moscow, Russia; (A.P.); (D.O.); (A.K.); (S.S.)
| | | | | | | | | |
Collapse
|
7
|
Varkevisser RDM, Sas T, Aanstoot HJ, Wolffenbuttel BHR, van der Klauw MM. Residual C-peptide is associated with new and persistent impaired awareness of hypoglycaemia in type 1 diabetes. J Diabetes Complications 2024; 38:108893. [PMID: 39500130 DOI: 10.1016/j.jdiacomp.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
AIMS To describe the change in impaired awareness of hypoglycaemia (IAH) over time and to identify factors associated with this change in the Dutch Type 1 Diabetes biomarkers cohort (NCT04977635). METHODS A prospective cohort of type 1 diabetes patients, with C-peptide <300 pmol/L, who had completed the Clarke questionnaire, to determine IAH status, at baseline and after 2 years. Changes in awareness status were defined and compares as follows: unchanged normal awareness (NAH) versus unchanged IAH, new IAH versus reversal of IAH. Multivariate logistic regression models were fitted using forward and backward stepwise selection using a 0.10 P-value cut-off, and stepwise backward selection using AIC criteria. RESULTS A total of 431 out of 611 participants were included. The baseline prevalence of IAH was 17 % and 20 % after 2 years. The incidence proportion of new IAH and reversal of IAH were, 9.5 % and 31 %, respectively. For every 2.7-fold increase in C-peptide, the odds of IAH decrease by 58 %. A 1-unit increase in BMI over the 2-year follow-up period is associated with a 5.27-fold increase in the odds of reversing IAH. CONCLUSIONS Higher C-peptide levels are protective against new IAH, and an increase in BMI over time is associated with the reversal of IAH.
Collapse
Affiliation(s)
- R D M Varkevisser
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - T Sas
- Diabeter Netherlands, Center for Type 1 Diabetes Care and Research, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - H J Aanstoot
- Diabeter Netherlands, Center for Type 1 Diabetes Care and Research, Rotterdam, the Netherlands
| | - B H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M M van der Klauw
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Lopes V, Sousa ME, Lopes SC, Lages ADS. Metabolic impact of residual C-peptide secretion in type 1 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230503. [PMID: 39529980 PMCID: PMC11554363 DOI: 10.20945/2359-4292-2023-0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/08/2024] [Indexed: 11/16/2024]
Abstract
Objective This study aimed to evaluate the association of detectable C-peptide levels with various continuous glucose monitoring (CGM) metrics and diabetes complications in patients with type 1 diabetes mellitus (T1DM). Subjects and methods Retrospective, descriptive study of 112 patients with T1DM undergoing intensive insulin therapy, categorized according to fasting C-peptide level into undetectable (<0.05 ng/mL) and detectable (≥0.05 ng/mL) groups. Results The patients' median age at diagnosis was 22 (12-34) years and the median T1DM duration was 18.5 (12-29) years. Patients with detectable versus undetectable C-peptide levels were older (27.5 [16.5-38.5] versus 17.5 [9.8-28.8] years, respectively, p = 0.002) and had shorter disease duration (14 [9-24] versus 20 [14-32] years, respectively, p = 0.004). After adjustment for covariates (sex, disease duration, body mass index, and use of continuous subcutaneous insulin infusion), detectable C-peptide level was associated with lower time above range (TAR; aβ -11.03, p = 0.002), glucose management indicator (GMI, aβ -0.55, p = 0.024), and average glucose (aβ -14.48, p = 0.045) and HbA1c (aβ -0.41, p = 0.035) levels. Patients with detectable versus those with undetectable C-peptide level had significantly higher time in range (TIR) before (β = 7.13, p = 0.044) and after (aβ = 11.42, p = 0.001) adjustments. Detectable C-peptide level was not associated with lower time below range (TBR), coefficient of variation (CV), or prevalence of chronic microvascular and macrovascular complications. Conclusions Persistent C-peptide secretion in patients with T1DM was associated with significantly better metabolic control reflected by different glucose metrics, namely, TIR, TAR, GMI, and HbA1c.
Collapse
Affiliation(s)
- Valentim Lopes
- Departamento de EndocrinologiaULS BragaBragaPortugal Departamento de Endocrinologia, ULS Braga, Braga, Portugal
| | - Maria Eduarda Sousa
- Faculdade de MedicinaUniversidade do Minho,BragaPortugal Faculdade de Medicina, Universidade do Minho, Braga, Portugal
| | - Sara Campos Lopes
- Departamento de EndocrinologiaULS BragaBragaPortugal Departamento de Endocrinologia, ULS Braga, Braga, Portugal
| | - Adriana De Sousa Lages
- Departamento de EndocrinologiaULS BragaBragaPortugal Departamento de Endocrinologia, ULS Braga, Braga, Portugal
- Faculdade de MedicinaUniversidade de CoimbraCoimbraPortugal Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Piemonti L, Melzi R, Aleotti F, Capretti G, Nano R, Mercalli A, Magistretti P, Caldara R, Pecorelli N, Catarinella D, Gremizzi C, Gavazzi F, De Cobelli F, Poretti D, Falconi M, Zerbi A, Balzano G. Autologous Pancreatic Islet Cell Transplantation Following Pancreatectomy for Pancreas Diseases Other Than Chronic Pancreatitis: A 15-y Study of the Milan Protocol. Transplantation 2024; 108:1962-1975. [PMID: 38637923 PMCID: PMC11335085 DOI: 10.1097/tp.0000000000005037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Pancreatogenic diabetes, a consequence of pancreatic tissue loss following pancreatectomy, poses a significant challenge for patients undergoing pancreatic surgery. Islet autotransplantation (IAT) offers a promising approach to prevent or alleviate pancreatogenic diabetes, but its application has been limited to individuals with painful chronic pancreatitis. METHODS This study presents a 15-y clinical experience with the Milan Protocol, which expands IAT after pancreatectomy to a broader spectrum of patients with malignant and nonmalignant pancreatic diseases. The analysis evaluates feasibility, efficacy, and safety of IAT. Modified Igls criteria validated through the arginine test and mixed meal tolerance tests were used to assess long-term metabolic outcomes. RESULTS Between November 2008 and June 2023, IAT procedures were performed on 114 of 147 candidates. IAT-related complications occurred in 19 of 114 patients (16.7%), with 5 being potentially serious. Patients exhibited sustained C-peptide secretion over the 10-y follow-up period, demonstrating a prevalence of optimal and good beta-cell function. Individuals who underwent partial pancreatectomy demonstrated superior metabolic outcomes, including sustained C-peptide secretion and a reduced risk of developing diabetes or insulin dependence compared with those who underwent total pancreatectomy. For patients who had total pancreatectomy, the quantity of infused islets and tissue volume were identified as critical factors influencing metabolic outcomes. An increased risk of recurrence or progression of baseline diseases was not observed in subjects with neoplasms. CONCLUSIONS These findings provide valuable insights into the benefits and applications of IAT as a therapeutic option for pancreatogenic diabetes after pancreatic surgery, expanding its potential beyond painful chronic pancreatitis.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Raffella Melzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Aleotti
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Capretti
- Department of Pancreatic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Magistretti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicolò Pecorelli
- Università Vita-Salute San Raffaele, Milan, Italy
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Catarinella
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Gremizzi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Gavazzi
- Department of Pancreatic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Francesco De Cobelli
- Università Vita-Salute San Raffaele, Milan, Italy
- Department of Radiology, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dario Poretti
- Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Massimo Falconi
- Università Vita-Salute San Raffaele, Milan, Italy
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandro Zerbi
- Department of Pancreatic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Gianpaolo Balzano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Zhang L, Qin Y, Huang Y, Hu Q, Wu Q, Wang X, Zhang M. Abnormal late postprandial glucagon response in type 1 diabetes is a function of differences in stimulated C-peptide concentrations. Front Endocrinol (Lausanne) 2024; 15:1419329. [PMID: 39149119 PMCID: PMC11324558 DOI: 10.3389/fendo.2024.1419329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Background The functional changes in alpha cells in patients with type 1 diabetes (T1D) with different residual beta cell functions remain poorly elucidated. The study aimed to investigate the relationship between glucagon secretion and C-peptide levels and to explore the relationship between glucagon response and glucose increment in respond to a secretagogue in a steamed bread meal tolerance test (BMTT) in T1D. Methods The study enrolled 43 adult patients with T1D and 24 healthy control subjects. Patients with T1D who underwent BMTT were divided into two groups based on peak C-peptide levels: C peptide low (CPL; C-peptide < 200 pmol/L; n=14) and high (CPH; C peptide ≥ 200 pmol/L; n=29). Plasma glucose, C-peptide, glucagon levels at 0, 30, 60, 120, and 180 min were measured. The glucagon response to the BMTT was defined by areas under the curve (AUC) as early (AUC0-30), late (AUC30-180), or total (AUC0-180) glucagon. Results Compared to healthy individuals, fasting plasma glucagon was lower and postprandial plasma glucagon level was increased in patients with T1D. Glucagon levels after BMTT between the CPL and CPH group showed significant group by time interaction. Peak glucagon and glucagon at 60-180 min, total and late glucagon response were higher in CPL than CPH group, while fasting glucagon and early glucagon response adjusted for glucose were comparable between CPL and CPH group. The higher late glucagon response and late glucagon response adjusted for glucose were associated with lower peak C-peptide in T1D. The higher late glucagon response and lower peak C-peptide were associated with the higher value of ▵glucose at 180 min. Conclusion Stimulated C-peptide levels affect the paradoxical increase in postprandial glucagon secretion in patients with T1D, especially late glucagon response. The exaggerated postprandial glucagon secretion further stimulates the elevation of postprandial glucose in patients with T1D.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yao Qin
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiting Huang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qizhen Hu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wu
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing Wang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Baxter F, Baillie N, Dover A, Stimson RH, Gibb F, Forbes S. A cross-sectional questionnaire study: Impaired awareness of hypoglycaemia remains prevalent in adults with type 1 diabetes and is associated with the risk of severe hypoglycaemia. PLoS One 2024; 19:e0297601. [PMID: 38875308 PMCID: PMC11178233 DOI: 10.1371/journal.pone.0297601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVE Impaired awareness of hypoglycaemia (IAH) is a risk factor for severe hypoglycaemia (SH) in type 1 diabetes (T1D). Much of the IAH prevalence data comes from older studies where participants did not have the benefit of the latest insulins and technologies. This study surveyed the prevalence of IAH and SH in a tertiary adult clinic population and investigated the associated factors. METHODS Adults (≥18 years) attending a tertiary T1D clinic completed a questionnaire, including a Gold and Clarke score. Background information was collected from health records. RESULTS 189 people (56.1% female) with T1D (median [IQR] disease duration 19.3 [11.5, 29.1] years and age of 41.0 [29.0, 52.0] years) participated. 17.5% had IAH and 16.0% reported ≥1 episode of SH in the previous 12 months. Those with IAH were more likely to report SH (37.5% versus 11.7%, p = 0.001) a greater number of SH episodes per person (median [IQR] 0 [0,2] versus 0 [0,0] P<0.001) and be female (72.7% versus 52.6%, p = 0.036). Socio-economic deprivation was associated with IAH (p = 0.032) and SH (p = 0.005). Use of technology was the same between IAH vs aware groups, however, participants reporting SH were more likely to use multiple daily injections (p = 0.026). Higher detectable C-peptide concentrations were associated with a reduced risk of SH (p = 0.04). CONCLUSION Insulin pump and continuous glucose monitor use was comparable in IAH versus aware groups. Despite this, IAH remains a risk factor for SH and is prevalent in females and in older people. Socioeconomic deprivation was associated with IAH and SH, making this an important population to target for interventions.
Collapse
Affiliation(s)
- Faye Baxter
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicola Baillie
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Dover
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Roland H Stimson
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Fraser Gibb
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Shareen Forbes
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Diabetes and Endocrinology, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Tanaka K, Okada Y, Uemura F, Tanaka Y. Associations between time in range and insulin secretory capacity in Japanese patients with type 2 diabetes. Sci Rep 2024; 14:12910. [PMID: 38839813 PMCID: PMC11153530 DOI: 10.1038/s41598-024-63678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Impaired insulin secretory capacity is associated with high glycemic variability in patients with type 2 diabetes (T2DM). However, there are no existing reports on the association between insulin secretory capacity and time in range (TIR). This retrospective study involved 330 T2DM admitted for diabetes education who underwent intermittently scanned continuous glucose monitoring (isCGM) and had their fasting serum C-peptide immunoreactivity (S-CPR) measured within 5 days of admission. The baseline characteristics were as follows: age, 60.2 years; glycated hemoglobin (HbA1c), 9.2%; S-CPR, 2.2 ng/mL; S-CPR index (S-CPR [ng/mL]/fasting plasma glucose [mg/dL] × 100), 1.6; and TIR, 60.3%. TIR correlated significantly with the S-CPR index, which was confirmed by multivariate analysis that included various factors such as HbA1c. Receiver operating characteristic (ROC) analysis showed that 1.88 was the optimal S-CPR index level to predict TIR ≥ 70%. In addition to HbA1c and biguanide use, the S-CPR index was a significant factor associated with TIR > 70%. S-CPR index values of ≥ 1.88 also correlated significantly with TIR > 70%. In conclusion, insulin secretory capacity is associated with TIR in Japanese T2DM, suggesting that the S-CPR index might be a potentially useful biomarker insulin secretory capacity, in association with TIR.Trial registration UMIN0000254333.
Collapse
Affiliation(s)
- Kenichi Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yosuke Okada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Fumi Uemura
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
13
|
Piersanti A, Pacini G, Tura A, D'Argenio DZ, Morettini M. An in-silico modeling approach to separate exogenous and endogenous plasma insulin appearance, with application to inhaled insulin. Sci Rep 2024; 14:10936. [PMID: 38740832 PMCID: PMC11091049 DOI: 10.1038/s41598-024-61293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
The aim of this study was to develop a dynamic model-based approach to separately quantify the exogenous and endogenous contributions to total plasma insulin concentration and to apply it to assess the effects of inhaled-insulin administration on endogenous insulin secretion during a meal test. A three-step dynamic in-silico modeling approach was developed to estimate the two insulin contributions of total plasma insulin in a group of 21 healthy subjects who underwent two equivalent standardized meal tests on separate days, one of which preceded by inhalation of a Technosphere® Insulin dose (22U or 20U). In the 30-120 min test interval, the calculated endogenous insulin component showed a divergence in the time course between the test with and without inhaled insulin. Moreover, the supra-basal area-under-the-curve of endogenous insulin in the test with inhaled insulin was significantly lower than that in the test without (2.1 ± 1.7 × 104 pmol·min/L vs 4.2 ± 1.8 × 104 pmol·min/L, p < 0.01). The percentage of exogenous insulin reaching the plasma, relative to the inhaled dose, was 42 ± 21%. The proposed in-silico approach separates exogenous and endogenous insulin contributions to total plasma insulin, provides individual bioavailability estimates, and can be used to assess the effect of inhaled insulin on endogenous insulin secretion during a meal.
Collapse
Affiliation(s)
- Agnese Piersanti
- Department of Information Engineering, Università Politecnica Delle Marche, Via Brecce Bianche 12, Ancona, Italy
| | | | | | - David Z D'Argenio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Micaela Morettini
- Department of Information Engineering, Università Politecnica Delle Marche, Via Brecce Bianche 12, Ancona, Italy.
| |
Collapse
|
14
|
Liu W, Fang Y, Cai X, Zhu Y, Zhang M, Han X, Li J, Yin S, Cai D, Chen J, Wang L, Shi D, Ji L. Preserved C-peptide is common and associated with higher time in range in Chinese type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1335913. [PMID: 38405156 PMCID: PMC10884320 DOI: 10.3389/fendo.2024.1335913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Objective The aim of this study is to determine the residual C-peptide level and to explore the clinical significance of preserved C-peptide secretion in glycemic control in Chinese individuals with type 1 diabetes (T1D). Research design and methods A total of 534 participants with T1D were enrolled and divided into two groups, low-C-peptide group (fasting C-peptide ≤10 pmol/L) and preserved-C-peptide group (fasting C-peptide >10 pmol/L), and clinical factors were compared between the two groups. In 174 participants who were followed, factors associated with C-peptide loss were also identified by Cox regression. In addition, glucose metrics derived from intermittently scanned continuous glucose monitoring were compared between individuals with low C-peptide and those with preserved C-peptide in 178 participants. Results The lack of preserved C-peptide was associated with longer diabetes duration, glutamic acid decarboxylase autoantibody, and higher daily insulin doses, after adjustment {OR, 1.10 [interquartile range (IQR), 1.06-1.14]; OR, 0.46 (IQR, 0.27-0.77); OR, 1.04 (IQR, 1.02-1.06)}. In the longitudinal analysis, the percentages of individuals with preserved C-peptide were 71.4%, 56.8%, 71.7%, 62.5%, and 22.2% over 5 years of follow-up. Preserved C-peptide was also associated with higher time in range after adjustment of diabetes duration [62.4 (IQR, 47.3-76.6) vs. 50.3 (IQR, 36.2-63.0) %, adjusted P = 0.003]. Conclusions Our results indicate that a high proportion of Chinese patients with T1D had preserved C-peptide secretion. Meanwhile, residual C-peptide was associated with favorable glycemic control, suggesting the importance of research on adjunctive therapy to maintain β-cell function in T1D.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| | - Yayu Fang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| | - Mingxia Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| | - Juan Li
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| | - Sai Yin
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| | - Deheng Cai
- School of Automation, Beijing Institute of Technology, Beijing, ;China
| | - Jing Chen
- School of Automation, Beijing Institute of Technology, Beijing, ;China
| | - Lei Wang
- School of Automation, Beijing Institute of Technology, Beijing, ;China
| | - Dawei Shi
- School of Automation, Beijing Institute of Technology, Beijing, ;China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, ;China
| |
Collapse
|
15
|
Joshi SS, Singh T, Kershaw LE, Gibb FW, Dweck MR, Williams M, Idris I, Semple S, Forbes S, Newby DE, Reynolds RM. Non-invasive imaging of functional pancreatic islet beta-cell mass in people with type 1 diabetes mellitus. Diabet Med 2023; 40:e15111. [PMID: 37035965 PMCID: PMC10946460 DOI: 10.1111/dme.15111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 03/07/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
AIMS To investigate whether manganese-enhanced magnetic resonance imaging can assess functional pancreatic beta-cell mass in people with type 1 diabetes mellitus. METHODS In a prospective case-control study, 20 people with type 1 diabetes mellitus (10 with low (≥50 pmol/L) and 10 with very low (<50 pmol/L) C-peptide concentrations) and 15 healthy volunteers underwent manganese-enhanced magnetic resonance imaging of the pancreas following an oral glucose load. Scan-rescan reproducibility was performed in 10 participants. RESULTS Mean pancreatic manganese uptake was 31 ± 6 mL/100 g of tissue/min in healthy volunteers (median 32 [interquartile range 23-36] years, 6 women), falling to 23 ± 4 and 13 ± 5 mL/100 g of tissue/min (p ≤ 0.002 for both) in people with type1 diabetes mellitus (52 [44-61] years, 6 women) and low or very low plasma C-peptide concentrations respectively. Pancreatic manganese uptake correlated strongly with plasma C-peptide concentrations in people with type1 diabetes mellitus (r = 0.73, p < 0.001) but not in healthy volunteers (r = -0.054, p = 0.880). There were no statistically significant correlations between manganese uptake and age, body-mass index, or glycated haemoglobin. There was strong intra-observer (mean difference: 0.31 (limits of agreement -1.42 to 2.05) mL/100 g of tissue/min; intra-class correlation, ICC = 0.99), inter-observer (-1.23 (-5.74 to 3.27) mL/100 g of tissue/min; ICC = 0.85) and scan-rescan (-0.72 (-2.9 to 1.6) mL/100 g of tissue/min; ICC = 0.96) agreement for pancreatic manganese uptake. CONCLUSIONS Manganese-enhanced magnetic resonance imaging provides a potential reproducible non-invasive measure of functional beta-cell mass in people with type 1 diabetes mellitus. This holds major promise for investigating type 1 diabetes, monitoring disease progression and assessing novel immunomodulatory interventions.
Collapse
Affiliation(s)
- Shruti S. Joshi
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Trisha Singh
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Lucy E. Kershaw
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh ImagingUniversity of EdinburghEdinburghUK
| | - Fraser W. Gibb
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh Centre for EndocrinologyNHS LothianEdinburghUK
| | - Marc R. Dweck
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Michelle Williams
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh ImagingUniversity of EdinburghEdinburghUK
- Department of RadiologyNHS LothianEdinburghUK
| | - Iskandar Idris
- Department of EndocrinologyUniversity of NottinghamNottinghamUK
| | - Scott Semple
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh ImagingUniversity of EdinburghEdinburghUK
| | - Shareen Forbes
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh Centre for EndocrinologyNHS LothianEdinburghUK
| | - David E. Newby
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh ImagingUniversity of EdinburghEdinburghUK
| | - Rebecca M. Reynolds
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
- Edinburgh Centre for EndocrinologyNHS LothianEdinburghUK
| |
Collapse
|
16
|
Bellido V, Aguilera E, Cardona-Hernandez R, Diaz-Soto G, González Pérez de Villar N, Picón-César MJ, Ampudia-Blasco FJ. Expert Recommendations for Using Time-in-Range and Other Continuous Glucose Monitoring Metrics to Achieve Patient-Centered Glycemic Control in People With Diabetes. J Diabetes Sci Technol 2023; 17:1326-1336. [PMID: 35470692 PMCID: PMC10563535 DOI: 10.1177/19322968221088601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New metrics for assessing glycemic control beyond HbA1c have recently emerged due to the increasing use of continuous glucose monitoring (CGM) in diabetes clinical practice. Among them, time in range (TIR) has appeared as a simple and intuitive metric that correlates inversely with HbA1c and has also been newly linked to the risk of long-term diabetes complications. The International Consensus on Time in Range established a series of target glucose ranges (TIR, time below range and time above range) and recommendations for time spent within these ranges for different diabetes populations. These parameters should be evaluated together with the ambulatory glucose profile (AGP). Using standardized visual reporting may help people with diabetes and healthcare professionals in the evaluation of glucose control in frequent clinical situations. The objective of the present review is to provide practical insights to quick interpretation of patient-centered metrics based on flash glucose monitoring data, as well as showing some visual examples of common clinical situations and giving practical recommendations for their management.
Collapse
Affiliation(s)
- Virginia Bellido
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Eva Aguilera
- Endocrinology and Nutrition Department, Health Sciences Research Institute and University, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Gonzalo Diaz-Soto
- Endocrinology and Nutrition Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Universidad de Valladolid, Valladolid, Spain
| | | | - María J. Picón-César
- Endocrinology and Nutrition Department, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier Ampudia-Blasco
- Endocrinology and Nutrition Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA Research Foundation, Valencia, Spain
- CIBERDEM, Madrid, Spain
- Universitat de Valencia, Valencia, Spain
| |
Collapse
|
17
|
Cantley J, Eizirik DL, Latres E, Dayan CM. Islet cells in human type 1 diabetes: from recent advances to novel therapies - a symposium-based roadmap for future research. J Endocrinol 2023; 259:e230082. [PMID: 37493471 PMCID: PMC10502961 DOI: 10.1530/joe-23-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
There is a growing understanding that the early phases of type 1 diabetes (T1D) are characterised by a deleterious dialogue between the pancreatic beta cells and the immune system. This, combined with the urgent need to better translate this growing knowledge into novel therapies, provided the background for the JDRF-DiabetesUK-INNODIA-nPOD symposium entitled 'Islet cells in human T1D: from recent advances to novel therapies', which took place in Stockholm, Sweden, in September 2022. We provide in this article an overview of the main themes addressed in the symposium, pointing to both promising conclusions and key unmet needs that remain to be addressed in order to achieve better approaches to prevent or reverse T1D.
Collapse
Affiliation(s)
- J Cantley
- School of Medicine, University of Dundee, Dundee, United Kingdom of Great Britain and Northern Ireland
| | - D L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles Faculté de Médecine, Bruxelles, Belgium
| | - E Latres
- JDRF International, New York, NY, USA
| | - C M Dayan
- Cardiff University School of Medicine, Cardiff, United Kingdom of Great Britain and Northern Ireland
| | - the JDRF-DiabetesUK-INNODIA-nPOD Stockholm Symposium 2022
- School of Medicine, University of Dundee, Dundee, United Kingdom of Great Britain and Northern Ireland
- ULB Center for Diabetes Research, Université Libre de Bruxelles Faculté de Médecine, Bruxelles, Belgium
- JDRF International, New York, NY, USA
- Cardiff University School of Medicine, Cardiff, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
18
|
Mameli C, Triolo TM, Chiarelli F, Rewers M, Zuccotti G, Simmons KM. Lessons and Gaps in the Prediction and Prevention of Type 1 Diabetes. Pharmacol Res 2023; 193:106792. [PMID: 37201589 DOI: 10.1016/j.phrs.2023.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Type 1 diabetes (T1D) is a serious chronic autoimmune condition. Even though the root cause of T1D development has yet to be determined, enough is known about the natural history of T1D pathogenesis to allow study of interventions that may delay or even prevent the onset of hyperglycemia and clinical T1D. Primary prevention aims to prevent the onset of beta cell autoimmunity in asymptomatic people at high genetic risk for T1D. Secondary prevention strategies aim to preserve functional beta cells once autoimmunity is present, and tertiary prevention aims to initiate and extend partial remission of beta cell destruction after the clinical onset of T1D. The approval of teplizumab in the United States to delay the onset of clinical T1D marks an impressive milestone in diabetes care. This treatment opens the door to a paradigm shift in T1D care. People with T1D risk need to be identified early by measuring T1D related islet autoantibodies. Identifying people with T1D before they have symptoms will facilitate better understanding of pre-symptomatic T1D progression and T1D prevention strategies that may be effective.
Collapse
Affiliation(s)
- Chiara Mameli
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Taylor M Triolo
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | | | - Marian Rewers
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Kimber M Simmons
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
19
|
Jansen TJP, Brom M, Boss M, Buitinga M, Tack CJ, van Meijel LA, de Galan BE, Gotthardt M. Importance of beta cell mass for glycaemic control in people with type 1 diabetes. Diabetologia 2023; 66:367-375. [PMID: 36394644 PMCID: PMC9669532 DOI: 10.1007/s00125-022-05830-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS/HYPOTHESIS The role of beta cell mass in the balance of glucose control and hypoglycaemic burden in people with type 1 diabetes is unclear. We applied positron emission tomography (PET) imaging with radiolabelled exendin to compare beta cell mass among people with type 1 diabetes and either low glucose variability (LGV) or high glucose variability (HGV). METHODS All participants with either LGV (n=9) or HGV (n=7) underwent a mixed-meal tolerance test to determine beta cell function and wore a blinded continuous glucose monitor for a week. After an i.v. injection with [68Ga]Ga-NODAGA-exendin-4, PET images were acquired for the quantification of pancreatic uptake of radiolabelled exendin. The mean standardised uptake value (SUVmean) of the pancreas was used to determine the amount of beta cell mass. RESULTS Participants with LGV had lower HbA1c (46.0 mmol/mol [44.5-52.5] [6.4% (6.3-7)] vs 80 mmol/mol [69.0-110] [9.5% (8.5-12.2)], p=0.001) and higher time in range (TIR) (75.6% [73.5-90.3] vs 38.7% [25.1-48.5], p=0.002) than those with HGV. The SUVmean of the pancreas was higher for the LGV than for the HGV group (5.1 [3.6-5.6] vs 2.9 [2.1-3.4], p=0.008). The AUCC-peptide:AUCglucose ratio was numerically, but not statistically, higher in the LGV compared with the HGV group (2.7×10-2 [6.2×10-4-5.3×10-2] vs 9.3×10-4 [4.7×10-4-5.2×10-3], p=0.21). SUVmean correlated with the AUCC-peptide:AUCglucose ratio (Pearson r=0.64, p=0.01), as well as with the TIR (r=0.64, p=0.01) and the SD of interstitial glucose levels (r=-0.66, p=0.007). CONCLUSION/INTERPRETATION Our data show higher beta cell mass in people with type 1 diabetes and LGV than in those with HGV, independent of beta cell function.
Collapse
Affiliation(s)
- Theodorus J P Jansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maarten Brom
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Mijke Buitinga
- Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
- Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, the Netherlands
| | - Cees J Tack
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lian A van Meijel
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Internal Medicine, Maxima Medical Center, Veldhoven, the Netherlands
| | - Bastiaan E de Galan
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Internal Medicine, Maastricht UMC+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Baxter F, Baillie N, Forbes S. Study protocol: a randomised controlled proof-of-concept real-world study - does maximising time in range using hybrid closed loop insulin delivery and a low carbohydrate diet restore the glucagon response to hypoglycaemia in adults with type 1 diabetes? BMJ Open 2022; 12:e054958. [PMID: 36600427 PMCID: PMC9772676 DOI: 10.1136/bmjopen-2021-054958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION People with type 1 diabetes (T1D) develop an impaired glucagon response to hypoglycaemia within 5 years of diagnosis, increasing their risk of severe hypoglycaemia. It is not known whether eliminating hypoglycaemia and hyperglycaemia allows recovery of this glucagon response. Hybrid closed loop (HCL) technologies improve glycaemic time in range (TIR). However, post-prandial glycaemic excursions are still evident. Consuming a low carbohydrate diet (LCD) may minimise these excursions. METHODS AND ANALYSIS This feasibility study will assess if maximising TIR (glucose ≥3.9 mmol/L≤10 mmol/L) using HCL systems plus an LCD (defined here as <130 g carbohydrate/day) for >8 months, restores the glucagon response to insulin-induced hypoglycaemia. Adults (n=24) with T1D (C-peptide <200 pmol/L), naïve to continuous glucose monitoring (CGM) and HCL systems, will be recruited and randomised to: group 1 (non-HCL) to continue their standard diabetes care with intermittent blinded CGM; or group 2 (HCL-LCD) to use the HCL system and follow a LCD. Baseline data on diet and glycaemia will be collected from all participants. The HCL-LCD group will then enter a 2-week run-in to acclimatise to their devices. Throughout, the HCL-LCD group will have their glucose closely monitored and adjusted aiming for glycaemic TIR >70%. Participants will have their glucagon response to hypoglycaemia measured at the beginning and 8 months later at the study end using a stepped hyperinsulinaemic hypoglycaemic clamp, in combination with the stable isotopes 6,6-2H2-glucose (D2-glucose) and 1,1,2,3,3-2H5-glycerol (D5-glycerol) to assess glucose and glycerol kinetics. The impact of hypoglycaemia on symptoms and cognitive function will be assessed during each clamp study. The primary outcome is the difference in the glucagon response to hypoglycaemia between and within groups at baseline versus study end. ETHICS AND DISSEMINATION Ethical (20/SS/0117)/institutional review board (2021/0001) approval has been obtained. The study will be disseminated by peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04614168.
Collapse
Affiliation(s)
- Faye Baxter
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Nicola Baillie
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Shareen Forbes
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
- Edmonton Islet Transplant Programme, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Liu W, Ma Y, Cai X, Zhu Y, Zhang M, Li J, Chen J, Shi D, Ji L. Preserved C-peptide secretion is associated with higher time in range (TIR) on intermittently scanned continuous glucose monitoring in Chinese adults with type 1 diabetes. Endocr Connect 2022; 11:e220244. [PMID: 36136936 PMCID: PMC9641764 DOI: 10.1530/ec-22-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
Objective To explore the relationship between C-peptide secretion and time in range (TIR) in adult patients with type 1 diabetes. Methods From December 2018 to December 2020, 76 type 1 diabetes participants were enrolled from the Department of Endocrinology and Metabolism of Peking University People's Hospital. All participants wore intermittently scanned continuous glucose monitoring (isCGM), and insulin dosage was adjusted according to standardized clinical procedures. Subjects were divided into low C-peptide group (<10 pmol/L) and preserved C-peptide group (10-200 pmol/L) based on fasting serum C-peptide levels. Differences of TIR, metrics related to glucose variability and hypoglycemic events were compared. Results A total of 94,846 isCGM values obtained from 39 male and 37 female participants were analyzed. Individuals with preserved C-peptide secretion had shorter diabetes duration (2.0 (0.5, 10.0) vs 10.0 (3.0, 18.3) years, P = 0.002). TIR was higher in the individuals with preserved C-peptide than those with decreased C-peptide (67.1% (54.2, 75.8) vs 45.5% (33.9, 56.1), P < 0.001), and time above range was significantly lower in those with preserved C-peptide (28.0% (15.6, 42.4) vs 49.4% (39.1, 64.2), P < 0.001). Preserved C-peptide was associated with lower glucose variability, as defined by s.d. (3.0 mmol/L (2.6, 3.4) vs 3.8 mmol/L (3.2, 4.3), P < 0.001) and interquartile range (4.3 mmol/L (3.1, 4.8) vs 5.3 mmol/L (4.5, 6.3), P < 0.001). Metrics related to hypoglycemia were not different between the two groups. Conclusion Preserved C-peptide secretion was associated with higher TIR and lower glucose variability in Chinese type 1 diabetes adults.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yunke Ma
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Mingxia Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Juan Li
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jing Chen
- School of Automation, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Dawei Shi
- School of Automation, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Abstract
First envisioned by early diabetes clinicians, a person-centred approach to care was an aspirational goal that aimed to match insulin therapy to each individual's unique requirements. In the 100 years since the discovery of insulin, this goal has evolved to include personalised approaches to type 1 diabetes diagnosis, treatment, prevention and prediction. These advances have been facilitated by the recognition of type 1 diabetes as an autoimmune disease and by advances in our understanding of diabetes pathophysiology, genetics and natural history, which have occurred in parallel with advancements in insulin delivery, glucose monitoring and tools for self-management. In this review, we discuss how these personalised approaches have improved diabetes care and how improved understanding of pathogenesis and human biology might inform precision medicine in the future.
Collapse
Affiliation(s)
- Alice L J Carr
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
23
|
Maddaloni E, Bolli GB, Frier BM, Little RR, Leslie RD, Pozzilli P, Buzzetti R. C-peptide determination in the diagnosis of type of diabetes and its management: A clinical perspective. Diabetes Obes Metab 2022; 24:1912-1926. [PMID: 35676794 PMCID: PMC9543865 DOI: 10.1111/dom.14785] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022]
Abstract
Impaired beta-cell function is a recognized cornerstone of diabetes pathophysiology. Estimates of insulin secretory capacity are useful to inform clinical practice, helping to classify types of diabetes, complication risk stratification and to guide treatment decisions. Because C-peptide secretion mirrors beta-cell function, it has emerged as a valuable clinical biomarker, mainly in autoimmune diabetes and especially in adult-onset diabetes. Nonetheless, the lack of robust evidence about the clinical utility of C-peptide measurement in type 2 diabetes, where insulin resistance is a major confounder, limits its use in such cases. Furthermore, problems remain in the standardization of the assay for C-peptide, raising concerns about comparability of measurements between different laboratories. To approach the heterogeneity and complexity of diabetes, reliable, simple and inexpensive clinical markers are required that can inform clinicians about probable pathophysiology and disease progression, and so enable personalization of management and therapy. This review summarizes the current evidence base about the potential value of C-peptide in the management of the two most prevalent forms of diabetes (type 2 diabetes and autoimmune diabetes) to address how its measurement may assist daily clinical practice and to highlight current limitations and areas of uncertainties to be covered by future research.
Collapse
Affiliation(s)
- Ernesto Maddaloni
- Experimental Medicine DepartmentSapienza University of RomeRomeItaly
| | - Geremia B. Bolli
- Department of Medicine and Surgery, Section of Endocrinology and MetabolismUniversity of PerugiaPerugiaItaly
| | - Brian M. Frier
- The Queen's Medical Research InstituteUniversity of EdinburghEdinburghScotlandUK
| | - Randie R. Little
- Department of Pathology and Anatomical SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Richard D. Leslie
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Paolo Pozzilli
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of MedicineUnit of Endocrinology and Diabetes, Campus Bio‐Medico University of RomeRomeItaly
| | - Raffaela Buzzetti
- Experimental Medicine DepartmentSapienza University of RomeRomeItaly
| |
Collapse
|
24
|
Zhang L, Tian Q, Guo K, Wu J, Ye J, Ding Z, Zhou Q, Huang G, Li X, Zhou Z, Yang L. Analysis of detrended fluctuation function derived from continuous glucose monitoring may assist in distinguishing latent autoimmune diabetes in adults from T2DM. Front Endocrinol (Lausanne) 2022; 13:948157. [PMID: 36204110 PMCID: PMC9530584 DOI: 10.3389/fendo.2022.948157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We aimed to explore the performance of detrended fluctuation function (DFF) in distinguishing patients with latent autoimmune diabetes in adults (LADA) from type 2 diabetes mellitus (T2DM) with glucose data derived from continuous glucose monitoring. METHODS In total, 71 LADA and 152 T2DM patients were enrolled. Correlations between glucose parameters including time in range (TIR), mean glucose, standard deviation (SD), mean amplitude of glucose excursions (MAGE), coefficient of variation (CV), DFF and fasting and 2-hour postprandial C-peptide (FCP, 2hCP) were analyzed and compared. Receiver operating characteristics curve (ROC) analysis and 10-fold cross-validation were employed to explore and validate the performance of DFF in diabetes classification respectively. RESULTS Patients with LADA had a higher mean glucose, lower TIR, greater SD, MAGE and CV than those of T2DM (P<0.001). DFF achieved the strongest correlation with FCP (r = -0.705, P<0.001) as compared with TIR (r = 0.485, P<0.001), mean glucose (r = -0.337, P<0.001), SD (r = -0.645, P<0.001), MAGE (r = -0.663, P<0.001) and CV (r = -0.639, P<0.001). ROC analysis showed that DFF yielded the greatest area under the curve (AUC) of 0.862 (sensitivity: 71.2%, specificity: 84.9%) in differentiating LADA from T2DM as compared with TIR, mean glucose, SD, MAGE and CV (AUC: 0.722, 0.650, 0.800, 0.820 and 0.807, sensitivity: 71.8%, 47.9%, 63.6%, 72.7% and 78.8%, specificity: 67.8%, 83.6%, 80.9%, 80.3% and 72.4%, respectively). The kappa test indicated a good consistency between DFF and the actual diagnosis (kappa = 0.551, P<0.001). Ten-fold cross-validation showed a stable performance of DFF with a mean AUC of 0.863 (sensitivity: 78.8%, specificity: 77.8%) in 10 training sets and a mean AUC of 0.866 (sensitivity: 80.9%, specificity: 84.1%) in 10 test sets. CONCLUSIONS A more violent glucose fluctuation pattern was marked in patients with LADA than T2DM. We first proposed the possible role of DFF in distinguishing patients with LADA from T2DM in our study population, which may assist in diabetes classification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Klimontov VV, Semenova JF, Korbut AI. Factors associated with high glucose variability in patients with type 1 diabetes. DIABETES MELLITUS 2022; 25:347-357. [DOI: 10.14341/dm12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BACKGROUND: High glucose variability (GV) is recognized as a risk factor for vascular diabetic complications and hypoglycemia. Factors affecting GV in patients with diabetes needed to be clarified.AIM: To determine the factors associated with high GV in adult patients with type 1 diabetes.MATERIALS AND METHODS: We conducted a single center cross-sectional observational study. In-patients with type 1 diabetes aged 18 to 65 years on basal bolus insulin therapy were included. Day-time and nocturnal Coefficient of Variation (CV), Mean Amplitude of Glycemic Excursions (MAGE), Mean Absolute Glucose (MAG) were calculated from continuous glucose monitoring data. The values of CV, MAGE, MAG within the upper quartile were considered high.RESULTS: The study included 400 individuals, including 111 on continuous subcutaneous insulin infusion (CSII). Patients with high GV had lower fasting and postprandial C-peptide levels and higher insulin doses. According to ROC analysis, daily insulin dose >0.69 U/kg and estimated glomerular filtration rate (eGFR) ≥90.5 ml/min×1.73 m2 were associated with high nocturnal CV values. Dose of basal insulin >0.292 U/kg and bolus insulin >0.325 U/day were associated with nocturnal MAGE. Body mass index (BMI) ≤23.2 kg/m2, waist circumference ≤80.5 cm, daily insulin dose ≥0.69 U/kg, HbA1c ≥8.3%, eGFR ≥89.5 ml/ min×1.73m2 increased risk of high MAG at night. High day-time CV values were associated with daily insulin dose ≥0.675 U/kg and daily dose of BI ≥0.286 U/kg. The risk of high MAGE was increased with HbA1c ≥8.24% and basal insulin dose ≥0.286 U/kg. BMI ≤23.2 kg/m2, waist circumference ≤80.5 cm, daily insulin dose ≥0.69 U/kg, daily dose of bolus and basal insulin ≥0.325 and ≥0.29 U/kg respectively, and HbA1c ≥8.33% were the risk factors for high day-time MAG. Patients on CSII had lower MAGE (p<0.001) and MAG (p=0.008) compared to those on multiple daily injections.CONCLUSION: In type 1 diabetes, high GV is associated with undetectable residual insulin secretion, normal or reduced body weight, preserved kidney function, supraphysiological doses of insulin, and non-target HbA1c. Patients on CSII have a lower GV than those on multiple daily injections.
Collapse
Affiliation(s)
- V. V. Klimontov
- Research Institute of Clinical and Experimental Lymphology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL — Branch of IC&G SB RAS)
| | - Ju. F. Semenova
- Research Institute of Clinical and Experimental Lymphology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL — Branch of IC&G SB RAS)
| | - A. I. Korbut
- Research Institute of Clinical and Experimental Lymphology — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL — Branch of IC&G SB RAS)
| |
Collapse
|
26
|
Lee VTY, Poynten A, Depczynski B. Continuous glucose monitoring to assess glucose variability in type 3c diabetes. Diabet Med 2022; 39:e14882. [PMID: 35569007 PMCID: PMC9545045 DOI: 10.1111/dme.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
AIM The effectiveness of continuous glucose monitoring (CGM) in maintaining glycaemic control in type 1 diabetes mellitus and type 2 diabetes mellitus has been well demonstrated. However, the degree of glycaemic variability (GV) in people with type 3c diabetes mellitus has not been fully explored using CGM. This study aims to evaluate GV in type 3c diabetes mellitus participants and compare it to type 1 diabetes mellitus and type 2 diabetes mellitus. METHODS Participants were grouped according to type of diabetes. GV, defined as percentage coefficient of variation (%CV), and other glycaemic indices were obtained using CGM (FreeStyle Libre, Abbott, Australia) from 82 participants across all three cohorts over a 14-day period. Comparison of baseline characteristics and GV were performed across all groups. Correlation of GV with C-peptide values, and whether pancreatic supplementation had an effect on GV were also assessed in the type 3c diabetes mellitus cohort. RESULTS GV of type 3c diabetes mellitus participants was within the recommended target of less than %CV 36% (p = 0.004). Type 3c diabetes mellitus participants had the lowest GV among the three groups (p = 0.001). There was a trend for lower C-peptide levels to be associated with higher GV in type 3c diabetes mellitus participants (p = 0.22). Pancreatic enzyme supplementation in type 3c diabetes mellitus participants did not have an effect on GV (p = 0.664). CONCLUSIONS Although type 3c diabetes mellitus participants were the least variable, they had the highest mean glucose levels and estimated HbA1c , which suggests that the concept of 'brittle' diabetes in type 3c diabetes mellitus is not supported by the results of CGM in this study and may be leading to poorer glycaemic control.
Collapse
Affiliation(s)
- Victoria T. Y. Lee
- Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ann Poynten
- Department of Endocrinology, Diabetes and MetabolismPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Barbara Depczynski
- Department of Endocrinology, Diabetes and MetabolismPrince of Wales HospitalSydneyNew South WalesAustralia
| |
Collapse
|
27
|
Taylor GS, Shaw AC, Smith K, Wason J, McDonald TJ, Oram RA, Stevenson E, Shaw JAM, West DJ. Capturing the real-world benefit of residual β-cell function during clinically important time-periods in established Type 1 diabetes. Diabet Med 2022; 39:e14814. [PMID: 35181926 PMCID: PMC9311680 DOI: 10.1111/dme.14814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
AIMS Many individuals with type 1 diabetes retain residual β-cell function, with increased endogenous insulin secretion associated with reduced hyperglycaemia, hypoglycaemia and glycaemic variability. However, it is unknown when these improvements occur during the day. Dysglycaemia is common in overnight and postprandial periods and associated with diabetes complications. Therefore, this study aimed to determine the influence of residual β-cell function upon nocturnal and postprandial glycaemic control in established type 1 diabetes. METHODS Under free-living conditions, 66 participants wore a blinded continuous glucose monitor (CGM), kept a food diary, and completed a stimulated urine C-peptide creatinine (UCPCR) test. Nocturnal, and postprandial CGM outcomes (participant means and discrete event analysis) were compared between UCPCR groups: undetectable (Cpepund ), low (Cpeplow : 0.001-0.19 nmol/mmol) and high (Cpephigh : ≥0.2 nmol/mmol). RESULTS Greater β-cell function was associated with incremental improvements in glycaemia. Cpephigh spent significantly greater time in normoglycaemia than Cpepund overnight (76 ± 20% vs. 58 ± 20%, p = 0.005) and 0-300 mins postprandially (68 ± 22% vs. 51 ± 22%, p = 0.045), while also having reducing nocturnal variability (SD 1.12 ± 0.41 vs. 1.52 ± 0.43 mmol/L, p = 0.010). Analysis of individual events, controlling for diabetes duration, BMI, basal insulin, use of a continuous or flash glucose monitor and (for postprandial) meal type, carbohydrate and bolus insulin intake, replicated the group findings, additionally demonstrating Cpepund had increased hyperglycaemia versus Cpeplow overnight and increased postprandial hypoglycaemic events compared with Cpephigh . For all participants, breakfast had a significantly higher incremental area under the curve than lunch and dinner. CONCLUSIONS Residual β-cell function is associated with improved nocturnal and postprandial glycaemic control. These data may be of clinical importance for identifying specific periods and individuals where further glycaemic management strategies would be beneficial.
Collapse
Affiliation(s)
- Guy S. Taylor
- Faculty of Medical SciencePopulation Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Andy C. Shaw
- Faculty of Medical SciencePopulation Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Kieran Smith
- Faculty of Medical SciencePopulation Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James Wason
- Faculty of Medical SciencePopulation Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Timothy J. McDonald
- National Institute for Health ResearchExeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
- Royal Devon and Exeter NHS Foundation TrustExeterUK
| | - Richard A. Oram
- National Institute for Health ResearchExeter Clinical Research FacilityUniversity of Exeter Medical SchoolExeterUK
- Royal Devon and Exeter NHS Foundation TrustExeterUK
| | - Emma Stevenson
- Faculty of Medical SciencePopulation Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James A. M. Shaw
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Newcastle Centre for Diabetes CareNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Daniel J. West
- Faculty of Medical SciencePopulation Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
28
|
Zhang L, Xu Y, Jiang X, Wu J, Liu F, Fan L, Li X, Yin G, Yang L. Impact of flash glucose monitoring on glycemic control varies with the age and residual β-cell function of patients with type 1 diabetes mellitus. J Diabetes Investig 2022; 13:552-559. [PMID: 34637185 PMCID: PMC8902407 DOI: 10.1111/jdi.13693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS/INTRODUCTION We aimed to explore the clinical factors associated with glycemic variability (GV) assessed with flash glucose monitoring (FGM), and investigate the impact of FGM on glycemic control among Chinese type 1 diabetes mellitus patients in a real-life clinical setting. MATERIALS AND METHODS A total of 171 patients were included. GV was assessed from FGM data. A total of 110 patients wore FGM continuously for 6 months (longitudinal cohort). Hemoglobin A1c (HbA1c), fasting and 2-h postprandial C-peptide, and glucose profiles were collected. Changes in HbA1c and glycemic parameters were assessed during a 6-month FGM period. RESULTS Individuals with high residual C-peptide (HRCP; 2-h postprandial C-peptide >200 pmol/L) had less GV than patients with low residual C-peptide ( 2-h postprandial C-peptide ≤200 pmol/L; P < 0.001). In the longitudinal cohort (n = 110), HbA1c and mean glucose decreased, time in range (TIR) increased during the follow-up period (P < 0.05). The 110 patients were further divided into age and residual C-peptide subgroups: (i) HbA1c and mean glucose were reduced significantly only in the subgroup aged ≤14 years during the follow-up period, whereas time below range also increased in this subgroup at 3 months (P = 0.047); and (ii) HbA1c improved in the HRCP subgroup at 3 and 6 months (P < 0.05). The mean glucose decreased and TIR improved significantly in the low residual C-peptide subgroup; however, TIR was still lower and time below range was higher than those of the HRCP subgroup at all time points (P < 0.05). CONCLUSIONS HRCP was associated with less GV. FGM wearing significantly reduced HbA1c, especially in pediatric patients and those with HRCP. Additionally, the mean glucose and TIR were also found to improve.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yaling Xu
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiaofang Jiang
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jieru Wu
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Fang Liu
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Li Fan
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xia Li
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Guangming Yin
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Lin Yang
- Department of Metabolism and EndocrinologyNational Clinical Research Center for Metabolic DiseasesThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
29
|
Taylor GS, Shaw A, Scragg JH, Smith K, Campbell MD, McDonald TJ, Shaw JA, Ross MD, West DJ. Type 1 Diabetes Patients With Different Residual Beta-Cell Function but Similar Age, HBA1c, and Cardiorespiratory Fitness Have Differing Exercise-Induced Angiogenic Cell Mobilisation. Front Endocrinol (Lausanne) 2022; 13:797438. [PMID: 35222269 PMCID: PMC8874313 DOI: 10.3389/fendo.2022.797438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many individuals with type 1 diabetes retain residual beta-cell function. Sustained endogenous insulin and C-peptide secretion is associated with reduced diabetes related complications, but underlying mechanisms remain unclear. Lower circulating numbers of endothelial and hematopoietic progenitor cells (EPCs and HPCs), and the inability to increase the count of these cells in response to exercise, are also associated with increased diabetes complications and cardiovascular disease. It is unknown whether residual beta-cell function influences HPCs and EPCs. Thus, this study examined the influence of residual beta-cell function in type 1 diabetes upon exercise-induced changes in haematopoietic (HPCs) and endothelial progenitor cells (EPCs). METHODS Participants with undetectable stimulated C-peptide (n=11; Cpepund), 10 high C-peptide (Cpephigh; >200 pmol/L), and 11 non-diabetes controls took part in this observational exercise study, completing 45 minutes of intensive walking at 60% V˙O2peak . Clinically significant HPCs (CD34+) and EPCs (CD34+VEGFR2+) phenotypes for predicting future adverse cardiovascular outcomes, and subsequent cell surface expression of chemokine receptor 4 (CXCR4) and 7 (CXCR7), were enumerated at rest and immediately post-exercise by flow cytometry. RESULTS Exercise increased HPCs and EPCs phenotypes similarly in the Cpephigh and control groups (+34-121% across phenotypes, p<0.04); but Cpepund group did not significantly increase from rest, even after controlling for diabetes duration. Strikingly, the post-exercise Cpepund counts were still lower than Cpephigh at rest. CONCLUSIONS Residual beta-cell function is associated with an intact exercise-induced HPCs and EPCs mobilisation. As key characteristics (age, fitness, HbA1c) were similar between groups, the mechanisms underpinning the absent mobilisation within those with negative C-peptide, and the vascular implications, require further investigation.
Collapse
Affiliation(s)
- Guy S. Taylor
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Daniel J. West, ; Guy S. Taylor,
| | - Andy Shaw
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jadine H. Scragg
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Kieran Smith
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthew D. Campbell
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Timothy J. McDonald
- National Institute for Health Research Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
- Academic Department of Blood Sciences, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - James A. Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Centre for Diabetes Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Daniel J. West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Daniel J. West, ; Guy S. Taylor,
| |
Collapse
|
30
|
Wellens MJ, Vollenbrock CE, Dekker P, Boesten LSM, Geelhoed-Duijvestijn PH, de Vries-Velraeds MMC, Nefs G, Wolffenbuttel BHR, Aanstoot HJ, van Dijk PR. Residual C-peptide secretion and hypoglycemia awareness in people with type 1 diabetes. BMJ Open Diabetes Res Care 2021; 9:9/1/e002288. [PMID: 34526306 PMCID: PMC8444236 DOI: 10.1136/bmjdrc-2021-002288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION This study aimed to assess the association between fasting serum C-peptide levels and the presence of impaired awareness of hypoglycemia (IAH) in people with type 1 diabetes. RESEARCH DESIGN AND METHODS We performed a cross-sectional study among 509 individuals with type 1 diabetes (diabetes duration 5-65 years). Extensive clinical data and fasting serum C-peptide concentrations were collected and related to the presence or absence of IAH, which was evaluated using the validated Dutch version of the Clarke questionnaire. A multivariable logistic regression model was constructed to investigate the association of C-peptide and other clinical variables with IAH. RESULTS In 129 (25%) individuals, residual C-peptide secretion was detected, while 75 (15%) individuals reported IAH. The median (IQR) C-peptide concentration among all participants was 0.0 (0.0-3.9) pmol/L. The prevalence of severe hypoglycemia was lower in people with demonstrable C-peptide versus those with absent C-peptide (30% vs 41%, p=0.025). Individuals with IAH were older, had longer diabetes duration, more frequently had macrovascular and microvascular complications, and more often used antihypertensive drugs, antiplatelet agents and cholesterol-lowering medication. There was a strong association between IAH and having a severe hypoglycemia in the preceding year. In multivariable regression analysis, residual C-peptide, either continuously or dichotomous, was associated with lower prevalence of IAH (p=0.040-0.042), while age at diabetes onset (p=0.001), presence of microvascular complications (p=0.003) and body mass index (BMI) (p=0.003) were also independently associated with the presence of IAH. CONCLUSIONS Higher BMI, the presence of microvascular complications and higher age at diabetes onset were independent risk factors for IAH in people with type 1 diabetes, while residual C-peptide secretion was associated with lower risk of this complication.
Collapse
Affiliation(s)
- Martine J Wellens
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Charlotte E Vollenbrock
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pim Dekker
- Diabeter, Center for Paediatric and Adolescent Diabetes Care and Research, Rotterdam, The Netherlands
| | - Lianne S M Boesten
- Department of Clinical Chemistry, IJsselland Hospital, Capelle aan den IJssel, Netherlands
| | | | | | - Giesje Nefs
- Diabeter, Center for Paediatric and Adolescent Diabetes Care and Research, Rotterdam, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Henk-Jan Aanstoot
- Diabeter, Center for Paediatric and Adolescent Diabetes Care and Research, Rotterdam, The Netherlands
| | - Peter R van Dijk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Ikegami H, Babaya N, Noso S. β-Cell failure in diabetes: Common susceptibility and mechanisms shared between type 1 and type 2 diabetes. J Diabetes Investig 2021; 12:1526-1539. [PMID: 33993642 PMCID: PMC8409822 DOI: 10.1111/jdi.13576] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus is etiologically classified into type 1, type 2 and other types of diabetes. Despite distinct etiologies and pathogenesis of these subtypes, many studies have suggested the presence of shared susceptibilities and underlying mechanisms in β-cell failure among different types of diabetes. Understanding these susceptibilities and mechanisms can help in the development of therapeutic strategies regardless of the diabetes subtype. In this review, we discuss recent evidence indicating the shared genetic susceptibilities and common molecular mechanisms between type 1, type 2 and other types of diabetes, and highlight the future prospects as well.
Collapse
Affiliation(s)
- Hiroshi Ikegami
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| | - Naru Babaya
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsaka‐sayama, OsakaJapan
| |
Collapse
|
32
|
Porcellati F, Di Mauro S, Mazzieri A, Scamporrino A, Filippello A, De Fano M, Fanelli CG, Purrello F, Malaguarnera R, Piro S. Glucagon as a Therapeutic Approach to Severe Hypoglycemia: After 100 Years, Is It Still the Antidote of Insulin? Biomolecules 2021; 11:biom11091281. [PMID: 34572493 PMCID: PMC8464883 DOI: 10.3390/biom11091281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoglycemia represents a dark and tormented side of diabetes mellitus therapy. Patients treated with insulin or drug inducing hypoglycemia, consider hypoglycemia as a harmful element, which leads to their resistance and lack of acceptance of the pathology and relative therapies. Severe hypoglycemia, in itself, is a risk for patients and relatives. The possibility to have novel strategies and scientific knowledge concerning hypoglycemia could represent an enormous benefit. Novel available glucagon formulations, even now, allow clinicians to deal with hypoglycemia differently with respect to past years. Novel scientific evidence leads to advances concerning physiopathological mechanisms that regulated glycemic homeostasis. In this review, we will try to show some of the important aspects of this field.
Collapse
Affiliation(s)
- Francesca Porcellati
- Department of Medicine and Surgery, Perugia University School of Medicine, Via Gambuli 1, 06126 Perugia, Italy; (F.P.); (A.M.); (M.D.F.); (C.G.F.)
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Alessio Mazzieri
- Department of Medicine and Surgery, Perugia University School of Medicine, Via Gambuli 1, 06126 Perugia, Italy; (F.P.); (A.M.); (M.D.F.); (C.G.F.)
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Michelantonio De Fano
- Department of Medicine and Surgery, Perugia University School of Medicine, Via Gambuli 1, 06126 Perugia, Italy; (F.P.); (A.M.); (M.D.F.); (C.G.F.)
| | - Carmine Giuseppe Fanelli
- Department of Medicine and Surgery, Perugia University School of Medicine, Via Gambuli 1, 06126 Perugia, Italy; (F.P.); (A.M.); (M.D.F.); (C.G.F.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Roberta Malaguarnera
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; Tel.: +39-0935-536577
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| |
Collapse
|
33
|
Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci 2021; 22:7783. [PMID: 34360550 PMCID: PMC8346105 DOI: 10.3390/ijms22157783] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence points to the role of glucose variability (GV) in the development of the microvascular and macrovascular complications of diabetes. In this review, we summarize data on GV-induced biochemical, cellular and molecular events involved in the pathogenesis of diabetic complications. Current data indicate that the deteriorating effect of GV on target organs can be realized through oxidative stress, glycation, chronic low-grade inflammation, endothelial dysfunction, platelet activation, impaired angiogenesis and renal fibrosis. The effects of GV on oxidative stress, inflammation, endothelial dysfunction and hypercoagulability could be aggravated by hypoglycemia, associated with high GV. Oscillating hyperglycemia contributes to beta cell dysfunction, which leads to a further increase in GV and completes the vicious circle. In cells, the GV-induced cytotoxic effect includes mitochondrial dysfunction, endoplasmic reticulum stress and disturbances in autophagic flux, which are accompanied by reduced viability, activation of apoptosis and abnormalities in cell proliferation. These effects are realized through the up- and down-regulation of a large number of genes and the activity of signaling pathways such as PI3K/Akt, NF-κB, MAPK (ERK), JNK and TGF-β/Smad. Epigenetic modifications mediate the postponed effects of glucose fluctuations. The multiple deteriorative effects of GV provide further support for considering it as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| | - Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia
| | - Anton I. Korbut
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| |
Collapse
|
34
|
Carr ALJ, Oram RA, Marren SM, McDonald TJ, Narendran P, Andrews RC. Measurement of Peak C-Peptide at Diagnosis Informs Glycemic Control but not Hypoglycemia in Adults With Type 1 Diabetes. J Endocr Soc 2021; 5:bvab127. [PMID: 34377883 PMCID: PMC8344843 DOI: 10.1210/jendso/bvab127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Context High-residual C-peptide in longer-duration type 1 diabetes (T1D) is associated with fewer hypoglycemic events and reduced glycemic variability. Little is known about the impact of C-peptide close to diagnosis. Objective Using continuous glucose monitoring (CGM) data from a study of newly diagnosed adults with T1D, we aimed to explore if variation in C-peptide close to diagnosis influenced glycemic variability and risk of hypoglycemia. Methods We studied newly diagnosed adults with T1D who wore a Dexcom G4 CGM for 7 days as part of the Exercise in Type 1 Diabetes (EXTOD) study. We examined the relationship between peak stimulated C-peptide and glycemic metrics of variability and hypoglycemia for 36 CGM traces from 23 participants. Results For every 100 pmol/L-increase in peak C-peptide, the percentage of time spent in the range 3.9 to 10 mmol/L increased by 2.4% (95% CI, 0.5-4.3), P = .01) with a reduction in time spent at level 1 hyperglycemia (> 10 mmol/L) and level 2 hyperglycemia (> 13.9 mmol/L) by 2.6% (95% CI, –4.9 to –0.4, P = .02) and 1.3% (95% CI, –2.7 to –0.006, P = .04), respectively. Glucose levels were on average lower by 0.19 mmol/L (95% CI, –0.4 to 0.02, P = .06) and SD reduced by 0.14 (95% CI, –0.3 to –0.02, P = .02). Hypoglycemia was not common in this group and no association was observed between time spent in hypoglycemia (P = .97) or hypoglycemic risk (P = .72). There was no association between peak C-peptide and insulin dose–adjusted glycated hemoglobin A1c (P = .45). Conclusion C-peptide is associated with time spent in the normal glucose range and with less hyperglycemia, but not risk of hypoglycemia in newly diagnosed people with T1D.
Collapse
Affiliation(s)
- Alice L J Carr
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX2 5DW, UK
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX2 5DW, UK
| | - Shannon M Marren
- Great Western Hospitals NHS Foundation Trust, Swindon, SN3 6BB, UK
| | - Timothy J McDonald
- The Academic Department of Blood Sciences, The Royal Devon and Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Parth Narendran
- Department of Diabetes, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Robert C Andrews
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX2 5DW, UK.,Department of Diabetes, Taunton and Somerset NHS Foundation Trust, Taunton, TA1 5DA, UK
| |
Collapse
|
35
|
Foteinopoulou E, Clarke CAL, Pattenden RJ, Ritchie SA, McMurray EM, Reynolds RM, Arunagirinathan G, Gibb FW, McKnight JA, Strachan MWJ. Impact of routine clinic measurement of serum C-peptide in people with a clinician-diagnosis of type 1 diabetes. Diabet Med 2021; 38:e14449. [PMID: 33131101 DOI: 10.1111/dme.14449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine the impact of the routine use of serum C-peptide in an out-patient clinic setting on individuals with a clinician-diagnosis of type 1 diabetes. METHODS In this single-centre study, individuals with type 1 diabetes of at least 3 years duration were offered random serum C-peptide testing at routine clinic review. A C-peptide ≥200 pmol/L prompted further evaluation of the individual using a diagnostic algorithm that included measurement of islet cell antibodies and genetic testing. Where appropriate, a trial of anti-diabetic co-therapies was considered. RESULTS Serum C-peptide testing was performed in 859 individuals (90% of the eligible cohort), of whom 114 (13.2%) had C-peptide ≥200 pmol/L. The cause of diabetes was reclassified in 58 individuals (6.8% of the tested cohort). The majority of reclassifications were to type 2 diabetes (44 individuals; 5.1%), with a smaller proportion of monogenic diabetes (14 individuals; 1.6%). Overall, 13 individuals (1.5%) successfully discontinued insulin, while a further 16 individuals (1.9%) had improved glycaemic control following the addition of co-therapies. The estimated total cost of the testing programme was £23,262 (~€26,053), that is, £27 (~€30) per individual tested. In current terms, the cost of prior insulin therapy in the individuals with monogenic diabetes who successfully stopped insulin was approximately £57,000 (~€64,000). CONCLUSIONS/INTERPRETATION Serum C-peptide testing can easily be incorporated into an out-patient clinic setting and could be a cost-effective intervention. C-peptide testing should be strongly considered in individuals with a clinician-diagnosis of type 1 diabetes of at least 3 years duration.
Collapse
Affiliation(s)
- Evgenia Foteinopoulou
- Edinburgh Centre for Endocrinology & Diabetes, Western General Hospital, Edinburgh, UK
| | - Catriona A L Clarke
- Department of Clinical Biochemistry, Western General Hospital, Edinburgh, UK
| | - Rebecca J Pattenden
- Department of Clinical Biochemistry, Western General Hospital, Edinburgh, UK
| | - Stuart A Ritchie
- Edinburgh Centre for Endocrinology & Diabetes, Western General Hospital, Edinburgh, UK
| | - Emily M McMurray
- Edinburgh Centre for Endocrinology & Diabetes, Western General Hospital, Edinburgh, UK
| | - Rebecca M Reynolds
- Edinburgh Centre for Endocrinology & Diabetes, Western General Hospital, Edinburgh, UK
| | | | - Fraser W Gibb
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - John A McKnight
- Edinburgh Centre for Endocrinology & Diabetes, Western General Hospital, Edinburgh, UK
| | - Mark W J Strachan
- Edinburgh Centre for Endocrinology & Diabetes, Western General Hospital, Edinburgh, UK
| |
Collapse
|
36
|
Moore MC, Warner SO, Dai Y, Sheanon N, Smith M, Farmer B, Cason RL, Cherrington AD, Winnick JJ. C-peptide enhances glucagon secretion in response to hyperinsulinemia under euglycemic and hypoglycemic conditions. JCI Insight 2021; 6:148997. [PMID: 34003799 PMCID: PMC8262495 DOI: 10.1172/jci.insight.148997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies have associated the presence of residual insulin secretion capability (also referred to as being C-peptide positive) with lower risk of insulin-induced hypoglycemia in patients with type 1 diabetes (T1D), although the reason is unclear. We tested the hypothesis that C-peptide infusion would enhance glucagon secretion in response to hyperinsulinemia during euglycemic and hypoglycemic conditions in dogs (5 male/4 female). After a 2-hour basal period, an intravenous (IV) infusion of insulin was started, and dextrose was infused to maintain euglycemia for 2 hours. At the same time, an IV infusion of either saline (SAL) or C-peptide (CPEP) was started. After this euglycemic period, the insulin and SAL/CPEP infusions were continued for another 2 hours, but the glucose was allowed to fall to approximately 50 mg/dL. In response to euglycemic-hyperinsulinemia, glucagon secretion decreased in SAL but remained unchanged from the basal period in CPEP condition. During hypoglycemia, glucagon secretion in CPEP was 2 times higher than SAL, and this increased net hepatic glucose output and reduced the amount of exogenous glucose required to maintain glycemia. These data suggest that the presence of C-peptide during IV insulin infusion can preserve glucagon secretion during euglycemia and enhance it during hypoglycemia, which could explain why T1D patients with residual insulin secretion are less susceptible to hypoglycemia.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Shana O. Warner
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yufei Dai
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nicole Sheanon
- Department of Endocrinology, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rebecca L. Cason
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alan D. Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jason J. Winnick
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR. A Bittersweet Response to Infection in Diabetes; Targeting Neutrophils to Modify Inflammation and Improve Host Immunity. Front Immunol 2021; 12:678771. [PMID: 34149714 PMCID: PMC8209466 DOI: 10.3389/fimmu.2021.678771] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Collapse
Affiliation(s)
- Rebecca Dowey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ahmed Iqbal
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon R. Heller
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
38
|
Pinheiro MM, Pinheiro FMM, Diniz SN, Fabbri A, Infante M. Combination of vitamin D and dipeptidyl peptidase-4 inhibitors (VIDPP-4i) as an immunomodulation therapy for autoimmune diabetes. Int Immunopharmacol 2021; 95:107518. [PMID: 33756226 DOI: 10.1016/j.intimp.2021.107518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) represent the most common types of autoimmune diabetes and are characterized by different age of onset, degrees of immune-mediated destruction of pancreatic beta cells and rates of disease progression towards insulin dependence. Several immunotherapies aimed to counteract autoimmune responses against beta cells and preserve beta-cell function are currently being investigated, particularly in T1D. Preliminary findings suggest a potential role of combination therapy with vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors (VIDPP-4i) in preserving beta-cell function in autoimmune diabetes. This manuscript aims to provide a comprehensive overview of the immunomodulatory properties of vitamin D and DPP-4 inhibitors, as well as the rationale for investigation of their combined use as an immunomodulation therapy for autoimmune diabetes.
Collapse
Affiliation(s)
- Marcelo Maia Pinheiro
- UNIVAG, University Center, Dom Orlando Chaves Ave, 2655 - Cristo Rei, Várzea Grande, 78118-000 Mato Grosso, Brazil; Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil.
| | - Felipe Moura Maia Pinheiro
- Hospital de Base, Faculdade de Medicina de São José do Rio Preto FAMERP - SP, 5546, Brigadeiro Faria Lima Ave, Vila São Pedro, São José do Rio Preto, 15015-500 São Paulo, Brazil
| | - Susana Nogueira Diniz
- Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil
| | - Andrea Fabbri
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy
| | - Marco Infante
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Via San Nemesio 21, 00145 Rome, Italy.
| |
Collapse
|
39
|
Timmons JG, Boyle JG, Petrie JR. Time in Range as a Research Outcome Measure. Diabetes Spectr 2021; 34:133-138. [PMID: 34149253 PMCID: PMC8178718 DOI: 10.2337/ds20-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Time in range (TIR) is gaining ground as an outcome measure in type 1 diabetes trials. However, inclusion of TIR raises several issues for trial design. In this article, the authors begin by defining TIR and describing the current international consensus around TIR targets. They then expand on evidence for the validity of TIR as a primary clinical trial outcome before concluding with some practical, ethical, and logistical implications.
Collapse
Affiliation(s)
- Joseph G. Timmons
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
- Department of Endocrinology and Diabetes, Glasgow Royal Infirmary, Glasgow, Scotland, U.K
| | - James G. Boyle
- Department of Endocrinology and Diabetes, Glasgow Royal Infirmary, Glasgow, Scotland, U.K
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, Scotland, U.K
| | - John R. Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
- Department of Endocrinology and Diabetes, Glasgow Royal Infirmary, Glasgow, Scotland, U.K
| |
Collapse
|
40
|
Miya A, Nakamura A, Handa T, Nomoto H, Kameda H, Cho KY, Nagai S, Ito YM, Miyoshi H, Atsumi T. Log-linear relationship between endogenous insulin secretion and glycemic variability in patients with type 2 diabetes on continuous glucose monitoring. Sci Rep 2021; 11:9057. [PMID: 33907279 PMCID: PMC8079412 DOI: 10.1038/s41598-021-88749-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
The contribution of endogenous insulin secretion to glycemic variability (GV) may differ between patients with impaired insulin secretion and those with preserved secretion. Our objective was to determine the linearity of the relationship between fasting C-peptide (CPR) as a marker of endogenous insulin secretion and GV in type 2 diabetes (T2DM), regardless of the type of antidiabetic treatment. We conducted a prospective observational study using continuous glucose monitoring obtained from 284 Japanese outpatients with T2DM with various HbA1c values and antidiabetic treatment. We constructed a prediction curve of base-line CPR versus coefficient of variation (CV) and identified the clinical factors associated with CV using multiple regression analysis. Fasting CPR showed a significant negative log-linear relationship with CV (P < 0.0001), and the latter being strikingly high in the low-CPR group. The multiple regression analysis showed that low CPR was an independent predictor of high CV (P < 0.0001). The significant correlations were sustained in both patients with/without insulin treatment. The contribution of endogenous insulin secretion to GV depends on the extent of insulin secretion impairment. Fasting CPR may represent a useful indicator of GV instability in T2DM.
Collapse
Affiliation(s)
- Aika Miya
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Takahisa Handa
- Division of Diabetes and Endocrinology, Department of Medicine, NTT Sapporo Medical Center, Sapporo, Japan
| | - Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kyu Yong Cho
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan.,Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - So Nagai
- Division of Diabetes and Endocrinology, Department of Medicine, NTT Sapporo Medical Center, Sapporo, Japan
| | - Yoichi M Ito
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hideaki Miyoshi
- Division of Diabetes and Obesity, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
41
|
1921-2021: From insulin discovery to islet transplantation in type 1 diabetes. ANNALES D'ENDOCRINOLOGIE 2021; 82:74-77. [PMID: 33839122 DOI: 10.1016/j.ando.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
One century after the discovery of insulin, the French Health regulations have just authorized the reimbursement for islet transplantation. Intraportal islet allotransplantation from a pancreatic donor is indicated in patients with type 1 diabetes (T1D) complicated with lability or hypoglycemia unawareness, or in case of a functioning kidney graft; islet auto-transplantation may be indicated after pancreatic surgery.Compared with insulin even administered in closed-loop pumps, the specificity of islet allotransplantation is the restoration of C-peptide secretion. Long-term insulin-independence is observed when the engrafted islet mass is sufficient, at the cost of immunosuppression. Fewer low-glucose events and less glucose variability, are observed even with minimal functional islet graft, after islet transplantation as at onset of T1D, when a residual C-peptide secretion is maintained, an objective currently approached with less aggressive immuno-modulating therapies than in the past. Therefore, restoration or preservation of endogen insulin secretion is an important goal, allowing to maintain a long-term glucose balance with more than 70% of time in range 3.9-10mmol/L and less than 3% of time <3.9mmol/L, thus reducing the occurrence of diabetic complications. In the clinical setting, - the preservation of C-peptide at early stage of T1D, - the use of technological ressources (multi-injections, sensors, insulin pump, closed-loop systems) at later stages, - and islet transplantation when hypoglycemia awareness becomes impaired are complementary for a personalized care all along the life of T1D patients.
Collapse
|
42
|
Cheng J, Yin M, Tang X, Yan X, Xie Y, He B, Li X, Zhou Z. Residual β-cell function after 10 years of autoimmune type 1 diabetes: prevalence, possible determinants, and implications for metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:650. [PMID: 33987348 PMCID: PMC8106063 DOI: 10.21037/atm-20-7471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Type 1 diabetes (T1D) has long been considered a progressive autoimmune disease resulting in the failure of pancreatic β-cell function and absolute endogenous insulin deficiency. However, several studies have demonstrated patients with T1D have detectable C-peptide levels long after diagnosis, which has remarkable clinical significance. Since this issue has not been systematically explored in non-Caucasian populations, we aimed to identify the prevalence of residual β-cell function and its related clinical features in Chinese long-term T1D patients. Methods We enrolled 109 patients with T1D for ≥10 years and administered a mixed-meal tolerance test (MMTT). Fasting and postprandial C-peptide (FCP/PCP) levels were measured to evaluate the insulin secretion function of β-cells. Patients whose FCP and PCP levels were both below the lower detection limit (16.7 pmol/L) were grouped as ‘β-cell function depleted’, while others were thought to have ‘residual β-cell function’. Demographic data, metabolic status, and diabetic complications were compared between patients with or without residual β-cell function. Results 38.5% of subjects retained residual β-cell function, and among those, 33.3% responded to MMTT by a two-fold or greater rise of their FCP levels. Clinical features associated with residual β-cell function were older age of diagnosis [27.5 (interquartile range:11.5–37.0) vs. 17.0 (interquartile range: 8.0–30.0) years, P=0.037], lower HbA1c (64.6±20.3 vs. 72.4±18.5 mmol/mol, P=0.026), and reduced rate of hypoglycemia (23.8% vs. 52.2%, P=0.003). Age of diagnosis was positively correlated with detectable FCP level (r=0.393, P=0.020). Individuals diagnosed after 30 years of age tended to retain residual β-cell function (OR =3.016, P=0.044). We found no association between residual β-cell function and chronic diabetic complications. Conclusions Residual β-cell function can be found in nearly 40% of long-term patients with T1D in China and is associated with older age at diagnosis and better glucose control. The relationship between residual β-cell function and chronic diabetic complications remains to be explored.
Collapse
Affiliation(s)
- Jin Cheng
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Yin
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohan Tang
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiang Yan
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuting Xie
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin He
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
43
|
Dover AR, Strachan MWJ, McKnight JA, Stimson RH, Mackenzie SD, Lyall MJ, Wright RJ, Forbes S, Gibb FW. Socioeconomic deprivation, technology use, C-peptide, smoking and other predictors of glycaemic control in adults with type 1 diabetes. Diabet Med 2021; 38:e14445. [PMID: 33128811 DOI: 10.1111/dme.14445] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
Abstract
AIMS Intensive glycaemic control is associated with substantial health benefits in people with type 1 diabetes. We sought to examine clinical and demographic factors associated with meeting glycaemic targets in type 1 diabetes. METHODS We conducted a cross-sectional analysis of 4594 individuals with type 1 diabetes. The primary outcome of the study was assessing factors associated with meeting HbA1c targets. Secondary endpoints included factors associated with continuous subcutaneous insulin infusion (CSII) use and persistent C-peptide secretion. RESULTS Socioeconomic deprivation was strongly associated with a lower likelihood of achieving an HbA1c <58 mmol/mol (7.5%) (20% in the most deprived quintile vs. 40% in the least deprived, p < 0.001). In multivariate analysis, absence of smoking history (OR 3.06, p < 0.001), flash monitoring (OR 1.49, p < 0.001), CSII (1.43, p = 0.022) and longer diabetes duration (OR 1.02 per year, p = 0.004) were independently associated with achieving HbA1c <58 mmol/mol (7.5%), whereas increasing age (OR 0.99 per year, p = 0.004) and C-peptide <50 pM (OR 0.58, p < 0.001) were associated with a lower likelihood of meeting this target. Low C-peptide (<50 pM) was less likely in men (OR 0.55, p < 0.001) and never smokers (0.44, p < 0.001) in multivariate analysis. CONCLUSIONS Lower levels of deprivation, non-smoking, higher C-peptide, technology use, lower BMI and male gender were all associated with a higher likelihood of meeting HbA1c targets. Access to proven diabetes treatments is lower in the most deprived individuals. Urgent efforts are required to provide treatments which are effective across the socioeconomic gradient.
Collapse
Affiliation(s)
- Anna R Dover
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Mark W J Strachan
- Edinburgh Centre for Endocrinology & Diabetes, Western General Hospital, Edinburgh, UK
| | - John A McKnight
- Edinburgh Centre for Endocrinology & Diabetes, Western General Hospital, Edinburgh, UK
| | - Roland H Stimson
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Scott D Mackenzie
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Marcus J Lyall
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Rohana J Wright
- Edinburgh Centre for Endocrinology & Diabetes, St John's Hospital, Edinburgh, UK
| | - Shareen Forbes
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Fraser W Gibb
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Babaya N, Noso S, Hiromine Y, Taketomo Y, Niwano F, Yoshida S, Yasutake S, Kawabata Y, Ikegami H. Relationship of continuous glucose monitoring-related metrics with HbA1c and residual β-cell function in Japanese patients with type 1 diabetes. Sci Rep 2021; 11:4006. [PMID: 33597626 PMCID: PMC7889608 DOI: 10.1038/s41598-021-83599-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
The targets for continuous glucose monitoring (CGM)-derived metrics were recently set; however, studies on CGM data over a long period with stable glycemic control are limited. We analyzed 194,279 CGM values obtained from 19 adult Japanese patients with type 1 diabetes. CGM data obtained during stable glycemic control over four months were analyzed. CGM-related metrics of different durations "within 120, 90, 60, 30, and 7 days" were calculated from baseline. Time in range (TIR; glucose 70-180 mg/dL), time above range (TAR; glucose ≥ 181 mg/dL), and average glucose levels, but not time below range (TBR; glucose ≤ 69 mg/dL), strongly correlated with glycated hemoglobin (HbA1c) values (P < 0.0001). TBR correlated with glucose coefficient of variation (CV) (P < 0.01). Fasting serum C-peptide levels negatively correlated with glucose CV (P < 0.01). HbA1c of approximately 7% corresponded to TIR of 74% and TAR of 20%. The shorter the CGM period, the weaker was the relationship between HbA1c and CGM-related metrics. TIR, TAR, and average glucose levels accurately reflected HbA1c values in Japanese patients with type 1 diabetes with stable glycemic control. Glucose CV and TBR complemented the limitation of HbA1c to detect glucose variability and hypoglycemia. Stable glycemic control with minimal hypoglycemia depended on residual β-cell function.
Collapse
Affiliation(s)
- Naru Babaya
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Yoshihisa Hiromine
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Yasunori Taketomo
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Fumimaru Niwano
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Sawa Yoshida
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Sara Yasutake
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Yumiko Kawabata
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan.
| |
Collapse
|
45
|
Choe HJ, Cho YM. Invincible β-cells in type 1 diabetes. J Diabetes Investig 2021; 12:137-139. [PMID: 32686209 PMCID: PMC7858098 DOI: 10.1111/jdi.13362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Hun Jee Choe
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
| | - Young Min Cho
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
46
|
Lam A, Dayan C, Herold KC. A little help from residual β cells has long-lasting clinical benefits. J Clin Invest 2021; 131:143683. [PMID: 33529163 PMCID: PMC7843219 DOI: 10.1172/jci143683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Following type 1 diabetes (T1D) diagnosis, declining C-peptide levels reflect deteriorating β cell function. However, the precise C-peptide levels that indicate protection from severe hypoglycemia remain unknown. In this issue of the JCI, Gubitosi-Klug et al. studied participants from the landmark and ongoing Diabetes Control and Complications Trial (DCCT) and the Epidemiology of Diabetes Interventions and Complications (EDIC) study that had long-standing (about 35 years) T1D. The authors correlated severe hypoglycemia and other disease outcomes with residual C-peptide levels. While C-peptide secretion failed to associate with hemoglobin A1c (HbA1c) or microvascular complications, C-peptide levels greater than 0.03 nmol/L were linked with fewer episodes of severe hypoglycemia. These findings suggest that efforts to preserve finite β cell function early in T1D can have meaningful, long-standing health benefits for patients.
Collapse
Affiliation(s)
- Anna Lam
- University of Alberta, Edmonton, Alberta, Canada
| | - Colin Dayan
- Cardiff University School of Medicine, Cardiff, United Kingdom
| | | |
Collapse
|
47
|
Typ-1-Diabetes: erhaltene C-Peptid-Sekretion – bessere Glukoseeinstellung. DIABETOL STOFFWECHS 2020. [DOI: 10.1055/a-1199-9471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|