1
|
Huang DL, Wang SW, Gao Y, Hu YJ, Zeng XX, Liu SY, Li P, Lan T, Shen Q, Tong YH, Kong DX, Mao ZJ. Yi-qi-yang-yin decoction ameliorates diabetic retinopathy: New and comprehensive evidence from network pharmacology, machine learning, molecular docking and molecular biology experiment. J Pharm Biomed Anal 2025; 260:116794. [PMID: 40086050 DOI: 10.1016/j.jpba.2025.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Yi-Qi-Yang-Yin Decoction (YQYY), a traditional Chinese medicine (TCM) formula, has been used to treat diabetic retinopathy (DR), yet its precise mechanisms of action remain poorly understood. In this study, two distinct diabetic models, namely spontaneous type 2 diabetic db/db mice and streptozotocin (STZ)-induced type 1 diabetic rats, were employed to assess the efficacy of YQYY in ameliorating DR. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was employed to identify the chemical composition of YQYY in mouse serum. Next, the possible targets and key pathways of YQYY for the management of DR were predicted by integrating network pharmacology and weighted gene co-expression network analysis (WGCNA). Network-based indicators were then employed to evaluate the efficacy of the formulae on DR, and molecular docking, along with compound similarity analysis, was used to identify candidate drugs of YQYY for DR. Finally, molecular biology techniques were utilized to experimentally validate the identified targets. Experimental results from animal models showed that YQYY effectively improved hemoglobin A1C (HbA1C), reduced vessel branch points, and mitigated retinal tissue injury in both DR models. 17 herbal components were identified in the YQYY-containing serum by UPLC-QTOF-MS. Network pharmacology predicted 44 common targets of YQYY involved in the regulation of DR. These targets were found to mainly participate in inflammation-related signaling pathways, including the NF-κB signaling pathway, toll-like receptor signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. By integrating the most relevant disease templates for DR with network pharmacology, we preliminarily identified two key functions of YQYY and their associated regulatory targets, which showed strong connections and correlations with the targets identified in the screened DR disease models. These results demonstrate the pivotal role of core targets, such as BAX, BCL2, MMP9, SIRT1, PPARγ, VCAM1, PTGS2, TNF-α, and RELA, in mediating the therapeutic effects of YQYY in managing DR. Network analysis of YQYY efficacy in DR revealed a significant correlation between the YQYY targets and DR-related genes. Furthermore, molecular docking and drug similarity comparisons suggested that kaempferol, formononetin, and caffeic acid show potential as therapeutic candidates for DR. Our investigation demonstrated the therapeutic efficacy of YQYY against DR, shedding light on novel perspectives regarding the active constituents and molecular pathways through which YQYY exerts its effects in managing DR.
Collapse
Affiliation(s)
- De-Lian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Yuan Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan-Jun Hu
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Qing Shen
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Yu-Hua Tong
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - De-Xing Kong
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhu-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Zhylkibayev A, Mobley J, Athar M, Gorbatyuk M. A multiomic study of retinal tissues in mice with direct ocular exposure to vesicants. Exp Eye Res 2025; 257:110414. [PMID: 40379201 DOI: 10.1016/j.exer.2025.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
This study employed a multiomic approach to investigate retinal tissue damage following direct ocular exposure (DOE) to vesicants (VSs)-namely, nitrogen mustard (NM) and lewisite (Lew). We explored both the acute and chronic stages of retinal injury by assessing functional, structural, and molecular changes. C57BL/6 mice were used to measure scotopic and photopic electroretinograms (ERGs) and to analyze TUNEL-positive retinal cells. Global retinal proteomics was conducted to identify common and unique signaling pathways. In addition, we performed targeted metabolomic and lipidomic analyses of retinal tissue to uncover significant metabolic changes. Our results demonstrated remarkable declines in ERG amplitudes at 2 and 4 weeks post-exposure, accompanied by an increase in TUNEL+ retinal cells in response to DOE to both VSs. Our proteomic analysis revealed chronic oxidative stress, mitochondrial dysfunction, elevated RXR signaling, and increased levels of 28 proteins. Moreover, we observed a decline in the KEGG phototransduction pathways, along with the downregulation of photoreceptor-specific proteins, in response to both VSs. Consistent with the proteomic findings, targeted metabolomics identified a decline in phototransduction and steroid hormone biosynthesis, along with increases in D-amino acid and purine metabolism, as well as lysine degradation. These changes were associated with a GSSG/GSH ratio of 2.6, confirming the proteomic data on oxidative stress. Furthermore, lipidomic analysis revealed an increase in oxidative lipid levels, accompanied by a 3.4-fold increase in phosphatidylserine (PS), suggesting apoptotic cell death and a reduction in fatty acids (FAs). In conclusion, exposure to both VSs induced progressive retinal damage, altering major metabolic pathways and dysregulating lipid metabolism. Future studies should focus on identifying the responses of individual neuronal cell types to DOE to VSs to develop cell-specific countermeasures.
Collapse
Affiliation(s)
- Assylbek Zhylkibayev
- Wake Forest University, School of Medicine, Department of Biochemistry, Winston-Salem, NC, USA.
| | - James Mobley
- University of Alabama at Birmingham, School of Medicine, Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, USA.
| | - Mohammad Athar
- University of Alabama at Birmingham, School of Medicine, Department of Dermatology, Birmingham, AL, USA.
| | - Marina Gorbatyuk
- Wake Forest University, School of Medicine, Department of Biochemistry, Winston-Salem, USA.
| |
Collapse
|
3
|
Jiang J, Gao Y, Wang J, Huang Y, Yang R, Zhang Y, Ma Y, Wen Y, Luo G, Zhang S, Cao Y, Yu M, Wang Q, Hu S, Wang K, Guo X, Gonzalez FJ, Liu Y, Liu H, Xie Q, Xie C. Hepatic sphingomyelin phosphodiesterase 3 promotes steatohepatitis by disrupting membrane sphingolipid metabolism. Cell Metab 2025; 37:1119-1136.e13. [PMID: 40015281 DOI: 10.1016/j.cmet.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Metabolic-dysfunction-associated steatohepatitis (MASH) remains a major health challenge. Herein, we identify sphingomyelin phosphodiesterase 3 (SMPD3) as a key driver of hepatic ceramide accumulation through increasing sphingomyelin hydrolysis at the cell membrane. Hepatocyte-specific Smpd3 gene disruption or pharmacological inhibition of SMPD3 alleviates MASH, whereas reintroducing SMPD3 reverses the resolution of MASH. Although healthy livers express low-level SMPD3, lipotoxicity-induced DNA damage suppresses sirtuin 1 (SIRT1), triggering an upregulation of SMPD3 during MASH. This disrupts membrane sphingomyelin-ceramide balance and promotes disease progression by enhancing caveolae-dependent lipid uptake and extracellular vesicle secretion from steatotic hepatocytes to exacerbate inflammation and fibrosis. Consequently, SMPD3 acts as a central hub integrating key MASH hallmarks. Notably, we discovered a bifunctional agent that simultaneously activates SIRT1 and inhibits SMPD3, which shows significant therapeutic potential in MASH treatment. These findings suggest that inhibition of hepatic SMPD3 restores membrane sphingolipid metabolism and holds great promise for developing novel MASH therapies.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuqing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200444, China
| | - Yan Huang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rong Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingquan Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gongkai Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shurui Zhang
- Lingang Laboratory, Shanghai 200444, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yutang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Minjun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Shulei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| |
Collapse
|
4
|
Zhang W, Yi C, Song Z, Yu B, Jiang X, Guo L, Huang S, Xia T, Huang F, Yan Y, Li H, Dai Y. Reshaping the gut microbiota: Tangliping decoction and its core blood-absorbed component quercetin improve diabetic cognitive impairment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156560. [PMID: 40058319 DOI: 10.1016/j.phymed.2025.156560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cognitive decline, which can result in diabetic cognitive impairment (DCI). Recent studies have indicated that gut microbiota plays a significant role in the development of DCI. Tangliping Decoction (TLP), a traditional Chinese medicine compound, contains various active ingredients that have been shown to regulate the microecology of gut microbiota and potentially improve DCI. However, it remains unclear whether TLP can improve DCI by modulating gut microbiota, as well as which specific component is primarily responsible for these effects. PURPOSE Assess the impact of TLP on alleviating DCI and investigate the contribution of quercetin (QR), the core blood-absorbed component of TLP, in this process. and investigate the underlying mechanisms through which TLP and QR enhance DCI by modulating gut microbiota composition. STUDY DESIGN AND METHODS Initially, experiments such as morris water maze (MWM), morphological analysis, and 16S ribosomal RNA (16S rRNA) gene amplicon sequencing from DCI mice, were performed to validate the pharmacological efficacy of TLP in mitigating DCI. The results indicated that TLP possesses the capacity to modulate the composition and quantity of gut microbiota and safeguard the integrity of the gut barrier and brain barrier. Secondly, high performance liquid chromatography coupled with high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with network pharmacology methods were used to screen for blood-absorbed components, suggesting that QR may be a potential core blood-absorbed component of TLP in the treatment of DCI. Subsequently, the pharmacological efficacy of QR in ameliorating DCI was confirmed, and the characteristics of gut microbiota as well as the permeability of the gut and brain barrier, were assessed. Finally, fecal microbiota transplantation (FMT) experiments were conducted, wherein fecal matter from TLP and QR-treated mice (donor mice) was transplanted into pseudo-sterile DCI mice with antibiotic-induced depletion of gut microbiota. This approach aimed to elucidate the specific mechanisms by which TLP and QR improve DCI through the modulation of the structure, composition, and abundance of gut microbiota. RESULTS TLP and QR have the potential to enhance learning and memory capabilities in DCI mice, as well as reduce homeostasis model assessment insulin resistance (HOMA-IR) and restore homeostasis model assessment-β function (HOMA- β), leading to increased fasting insulin (FIN) levels and decreased fasting blood glucose (FBG) levels. Simultaneously, the administration of FMT from donor mice to pseudo-sterile DCI mice has been shown to alter the composition and abundance of gut microbiota, leading to amelioration of pathological damage in the colon and hippocampal tissues. Ultimately, FMT utilizing fecal suspensions from donor mice treated with TLP and QR improved cognitive function in pseudo-sterile DCI mice, restore gut microbiota dysbiosis, and maintained the integrity of the gut and brain barriers. CONCLUSION The results of this study indicate that TLP and its core component, QR, which is absorbed into the bloodstream, improve DCI through a gut microbiota-dependent mechanism, providing further evidence for gut microbiota as a therapeutic target for DCI treatment.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Song
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, Chifeng, Inner Mongolia, China
| | - Bin Yu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
5
|
Mu Y, Li W, Wei D, Zhang X, Yao L, Xu X, Wang X, Zhang Z, Chen T. The effect of Hydrogen-rich water on retinal degeneration in the outer nuclear layer of simulated weightlessness rats. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:158-169. [PMID: 40280637 DOI: 10.1016/j.lssr.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/29/2025]
Abstract
Long-term spaceflight can lead to changes in eye structure and decreased visual function. At present, there are almost no effective methods to prevent and treat eye damage caused by microgravity environments. Oxidative stress has been identified as one of the contributing mechanisms of spaceflight-associated neuro-ocular syndrome (SANS), and hydrogen (H2) has demonstrated significant antioxidant and anti-inflammatory effects. The aim of this study was to determine whether hydrogen-rich water (HRW) has a protective effect against eye injury induced by tail-suspension simulated weightlessness in rats, and to elucidate the underlying mechanisms. In this experiment, we utilized an 8-week tail-suspension model to simulate weightlessness, and employed histopathology, visual electrophysiology, and biochemical indices to evaluate retinal structure, function, and related molecular mechanisms leading to retinal damage. We also assessed the therapeutic efficacy of HRW treatment. Results demonstrated that tail-suspension simulated weightlessness induced thinning of the retinal outer nuclear layer, decreased visual function, and promoted retinal inflammation, oxidative stress, and mitochondrial dysfunction in rats. HRW treatment effectively alleviated the degenerative changes in the retinal outer nuclear layer, improved retinal function, and reduced retinal inflammation in treated rats. Our findings revealed that HRW reduced the retinal oxidative stress response and enhanced mitochondrial function through the PI3K/Akt/Nrf2 signaling pathway. Overall, HRW may be a promising candidate for the treatment of eye injuries in simulated microgravity environments.
Collapse
Affiliation(s)
- Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China
| | - Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi' an, Shaanxi Province, PR China
| | - Dongyu Wei
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China
| | - Xinyi Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China
| | | | - Xiaofeng Xu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China
| | - Xiaocheng Wang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China.
| | - Zuoming Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China.
| | - Tao Chen
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
6
|
Gao J, Meng X, Yang X, Xie C, Tian C, Gong J, Zhang J, Dai S, Gao T. The protection of nicotinamide riboside against diabetes mellitus-induced bone loss via OXPHOS. Bone 2025; 193:117411. [PMID: 39884488 DOI: 10.1016/j.bone.2025.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Diabetes mellitus is a global disease that results in various complications, including diabetic osteoporosis. Prior studies have indicated a correlation between low levels of nicotinamide adenine dinucleotide (NAD+) and diabetes-related complications. Nicotinamide riboside (NR), a widely utilized precursor vitamin of NAD+, has been demonstrated to enhance age-related osteoporosis through the Sirt1/FOXO/β-catenin pathway in osteoblast progenitors. However, the impact of NR on bone health in diabetes mellitus remains unclear. In this study, we assessed the potential effects of NR on bone in diabetic mice. NR was administered to high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetic mice (T2DM), and various parameters, including metabolic indicators, bone quality, bone metabolic markers, and RNA sequences, were measured. Our findings confirmed that HFD/STZ-induced T2DM impaired bone microstructures, resulting in bone loss. NR effectively ameliorated insulin resistance, improved bone microarchitecture, and bone quality, reduced bone resorption, enhanced the Forkhead box O (FOXO) signaling pathway, mitigated the nuclear factor kappa B (NF-kB) signaling pathway, and ameliorated the disorder of the oxidative phosphorylation process (OXPHOS) in diabetic mice. In conclusion, NR demonstrated the capacity to alleviate T2DM-induced bone loss through the modulation of OXPHOS in type 2 diabetic mice. Our results underscore the potential of NR as a therapeutic target for addressing T2DM-related bone metabolism and associated diseases. Further cell-based studies under diabetic conditions, such as in vitro cultures of key cell types (e.g., osteoblasts and osteoclasts), are necessary to validate these findings.
Collapse
Affiliation(s)
- Jie Gao
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China; School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Xiangyuan Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Xingxiang Yang
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Chenqi Xie
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China
| | - Junwei Zhang
- Shandong Wendeng Osteopathic Hospital, Weihai 264400, China
| | - Shiyou Dai
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, China.
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
7
|
Zingale E, Masuzzo S, Lajunen T, Reinisalo M, Rautio J, Consoli V, D’Amico AG, Vanella L, Pignatello R. Protective Role and Enhanced Intracellular Uptake of Curcumin in Retinal Cells Using Self-Emulsifying Drug Delivery Systems (SNEDDS). Pharmaceuticals (Basel) 2025; 18:265. [PMID: 40006077 PMCID: PMC11859040 DOI: 10.3390/ph18020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Sirtuin-1 (SIRT1), a histone deacetylase enzyme expressed in ocular tissues with intracellular localization, plays a critical protective role against various degenerative ocular diseases. The link between reduced SIRT1 levels and diabetic retinopathy (DR) has prompted the exploration of natural therapeutic compounds that act as SIRT1 agonists. Curcumin (CUR), which has been shown to upregulate SIRT1 expression, is one such promising compound. However, effective delivery of CUR to the deeper ocular tissues, particularly the retina, remains a challenge due to its poor solubility and limited ocular penetration following topical administration. Within this context, the development of self-nanoemulsifying drug delivery systems (SNEDDS) for CUR topical ocular delivery represents a novel approach. Methods: In accordance with our prior research, optimized SNEDDS loaded with CUR were developed and characterized post-reconstitution with simulated tear fluid (STF) at a 1:10 ratio, showing suitable physicochemical and technological parameters for ocular delivery. Results: An entrapment efficiency (EE%) of approximately 99% and an absence of drug precipitation were noticed upon resuspension with STF. CUR-SNEDDS resulted in a better stability and release profile than free CUR under simulated ocular conditions. In vitro analysis of mucoadhesive properties revealed that CUR-SNEDDS, modified with a cationic lipid, demonstrated enhanced interactions with mucin, indicating the potential for improved ocular retention. Cytotoxicity tests demonstrated that CUR-SNEDDS did not affect the viability of human corneal epithelial (HCE) cells up to concentrations of 3 μM and displayed superior antioxidant activity compared to free CUR in an oxidative stress model using retinal pigment epithelial (ARPE-19) cells exposed to hydroquinone (HQ). Cell uptake studies confirmed an enhanced accumulation of CUR within the retinal cells following exposure to CUR-SNEDDS compared to neat CUR. CUR-SNEDDS, at lower concentrations, were found to effectively induce SIRT1 expression. Conclusions: The cytocompatibility, antioxidant properties, and enhanced cellular uptake suggest that these developed systems hold promise as formulations for the delivery of CUR to the retina.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (E.Z.); (S.M.); (V.C.); (A.G.D.); (L.V.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- CERNUT—Interdepartmental Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Sebastiano Masuzzo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (E.Z.); (S.M.); (V.C.); (A.G.D.); (L.V.)
| | - Tatu Lajunen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (T.L.); (M.R.); (J.R.)
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (T.L.); (M.R.); (J.R.)
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (T.L.); (M.R.); (J.R.)
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (E.Z.); (S.M.); (V.C.); (A.G.D.); (L.V.)
- CERNUT—Interdepartmental Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (E.Z.); (S.M.); (V.C.); (A.G.D.); (L.V.)
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (E.Z.); (S.M.); (V.C.); (A.G.D.); (L.V.)
- CERNUT—Interdepartmental Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (E.Z.); (S.M.); (V.C.); (A.G.D.); (L.V.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- CERNUT—Interdepartmental Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
8
|
Sun FW, Tian Y. Intermittent Fasting Improves Sevoflurane-Induced Cognitive Dysfunction in Rats Through SIRT1-Mediated Autophagy. Neurochem Res 2025; 50:81. [PMID: 39831923 DOI: 10.1007/s11064-025-04335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Perioperative neurocognitive disorders (PND) is a common complication affecting the central nervous system, commonly induced by anesthesia and surgical procedures. PND has garnered considerable attention in recent years, not only due to its high morbidity but also its negative impact on patient prognosis, such as increased rates of dementia and mortality. Sevoflurane, a common volatile anesthetic in clinical practice, is increasingly linked to being a potential risk factor for PND with prolonged inhalation, yet effective prevention and treatment methods remain elusive. Autophagy, a crucial regulatory process for maintaining organism function, has been shown to play a key role in sevoflurane-induced cognitive dysfunction. In recent years, intermittent fasting (IF), a unique dietary pattern, has gained significant recognition. IF has been shown in multiple studies to offer neuroprotective advantages in different central nervous system conditions. disorders. This study aims to explore the potential neuroprotective effects of intermittent fasting preconditioning through the autophagic pathway in sevoflurane-induced cognitive impairment in rats and its underlying mechanisms.
Collapse
Affiliation(s)
- Feng-Wei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Yuan L, Yin L, Lin X, Li J, Liang P, Jiang B. Revealing the Complex Interaction of Noncoding RNAs, Sirtuin Family, and Mitochondrial Function. J Gene Med 2025; 27:e70007. [PMID: 39842441 DOI: 10.1002/jgm.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Mitochondria are key organelles that perform and coordinate various metabolic processes in the cell, and their homeostasis is essential for the maintenance of eukaryotic life. To maintain mitochondrial homeostasis and cellular health, close communication between noncoding RNAs (ncRNAs) and proteins is required. For example, there are numerous crosstalk between ncRNAs and the sirtuin (SIRT1-7) family, which is a group of nicotinamide adenine dinucleotides (NAD(+))-dependent Type III deacetylases. NcRNAs are involved in the regulation of gene expression of sirtuin family members, and deacetylation of sirtuin family members can also influence the generation of ncRNAs. This review focuses on the relationship between the two mentioned above and summarizes the impact of their interactions on mitochondrial metabolism, oxidative stress, mitochondrial apoptotic pathways, mitochondrial biogenesis, mitochondrial dynamics, and other mitochondria-related pathophysiological processes. Finally, the review also describes targeted and appropriate treatment strategies. In conclusion, we provide an overview of the ncRNA-sirtuins/mitochondria relationship that could provide a reference for related research in the mitochondrial field and help the future development of new biomedical applications in this area.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Lee HY, Min KJ. Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan. Nutrients 2024; 16:4424. [PMID: 39771045 PMCID: PMC11678862 DOI: 10.3390/nu16244424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR. As a potent intervention to slow down aging, DR has demonstrated promising effects on lipid metabolism, influencing the aging processes across various species. The current review focuses on the relationships among DR-related molecular signaling proteins such as the sirtuins, signaling pathways such as the target of rapamycin and the insulin/insulin-like growth factor (IGF)-1, lipid metabolism, and aging. Furthermore, the review presents research results on diet-associated changes in cell membrane lipids and alterations in lipid metabolism caused by commensal bacteria, highlighting the importance of lipid metabolism in aging. Overall, the review explores the interplay between diet, lipid metabolism, and aging, while presenting untapped areas for further understanding of the aging process.
Collapse
Affiliation(s)
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| |
Collapse
|
11
|
Yang H, Chen YX, Linghu KG, Ren PY, Yao YT, Jiang F, Wu GP, Chen TT, Ji YP, Tao L, Sun QY, Li Y, Shen XC. 1,8-Cineole alleviates Nrf2-mediated redox imbalance and mitochondrial dysfunction in diabetes mellitus by targeting Sirt1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156099. [PMID: 39437685 DOI: 10.1016/j.phymed.2024.156099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is primarily attributed to impaired insulin secretion caused by β cell dysfunction. 1,8-Cineole is a key bioactive compound in the essential oil extracted from Fructus Alpiniae Zerumbet, which possesses anti-inflammatory and antioxidant properties. Nevertheless, it remains elusive about the protective effect and precise mechanisms of 1,8-Cineole against the β cell deterioration in T2DM. PURPOSE To investigate the effect of 1,8-Cineole on β cell dysfunction in T2DM and the potential mechanism of its action. METHODS A mouse model of T2DM and a β cell model of high glucose induction were generated to analyze the pharmacological properties of 1,8-Cineole. Proteomic and network pharmacological analyses were conducted to identify the crucial pathways involved in T2DM. Resveratrol [a Sirtuin1 (Sirt1) agonist] and Sirt1 knockdown were used to ascertain the mechanism of 1,8-Cineole in T2DM. The binding affinity of 1,8-Cineole to Sirt1 was assessed with molecular docking, surface plasmon resonance, immunoprecipitation assay, and cellular thermal shift assay. RESULTS Firstly, dysregulated crucial pathways in T2DM were screened out, including redox imbalance and mitochondrial dysfunction. Subsequently, 1,8-Cineole was found to activate Sirt1 and nuclear factor E2-related factor 2 (Nrf2) to repress oxidative stress in both T2DM mice and high glucose-induced β cells, thereby relieving mitochondrial dysfunction and apoptosis. Furthermore, 1,8-Cineole specifically targeted Sirt1 and favored the direct interaction between Sirt1 and Nrf2, ultimately restoring β cell function. CONCLUSIONS Our findings provide the first evidence that 1,8-Cineole directly binds to Sirt1 and enhances its stability, therefore rectifying impaired oxidative homeostasis, and then suppressing mitochondrial dysfunction and apoptosis in T2DM, indicating that 1,8-Cineole may be a potential candidate drug for T2DM treatment.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ke-Gang Linghu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Peng-Yan Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yu-Ting Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Feng Jiang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Guo-Ping Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Ting-Ting Chen
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Yun-Peng Ji
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qian-Yun Sun
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Yue Li
- Clinical College of Maternal and Child Health Care, Guizhou Medical University, Guiyang 550003, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 561113, China.
| |
Collapse
|
12
|
Zingale E, Weaver E, Bertelli PM, Lengyel I, Pignatello R, Lamprou DA. Development of dual drug loaded-hydrogel scaffold combining microfluidics and coaxial 3D-printing for intravitreal implantation. Int J Pharm 2024; 665:124700. [PMID: 39278290 DOI: 10.1016/j.ijpharm.2024.124700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Treating diabetic retinopathy (DR) effectively is challenging, aiming for high efficacy with minimal discomfort. While intravitreal injection is the current standard, it has several disadvantages. Implantable systems offer an alternative, less invasive, with long-lasting effects drug delivery system (DDS). The current study aims to develop a soft, minimally invasive, biodegradable, and bioadhesive material-based hydrogel scaffold to prevent common issues with implants. A grid-shaped scaffold was created using coaxial 3D printing (3DP) to extrude two bioinks in a single filament. The scaffold comprises an inner core of curcumin-loaded liposomes (CUR-LPs) that prepared by microfluidics (MFs) embedded in a hydrogel of hydroxyethyl cellulose (HEC), and an outer layer of hyaluronic acid-chitosan matrix with free resveratrol (RSV), delivering two Sirt1 agonists synergistically activating Sirt1 downregulated in DR. Optimized liposomes, prepared via MFs, exhibit suitable properties for retinal delivery in terms of size (<200 nm), polydispersity index (PDI) (<0.3), neutral zeta potential (ZP), encapsulation efficiency (∼97 %), and stability up to 4 weeks. Mechanical studies confirm scaffold elasticity for easy implantation. The release profiles show sustained release of both molecules, with different patterns related to different localization of the molecules. RSV released initially after 30 min with a total release more than 90 % at 336 h. CUR release starts after 24 h with only 4.78 % of CUR released before and gradually released thanks to its internal localization in the scaffold. Liposomes and hydrogels can generate dual drug-loaded 3D structures with sustained release. Microscopic analysis confirms optimal distribution of liposomes within the hydrogel scaffold. The latter resulted compatible in vitro with human retinal microvascular endothelial cells up to 72 h of exposition. The hydrogel scaffold, composed of hyaluronic acid and chitosan, shows promise for prolonged treatment and minimally invasive surgery.
Collapse
Affiliation(s)
- Elide Zingale
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Pietro Maria Bertelli
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy.
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Law M, Wang PC, Zhou ZY, Wang Y. From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1. Pharmaceuticals (Basel) 2024; 17:1495. [PMID: 39598406 PMCID: PMC11597311 DOI: 10.3390/ph17111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Silent information regulator sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase with potent anti-arterial aging activities. Its protective function in aging-related diseases has been extensively studied. In the microcirculation, SIRT1 plays a crucial role in preventing microcirculatory endothelial senescence by suppressing inflammation and oxidative stress while promoting mitochondrial function and optimizing autophagy. It suppresses hypoxia-inducible factor-1α (HIF-1α)-mediated pathological angiogenesis while promoting healthy, physiological capillarization. As a result, SIRT1 protects against microvascular dysfunction, such as diabetic microangiopathy, while enhancing exercise-induced skeletal muscle capillarization and energy metabolism. In the brain, SIRT1 upregulates tight junction proteins and strengthens their interactions, thus maintaining the integrity of the blood-brain barrier. The present review summarizes recent findings on the regulation of microvascular function by SIRT1, the underlying mechanisms, and various approaches to modulate SIRT1 activity in microcirculation. The importance of SIRT1 as a molecular target in aging-related diseases, such as diabetic retinopathy and stroke, is underscored, along with the need for more clinical evidence to support SIRT1 modulation in the microcirculation.
Collapse
Affiliation(s)
- Martin Law
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
| | - Pei-Chun Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
15
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
16
|
Wang L, Bai Y, Cao Z, Guo Z, Lian Y, Liu P, Zeng Y, Lyu W, Chen Q. Histone deacetylases and inhibitors in diabetes mellitus and its complications. Biomed Pharmacother 2024; 177:117010. [PMID: 38941890 DOI: 10.1016/j.biopha.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, with its prevalence linked to both genetic predisposition and environmental factors. Epigenetic modifications, particularly through histone deacetylases (HDACs), have been recognized for their significant influence on DM pathogenesis. This review focuses on the classification of HDACs, their role in DM and its complications, and the potential therapeutic applications of HDAC inhibitors. HDACs, which modulate gene expression without altering DNA sequences, are categorized into four classes with distinct functions and tissue specificity. HDAC inhibitors (HDACi) have shown efficacy in various diseases, including DM, by targeting these enzymes. The review highlights how HDACs regulate β-cell function, insulin sensitivity, and hepatic gluconeogenesis in DM, as well as their impact on diabetic cardiomyopathy, nephropathy, and retinopathy. Finally, we suggest that targeted histone modification is expected to become a key method for the treatment of diabetes and its complications. The study of HDACi offers insights into new treatment strategies for DM and its associated complications.
Collapse
Affiliation(s)
- Li Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yuning Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Zhengmin Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Ziwei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, PR China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China
| | - Yixian Zeng
- Department of Proctology, Beibei Hospital of Traditional Chinese Medicine, Chongqing 400799, PR China
| | - Wenliang Lyu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China.
| |
Collapse
|
17
|
Zhang J, Nie C, Zhang Y, Yang L, Du X, Liu L, Chen Y, Yang Q, Zhu X, Li Q. Analysis of mechanism, therapeutic strategies, and potential natural compounds against atherosclerosis by targeting iron overload-induced oxidative stress. Biomed Pharmacother 2024; 177:117112. [PMID: 39018869 DOI: 10.1016/j.biopha.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024] Open
Abstract
Ferroptosis is a novel form of cell demise characterized primarily by the reduction of trivalent iron to divalent iron, leading to the release of reactive oxygen species (ROS) and consequent induction of intense oxidative stress. In atherosclerosis (AS), highly accumulated lipids are modified by ROS to promote the formation of lipid peroxides, further amplifying cellular oxidative stress damage to influence all stages of atherosclerotic development. Macrophages are regarded as pivotal executors in the progression of AS and the handling of iron, thus targeting macrophage iron metabolism holds significant guiding implications for exploring potential therapeutic strategies against AS. In this comprehensive review, we elucidate the potential interplay among iron overload, inflammation, and lipid dysregulation, summarizing the potential mechanisms underlying the suppression of AS by alleviating iron overload. Furthermore, the application of Traditional Chinese Medicine (TCM) is increasingly widespread. Based on extant research and the pharmacological foundations of active compounds of TCM, we propose alternative therapeutic agents for AS in the context of iron overload, aiming to diversify the therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Chunxia Nie
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yang Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Lina Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xinke Du
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China.
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; State key laboratory for quality ensurance and sustainable use ofdao-di herbs, Beijing 100700, China.
| |
Collapse
|
18
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
19
|
Zheng Y, Xu Y, Ji L, San W, Shen D, Zhou Q, Meng G, Shi J, Chen Y. Roles of distinct nuclear receptors in diabetic cardiomyopathy. Front Pharmacol 2024; 15:1423124. [PMID: 39114353 PMCID: PMC11303215 DOI: 10.3389/fphar.2024.1423124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetes mellitus induces a pathophysiological disorder known as diabetic cardiomyopathy and may eventually cause heart failure. Diabetic cardiomyopathy is manifested with systolic and diastolic contractile dysfunction along with alterations in unique cardiomyocyte proteins and diminished cardiomyocyte contraction. Multiple mechanisms contribute to the pathology of diabetic cardiomyopathy, mainly including abnormal insulin metabolism, hyperglycemia, glycotoxicity, cardiac lipotoxicity, endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, calcium treatment damage, programmed myocardial cell death, improper Renin-Angiotensin-Aldosterone System activation, maladaptive immune modulation, coronary artery endothelial dysfunction, exocrine dysfunction, etc. There is an urgent need to investigate the exact pathogenesis of diabetic cardiomyopathy and improve the diagnosis and treatment of this disease. The nuclear receptor superfamily comprises a group of transcription factors, such as liver X receptor, retinoid X receptor, retinoic acid-related orphan receptor-α, retinoid receptor, vitamin D receptor, mineralocorticoid receptor, estrogen-related receptor, peroxisome proliferatoractivated receptor, nuclear receptor subfamily 4 group A 1(NR4A1), etc. Various studies have reported that nuclear receptors play a crucial role in cardiovascular diseases. A recently conducted work highlighted the function of the nuclear receptor superfamily in the realm of metabolic diseases and their associated complications. This review summarized the available information on several important nuclear receptors in the pathophysiology of diabetic cardiomyopathy and discussed future perspectives on the application of nuclear receptors as targets for diabetic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yongji Xu
- School of Medicine, Nantong University, Nantong, China
| | - Li Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Danning Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qianyou Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
20
|
Song W, Zhao D, Guo F, Wang J, Wang Y, Wang X, Han Z, Fan W, Liu Y, Xu Z, Chen L. Additive manufacturing of degradable metallic scaffolds for material-structure-driven diabetic maxillofacial bone regeneration. Bioact Mater 2024; 36:413-426. [PMID: 39040493 PMCID: PMC11261217 DOI: 10.1016/j.bioactmat.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
The regeneration of maxillofacial bone defects associated with diabetes mellitus remains challenging due to the occlusal loading and hyperglycemia microenvironment. Herein, we propose a material-structure-driven strategy through the additive manufacturing of degradable Zn-Mg-Cu gradient scaffolds. The in situ alloying of Mg and Cu endows Zn alloy with admirable compressive strength for mechanical support and uniform degradation mode for preventing localized rupture. The scaffolds manifest favorable antibacterial, angiogenic, and osteogenic modulation capacity in mimicked hyperglycemic microenvironment, and Mg and Cu promote osteogenic differentiation in the early and late stages, respectively. In addition, the scaffolds expedite diabetic maxillofacial bone ingrowth and regeneration by combining the metabolic regulation effect of divalent metal cations and the hyperboloid and suitable permeability of the gradient structure. RNA sequencing further reveals that RAC1 might be involved in bone formation by regulating the transport and uptake of glucose related to GLUT1 in osteoblasts, contributing to cell function recovery. Inspired by bone healing and structural cues, this study offers an essential understanding of the designation and underlying mechanisms of the material-structure-driven strategy for diabetic maxillofacial bone regeneration.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Danlei Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xinyuan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhengshuo Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yijun Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
21
|
Dong H, Wang S, Hu C, Wang M, Zhou T, Zhou Y. Neuroprotective Effects of Intermittent Fasting in the Aging Brain. ANNALS OF NUTRITION & METABOLISM 2024; 80:175-185. [PMID: 38631305 DOI: 10.1159/000538782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND A major risk factor for neurodegenerative disorders is old age. Nutritional interventions that delay aging, such as calorie restriction (CR) and intermittent fasting (IF), as well as pharmaceuticals that affect the pathways linking nutrition and aging processes, have been developed in recent decades and have been shown to alleviate the effects of aging on the brain. SUMMARY CR is accomplished by alternating periods of ad libitum feeding and fasting. In animal models, IF has been shown to increase lifespan and slow the progression and severity of age-related pathologies such as cardiovascular and neurodegenerative diseases and cancer. According to recent research, dietary changes can help older people with dementia retain brain function. However, the mechanisms underlying the neuroprotective effect of IF on the aging brain and related questions in this area of study (i.e., the potential of IF to treat neurodegenerative disorders) remain to be examined. KEY MESSAGES This review addresses the hypothesis that IF may have translational potential in protecting the aged brain while summarizing the research supporting the putative neuroprotective mechanisms of IF in animal models. Additionally, given the emerging understanding of the connection between aging and dementia, our investigations may offer a fresh perspective on the use of dietary interventions for enhancing brain function and preventing dementia in elderly individuals. Finally, the absence of guidelines regarding the application of IF in patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge of the long-term effects of IF on dementia before it can be widely prescribed. In conclusion, IF may be an ancillary intervention for preserving memory and cognition in elderly individuals.
Collapse
Affiliation(s)
- Hao Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Pharmaceutical and Medical Equipment, Ba Yi Orthopedic Hospital, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
22
|
Wang J, Yang N, Li W, Zhang H, Li J. Role of Hsa_circ_0000880 in the Regulation of High Glucose-Induced Apoptosis of Retinal Microvascular Endothelial Cells. Transl Vis Sci Technol 2024; 13:12. [PMID: 38587436 PMCID: PMC11005064 DOI: 10.1167/tvst.13.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Circular RNAs (circRNAs) have been verified to participate in multiple biological processes and disease progression. Yet, the role of circRNAs in the pathogenesis of diabetic retinopathy (DR) is still poorly understood and deserves further study. This study aimed to investigate the role of circRNAs in the regulation of high glucose (HG)-induced apoptosis of retinal microvascular endothelial cells (RMECs). Methods Epiretinal membranes from patients with DR and nondiabetic patients with idiopathic macular epiretinal membrane were collected for this study. The circRNA microarrays were performed using high-throughput sequencing. Hierarchical clustering, functional enrichment, and network regulation analyses were used to analyze the data generated by high-throughput sequencing. Next, RMECs were subjected to HG (25 mM) conditions to induce RMECs apoptosis in vitro. A series of experiments, such as Transwell, the Scratch wound, and tube formation, were conducted to explore the regulatory effect of circRNA on RMECs. Fluorescence in situ hybridization (FISH), immunofluorescence staining, and Western blot were used to study the mechanism underlying circRNA-mediated regulation. Results A total of 53 differentially expressed circRNAs were found in patients with DR. Among these, hsa_circ_0000880 was significantly upregulated in both the diabetic epiretinal membranes and in an in vitro DR model of HG-treated RMECs. Hsa_circ_0000880 knockout facilitated RMECs vitality and decreased the paracellular permeability of RMECs under hyperglycemia. More importantly, silencing of hsa_circ_0000880 significantly inhibited HG-induced ROS production and RMECs apoptosis. Hsa_circ_0000880 acted as an endogenous sponge for eukaryotic initiation factor 4A-III (EIF4A3). Knockout of hsa_circ_0000880 reversed HG-induced decrease in EIF4A3 protein level. Conclusions Our findings suggest that hsa_circ_0000880 is a novel circRNA can induce RMECs apoptosis in response to HG conditions by sponging EIF4A3, offering an innovative treatment approach against DR. Translational Relevance The circRNAs participate in the dysregulation of microvascular endothelial function induced by HG conditions, indicating a promising therapeutic target for DR.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nannan Yang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Ophthalmology, The People's Hospital of Laoling City, Dezhou, Shandong, China
| | - Wanna Li
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Han Zhang
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
24
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
25
|
Pfaller AM, Kaplan L, Carido M, Grassmann F, Díaz-Lezama N, Ghaseminejad F, Wunderlich KA, Glänzer S, Bludau O, Pannicke T, Weber BHF, Koch SF, Bonev B, Hauck SM, Grosche A. The glucocorticoid receptor as a master regulator of the Müller cell response to diabetic conditions in mice. J Neuroinflammation 2024; 21:33. [PMID: 38273366 PMCID: PMC10809506 DOI: 10.1186/s12974-024-03021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.
Collapse
Affiliation(s)
- Anna M Pfaller
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Madalena Carido
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Felix Grassmann
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Nundehui Díaz-Lezama
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Farhad Ghaseminejad
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute for Molecular Medicine, Health and Medical University, Potsdam, Germany
| | - Sarah Glänzer
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Bernhard H F Weber
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute of Human Genetics, University Regensburg, Regensburg, Germany
| | - Susanne F Koch
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Boyan Bonev
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
26
|
Lin X, Gao Y. A bibliometric analysis of the Fasting-Mimicking Diet. Front Nutr 2024; 11:1328450. [PMID: 38321992 PMCID: PMC10844425 DOI: 10.3389/fnut.2024.1328450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
The Fasting-Mimicking Diet (FMD) is a nutritional strategy that involves significantly reducing calorie intake for a specific period to mimic the physiological effects of fasting while still providing the body with nutrition. Our study aimed to conduct a bibliometric study to explore the latest publishing trends and areas of intense activity within the sphere of FMD. We extracted data on FMD publications from the Web of Science Core Collection (WOSCC) database. The bibliometric analysis was conducted by WOSCC Online Analysis Platform and VOSviewer 1.6.16. In total, there were 169 publications by 945 authors from 342 organizations and 25 countries/regions, and published in 111 journals. The most productive country, organization, author, and journal were the United States, the University of Southern California, Valter D. Longo, and Nutrients, respectively. The first high-cited document was published in Ageing Research Reviews and authored by Mattson et al. In this study, they discuss the various health benefits of FMD including improved metabolic health, weight management, and even potential effects on delaying aging processes and reducing the risk of chronic diseases. In conclusion, our study is the first bibliometric analysis of the FMD. The main research hotspots and frontiers were FMD for cancer, FMD for metabolic-related diseases, and FMD for cognitive improvement. FMD may have some potential benefits for multiple diseases which should be further investigated.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
28
|
Wang S, Link F, Han M, Chaudhary R, Asimakopoulos A, Liebe R, Yao Y, Hammad S, Dropmann A, Krizanac M, Rubie C, Feiner LK, Glanemann M, Ebert MPA, Weiskirchen R, Henis YI, Ehrlich M, Dooley S. The Interplay of TGF-β1 and Cholesterol Orchestrating Hepatocyte Cell Fate, EMT, and Signals for HSC Activation. Cell Mol Gastroenterol Hepatol 2023; 17:567-587. [PMID: 38154598 PMCID: PMC10883985 DOI: 10.1016/j.jcmgh.2023.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor-β1 (TGF-β1) plays important roles in chronic liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD involves various biological processes including dysfunctional cholesterol metabolism and contributes to progression to metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma. However, the reciprocal regulation of TGF-β1 signaling and cholesterol metabolism in MASLD is yet unknown. METHODS Changes in transcription of genes associated with cholesterol metabolism were assessed by RNA sequencing of murine hepatocyte cell line (alpha mouse liver 12/AML12) and mouse primary hepatocytes treated with TGF-β1. Functional assays were performed on AML12 cells (untreated, TGF-β1 treated, or subjected to cholesterol enrichment [CE] or cholesterol depletion [CD]), and on mice injected with adenovirus-associated virus 8-control/TGF-β1. RESULTS TGF-β1 inhibited messenger RNA expression of several cholesterol metabolism regulatory genes, including rate-limiting enzymes of cholesterol biosynthesis in AML12 cells, mouse primary hepatocytes, and adenovirus-associated virus-TGF-β1-treated mice. Total cholesterol levels and lipid droplet accumulation in AML12 cells and liver tissue also were reduced upon TGF-β1 treatment. Smad2/3 phosphorylation after 2 hours of TGF-β1 treatment persisted after CE or CD and was mildly increased after CD, whereas TGF-β1-mediated AKT phosphorylation (30 min) was inhibited by CE. Furthermore, CE protected AML12 cells from several effects mediated by 72 hours of incubation with TGF-β1, including epithelial-mesenchymal transition, actin polymerization, and apoptosis. CD mimicked the outcome of long-term TGF-β1 administration, an effect that was blocked by an inhibitor of the type I TGF-β receptor. In addition, the supernatant of CE- or CD-treated AML12 cells inhibited or promoted, respectively, the activation of LX-2 hepatic stellate cells. CONCLUSIONS TGF-β1 inhibits cholesterol metabolism whereas cholesterol attenuates TGF-β1 downstream effects in hepatocytes.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mei Han
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Internal Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ye Yao
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Seddik Hammad
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Dropmann
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Rubie
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Laura Kim Feiner
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias Glanemann
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias P A Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
29
|
Li Y, Liang J, Tian X, Chen Q, Zhu L, Wang H, Liu Z, Dai X, Bian C, Sun C. Intermittent fasting promotes adipocyte mitochondrial fusion through Sirt3-mediated deacetylation of Mdh2. Br J Nutr 2023; 130:1473-1486. [PMID: 36815302 DOI: 10.1017/s000711452300048x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fat deposition and lipid metabolism are closely related to the morphology, structure and function of mitochondria. The morphology of mitochondria between fusion and fission processes is mainly regulated by protein posttranslational modification. Intermittent fasting (IF) promotes high expression of Sirtuin 3 (Sirt3) and induces mitochondrial fusion in high-fat diet (HFD)-fed mice. However, the mechanism by which Sirt3 participates in mitochondrial protein acetylation during IF to regulate mitochondrial fusion and fission dynamics remains unclear. This article demonstrates that IF promotes mitochondrial fusion and improves mitochondrial function in HFD mouse inguinal white adipose tissue. Proteomic sequencing revealed that IF increased protein deacetylation levels in HFD mice and significantly increased Sirt3 mRNA and protein expression. After transfecting with Sirt3 overexpression or interference vectors into adipocytes, we found that Sirt3 promoted adipocyte mitochondrial fusion and improved mitochondrial function. Furthermore, Sirt3 regulates the JNK-FIS1 pathway by deacetylating malate dehydrogenase 2 (MDH2) to promote mitochondrial fusion. In summary, our study indicates that IF promotes mitochondrial fusion and improves mitochondrial function by upregulating the high expression of Sirt3 in HFD mice, promoting deacetylation of MDH2 and inhibiting the JNK-FIS1 pathway. This research provides theoretical support for studies related to energy limitation and animal lipid metabolism.
Collapse
Affiliation(s)
- Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Qi Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Longbo Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Han Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xulei Dai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Chenqi Bian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| |
Collapse
|
30
|
Yang K, Velagapudi S, Akhmedov A, Kraler S, Lapikova-Bryhinska T, Schmiady MO, Wu X, Geng L, Camici GG, Xu A, Lüscher TF. Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress. Cardiovasc Res 2023; 119:2190-2201. [PMID: 37401647 PMCID: PMC10578911 DOI: 10.1093/cvr/cvad102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 07/05/2023] Open
Abstract
AIMS Enhancing SIRT1 activity exerts beneficial cardiovascular effects. In diabetes, plasma SIRT1 levels are reduced. We aimed to investigate the therapeutic potential of chronic recombinant murine SIRT1 (rmSIRT1) supplementation to alleviate endothelial and vascular dysfunction in diabetic mice (db/db). METHODS AND RESULTS Left internal mammary arteries obtained from patients undergoing coronary artery bypass grafting with or without a diagnosis of diabetes were assayed for SIRT1 protein levels. Twelve-week-old male db/db mice and db/+ controls were treated with vehicle or rmSIRT1 intraperitoneally for 4 weeks, after which carotid artery pulse wave velocity (PWV) and energy expenditure/activity were assessed by ultrasound and metabolic cages, respectively. Aorta, carotid, and mesenteric arteries were isolated to determine endothelial and vascular function using the myograph system.Arteries obtained from diabetic patients had significantly lower levels of SIRT1 relative to non-diabetics. In line, aortic SIRT1 levels were reduced in db/db mice compared to db/+ mice, while rmSIRT1 supplementation restored SIRT1 levels. Mice receiving rmSIRT1 supplementation displayed increased physical activity and improved vascular compliance as reflected by reduced PWV and attenuated collagen deposition. Aorta of rmSIRT1-treated mice exhibited increased endothelial nitric oxide (eNOS) activity, while endothelium-dependent contractions of their carotid arteries were significantly decreased, with mesenteric resistance arteries showing preserved hyperpolarization. Ex vivo incubation with reactive oxygen species (ROS) scavenger Tiron and NADPH oxidase inhibitor apocynin revealed that rmSIRT1 leads to preserved vascular function by suppressing NADPH oxidase (NOX)-related ROS synthesis. Chronic rmSIRT1 treatment resulted in reduced expression of both NOX1 and NOX4, in line with a reduction in aortic protein carbonylation and plasma nitrotyrosine levels. CONCLUSIONS In diabetic conditions, arterial SIRT1 levels are significantly reduced. Chronic rmSIRT1 supplementation improves endothelial function and vascular compliance by enhancing eNOS activity and suppressing NOX-related oxidative stress. Thus, SIRT1 supplementation may represent novel therapeutic strategy to prevent diabetic vascular disease.
Collapse
Affiliation(s)
- Kangmin Yang
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Srividya Velagapudi
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | | | - Martin O Schmiady
- Department of Cardiac Surgery, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Sassoon Road 21, Pok Fu Lam, 000000 Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Sassoon Road 21, Pok Fu Lam, 000000 Hong Kong, China
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Sassoon Road 21, Pok Fu Lam, 000000 Hong Kong, China
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
31
|
Minciuna I, Gallage S, Heikenwalder M, Zelber-Sagi S, Dufour JF. Intermittent fasting-the future treatment in NASH patients? Hepatology 2023; 78:1290-1305. [PMID: 37057877 DOI: 10.1097/hep.0000000000000330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
NASH is one of the leading causes of chronic liver disease with the potential of evolving towards end-stage liver disease and HCC, even in the absence of cirrhosis. Apart from becoming an increasingly prevalent indication for liver transplantation in cirrhotic and HCC patients, its burden on the healthcare system is also exerted by the increased number of noncirrhotic NASH patients. Intermittent fasting has recently gained more interest in the scientific community as a possible treatment approach for different components of metabolic syndrome. Basic science and clinical studies have shown that apart from inducing body weight loss, improving cardiometabolic parameters, namely blood pressure, cholesterol, and triglyceride levels; insulin and glucose metabolism; intermittent fasting can reduce inflammatory markers, endoplasmic reticulum stress, oxidative stress, autophagy, and endothelial dysfunction, as well as modulate gut microbiota. This review aims to further explore the main NASH pathogenetic metabolic drivers on which intermittent fasting can act upon and improve the prognosis of the disease, and summarize the current clinical evidence.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology Octavian Fodor, Cluj-Napoca, Romania
- University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
| | - Mathias Heikenwalder
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
32
|
Hammer SS, Dorweiler TF, McFarland D, Adu-Agyeiwaah Y, Mast N, El-Darzi N, Fortmann SD, Nooti S, Agrawal DK, Pikuleva IA, Abela GS, Grant MB, Busik JV. Cholesterol crystal formation is a unifying pathogenic mechanism in the development of diabetic retinopathy. Diabetologia 2023; 66:1705-1718. [PMID: 37311879 PMCID: PMC10390399 DOI: 10.1007/s00125-023-05949-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
AIMS/HYPOTHESIS Hyper-reflective crystalline deposits found in retinal lesions have been suggested to predict the progression of diabetic retinopathy, but the nature of these structures remains unknown. METHODS Scanning electron microscopy and immunohistochemistry were used to identify cholesterol crystals (CCs) in human donor, pig and mouse tissue. The effects of CCs were analysed in bovine retinal endothelial cells in vitro and in db/db mice in vivo using quantitative RT-PCR, bulk RNA sequencing, and cell death and permeability assays. Cholesterol homeostasis was determined using 2H2O and 2H7-cholesterol. RESULTS We identified hyper-reflective crystalline deposits in human diabetic retina as CCs. Similarly, CCs were found in the retina of a diabetic mouse model and a high-cholesterol diet-fed pig model. Cell culture studies demonstrated that treatment of retinal cells with CCs can recapitulate all major pathogenic mechanisms leading to diabetic retinopathy, including inflammation, cell death and breakdown of the blood-retinal barrier. Fibrates, statins and α-cyclodextrin effectively dissolved CCs present in in vitro models of diabetic retinopathy, and prevented CC-induced endothelial pathology. Treatment of a diabetic mouse model with α-cyclodextrin reduced cholesterol levels and CC formation in the retina, and prevented diabetic retinopathy. CONCLUSIONS/INTERPRETATION We established that cholesterol accumulation and CC formation are a unifying pathogenic mechanism in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Delaney McFarland
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Yvonne Adu-Agyeiwaah
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Seth D Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sunil Nooti
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - George S Abela
- Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
33
|
García-Fernández P, Reinhold C, Üçeyler N, Sommer C. Local Inflammatory Mediators Involved in Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24097814. [PMID: 37175520 PMCID: PMC10178336 DOI: 10.3390/ijms24097814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Polyneuropathy (PNP) is a term to describe diseases of the peripheral nervous system, 50% of which present with neuropathic pain. In some types of PNP, pain is restricted to the skin distally in the leg, suggesting a local regulatory process leading to pain. In this study, we proposed a pro-inflammatory pathway mediated by NF-κB that might be involved in the development of pain in patients with painful PNP. To test this hypothesis, we have collected nerve and skin samples from patients with different etiologies and levels of pain. We performed RT-qPCR to analyze the gene expression of the proposed inflammatory pathway components in sural nerve and in distal and proximal skin samples. In sural nerve, we showed a correlation of TLR4 and TNFα to neuropathic pain, and an upregulation of TNFα in patients with severe pain. Patients with an inflammatory PNP also presented a lower expression of TRPV1 and SIRT1. In distal skin, we found a reduced expression of TLR4 and miR-146-5p, in comparison to proximal skin. Our findings thus support our hypothesis of local inflammatory processes involved in pain in PNP, and further show disturbed anti-inflammatory pathways involving TRPV1 and SIRT1 in inflammatory PNP.
Collapse
Affiliation(s)
| | - Colette Reinhold
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
34
|
Khalfallah M, Elnagar B, Soliman SS, Eissa A, Allaithy A. The Value of Intermittent Fasting and Low Carbohydrate Diet in Prediabetic Patients for the Prevention of Cardiovascular Diseases. Arq Bras Cardiol 2023; 120:e20220606. [PMID: 37042857 PMCID: PMC10263423 DOI: 10.36660/abc.20220606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Prediabetic patients are at increased risk for cardiovascular diseases and the development of microvascular and macrovascular complications. Intermittent fasting (IF) and low-carbohydrate diet (LCD) are promising dietary plans. OBJECTIVES Our aims to analyze the benefits of IF combined with LCD on microvascular and macrovascular outcomes in prediabetic patients. METHODS The study included 485 prediabetic patients with no history of cardiovascular diseases divided into group I: (n = 240 patients) who underwent IF (16 h IF 3-4 days per week) combined with LCD (<130 g of carbohydrate per day), and group II: (n = 245 patients) with ad libitum calorie intake. The two groups were followed-up for two years for assessment of micro and macrovascular complications. A p-value < 0.05 was considered statistically significant. RESULT There was a significant reduction in body weight, body mass index, waist circumference, body fat percentage and glycated hemoglobin in group I. The incidence of progression from prediabetes to diabetes was significantly lower in group I (2.1% vs. 6.9% in group II, p = 0.010). In addition, a significant increase in the incidence of microvascular and macrovascular complications was observed in group II, including retinopathy, neuropathy and unstable angina. Multivariate regression analysis revealed that increased body weight, fasting glucose, glycated hemoglobin and low-density lipoprotein were independent risk factors impacting microvascular and macrovascular outcomes. CONCLUSIONS In prediabetic patients, IF, combined with LCD, was associated with lower progression to diabetes mellitus and lower incidence of microvascular and macrovascular complications.
Collapse
Affiliation(s)
- Mohamed Khalfallah
- Tanta UniversityFaculty of MedicineCardiovascular DepartmentEgitoCardiovascular Department, Faculty of Medicine, Tanta University – Egito
| | - Basma Elnagar
- Tanta UniversityFaculty of MedicineCardiovascular DepartmentEgitoCardiovascular Department, Faculty of Medicine, Tanta University – Egito
| | - Shaimaa S. Soliman
- Menoufia UniversityFaculty of MedicinePublic Health and Community Medicine DepartmentEgitoPublic Health and Community Medicine Department, Faculty of Medicine, Menoufia University – Egito
| | - Ahmad Eissa
- Tanta UniversityFaculty of MedicineInternal Medicine DepartmentEgitoEndocrinology, Internal Medicine Department, Faculty of Medicine, Tanta University – Egito
| | - Amany Allaithy
- Tanta UniversityFaculty of MedicineCardiovascular DepartmentEgitoCardiovascular Department, Faculty of Medicine, Tanta University – Egito
| |
Collapse
|
35
|
Adu-Agyeiwaah Y, Vieira CP, Asare-Bediako B, Li Calzi S, DuPont M, Floyd J, Boye S, Chiodo V, Busik JV, Grant MB. Intravitreal Administration of AAV2-SIRT1 Reverses Diabetic Retinopathy in a Mouse Model of Type 2 Diabetes. Transl Vis Sci Technol 2023; 12:20. [PMID: 37070938 PMCID: PMC10123324 DOI: 10.1167/tvst.12.4.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 04/19/2023] Open
Abstract
Purpose The expression of silent information regulator (SIRT) 1 is reduced in diabetic retinopathy (DR). Previous studies showed that alterations in SIRT1 messenger RNA (mRNA) and protein expression are implicated in progressive inflammation and formation of retinal acellular capillaries. Treatment with the SIRT1 agonist, SRT1720, improved visual response by restoration of a- and b-wave responses on electroretinogram scotopic measurements in diabetic (db/db) mice. In this study, we investigated the effects of intravitreal SIRT1 delivery on diabetic retinal pathology. Methods Nine-month-old db/db mice received one intravitreal injection of either AAV2-SIRT1 or AAV2-GFP control virus, and after 3 months, electroretinography and optomotor responses were measured. Their eyes were then removed and analyzed by immunohistochemistry and flow cytometry. Results SIRT1 mRNA and protein levels were increased following AAV2-SIRT1 administration compared to control virus AAV2-GFP injected mice. IBA1+ and caspase 3 expression were decreased in retinas of db/db mice injected with AAV2-SIRT1, and reductions in scotopic a- and b-waves and high spatial frequency in optokinetic response were prevented. Retinal hypoxia inducible factor 1α (HIF-1α) protein levels were reduced in the AAV2-SIRT1-injected mice compared to control-injected mice. Using flow cytometry to assess changes in intracellular HIF-1α levels, endothelial cells (CD31+) from AAV-2 SIRT1 injected mice demonstrated reduced HIF-1α expression compared to db/db mice injected with the control virus. Conclusions Intravitreal AAV2-SIRT1 delivery increased retina SIRT1 and transduced neural and endothelial cells, thus reversing functional damage and improving overall visual function. Translational Relevance AAV2-SIRT1 gene therapy represents a beneficial approach for the treatment of chronic retinal conditions such as DR.
Collapse
Affiliation(s)
- Yvonne Adu-Agyeiwaah
- Department of Vision Science, School of Optometry, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cristiano P. Vieira
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bright Asare-Bediako
- Department of Vision Science, School of Optometry, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariana DuPont
- Department of Vision Science, School of Optometry, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason Floyd
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sanford Boye
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Vince Chiodo
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Li X, He Y, Wu S, Zhang P, Gan M, Chen L, Zhao Y, Niu L, Zhang S, Jiang Y, Guo Z, Wang J, Shen L, Zhu L. Regulation of SIRT1 in Ovarian Function: PCOS Treatment. Curr Issues Mol Biol 2023; 45:2073-2089. [PMID: 36975503 PMCID: PMC10047008 DOI: 10.3390/cimb45030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The sirtuin family, a group of NAD+-dependent class 3 histone deacetylases (HDACs), was extensively studied initially as a group of longevity genes that are activated in caloric restriction and act in concert with nicotinamide adenine dinucleotides to extend the lifespan. Subsequent studies have found that sirtuins are involved in various physiological processes, including cell proliferation, apoptosis, cell cycle progression, and insulin signaling, and they have been extensively studied as cancer genes. In recent years, it has been found that caloric restriction increases ovarian reserves, suggesting that sirtuins may play a regulatory role in reproductive capacity, and interest in the sirtuin family has continued to increase. The purpose of this paper is to summarize the existing studies and analyze the role and mechanism of SIRT1, a member of the sirtuin family, in regulating ovarian function. Research and review on the positive regulation of SIRT1 in ovarian function and its therapeutic effect on PCOS syndrome.
Collapse
Affiliation(s)
- Xinrong Li
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiwen Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongyi Guo
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Linyuan Shen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| | - Li Zhu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| |
Collapse
|
37
|
Nait Irahal I, Darif D, Guenaou I, Hmimid F, Azzahra Lahlou F, Ez-Zahra Ousaid F, Abdou-Allah F, Aitsi L, Akarid K, Bourhim N. Therapeutic Potential of Clove Essential Oil in Diabetes: Modulation of Pro-Inflammatory Mediators, Oxidative Stress and Metabolic Enzyme Activities. Chem Biodivers 2023; 20:e202201169. [PMID: 36823346 DOI: 10.1002/cbdv.202201169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Type 1 diabetes is characterized by insulin deficiency due to the destruction of pancreatic β cells, leading to hyperglycemia, which in turn induces vascular complications. In the current study, we investigated the effect of intraperitoneal administration of clove essential oil (CEO: 20 mg/kg body weight) on certain oxidative stress and glucose metabolism enzymes, as well as the expression of proinflammatory mediators. Administration of CEO to diabetic rats showed a significant decline in blood glucose levels, total cholesterol, and xanthine oxidase, compared to the streptozotocin group. Furthermore, these treated rats elicited a notable attenuation in the levels of lipid peroxides, and thiols groups in both liver and brain tissues. The activities of antioxidant and metabolic enzymes were reverted to normality in diabetic upon CEO administration. In addition to its protective effects on red blood cell hemolysis, CEO is a potent α-amylase inhibitor with an IC50 =298.0±2.75 μg/mL. Also, treatment of diabetic rats with CEO significantly reduced the iNOS expression in the spleen. Our data showed that CEO has potential beneficial effects on diabetes, which can possibly prevent the pathogenesis of diabetic micro- and macrovascular complications.
Collapse
Affiliation(s)
- Imane Nait Irahal
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
| | - Dounia Darif
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
| | - Ismail Guenaou
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
| | - Fouzia Hmimid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
- Phycology, Blue Biodiversity and Biotechnology RU, Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization-CNRST Labeled Research Unit N°10, Faculty of Sciences, Chouaïb Doukkali University, 24000, El Jadida, Morocco
| | - Fatima Azzahra Lahlou
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), 82403, Casablanca, Morocco
| | - Fatima Ez-Zahra Ousaid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
| | - Fatima Abdou-Allah
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
| | - Lamiaa Aitsi
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
| | - Khadija Akarid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
| | - Noureddine Bourhim
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, 20000, Morocco
| |
Collapse
|
38
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
39
|
Abstract
Experimental trials in organisms ranging from yeast to humans have shown that various forms of reducing food intake (caloric restriction) appear to increase both overall and healthy lifespan, delaying the onset of disease and slowing the progression of biomarkers of aging. The gut microbiota is considered one of the key environmental factors strongly contributing to the regulation of host health. Perturbations in the composition and activity of the gut microbiome are thought to be involved in the emergence of multiple diseases. Indeed, many studies investigating gut microbiota have been performed and have shown strong associations between specific microorganisms and metabolic diseases including overweight, obesity, and type 2 diabetes mellitus as well as specific gastrointestinal disorders, neurodegenerative diseases, and even cancer. Dietary interventions known to reduce inflammation and improve metabolic health are potentiated by prior fasting. Inversely, birth weight differential host oxidative phosphorylation response to fasting implies epigenetic control of some of its effector pathways. There is substantial evidence for the efficacy of fasting in improving insulin signaling and blood glucose control, and in reducing inflammation, conditions for which, additionally, the gut microbiota has been identified as a site of both risk and protective factors. Accordingly, human gut microbiota, both in symbiont and pathobiont roles, have been proposed to impact and mediate some health benefits of fasting and could potentially affect many of these diseases. While results from small-N studies diverge, fasting consistently enriches widely recognized anti-inflammatory gut commensals such as Faecalibacterium and other short-chain fatty acid producers, which likely mediates some of its health effects through immune system and barrier function impact.
Collapse
Affiliation(s)
- Sofia K Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
40
|
Tu Q, Xu L, Zhang H, Qiu Y, Liu Z, Dong B, Tao J. Andrographolide improves the dysfunction of endothelial progenitor cells from angiotensin II-induced hypertensive mice through SIRT1 signaling. Biochem Biophys Res Commun 2023; 642:11-20. [PMID: 36543019 DOI: 10.1016/j.bbrc.2022.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) are crucial for the maintenance of vascular homeostasis. The dysfunction of EPCs contributes to the endothelial damage in hypertension. Andrographolide (AGP) is a traditional Chinese patent medicine that has been reported to have protective effects on cardiovascular system. However, the effect of AGP on the function of EPCs in hypertension remains unknown. In this study, we aimed to elucidate the effect of AGP on EPCs and the underlying mechanisms. In vivo, the blood pressure and endothelial function (indicated by endothelial dependent vasodilation) of AGP-fed angiotensin II (Ang II)-infused hypertensive mice were examined. In vitro, the function of EPCs isolated from bone marrow were evaluated by tube formation, migration, and adhesion assay. Additionally, a silent information regulator 1 (SIRT1) inhibitor/agonist and a small interfering RNA (si-RNA) targeting SIRT1 were used to determine the pathway involved. The results showed that AGP not only reduced blood pressure, improved endothelial function in hypertensive mice but also restored the dysfunction of EPCs of hypertension in vitro. Mechanistically, AGP up-regulated SIRT1 expression, decreased the Bax/Bcl-2 ratio and the expression level of Cleaved caspase-3, thus inhibiting the apoptosis of Ang II induced EPCs. However, the beneficial effects of AGP on EPCs disappeared after the inhibition or the knockdown of SIRT1. To summarize, this study demonstrates for the first time that AGP improves the dysfunction of EPCs through SIRT1-mediated anti-apoptotic effects. Our findings might provide a novel therapeutic strategy for treating vascular damage in hypertension.
Collapse
Affiliation(s)
- Qiang Tu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation of Ministry of Health, Sun Yat-sen University, Guangzhou, China
| | - Lingling Xu
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hufei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation of Ministry of Health, Sun Yat-sen University, Guangzhou, China
| | - Zhefu Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation of Ministry of Health, Sun Yat-sen University, Guangzhou, China
| | - Bing Dong
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation of Ministry of Health, Sun Yat-sen University, Guangzhou, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Sun Yat-sen University, Guangzhou, China; Key Laboratory on Assisted Circulation of Ministry of Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
41
|
Prasad R, Floyd JL, Dupont M, Harbour A, Adu-Agyeiwaah Y, Asare-Bediako B, Chakraborty D, Kichler K, Rohella A, Calzi SL, Lammendella R, Wright J, Boulton ME, Oudit GY, Raizada MK, Stevens BR, Li Q, Grant MB. Maintenance of Enteral ACE2 Prevents Diabetic Retinopathy in Type 1 Diabetes. Circ Res 2023; 132:e1-e21. [PMID: 36448480 PMCID: PMC9822874 DOI: 10.1161/circresaha.122.322003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND We examined components of systemic and intestinal renin-angiotensin system on gut barrier permeability, glucose homeostasis, systemic inflammation, and progression of diabetic retinopathy (DR) in human subjects and mice with type 1 diabetes (T1D). METHODS T1D individual with (n=18) and without (n=20) DR and controls (n=34) were examined for changes in gut-regulated components of the immune system, gut leakage markers (FABP2 [fatty acid binding protein 2] and peptidoglycan), and Ang II (angiotensin II); Akita mice were orally administered a Lactobacillus paracasei (LP) probiotic expressing humanized ACE2 (angiotensin-converting enzyme 2) protein (LP-ACE2) as either a prevention or an intervention. Akita mice with genetic overexpression of humanAce2 by small intestine epithelial cells (Vil-Cre.hAce2KI-Akita) were similarly examined. After 9 months of T1D, circulatory, enteral, and ocular end points were assessed. RESULTS T1D subjects exhibit elevations in gut-derived circulating immune cells (ILC1 cells) and higher gut leakage markers, which were positively correlated with plasma Ang II and DR severity. The LP-ACE2 prevention cohort and genetic overexpression of intestinal ACE2 preserved barrier integrity, reduced inflammatory response, improved hyperglycemia, and delayed development of DR. Improvements in glucose homeostasis were due to intestinal MasR activation, resulting in a GSK-3β (glycogen synthase kinase-3 beta)/c-Myc (cellular myelocytomatosis oncogene)-mediated decrease in intestinal glucose transporter expression. In the LP-ACE2 intervention cohort, gut barrier integrity was improved and DR reversed, but no improvement in hyperglycemia was observed. These data support that the beneficial effects of LP-ACE2 on DR are due to the action of ACE2, not improved glucose homeostasis. CONCLUSIONS Dysregulated systemic and intestinal renin-angiotensin system was associated with worsening gut barrier permeability, gut-derived immune cell activation, systemic inflammation, and progression of DR in human subjects. In Akita mice, maintaining intestinal ACE2 expression prevented and reversed DR, emphasizing the multifaceted role of the intestinal renin-angiotensin system in diabetes and DR.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jason L. Floyd
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mariana Dupont
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Angela Harbour
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yvonne Adu-Agyeiwaah
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bright Asare-Bediako
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Dibyendu Chakraborty
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kara Kichler
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Aayush Rohella
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Gavin Y. Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, AB, T6G 2B7, Canada
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Bruce R. Stevens
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
42
|
Lu C, Zhao H, Liu Y, Yang Z, Yao H, Liu T, Gou T, Wang L, Zhang J, Tian Y, Yang Y, Zhang H. Novel Role of the SIRT1 in Endocrine and Metabolic Diseases. Int J Biol Sci 2023; 19:484-501. [PMID: 36632457 PMCID: PMC9830516 DOI: 10.7150/ijbs.78654] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Silent information regulator 1 (SIRT1), a highly conserved NAD+-dependent deacetylase, is a cellular regulator that has received extensive attention in recent years and regarded as a sensor of cellular energy and metabolism. The accumulated evidence suggests that SIRT1 is involved in the development of endocrine and metabolic diseases. In a variety of organisms, SIRT1 regulates gene expression through the deacetylation of histone, transcription factors, and lysine residues of other modified proteins including several metabolic and endocrine signal transcription factors, thereby enhancing the therapeutic effects of endocrine and metabolic diseases. These evidences indicate that targeting SIRT1 has promising applications in the treatment of endocrine and metabolic diseases. This review focuses on the role of SIRT1 in endocrine and metabolic diseases. First, we describe the background and structure of SIRT1. Then, we outline the role of SIRT1 in endocrine and metabolic diseases such as hyperuricemia, diabetes, hypertension, hyperlipidemia, osteoporosis, and polycystic ovarian syndrome. Subsequently, the SIRT1 agonists and inhibitors in the above diseases are summarized and future research directions are proposed. Overall, the information presents here may highlight the potential of SIRT1 as a future biomarker and therapeutic target for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yanqing Liu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Hairong Yao
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Tiantian Gou
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Li Wang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,✉ Corresponding authors: Yang Yang: . Huan Zhang: . Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,✉ Corresponding authors: Yang Yang: . Huan Zhang: . Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| |
Collapse
|
43
|
Zhang L, Jiang F, Xie Y, Mo Y, Zhang X, Liu C. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne) 2023; 14:1073878. [PMID: 37025413 PMCID: PMC10071002 DOI: 10.3389/fendo.2023.1073878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 04/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic condition with a high global morbidity and mortality rate that affects the whole body. Their primary consequences are mostly caused by the macrovascular and microvascular bed degradation brought on by metabolic, hemodynamic, and inflammatory variables. However, research in recent years has expanded the target organ in T2DM to include the lung. Inflammatory lung diseases also impose a severe financial burden on global healthcare. T2DM has long been recognized as a significant comorbidity that influences the course of various respiratory disorders and their disease progress. The pathogenesis of the glycemic metabolic problem and endothelial microangiopathy of the respiratory disorders have garnered more attention lately, indicating that the two ailments have a shared history. This review aims to outline the connection between T2DM related endothelial cell dysfunction and concomitant respiratory diseases, including Coronavirus disease 2019 (COVID-19), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Faming Jiang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Xie
- Department of Nephrology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Xin Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| |
Collapse
|
44
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Lydic TA, Busik JV. Diabetes Retinopathy: New Ways to Detect and Treat. Methods Mol Biol 2022; 2592:89-100. [PMID: 36507987 DOI: 10.1007/978-1-0716-2807-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent clinical trials demonstrated strong association between lipid abnormalities and progression of diabetic retinopathy (DR); however, whether circulating lipid levels or retinal lipid metabolism, or both, contributes to the pathogenesis of DR is not well understood. Limited amounts of retinal tissue available from animal models, such as mouse models of DR, have proved. Limited amount of retinal tissue was especially challenging for cholesterol and oxysterol detection as it precluded identification of individual isomers of each nonesterified sterol class. To measure cholesterol and oxysterols from limited retinal tissue samples, we developed extremely sensitive electrospray ionization liquid chromatography high-resolution/accurate mass measurements on an LTQ Orbitrap Velos mass spectrometer that are able to resolve sterols and oxysterols separated by reverse-phase HPLC using a gradient of 85-100% methanol containing 0.1% formic acid, with subsequent detection in positive ionization mode. This methodology will aid in our understanding of diabetes-induced changes in retinal cholesterol and oxysterol metabolism.
Collapse
Affiliation(s)
- Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
46
|
Zeng C, Chen M. Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022; 12:1079. [PMID: 36008973 PMCID: PMC9405760 DOI: 10.3390/biom12081079] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and oxidative stress. As a group of NAD+-dependent III deacetylases, the sirtuin (SIRT1-7) family plays a very important role in regulating mitochondrial biogenesis and participates in the progress of NAFLD. SIRT family members are distributed in the nucleus, cytoplasm, and mitochondria; regulate hepatic fatty acid oxidation metabolism through different metabolic pathways and mechanisms; and participate in the regulation of mitochondrial energy metabolism. SIRT1 may improve NAFLD by regulating ROS, PGC-1α, SREBP-1c, FoxO1/3, STAT3, and AMPK to restore mitochondrial function and reduce steatosis of the liver. Other SIRT family members also play a role in regulating mitochondrial biogenesis, fatty acid oxidative metabolism, inflammation, and insulin resistance. Therefore, this paper comprehensively introduces the role of SIRT family in regulating mitochondrial biogenesis in the liver in NAFLD, aiming to further explain the importance of SIRT family in regulating mitochondrial function in the occurrence and development of NAFLD, and to provide ideas for the research and development of targeted drugs. Relatively speaking, the role of some SIRT family members in NAFLD is still insufficiently clear, and further research is needed.
Collapse
Affiliation(s)
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
47
|
Feng J, Zhang S, Li W, Bai T, Liu Y, Chang X. Intermittent Fasting to the Eye: A New Dimension Involved in Physiological and Pathological Changes. Front Med (Lausanne) 2022; 9:867624. [PMID: 35685418 PMCID: PMC9171076 DOI: 10.3389/fmed.2022.867624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Intermittent fasting (IF) is gaining popularity as a therapeutic dietary strategy that regulates metabolism and can alter the development of metabolic disorders. An increasing amount of research has connected ocular diseases to IF and discovered that it has a direct and indirect effect on the eye’s physiological structure and pathological alterations. This article summarizes the progress of research on IF in regulating the physiological structures of the ocular vasculature, the anterior segment of the eye, the retina, and the choroid. We explored the therapeutic potential of IF for various common ocular diseases. In the future, a comprehensive study into the fundamental processes of IF will provide a direct and rigorous approach to eye disease prevention and therapy.
Collapse
Affiliation(s)
- Jiaqing Feng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shijiao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenning Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianle Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yulin Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
48
|
Wang J, Yang GY, Sun HY, Meng T, Cheng CC, Zhao HP, Luo XL, Yang MM. Dioscin Reduces Vascular Damage in the Retina of db/db Mice by Inhibiting the VEGFA Signaling Pathway. Front Pharmacol 2022; 12:811897. [PMID: 35153764 PMCID: PMC8832152 DOI: 10.3389/fphar.2021.811897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes that has a serious impact on the quality of life of patients. VEGFA is necessary in the physiological state to maintain endothelial activity and physical properties of blood vessels. VEGFA plays an important role in the promotion of neovascularization; therefore, inhibition of VEGFA can degrade the structure of blood vessels and reduce neovascularization. In the present study, HERB, a high-throughput experimental and reference-oriented database of herbal medicines, was used for compound mining targeting VEGFA. The compounds most likely to interact with VEGFA were screened by molecular docking. Next, the compounds were used to verify whether it could inhibit the activity of the VEGF signaling pathway in vitro and neovascularization in vivo. In vitro, we found that dioscin could inhibit the activation of the VEGFA–VEGFR2 signaling pathway and cell proliferation of human retinal microvascular endothelial cells in a high-glucose (HG) environment. A more important dioscin intervention inhibits the expression of pro-angiogenic factors in the retinas of db/db mice. In conclusion, our study indicates that dioscin reduces the vascular damage and the expression of pro-angiogenic factors in the retina of db/db mice and implies an important and potential application of dioscin for treatment of DR in clinics.
Collapse
Affiliation(s)
- Jun Wang
- Department of Endocrinology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guang Yan Yang
- Department of Endocrinology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hong Yan Sun
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ting Meng
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Chu Chu Cheng
- Department of Endocrinology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hui Pan Zhao
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao Ling Luo
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ming Ming Yang
- Department of Ophthalmology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Ming Ming Yang,
| |
Collapse
|
49
|
Joaquim L, Faria A, Loureiro H, Matafome P. Benefits, mechanisms, and risks of intermittent fasting in metabolic syndrome and type 2 diabetes. J Physiol Biochem 2022; 78:295-305. [PMID: 34985730 DOI: 10.1007/s13105-021-00839-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
One of the emergent nutritional strategies for improving multiple features of cardiometabolic diseases is the practice of intermittent fasting (IF), which consists of alternating periods of eating and fasting. IF can reduce circulating glucose and insulin levels, fat mass, and the risk of developing age-related pathologies. IF appears to upregulate evolution-conserved adaptive cellular responses, such as stress-response pathways, autophagy, and mitochondrial function. IF was also observed to modulate the circadian rhythms of hormones like insulin or leptin, among others, which levels change in conditions of food abundance and deficit. However, some contradictory results regarding the duration of the interventions and the anterior metabolic status of the participants suggest that more and longer studies are needed in order to draw conclusions. This review summarizes the current knowledge regarding the role of IF in the modulation of mechanisms involved in type 2 diabetes, as well as the risks.
Collapse
Affiliation(s)
- Lisandra Joaquim
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Ana Faria
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Helena Loureiro
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Paulo Matafome
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
- Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Subunit 1, 1st floor, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Clinical Academic Center, Coimbra, Portugal.
| |
Collapse
|
50
|
Rajagopal R. Weight Reduction as an Adjunctive Management Strategy for Diabetic Retinopathy. MISSOURI MEDICINE 2022; 119:42-48. [PMID: 36033134 PMCID: PMC9312462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As rates of global obesity and diabetes increase, diabetic retinopathy continues to grow as a frequent cause of visual impairment. Despite tremendous recent strides in therapy, a significant fraction of patients remain poorly responsive to modern interventions. Adjunctive therapy in such settings could be widely beneficial. A growing body of evidence suggests that weight reduction strategies for obesity-related diabetes have the potential to serve as important supplements to modern ophthalmic care for preservation of vision.
Collapse
Affiliation(s)
- Rithwick Rajagopal
- John F. Hardesty MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|