1
|
Dey KK, Kamila S, Das T, Chattopadhyay A. Lead induced genotoxicity and hepatotoxicity in zebrafish (Danio rerio) at environmentally relevant concentration: Nrf2-Keap1 regulated stress response and expression of biomarker genes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104396. [PMID: 38395243 DOI: 10.1016/j.etap.2024.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Genotoxic and hepatotoxic potentials of Pb at an environmentally relevant concentration (5 ppm) in zebrafish were investigated in the present study. Erythrocytic nuclear abnormality tests revealed the increased frequencies of abnormal erythrocytes after Pb exposure, indicating a strong genotoxic potential of Pb. Multiple stress-related parameters were further evaluated in liver, the major detoxifying organ. Pb caused increased production of ROS, which in turn caused severe oxidative stress. As a result, lipid peroxidation was increased, whereas reduced glutathione level and catalase activity was decreased. Alterations in liver histoarchitecture also served as evidence of Pb-induced hepatotoxicity. Pb-induced ROS stress triggered upregulation of Nrf2, Nqo1, Ho1; downregulation of Keap1, and altered mRNA expressions of Mn-sod, Cu/Zn-sod, gpx1, cyp1a, ucp2 suggesting involvement of Nrf2-Keap1-ARE signaling in cellular defence. Nrf2-keap1 is a sensitive biomarker of Pb-induced ROS stress. Overexpression of Hsp70 and other genes in hepatocytes might help cell survival under oxidative stress generation.
Collapse
Affiliation(s)
- Koushik Kumar Dey
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal - 731235, India
| | - Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal - 731235, India
| | - Tanmoy Das
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal - 731235, India
| | | |
Collapse
|
2
|
Ataş M, Bereketoglu C. The toxicity assessment of phosmet on development, reproduction, and gene expression in Daphnia magna. PeerJ 2024; 12:e17034. [PMID: 38436013 PMCID: PMC10908259 DOI: 10.7717/peerj.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
The use of pesticides to control pests, weeds, and diseases or to regulate plant growth is indispensable in agricultural production. However, the excessive use of these chemicals has led to significant concern about their potential negative impacts on health and the environment. Phosmet is one such pesticide that is commonly used on plants and animals against cold moth, aphids, mites, suckers, and fruit flies. Here, we investigated the effects of phosmet on a model organism, Daphnia magna using acute and chronic toxicity endpoints such as lethality, mobility, genotoxicity, reproduction, and gene expression. We performed survival experiments in six-well plates at seven different concentrations (0.01, 0.1, 1, 10, 25, 50, 100 μM) as well as the control in three replicates. We observed statistically significant mortality rates at 25 µM and above upon 24 h of exposure, and at 1 µM and above following 48 h of exposure. Genotoxicity analysis, reproduction assay and qPCR analysis were carried out at concentrations of 0.01 and 0.1 μM phosmet as these concentrations did not show any lethality. Comet assay showed that exposure to phosmet resulted in significant DNA damage in the cells. Interestingly, 0.1 μM phosmet produced more offspring per adult compared to the control group indicating a hormetic response. Gene expression profiles demonstrated several genes involved in different physiological pathways, including oxidative stress, detoxification, immune system, hypoxia and iron homeostasis. Taken together, our results indicate that phosmet has negative effects on Daphnia magna in a dose- and time-dependent manner and could also induce lethal and physiological toxicities to other aquatic organisms.
Collapse
Affiliation(s)
- Mustafa Ataş
- Managing Chemical, Biological, Radioactive, Nuclear Risks, Iskenderun Technical University, Hatay, Turkey
| | - Ceyhun Bereketoglu
- Department of Bioengineering, Marmara University, Istanbul, Turkey
- Department of Biomedical Engineering, Iskenderun Technical University, Hatay, Turkey
| |
Collapse
|
3
|
Yang JH, Park JW, Kim HS, Lee S, Yerke AM, Jaiswal YS, Williams LL, Hwang S, Moon KH. Effects of Antibiotic Residues on Fish Gut Microbiome Dysbiosis and Mucosal Barrier-Related Pathogen Susceptibility in Zebrafish Experimental Model. Antibiotics (Basel) 2024; 13:82. [PMID: 38247641 PMCID: PMC10812462 DOI: 10.3390/antibiotics13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The symbiotic community of microorganisms in the gut plays an important role in the health of the host. While many previous studies have been performed on the interactions between the gut microbiome and the host in mammals, studies in fish are still lacking. In this study, we investigated changes in the intestinal microbiome and pathogen susceptibility of zebrafish (Danio rerio) following chronic antibiotics exposure. The chronic antibiotics exposure assay was performed on zebrafish for 30 days using oxytetracycline (Otc), sulfamethoxazole/trimethoprim (Smx/Tmp), or erythromycin (Ery), which are antibiotics widely used in the aquaculture industry. The microbiome analysis indicated that Fusobacteria, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in the gut microbiome of the zebrafish used in this study. However, in Smx/Tmp-treated zebrafish, the compositions of Fusobacteria and Proteobacteria were changed significantly, and in Ery-treated zebrafish, the compositions of Proteobacteria and Firmicutes were altered significantly. Although alpha diversity analysis showed that there was no significant difference in the richness, beta diversity analysis revealed a community imbalance in the gut microbiome of all chronically antibiotics-exposed zebrafish. Intriguingly, in zebrafish with dysbiosis in the gut microbiome, the pathogen susceptibility to Edwardsiella piscicida, a representative Gram-negative fish pathogen, was reduced. Gut microbiome imbalance resulted in a higher count of goblet cells in intestinal tissue and an upregulation of genes related to the intestinal mucosal barrier. In addition, as innate immunity was enhanced by the increased mucosal barrier, immune and stress-related gene expression in the intestinal tissue was downregulated. In this study, we provide new insight into the effect of gut microbiome dysbiosis on pathogen susceptibility.
Collapse
Affiliation(s)
- Jun Hyeok Yang
- Laboratory of Marine Microbiology, Division of Convergence of Marine Science, Korea Maritime & Ocean University, Busan 49112, Republic of Korea; (J.H.Y.); (J.W.P.); (H.S.K.)
- Department of Marine Bioscience and Environment, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Jeong Woo Park
- Laboratory of Marine Microbiology, Division of Convergence of Marine Science, Korea Maritime & Ocean University, Busan 49112, Republic of Korea; (J.H.Y.); (J.W.P.); (H.S.K.)
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Ho Sung Kim
- Laboratory of Marine Microbiology, Division of Convergence of Marine Science, Korea Maritime & Ocean University, Busan 49112, Republic of Korea; (J.H.Y.); (J.W.P.); (H.S.K.)
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Republic of Korea;
| | - Aaron M. Yerke
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| | - Yogini S. Jaiswal
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA; (Y.S.J.); (L.L.W.)
| | - Leonard L. Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA; (Y.S.J.); (L.L.W.)
| | - Sungmin Hwang
- Division of Practical Research, Honam National Institute Biological Resources, Mokpo-si 58762, Republic of Korea
| | - Ki Hwan Moon
- Laboratory of Marine Microbiology, Division of Convergence of Marine Science, Korea Maritime & Ocean University, Busan 49112, Republic of Korea; (J.H.Y.); (J.W.P.); (H.S.K.)
- Department of Marine Bioscience and Environment, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| |
Collapse
|
4
|
Li M, Wang Y, Liu R, Shi M, Zhao Y, Zeng K, Fu R, Liu P. Fluoride exposure confers NRF2 activation in hepatocyte through both canonical and non-canonical signaling pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:252-263. [PMID: 37694959 DOI: 10.1002/tox.23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Due to the high abundance in the Earth's crust and industrial application, fluoride is widely present in our living environment. However, excessive fluoride exposure causes toxicity in different organs. As the most important detoxification and excretion organ, liver is more easily involved in fluoride toxicity than other organs, and oxidative stress is considered as the key mechanism related with fluoride hepatotoxicity. In this study, we mainly investigated the role of nuclear factor erythroid-derived 2-like 2 (NRF2, a core transcription factor in oxidative stress) in fluoride exposure-induced hepatotoxicity as well as the related mechanism. Herein, liver cells (BNL CL.2) were treated with fluoride in different concentrations. The hepatotoxicity and NRF2 signaling pathway were analyzed respectively. Our results indicated that excessive fluoride (over 1 mM) resulted in obvious toxicity in hepatocyte and activated NRF2 and NRF2 target genes. The increased ROS generation after fluoride exposure suppressed KEAP1-induced NRF2 ubiquitylation and degradation. Meanwhile, fluoride exposure also led to blockage of autophagic flux and upregulation of p62, which contributed to activation of NRF2 via competitive binding with KEAP1. Both pharmaceutical activation and genetic activation of NRF2 accelerated fluoride exposure-induced hepatotoxicity. Thus, the upregulation of NRF2 in hepatocyte after fluoride exposure can be regarded as a cellular self-defense, and NRF2-KEAP1 system could be a novel molecular target against fluoride exposure-induced hepatotoxicity.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Shi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yishu Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kaixuan Zeng
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongguo Fu
- Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| |
Collapse
|
5
|
Dey Bhowmik A, Das T, Chattopadhyay A. Chronic exposure to environmentally relevant concentration of fluoride impairs osteoblast's collagen synthesis and matrix mineralization: Involvement of epigenetic regulation in skeletal fluorosis. ENVIRONMENTAL RESEARCH 2023; 236:116845. [PMID: 37558119 DOI: 10.1016/j.envres.2023.116845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Globally, 200 million people are suffering from toxic manifestations of Fluoride(F), dental and skeletal fluorosis; unfortunately, there is no treatment. To unravel the pathogenesis of skeletal fluorosis, we established fluorosis mice by treating environmentally relevant concentration of F (15 ppm NaF) through drinking water for 4 months. As in skeletal fluorosis, locomotor disability, crippling deformities occur and thus, our hypothesis was F might adversely affects collagen which gives the bone tensile strength. This work inevitably had to be carried out on osteoblast cells, responsible for synthesis, deposition, and mineralization of bone matrix. Isolated osteoblast cells were confirmed by ALP activity and mineralized nodules formation. Expression of collagen Col1a1, Col1a2, COL1A1 was significantly reduced in treated mice. Further, a study revealed the involvement of epigenetic regulation by promoter hypermethylation of Col1a1; expressional alterations of transcription factors, calcium channels and other genes e.g., Cbfa-1, Tgf-β1, Bmp1, Sp1, Sp7, Nf-Kb p65, Bmp-2, Bglap, Gprc6a and Cav1.2 are associated with impairment of collagen synthesis, deposition and decreased mineralization thus, enfeebling bone health. This study indicates the possible association of epigenetic regulation in skeletal fluorosis. However, no association was found between polymorphisms in the Col1a1 (RsaI, HindIII) and Col1a2 (RsaI, HindIII) genes with fluorosis in mice.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Tanmoy Das
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | |
Collapse
|
6
|
Stachurski P, Świątkowski W, Ciszewski A, Sarna-Boś K, Michalak A. A Short Review of the Toxicity of Dentifrices-Zebrafish Model as a Useful Tool in Ecotoxicological Studies. Int J Mol Sci 2023; 24:14339. [PMID: 37762640 PMCID: PMC10531698 DOI: 10.3390/ijms241814339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This review aims to summarize the literature data regarding the effects of different toothpaste compounds in the zebrafish model. Danio rerio provides an insight into the mechanisms of the ecotoxicity of chemicals as well as an assessment of their fate in the environment to determine long-term environmental impact. The regular use of adequate toothpaste with safe active ingredients possessing anti-bacterial, anti-inflammatory, anti-oxidant, and regenerative properties is one of the most effective strategies for oral healthcare. In addition to water, a typical toothpaste consists of a variety of components, among which three are of predominant importance, i.e., abrasive substances, fluoride, and detergents. These ingredients provide healthy teeth, but their environmental impact on living organisms are often not well-known. Each of them can influence a higher level of organization: subcellular, cellular, tissue, organ, individual, and population. Therefore, it is very important that the properties of a chemical are detected before it is released into the environment to minimize damage. An important part of a chemical risk assessment is the estimation of the ecotoxicity of a compound. The zebrafish model has unique advantages in environmental ecotoxicity research and has been used to study vertebrate developmental biology. Among others, the advantages of this model include its external, visually accessible development, which allows for providing many experimental manipulations. The zebrafish has a significant genetic similarity with other vertebrates. Nevertheless, translating findings from zebrafish studies to human risk assessment requires careful consideration of these differences.
Collapse
Affiliation(s)
- Piotr Stachurski
- Department of Paediatric Dentistry, Medical University of Lublin, 20-059 Lublin, Poland
| | - Wojciech Świątkowski
- Department of Oral Surgery, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Andrzej Ciszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Katarzyna Sarna-Boś
- Department of Dental Prosthetics, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
7
|
Iftikhar N, Konig I, English C, Ivantsova E, Souders CL, Hashmi I, Martyniuk CJ. Sulfamethoxazole (SMX) Alters Immune and Apoptotic Endpoints in Developing Zebrafish (Danio rerio). TOXICS 2023; 11:178. [PMID: 36851053 PMCID: PMC9959310 DOI: 10.3390/toxics11020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Sulfamethoxazole (SMX) is a broad-range bacteriostatic antibiotic widely used in animal and fish farming and is also employed in human medicine. These antibiotics can ultimately end up in the aquatic ecosystem and affect non-target organisms such as fish. To discern the effect of SMX on developing zebrafish embryos and larvae, we investigated a broad range of sub-lethal toxicity endpoints. Higher concentrations of SMX affected survivability, caused hatch delay, and induced malformations including edema of the yolk sac, pericardial effusion, bent tail, and curved spine in developing embryos. Lower levels of SMX provoked an inflammatory response in larvae at seven days post fertilization (dpf), as noted by up-regulation of interferon (ifn-γ) and interleukin 1β (il-1β). SMX also increased the expression of genes related to apoptosis, including BCL2-Associated Agonist of Cell Death (bad) and BCL2 Associated X, Apoptosis Regulator (bax) at 50 µg/L and decreased caspase 3 (casp3) expression in a dose-dependent manner. SMX induced hyperactivity in larval fish at 500 and 2500 µg/L based upon the light/dark preference test. Collectively, this study revealed that exposure to SMX can disrupt the immune system by altering host defense mechanisms as well as transcripts related to apoptosis. These data improve understanding of antibiotic chemical toxicity in aquatic organisms and serves as a baseline for in-depth environmental risk assessment of SMX and antibiotics.
Collapse
Affiliation(s)
- Nazish Iftikhar
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
- Department of Chemistry, Federal University of Lavras (UFLA), Lavras 37203-202, Minas Gerais, Brazil
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L. Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Imran Hashmi
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
- UF Genetics Institute and Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Wu Y, Zhang X, Chen J, Cao J, Feng C, Luo Y, Lin Y. Self-recovery study of fluoride-induced ferroptosis in the liver of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106275. [PMID: 36007351 DOI: 10.1016/j.aquatox.2022.106275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ferroptosis plays a key role in fluorosis in aquatic organisms, but whether it is involved in fluoride-induced liver damage remains unclear. Previous studies have indicated that fluoride toxicity has the reversible tendency, but the mechanism of self-recovery after fluorosis in aquatic animals has not been elucidated. In this study, adult zebrafish and embryos were exposed to 0, 20, 40, 80 mg/L of fluoride for 30, 60 and 90 d and 3, 4 and 5 d post-fertilization (dpf), respectively. After 90 d, adult zebrafish were transferred to clean water for self-recovery of 30 d. The results showed that fluoride induced the prominent histopathologial changes in liver of adults, and the developmental delay and dark liver area in larvae. Fluoride significantly increased the iron overload, while decreased the expression levels of transferrin (tf), transferrin receptor (tfr), ferroportin (fpn), membrane iron transporter (fpn), and ferritin heavy chain (fth) in adults and larvae. Fluoride also induced the oxidative stress in adults and larvae by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while decreasing the glutathione (GSH) content and the levels of glutathione peroxidase 4 (gpx4) and solute carrier family 7 member 11 (slc7a11). Self-recovery relieved fluoride-induced ferroptosis by reducing the histopathological damage and oxidative stress, reversing the expression levels of fth and slc7a11, Fe2+ metabolism and GSH synthesis. Lipid peroxidation and Fe2+ metabolism may be the key factor in alleviating effects of self-recovery on fluoride toxicity. Moreover, males are more sensitive than females. Our results provide a theoretical basis for studying the alleviating effects of self-recovery on fluoride toxicity and the underlying mechanism of its protective effect.
Collapse
Affiliation(s)
- Yijie Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiuling Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| |
Collapse
|
9
|
Babu S, Manoharan S, Ottappilakkil H, Perumal E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis. Chem Biol Interact 2022; 365:110106. [PMID: 35985521 DOI: 10.1016/j.cbi.2022.110106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Free radicals and other oxidants have enticed the interest of researchers in the fields of biology and medicine, owing to their role in several pathophysiological conditions, including fluorosis (Fluoride toxicity). Radical species affect cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress. Reactive oxygen species-mediated oxidative stress is a common denominator in fluoride toxicity. Fluorosis is a global health concern caused by excessive fluoride consumption over time. Fluoride alters the cellular redox homeostasis, and its toxicity leads to the activation of cell death mechanisms like apoptosis, autophagy, and necroptosis. Even though a surfeit of signaling pathways is involved in fluorosis, their toxicity mechanisms are not fully understood. Thus, this review aims to understand the role of reactive species in fluoride toxicity with an outlook on the effects of fluoride in vitro and in vivo models. Also, we emphasized the signal transduction pathways and the mechanism of cell death implicated in fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
10
|
Environmentally relevant fluoride alters nuclear integrity in erythrocytes and induces DNA damage in hepatocytes of zebrafish. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
Di Paola D, Capparucci F, Lanteri G, Crupi R, Marino Y, Franco GA, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Environmental Toxicity Assessment of Sodium Fluoride and Platinum-Derived Drugs Co-Exposure on Aquatic Organisms. TOXICS 2022; 10:toxics10050272. [PMID: 35622686 PMCID: PMC9145728 DOI: 10.3390/toxics10050272] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022]
Abstract
Pharmaceuticals are widely acknowledged to be a threat to aquatic life. Over the last two decades, the steady use of biologically active chemicals for human health has been mirrored by a rise in the leaking of these chemicals into natural environments. The aim of this work was to detect the toxicity of sodium fluoride (NaF) exposure and platinum-derived drugs in an ecological setting on aquatic organism development. From 24 to 96 h post-fertilization, zebrafish embryos were treated to dosages of NaF 10 mg/L−1 + cisplatin (CDDP) 100 μM, one with NaF 10 mg/L−1 + carboplatin (CARP) 25 μM, one with NaF 10 mg/L−1 + CDDP 100 μM + CARP 25 μM. Fluoride exposure in combination with Cisplatin and Carboplatin (non-toxic concentration) had an effect on survival and hatching rate according to this study. Additionally, it significantly disturbed the antioxidant defense system and increased ROS in zebrafish larvae. NaF 10 mg/L−1 associated with CDDP 100 μM and CARP 25 μM, increased the production of apoptosis-related proteins (caspase 3, bax, and bcl-2) and the downregulation of acetylcholinesterase (AChE) activity, while no effect was seen for the single exposure.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Gianluca Antonio Franco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-906-765-208 (S.C.)
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
- Correspondence: (S.C.); (N.S.); Tel.: +39-906-765-208 (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| |
Collapse
|
12
|
Wang G, Wang T, Zhang X, Chen J, Feng C, Yun S, Cheng Y, Cheng F, Cao J. Sex-specific effects of fluoride and lead exposures on histology, antioxidant physiology, and immune system in the liver of zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:396-414. [PMID: 35088223 DOI: 10.1007/s10646-022-02519-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Fluoride and Pb are both toxic to organisms; however, their combination effects and the corresponding toxic mechanisms remain unclear. In this study, male and female zebrafish (1:1) were evaluated to understand the effects of F and Pb alone and combined on growth, tissue microstructure, oxidative stress, and immune system functions of the liver. Four different groups and two exposure periods were compared: control group (C group), 80 mg/L fluoride group (F group), 60 mg/L lead group (Pb group), and 80 mg/L fluoride + 60 mg/L lead group (F + Pb group) for 45 and 90 days. The results indicated that F and Pb reduced growth performances; F + Pb treatment inhibited the growth performance traits of male zebrafish more than those of female zebrafish. Histopathological examination revealed large areas with focal necrosis, hepatocytes with karyolysis, and pycnotic nuclei in zebrafish exposed to F and Pb. The oxidative balance indices in the liver in the F and Pb groups were disturbed. F + Pb co-exposure aggravated oxidative stress in a time-dependent manner. The most serious oxidative stress was observed in the male zebrafish of the F + Pb group. Moreover, F and Pb exposure of male zebrafish increased pro-inflammatory and anti-inflammatory cytokines expression, which was decreased after 90 days of exposure. These results demonstrated that both F and Pb could damage the liver via downstream alterations in the activities of immune-related enzymes and in the levels of immune-related genes. F and Pb showed synergistic or additive effects. Male zebrafish were found to be more sensitive to F and Pb than female zebrafish.
Collapse
Affiliation(s)
- Guodong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Shaojun Yun
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanfen Cheng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Feier Cheng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
13
|
Dey Bhowmik A, Shaw P, Mondal P, Chakraborty A, Sudarshan M, Chattopadhyay A. Calcium and Vitamin D Supplementation Effectively Alleviates Dental and Skeletal Fluorosis and Retain Elemental Homeostasis in Mice. Biol Trace Elem Res 2021; 199:3035-3044. [PMID: 33057951 DOI: 10.1007/s12011-020-02435-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/11/2020] [Indexed: 01/22/2023]
Abstract
Fluoride (F) is an essential trace element, but chronic exposure beyond the permissible limit (1.5 ppm) effectuates dental and skeletal fluorosis. Although 200 million people across the world are suffering from toxic manifestations of F, till now proper treatment is not available. In this study, we assessed the effectiveness of calcium and vitamin D supplementation for alleviation of fluorosis. Swiss albino mice were divided into 6 groups; group I-control group (received drinking water ˂ 0.5 ppm F; within the permissible limit), group II-treated with 15 ppm of sodium fluoride (NaF) for 4 months, group III-treated with 15 ppm of NaF for 8 months through drinking water. Group IV-orally treated with 15 ppm NaF for 4 months, thereafter received only drinking water for next 4 months, group V-orally treated with 15 ppm NaF for 4 months, thereafter received drinking water supplemented with calcium and vitamin D (2.5-g calcium kg-1 diet and 1000 IU vitamin D kg-1 diet) for next 4 months, and group VI was treated with 15 ppm of NaF through drinking water as well as supplemented with calcium and vitamin D for 4 months. NaF treatment caused dental fluorosis, skeletal fluorosis, and alteration of bone's metal profile. Substitution of NaF-containing water with normal drinking water reduced the severity of fluorosis but supplementation of calcium and vitamin D effectively alleviated dental and skeletal fluorosis, reduced F deposition, and retained elemental homeostasis of the bone. Our findings strongly support that calcium and vitamin D act as redeemer of fluorosis. Graphical Abstract.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 731235, India
| | - Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 731235, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 731235, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | - Muthammal Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | | |
Collapse
|
14
|
Environmentally Relevant Mixture of Pesticides Affect Mobility and DNA Integrity of Early Life Stages of Rainbow Trout ( Oncorhynchus mykiss). TOXICS 2021; 9:toxics9080174. [PMID: 34437492 PMCID: PMC8402510 DOI: 10.3390/toxics9080174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to analyze the impact of three concentrations of a pesticide mixture on the first development stages of rainbow trout (Oncorhynchus mykiss). The mixture was made up of three commonly used pesticides in viticulture: glyphosate (GLY), chlorpyrifos (CPF) and copper sulfate (Cu). Eyed stage embryos were exposed for 3 weeks to three concentrations of the pesticide mixture. Lethal and sub-lethal effects were assessed through a number of phenotypic and molecular endpoints including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage (Comet assay), lipid peroxidation (TBARS), protein carbonyl content and gene expression. Ten target genes involved in antioxidant defenses, DNA repair, mitochondrial metabolism and apoptosis were analyzed using real-time RT-qPCR. No significant increase of mortality, half-hatch, growth defects, TBARS and protein carbonyl contents were observed whatever the pesticide mixture concentration. In contrast, DNA damage and swimming activity were significantly more elevated at the highest pesticide mixture concentration. Gene transcription was up-regulated for genes involved in detoxification (gst and mt1), DNA repair (ogg1), mitochondrial metabolism (cox1 and 12S), and cholinergic system (ache). This study highlighted the induction of adaptive molecular and behavioral responses of rainbow trout larvae when exposed to environmentally realistic concentrations of a mixture of pesticides.
Collapse
|
15
|
Shaw P, Sen A, Mondal P, Dey Bhowmik A, Rath J, Chattopadhyay A. Shinorine ameliorates chromium induced toxicity in zebrafish hepatocytes through the facultative activation of Nrf2-Keap1-ARE pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105622. [PMID: 32947073 DOI: 10.1016/j.aquatox.2020.105622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium, a heavy metal toxicant, abundantly found in the environment showed hepatotoxic potential in zebrafish liver and instigated the Nrf2-Keap1-ARE pathway as a cellular stress response as reported in our previous studies. In the present study we have evaluated the ameliorating effect of shinorine, a mycosporine like amino acid (MAAs) and a mammalian Keap1 antagonist against chromium induced stress in zebrafish hepatocytes. Shinorine was found to be effective in increasing the cell viability of chromium treated hepatocytes through curtailing the cellular ROS content. Trigonelline, an Nrf2 inhibitor was found to reduce the viability of hepatocyte cultures co-exposed to shinorine and chromium. In other words, trigonelline being an Nrf2 blocker neutralised the alleviating effect of shinorine. This indicated that shinorine mediated cyto-protection in Cr [VI]-intoxicated cells is Nrf2 dependent. Further, qRT-PCR analysis revealed comparatively higher expression of nfe2l2 and nqo1 in shinorine + chromium treated hepatocytes than cells exposed to chromium alone indicating a better functioning of Nrf2-Keap1-Nqo1 axis. To further confirm if shinorine can lead to disruption of Nrf2-Keap1 interaction in zebrafish hepatocytes and render cytoprotection to chromium exposure, our in silico analysis through molecular docking revealed that shinorine could bind to the active amino acid residues of the DGR domain, responsible for Nrf2-Keap1 interaction of all the three Keap1s evaluated. This is the first report about shinorine that ameliorates chromium induced toxicity through acting as an Nrf2-Keap1 interaction disruptor. We additionally carried out in-silico pharmacokinetic and ADMET studies to evaluate druglikeness of shinorine whose promising results indicated its potential to be developed as an ideal therapeutic candidate against toxicant induced pathological conditions.
Collapse
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Animesh Sen
- Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | |
Collapse
|
16
|
Li M, Cao J, Zhao Y, Wu P, Li X, Khodaei F, Han Y, Wang J. Fluoride impairs ovary development by affecting oogenesis and inducing oxidative stress and apoptosis in female zebrafish (Danio rerio). CHEMOSPHERE 2020; 256:127105. [PMID: 32450357 DOI: 10.1016/j.chemosphere.2020.127105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown that waterborne fluoride exposure has adverse effects on the reproductive system of zebrafish. However, the underlying toxic mechanisms were still not clear. In the present study, female zebrafish were exposed to different concentrations of 0.787 (Control), 18.599, 36.832 mg/L of fluoride for 30 d and 60 d, and the effects of different doses of fluoride on ovary development, reproductive hormones, oogenesis, ROS content, antioxidant levels, and the expression of apoptosis-related genes and proteins in the ovaries of female zebrafish were analyzed. The results showed that ovarian weight and GSI were significantly decreased, FSH, LH and VTG levels were significantly reduced, the transcriptional profiles of oogenesis-related genes (tgfβ1, bmp15, gdf9, mprα, mprβ, ptg2β) were remarkably altered, ROS levels was notably increased, the SOD, CAT, GPx activities and GSH content as well as their mRNA expressions were significantly decreased, MDA content was remarkably increased, the expressions of apoptosis-related genes and proteins (caspase3, caspase8, caspase9, Fas-L, Cytochrome C, Bax and Bcl-2) were significantly changed, the ratio of Bax/Bcl-2 protein levels were notably increased. Taken together, this study demonstrated that fluoride exposure significantly affected ovarian development, decreased the reproductive hormones, affected oogenesis, induced oxidative stress, caused apoptosis through both extrinsic and intrinsic pathways in ovary of zebrafish. Indicating that oogenesis, oxidative stress, and apoptosis were responsible for the impairment of ovarian development.
Collapse
Affiliation(s)
- Meiyan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinling Cao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xuehua Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Forouzan Khodaei
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
17
|
Dey Bhowmik A, Podder S, Mondal P, Shaw P, Bandyopadhyay A, Das A, Bhattacharjee P, Chakraborty A, Sudarshan M, Chattopadhyay A. Chronic exposure to environmentally relevant concentration of fluoride alters Ogg1 and Rad51 expressions in mice: Involvement of epigenetic regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110962. [PMID: 32800233 DOI: 10.1016/j.ecoenv.2020.110962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Chronic exposure to fluoride (F) beyond the permissible limit (1.5 ppm) is known to cause detrimental health effects by induction of oxidative stress-mediated DNA damage overpowering the DNA repair machinery. In the present study, we assessed F induced oxidative stress through monitoring biochemical parameters and looked into the effect of chronic F exposure on two crucial DNA repair genes Ogg1 and Rad51 having important role against ROS induced DNA damages. To address this issue, we exposed Swiss albino mice to an environmentally relevant concentration of fluoride (15 ppm NaF) for 8 months. Results revealed histoarchitectural damages in liver, brain, kidney and spleen. Depletion of GSH, increase in lipid peroxidation and catalase activity in liver and brain confirmed the generation of oxidative stress. qRT-PCR result showed that expressions of Ogg1 and Rad51 were altered after F exposure in the affected organs. Promoter hypermethylation was associated with the downregulation of Rad51. F-induced DNA damage and the compromised DNA repair machinery triggered intrinsic pathway of apoptosis in liver and brain. The present study indicates the possible association of epigenetic regulation with F induced neurotoxicity.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Santosh Podder
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India; Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | | - Ankita Das
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | - Muthammal Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, India
| | | |
Collapse
|
18
|
OXIDATIVE STRESS, DNA DAMAGE AND APOPTOSIS LEVELS IN THOSE WHO USE BORDERLINE HIGH LEVEL FLUORIDE CONTENT DRINKING WATER. JOURNAL OF CONTEMPORARY MEDICINE 2020. [DOI: 10.16899/jcm.690968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
19
|
Shaw P, Mondal P, Bandyopadhyay A, Chattopadhyay A. Environmentally relevant concentration of chromium induces nuclear deformities in erythrocytes and alters the expression of stress-responsive and apoptotic genes in brain of adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135622. [PMID: 31767327 DOI: 10.1016/j.scitotenv.2019.135622] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination of water body has become a serious threat to aquatic life forms specially to fish. Hexavalent chromium (Cr [VI]) is one of the most potent heavy metal toxicant. It is present in aquatic environment at concentrations beyond permissible limit. Considering the fact that toxic effects are function of the exposure concentration, studies involving toxicological risk assessment should be done at environmentally relevant concentration. Therefore we studied the toxic effects of Cr [VI] to zebrafish at an environmentally relevant concentration (2 mg L-1). We monitored the genotoxic potential of Cr [VI] in erythrocytes through a simple reliable microscopic assay and found an increase in frequency of micronucleated erythrocytes along with erythrocytes with blebbed, lobed and notched nuclei. In addition, Cr [VI] induced neurotoxicity, being a least reported event was also investigated. Histological alterations in brain, elevated GSH and MDA content and increased catalase activity indicated oxidative stress-mediated damage. This was further confirmed through expressional alteration of Ucp2. Upregulation of Nrf2, Nqo1 and Ho1 clearly indicated the involvement of Nrf2-ARE system in stress response against Cr [VI] induced neurotoxicity. The transcriptional induction of apoptotic genes such as Bax, Caspase 9 and Caspase 3 along with downregulation of Bcl2 indicated that the cytoprotective system failed to counter the induced stress. Interestingly, there was upregulation of AChE gene, which could be correlated with the upregulated apoptotic genes. This study provides an insight on the neurotoxic stress of Cr [VI] on the zebrafish yet at an environmentally relevant concentration. Moreover the induction of nuclear anomalies in the erythrocytes can serve as extremely sensitive endpoints of toxicological stress indicators of aquatic contaminants like Cr [VI].
Collapse
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | | | |
Collapse
|
20
|
Li S, Jiang Y, Sun Q, Coffin S, Chen L, Qiao K, Gui W, Zhu G. Tebuconazole induced oxidative stress related hepatotoxicity in adult and larval zebrafish (Danio rerio). CHEMOSPHERE 2020; 241:125129. [PMID: 31683439 DOI: 10.1016/j.chemosphere.2019.125129] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Tebuconazole is widely used as fungicide and has frequently been detected at elevated concentrations in environmental media. To characterize the potential toxicity of tebuconazole on vertebrate and humans. Using zebrafish as a vertebrate model, the toxic effects in liver that produced by low-toxic concentrations of tebuconazole were assessed in adult zebrafish. We further focused on tebuconazole-induced toxicity and its possible mechanism in larval zebrafish using a hepatotoxicity assay. The induction of oxidative stress in adult fish was evaluated by superoxide dismutase (T-SOD), catalase (CAT), peroxidase (POD), glutathione S-transferase (GST) activity, and the increased aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio. Significantly increased enzyme activity was observed in the liver of male and female fish at both exposure and depuration stage. Exposure to maximum non-lethal (MNLC) concentration of tebuconazole from 72 to 120 h post-fertilization (hpf) affected the liver size and yolk retention in larval zebrafish. Decreased fluorescence intensity was observed in larval Tg(Apo14:GFP) zebrafish, indicating liver degeneration after tebuconazole treated. Histopathological examination confirmed the alterations in liver histoarchitecture in exposed zebrafish. Significant 1.28-fold and 1.65-fold increases in reactive oxygen species levels were observed in juveniles exposed to MNLC and lethal concentration 10 (LC10) group, respectively. The acridine orange staining assay showed that apoptotic cells occurred in the liver regions. These results indicated that tebuconazole exposure resulted in impacts on the ecological risk in fish and vertebrate. Overall, the present study suggested further research in needed to better understand the tebuconazole-induced toxicity mechanism that associated with oxidative stress.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Jiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Qianqian Sun
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Lili Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
21
|
The food preservative ethoxyquin impairs zebrafish development, behavior and alters gene expression profile. Food Chem Toxicol 2020; 135:110926. [DOI: 10.1016/j.fct.2019.110926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022]
|
22
|
Mondal P, Chattopadhyay A. Environmental exposure of arsenic and fluoride and their combined toxicity: A recent update. J Appl Toxicol 2019; 40:552-566. [PMID: 31867774 DOI: 10.1002/jat.3931] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Environmental exposure to arsenic (As) and fluoride (F) in the recent year has been increased because of excessive use of naturally contaminated ground water. Surface water is also regularly contaminated with these elements in various industrial areas. Arsenicosis and fluorosis upon individual exposure of As and F are reported in many studies. A syndrome of endemic As poisoning and fluorosis occurs during concurrent exposure of As and F. Previous reports showed synergistic, antagonistic and independent effects of these two compounds, although few recent reports also revealed antagonistic effects after co-exposure. Interaction during intestinal absorption and influence of F on As metabolism might be the cause of antagonism. The synergism/antagonism is thought to depend on the dose and duration of the co-exposure. However, the detailed mechanism is still not fully understood and needs further studies. Removal technologies of As and F from contaminated water is available but removal of such contaminants from food is yet to be developed. Antioxidants are useful to mitigate the toxic effects of As and F. This review focused on the effect of co-exposure, amelioration as well as removal techniques of As and F.
Collapse
Affiliation(s)
- Paritosh Mondal
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | | |
Collapse
|
23
|
Cardoso PG, Resende-de-Oliveira R, Rocha E. Combined effects of increased temperature and levonorgestrel exposure on zebrafish female liver, using stereology and immunohistochemistry against catalase, CYP1A, HSP90 and vitellogenin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1059-1067. [PMID: 31252103 DOI: 10.1016/j.envpol.2019.06.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Climate change and pharmaceuticals contamination constitute two of the most relevant stressors on the aquatic ecosystems, however, there is a huge lack of information regarding the interactive effects of both stressors. For that, a mesocosm experiment was implemented where adult zebrafish were exposed to combined temperature and the progestin levonorgestrel (LNG) for 21 days. Considering that the liver is one of the organs where there is a greater metabolization and accumulation of toxicants, the main objective of this work was to assess the effects of both stressors on the female zebrafish hepatocytes morphology and functioning, through stereological and immunohistochemical techniques. Our results revealed an increase of coefficient of variation of the number distribution of hepatocytes volume (CVN(υ)) for individuals exposed to LNG, which denotes an increase of the hepatocytes size variability and is suggestive of functional impacts. This was corroborated by the signs of increased glycogen content with the exposure to increased LNG concentrations and temperature, indicating modified hepatocyte glycogen metabolism. Such disturbances can be considered indicators that the fish had to deal with impacts caused by the stress factors. Regarding the immunoreactivity, from the four proteins selected (catalase, CYP1A, HSP90 and Vtg), just in two of them (catalase and Vtg) were observed some responses to both stressors. For catalase there was a hormetic response, in which exposure to lower LNG concentrations caused a significant higher positive immunostaining than under higher LNG concentrations. While, for Vtg, significant effects of temperature and LNG existed, in which a decline in Vtg immunostaining was observed with exposure to higher temperature and lower LNG concentrations. These results should be seen as a warning sign about fine impacts of multiple stressors, such as temperature and progestogens, on the structure and functioning of zebrafish liver and potentially in other aquatic organisms, and on their health implications.
Collapse
Affiliation(s)
- P G Cardoso
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.
| | - R Resende-de-Oliveira
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - E Rocha
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
24
|
Mondal P, Shaw P, Bandyopadhyay A, Dey Bhowmik A, Chakraborty A, Sudarshan M, Chattopadhyay A. Mixture effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Danio rerio) liver: Expression pattern of Nrf2 and related xenobiotic metabolizing enzymes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105219. [PMID: 31195325 DOI: 10.1016/j.aquatox.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Nrf2 is a crucial transcription factor that regulates the expression of cytoprotective enzymes and controls cellular redox homeostasis. Both arsenic and fluoride are potent toxicants that are known to induce Nrf2. They are reported to coexist in many areas of the world leading to complex mixture effects in exposed organisms. The present study investigated the expression of Nrf2 and related xenobiotic metabolizing enzymes along with other stress markers such as histopathological alterations, catalase activity, reduced glutathione content and lipid peroxidation in zebrafish liver as a function of combined exposure to environmentally relevant concentrations of arsenic (37.87 μgL-1 or 5.05 × 10-7 M) and fluoride (6.8 mg L-1 or 3.57 × 10-4 M) for 60 days. The decrease in the total reduced glutathione level was evident in all treatment conditions. Hyperactivity of catalase along with conspicuous elevation in reactive oxygen species, malondialdehyde content and histo-architectural anomalies signified the presence of oxidative stress in the treatment groups. Nrf2 was seen to be induced at both transcriptional and translational levels in case of both individual and co-exposure. The same pattern was observed in case of its nuclear translocation also. From the results of qRT-PCR it was evident that at each time point co-exposure to arsenic and fluoride seemed to alter the gene expression of Cu/Zn Sod, Mn Sod, Gpx and Nqo1 just like their individual exposure but at a very low magnitude. In conclusion, this study demonstrates for the first time the differential expression and activity of Nrf2 and other stress response genes in the zebrafish liver following individual and combined exposure to arsenic and fluoride.
Collapse
Affiliation(s)
- Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, West Bengal, India
| | - Muthammal Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, West Bengal, India
| | | |
Collapse
|
25
|
Dey Bhowmik A, Chattopadhyay A. A review on fluoride induced organotoxicity and genotoxicity in mammals and zebrafish. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00272-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
26
|
Don Xavier ND, Bijoy Nandan S, Jayachandran PR, Anu PR, Midhun AM, Mohan D. Chronic effects of copper and zinc on the fish, Etroplus suratensis (Bloch, 1790) by continuous flow through (CFT) bioassay. MARINE ENVIRONMENTAL RESEARCH 2019; 143:141-157. [PMID: 30497666 DOI: 10.1016/j.marenvres.2018.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Copper (Cu) and zinc (Zn) play a vital role in the growth and development, however increased uptake causes deleterious effects in normal functioning of organisms. We have demonstrated in this contribution the tolerance limit of Cu and Zn on Etroplus suratensis (pearl spot) by Continuous Flow Through (CFT) bioassay and the biomarker responses. The accumulation for Cu, Zn and selected trace metals (Cr, Cd, Ni and Pb) from field conditions, as well Geo-accumulation index (I geo) and Contamination factor (C.F) suggested moderate to heavy pollution in the Cochin estuarine system. The 96 h LC50 values for Cu was 1.74 ± 0.04 mg L-1and that for Zn was 24.36 ± 0.58 mg L-1 at 95% confidence interval. No observed effect concentration (NOEC) and low observed effect concentration (LOEC) for Cu and Zn were derived based on the survival rates. Chronic toxicity values for Cu and Zn were 0.23 mg L-1 and 2.005 mg L-1 respectively for 30 days period. The histological, biochemical, hematological and behavioral parameters showed significant variations at sublethal concentrations. Lamellar hyperplasia in gills, vacuolation combined with necrosis in liver, increased occurrence of melanomacrophage centres in spleen were noticed at chronic levels for both Cu and Zn. Tissue specific bioconcentration was observed for zinc and copper in gill and liver respectively, with least rate of bioconcentration observed in muscle tissues. Malaonate Dehydrogenase (MDH), Super oxide dismutase (SOD), Nonspecific esterase (EST) activity significantly varied compared to control at NOEC and LOEC values in both the metals. The hematological and genotoxic alterations as decrease in erythrocyte count, lymphocytes, hemoglobin concentration and hematocrit percentage were significantly reduced (p < 0.05) and increased thrombocytes and neutrophils, increased frequency of micronuclei, lobed, blebbed and notched nuclei and binucleate cells were characteristic for the metals at the sublethal concentrations. The frequency of behavioral changes remained significantly higher at chronic level than the control group. Thus such CFT based studies are important for precisely mapping the toxicity changes in organisms and also to develop suitable water quality guidelines.
Collapse
Affiliation(s)
- N D Don Xavier
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences, Cochin University of Science and Technology Fine Arts Avenue, Kochi, 682 016, Kerala, India
| | - S Bijoy Nandan
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences, Cochin University of Science and Technology Fine Arts Avenue, Kochi, 682 016, Kerala, India.
| | - P R Jayachandran
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences, Cochin University of Science and Technology Fine Arts Avenue, Kochi, 682 016, Kerala, India
| | - P R Anu
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences, Cochin University of Science and Technology Fine Arts Avenue, Kochi, 682 016, Kerala, India
| | - A M Midhun
- Department of Marine Biology, Microbiology and Biochemistry School of Marine Sciences, Cochin University of Science and Technology Fine Arts Avenue, Kochi, 682 016, Kerala, India
| | - D Mohan
- Integrated Coastal and Marine Area Management-PD Government of India, Ministry of Earth Sciences, Chennai, 600 100, Tamil Nadu, India
| |
Collapse
|
27
|
Khan ZN, Sabino IT, de Souza Melo CG, Martini T, da Silva Pereira HAB, Buzalaf MAR. Liver Proteome of Mice with Distinct Genetic Susceptibilities to Fluorosis Treated with Different Concentrations of F in the Drinking Water. Biol Trace Elem Res 2019; 187:107-119. [PMID: 29705835 DOI: 10.1007/s12011-018-1344-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/10/2018] [Indexed: 02/02/2023]
Abstract
Appropriate doses of fluoride (F) have therapeutic action against dental caries, but higher levels can cause disturbances in soft and mineralized tissues. Interestingly, the susceptibility to the toxic effects of F is genetically determined. This study evaluated the effects of F on the liver proteome of mice susceptible (A/J) or resistant (129P3/J) to the effects of F. Weanling male A/J (n = 12) and 129P3/J (n = 12) mice were housed in pairs and assigned to two groups given low-F food and drinking water containing 15 or 50 ppm F for 6 weeks. Liver proteome profiles were examined using nano-LC-ESI-MS/MS. Difference in expression among the groups was determined using the PLGS software. Treatment with the lower F concentration provoked more pronounced alterations in fold change in liver proteins in comparison to the treatment with the higher F concentration. Interestingly, most of the proteins with fold change upon treatment with 15 ppm F were increased in the A/J mice compared with their 129P3/J counterparts, suggesting an attempt of the former to fight the deleterious effects of F. However, upon treatment with 50 ppm F, most proteins with fold change were decreased in the A/J mice compared with their 129P3/J counterparts, especially proteins related to oxidative stress and protein folding, which might be related to the higher susceptibility of the A/J animals to the deleterious effects of F. Our findings add light into the mechanisms underlying genetic susceptibility to fluorosis.
Collapse
Affiliation(s)
- Zohaib Nisar Khan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Isabela Tomazini Sabino
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Carina Guimarães de Souza Melo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Tatiana Martini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
| | - Heloísa Aparecida Barbosa da Silva Pereira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil
- Department of Genetics and Evolution, Center of Biological Sciences and the Health, Federal University of São Carlos, Washington Luis, Km 235, São Carlos, São Paulo, 13560-970, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, São Paulo, 17012-901, Brazil.
| |
Collapse
|
28
|
Shaw P, Mondal P, Bandyopadhyay A, Chattopadhyay A. Environmentally relevant concentration of chromium activates Nrf2 and alters transcription of related XME genes in liver of zebrafish. CHEMOSPHERE 2019; 214:35-46. [PMID: 30253254 DOI: 10.1016/j.chemosphere.2018.09.104] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Fish is an excellent model to decipher the mechanism of toxicity of aquatic contaminants such as hexavalent chromium (Cr [VI]). The present study looked into the manifestation of stress in liver of zebrafish exposed to an environmentally relevant concentration (2 mgL-1), and the functioning of the cytoprotective machinery that pacifies the formed stress. The results lead us to hypothesize that oxidative stress plays a key role in chromium-induced toxicity resulting in lipid peroxidation and extensive changes in tissue ultrastructure. In treated fish, production of reactive oxygen species, increase in reduced glutathione content and increase in malondialdehyde content along with enhanced catalase activity were evident. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was found to increase both at transcriptional and translational level and its translocation into the nucleus was confirmed by fluorescence-based immunohistochemical studies. The mRNA levels of genes like Nqo1, Cyp1a and Cu/Zn Sod were found to increase whereas Ho1, Hsp70 and Ucp2 were down-regulated. The sensitivity of these genes towards Cr [VI] validates their candidature as important biomarkers of Cr [VI] exposure in zebrafish.
Collapse
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | - Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | | | | |
Collapse
|
29
|
Shenoy PS, Sen U, Kapoor S, Ranade AV, Chowdhury CR, Bose B. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:534-548. [PMID: 30384060 DOI: 10.1016/j.envpol.2018.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Fluoride is a well-known compound for its usefulness in healing dental caries. Similarly, fluoride is also known for its toxicity to various tissues in animals and humans. It causes skeletal fluorosis leading to osteoporosis of the bones. We hypothesized that when bones are affected by fluoride, the skeletal muscles are also likely to be affected by underlying molecular events involving myogenic differentiation. Murine myoblasts C2C12 were cultured in differentiation media with or without NaF (1 ppm-5 ppm) for four days. The effects of NaF on myoblasts and myotubes when exposed to low (1.5 ppm) and high concentration (5 ppm) were assessed based on the proliferation, alteration in gene expression, ROS production, and production of inflammatory cytokines. Changes based on morphology, multinucleated myotube formation, expression of MyHC1 and signaling pathways were also investigated. Concentrations of NaF tested had no effects on cell viability. NaF at low concentration (1.5 ppm) caused myoblast proliferation and when subjected to myogenic differentiation it induced hypertrophy of the myotubes by activating the IGF-1/AKT pathway. NaF at higher concentration (5 ppm), significantly inhibited myotube formation, increased skeletal muscle catabolism, generated reactive oxygen species (ROS) and inflammatory cytokines (TNF-α and IL-6) in C2C12 cells. NaF also enhanced the production of muscle atrophy-related genes, myostatin, and atrogin-1. The data suggest that NaF at low concentration can be used as muscle enhancing factor (hypertrophy), and at higher concentration, it accelerates skeletal muscle atrophy by activating the ubiquitin-proteosome pathway.
Collapse
Affiliation(s)
- P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Anu V Ranade
- College of Medicine, University of Sharjah, United Arab Emirates
| | - Chitta R Chowdhury
- Department of Oral Biology & Genomic Studies, A.B.Shetty Memorial Institute of Dental Sciences, Nitte University, Mangalore, 575018, Karnataka, India; School of Health and Life Sciences, Biomedical and Environmental Health Group, De Montfort University, Leicester, United Kingdom
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
30
|
Shakya B, Siddique YH. Evaluation of the toxic potential of arecoline toward the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Toxicol Res (Camb) 2018; 7:432-443. [PMID: 30090593 PMCID: PMC6062115 DOI: 10.1039/c7tx00305f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/22/2018] [Indexed: 11/21/2022] Open
Abstract
Arecoline is the key component of areca nut and has been suggested as a carcinogenic agent. In the present study, the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 were allowed to feed on a diet having 5, 10, 20, 40 and 80 μM arecoline for 24 h. After the completion of 24 h, the larvae were subjected to ONPG assay, X-gal staining, trypan blue exclusion test, oxidative stress markers, and apoptotic and comet assays. A dose-dependent increase in the β-galactosidase activity, tissue damage, glutathione-S-transferase (GST) activity, lipid peroxidation assay, monoamine oxidase (MAO), caspase-9 and 3, protein carbonyl content (PCC), apoptotic index, and DNA damage and decrease in glutathione (GSH) content, delta aminolevulinic acid dehydrogenase (δ-ALA-D), and acetylcholinesterase (AChE) activity were observed in the larvae exposed to 20, 40 and 80 μM arecoline. The results suggest that arecoline is toxic at 20, 40, and 80 μM toward the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9 . Arecoline did not show any toxic effects at 5 and 10 μM.
Collapse
Affiliation(s)
- Barkha Shakya
- Drosophila Transgenic Laboratory , Section of Genetics , Department of Zoology , Faculty of Life Sciences , Aligarh Muslim University , Aligarh , Uttar Pradesh , India . ; Tel: +0571-2700920-3430
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory , Section of Genetics , Department of Zoology , Faculty of Life Sciences , Aligarh Muslim University , Aligarh , Uttar Pradesh , India . ; Tel: +0571-2700920-3430
| |
Collapse
|
31
|
Nagarjuna A, Karthikeyan P, Mohan D, Rudragouda Marigoudar S. Effect of selenium on Penaeus monodon and Perna viridis: Enzyme activities and histopathological responses. CHEMOSPHERE 2018; 199:340-350. [PMID: 29453060 DOI: 10.1016/j.chemosphere.2018.02.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The study was carried out to evaluate enzyme activities and histopathological changes due to the effect of acute and chronic definitive toxicity of selenium (Se) on the post larvae (PL) of giant tiger shrimp (Penaeus monodon), and green mussel (Perna viridis). The 96-h Median Lethal concentration (LC50) for the PL of shrimp was 3.36 mg L-1 and the chronic value for the long-term survival endpoint in a 21-d exposure was 0.10 mg L-1. The green mussel 96-h LC50 was 28.41 mg L-1 and the chronic value for the long-term survival endpoint in a 30-d exposure was 3.06 mg L-1. Native polyacrylamide gel electrophoresis revealed altered diverse isoforms of esterase, superoxide dismutase and malate dehydrogenase activities in the PL of shrimp and green mussel exposed to sublethal concentration of Se. Cellular anomalies such as deformation and fusion of corneal cells, detachment of corneal cells from cornea facet and increased space between ommatidia were observed in the compound eye of PL of shrimp exposed to Se for 21-d. Shrinkage and clumping of mucous gland, degenerative changes in phenol gland, and ciliated epithelium were observed in the foot of green mussel exposed to Se for 30-d. This study shows that cellular anomalies in the compound eye of PL of P. monodon and foot tissues of P. viridis described would affect the vision of shrimp and byssus thread formation in green mussel.
Collapse
Affiliation(s)
- Avula Nagarjuna
- Integrated Coastal and Marine Area Management, Government of India, Ministry of Earth Sciences, NIOT Campus, Chennai, Tamil Nadu, India
| | - Panneerselvam Karthikeyan
- Integrated Coastal and Marine Area Management, Government of India, Ministry of Earth Sciences, NIOT Campus, Chennai, Tamil Nadu, India
| | - Dhandapani Mohan
- Integrated Coastal and Marine Area Management, Government of India, Ministry of Earth Sciences, NIOT Campus, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
32
|
Zuo H, Chen L, Kong M, Yang Y, Lü P, Qiu L, Wang Q, Ma S, Chen K. The toxic effect of sodium fluoride on Spodoptera frugiperda 9 cells and differential protein analysis following NaF treatment of cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:313-323. [PMID: 29414353 DOI: 10.1016/j.envpol.2018.01.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Accumulation of excess fluoride has a destructive effect on the environment, endangering human health, affecting organism growth and development, and leading to damage to the biological chain, thereby affecting ecological environment balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity; however, fluoride-toxicity mechanisms in insect cells remain unclear. This study explored the toxic impact of sodium fluoride (NaF) on Spodoptera frugiperda 9 (Sf9) insect cells. High concentrations of NaF (10-4 M, 10-3 M and 10-2 M) resulted in cell enlargement, cell membrane blurring and breakage, and release of cellular contents. Dose-response curves indicated that NaF-specific inhibition rates on Sf9-cell activity increased along with increases in NaF concentration, with a half-inhibitory concentration (IC50) for NaF of 5.919 × 10-3 M at 72 h. Compared with controls, the percentages of early and late apoptotic and necrotic cells clearly increased based on observed increases in NaF concentrations. Two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to detect differentially expressed proteins in Sf9 cells treated with IC50 NaF, identifying 17 proteins, seven of which were upregulated and 10 downregulated. These results demonstrated that Sf9 cells showed signs of NaF-mediated toxicity through alterations in cell morphology, apoptosis rates, and protein expression.
Collapse
Affiliation(s)
- Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
33
|
Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY) 2018; 9:1623-1639. [PMID: 28657544 PMCID: PMC5509460 DOI: 10.18632/aging.101257] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
Abstract
The current study was conducted to investigate the effect of sodium fluoride (NaF) on the oxidative stress and apoptosis as well as their relationship in the mouse liver by using methods of flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, biochemistry and experimental pathology. 240 four-week-old ICR mice were randomly divided into 4 groups and exposed to different concentration of NaF (0 mg/kg, 12 mg/kg, 24 mg/kg and 48 mg/kg) for a period of 42 days. The results showed that NaF caused oxidative stress and apoptosis. NaF-caused oxidative stress was accompanied by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreasing mRNA expression levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-PX) and glutathione-s-transferase (GST). NaF induced apoptosis via tumor necrosis factor recpter-1 (TNF-R1) signaling pathway, which was characterized by significantly increasing mRNA and protein expression levels of TNF-R1, Fas associated death domain (FADD), TNFR-associated death domain (TRADD), cysteine aspartate specific protease-8 (caspase-8) and cysteine aspartate specific protease-3 (caspase-3) in dose- and time-dependent manner. Oxidative stress is involved in the process of apoptotic occurrence, and can be triggered by promoting ROS production and reducing antioxidant function. NaF-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and increased serum alanine amino transferase (ALT), aspartic acid transferase (AST), alkaline phosphatase (AKP) activities and TBIL contents.
Collapse
Affiliation(s)
- Yujiao Lu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Qin Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ping Kuang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
34
|
Pal S, Samanta P, Kole D, Mukherjee AK, Ghosh AR. Acute Toxicity and Oxidative Stress Responses in Tadpole of Skittering Frog, Euphlyctis cyanophlyctis (Schneider, 1799) to Sodium Fluoride Exposure. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:202-207. [PMID: 29294177 DOI: 10.1007/s00128-017-2264-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the acute toxicity and oxidative stress responses to sodium fluoride (NaF) exposure in tadpoles of the skittering frog, Euphlyctis cyanophlyctis (Schneider 1799). The 96 h LC50 value was found to be 647 mg/L. Biochemical tests were conducted at 10%, 20%, 30%, 40%, 50%, 60%, 70% and 80% of the 96 h LC50 dose. Cholinesterase (ChE) activity was unaffected. Lipid peroxidation levels significantly increased (p < 0.05) at lower concentrations, but decreased significantly with increasing NaF concentrations. Glutathione S-transferase (GST) activity also increased significantly with increasing NaF concentrations. Alkaline phosphatase levels steadily decreased with increasing concentrations of NaF. The responses for the biochemical tests were summarized using an integrated biomarker response (IBR) index approach, which indicated that lower NaF exposures caused higher levels of oxidative stress responses overall. These findings suggest that the IBR index approach may be useful for the quantitative monitoring of NaF toxicity in amphibians.
Collapse
Affiliation(s)
- Sandipan Pal
- Department of Environmental Science, Aghorekamini Prakashchandra Mahavidyalaya, Bengai, India
| | - Palas Samanta
- Ecotoxicology Lab, Department of Environmental Science, The University of Burdwan, Bardhaman, India
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Debraj Kole
- Ecotoxicology Lab, Department of Environmental Science, The University of Burdwan, Bardhaman, India
| | - Aloke Kumar Mukherjee
- P.G. Department of Conservation Biology, Durgapur Government College, Durgapur, India
| | - Apurba Ratan Ghosh
- Ecotoxicology Lab, Department of Environmental Science, The University of Burdwan, Bardhaman, India.
| |
Collapse
|
35
|
Singh R, Hussain MA, Kumar J, Kumar M, Kumari U, Mazumder S. Chronic fluoride exposure exacerbates headkidney pathology and causes immune commotion in Clarias gariepinus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:30-39. [PMID: 28917943 DOI: 10.1016/j.aquatox.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The current study was aimed to understand the effects of chronic fluoride exposure on fish immune system. African sharp tooth catfish (Clarias gariepinus) were exposed to 73.45mg/L of fluoride corresponding to 1/10 96h LC50 for 30 d and the effects on general fish health and several immune parameters were studied. Chronic fluoride exposure led to significant alteration in serum biochemical parameters including alkaline phosphatase, alanine transaminase, aspartate transaminase, triglycerides, cholesterol and blood urea nitrogen levels revealing the detrimental effect of fluoride on general fish health. Upregulation in cytochrome P450 1A expression, both at mRNA and protein level suggested that fluoride activates the detoxification machinery in headkidney (HK) of C. gariepinus. Histopathological analysis of HK from exposed fish further revealed fluoride-induced hypertrophy, increase in melano-macrophage centers (MMCs) and the development of cell-depleted regions. Fluoride reduced headkidney somatic index (HKSI) and the phagocytic potential of headkidney macrophages (HKM). It induced caspase-3-dependent headkidney leukocyte (HKL) apoptosis, elevated superoxide generation and production of pro-inflammatory cytokine TNF-α besides suppressed T-cell proliferation in the exposed fish. We surmise the elevation in superoxide levels coupled with increased TNF-α production to be plausible causes of fluoride-induced HKL apoptosis. It is concluded that chronic fluoride exposure induces structure-function alterations in HK, the primary lymphoid organ in fish leading to impairment in immune responses.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Usha Kumari
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
36
|
Miao L, Li L, Qi M, Zhou M, Zhang N, Zou X. Effects of Excess Dietary Fluoride on Serum Biochemical Indices, Egg Quality, and Concentrations of Fluoride in Soft Organs, Eggs, and Serum of Laying Hens. Biol Trace Elem Res 2017; 180:146-152. [PMID: 28281223 DOI: 10.1007/s12011-017-0973-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
This study was conducted to investigate the effects of excess dietary fluoride (F) on serum biochemical indices, egg quality, and concentrations of F in soft tissues, eggs, and serum of laying hens. Commercial laying hens (n = 576, 51 weeks of age) were randomly allotted to 6 treatments with 6 replicates of 16 birds. The basal diets contained fluorine inclusions at a level of 16 mg/kg, and graded sodium fluoride was added to the basal diet to achieve fluorine inclusions, respectively, at a level of 200, 400, 600, 800, and 1000 mg/kg in the experimental diets. Dietary F levels at 600, 800, and 1000 mg/kg decreased (P < 0.05) albumin height and yolk color, while eggshell strength and eggshell thickness significantly decreased at 800 and 1000 mg/kg, respectively, compared with the control group. Fluoride concentrations in eggshell, albumin, yolk, liver, kidney, ovary, and oviduct responded to dietary F levels positively, and F concentrations in eggshell were the highest. Fluorine concentrations in albumin and yolk increased with the feeding time at the same dietary F levels (P < 0.05). Dietary F level at 400 mg/kg increased serum calcium level and activity of glutamic oxalacetic transaminase (P < 0.05). In conclusion, dietary F levels at 600 mg/kg decreased albumin height and yolk color, while eggshell strength and eggshell thickness significantly decreased at 800 and 1000 mg/kg, respectively. F concentrations in soft tissues, albumin, yolk, and eggshell of layers had a positive correlation with dietary F levels. By disturbing Ca and phosphorus metabolism, dietary F levels affected the formation of eggshell, reducing eggshell strength and eggshell thickness.
Collapse
Affiliation(s)
- Liping Miao
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Lanlan Li
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Mingxing Qi
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Minyao Zhou
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Nannan Zhang
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoting Zou
- Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China.
| |
Collapse
|
37
|
Sarasamma S, Varikkodan MM, Liang ST, Lin YC, Wang WP, Hsiao CD. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario. Zebrafish 2017; 14:589-605. [PMID: 29023224 DOI: 10.1089/zeb.2017.1447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is a versatile model organism that has been used in biomedical research for several decades to study a wide range of biological phenomena. There are many technical advantages of using zebrafish over other vertebrate models. They are readily available, hardy, easy, and inexpensive to maintain in the laboratory, have a short life cycle, and have excellent fecundity. Due to its optical clarity and reproducible capabilities, it has become one of the predominant models of human genetic diseases. Zebrafish research has made rapid strides in the United States and Europe, but in India the field is at an early stage and many researchers still remain unaware of the full research potential of this tiny fish. The zebrafish model system was introduced into India in the early 2000s. Up to now, more than 200 scientific referred articles have been published by Indian researchers. This review gives an overview of the current state of knowledge for zebrafish research in India, with the aim of promoting wider utilization of zebrafish for high level biological studies.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,3 Department of Chemical Biology, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Muhammed Muhsin Varikkodan
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,4 Department of Biotechnology and Genetic Engineering, Bharathidasan University , Tiruchirapalli, India
| | - Sung-Tzu Liang
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan
| | - Yen-Chang Lin
- 5 Graduate Institute of Biotechnology, Chinese Culture University , Taipei, Taiwan
| | - Wen-Pin Wang
- 6 Institute of Medical Sciences, Tzu-Chi University , Hualien, Taiwan .,7 Department of Molecular Biology and Human Genetics, Tzu-Chi University , Hualien, Taiwan
| | - Chung-Der Hsiao
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,8 Center for Biomedical Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,9 Center for Nanotechnology, Chung Yuan Christian University , Chung-Li, Taiwan
| |
Collapse
|
38
|
Yan X, Wang L, Yang X, Qiu Y, Tian X, Lv Y, Tian F, Song G, Wang T. Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway. CHEMOSPHERE 2017; 182:159-165. [PMID: 28494360 DOI: 10.1016/j.chemosphere.2017.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies have shown that chronic excessive fluoride intake can adversely affect different organ systems. In particular, the cardiovascular system is susceptible to disruption by a high concentration of fluoride. The objectives of this study were to explore the mechanism of apoptosis by detecting the toxic effects of different concentrations of sodium fluoride (NaF) in H9c2 cells exposed for up to 96 h. NaF not only inhibited H9c2 cell proliferation but also induced apoptosis and morphological damage. With increasing NaF concentrations, early apoptosis of H9c2 cells was increased while the mitochondrial membrane potential was decreased. Compared with the control group, the mRNA levels of caspase-3, caspase-9, and cytochrome c all increased with increasing concentrations of NaF. In summary, these data suggest that apoptosis is involved in NaF-induced H9c2 cell toxicity and that activation of the mitochondrial pathway may occur.
Collapse
Affiliation(s)
- Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Lu Wang
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xia Yang
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yi Lv
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Guohua Song
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
39
|
Miao L, Zhou M, Zhang X, Yuan C, Dong X, Zou X. Effect of excess dietary fluoride on laying performance and antioxidant capacity of laying hens. Poult Sci 2017; 96:2200-2205. [DOI: 10.3382/ps/pex002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
|
40
|
Ribeiro DA, Yujra VQ, da Silva VHP, Claudio SR, Estadella D, de Barros Viana M, Oshima CTF. Putative mechanisms of genotoxicity induced by fluoride: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15254-15259. [PMID: 28477256 DOI: 10.1007/s11356-017-9105-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Genotoxicity is the ability of an agent to produce damage on the DNA molecule. Considering the strong evidence for a relationship between genetic damage and carcinogenesis, to elucidate the putative mechanisms of genotoxicity induced by fluoride are important to measure the degree of risk involved to human populations. The purpose of this article is to provide a comprehensive review on genotoxicity induced by fluoride on the basis of its mechanisms of action. In the last 10 years, all published data showed some evidence related to genotoxicity, which is due to mitochondrial disruption, oxidative stress, and cell cycle disturbances. However, this is an area that still requires a lot of investigation since the published data are not sufficient for clarifying the genotoxicity induced by fluoride. Certainly, the new information will be added to those already established for regulatory purposes as a safe way to promote oral healthcare and prevent oral carcinogenesis.
Collapse
Affiliation(s)
- Daniel Araki Ribeiro
- Department of Pathology, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil.
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil.
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Vila Mathias, Santos, SP, 11060-001, Brazil.
| | - Veronica Quispe Yujra
- Department of Pathology, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | | | - Samuel Rangel Claudio
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Debora Estadella
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | | | | |
Collapse
|
41
|
Singh R, Khatri P, Srivastava N, Jain S, Brahmachari V, Mukhopadhyay A, Mazumder S. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2017; 63:314-321. [PMID: 28223109 DOI: 10.1016/j.fsi.2017.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/21/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC50) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes. Fluoride affected DNA repair machinery by abrogating the expression of the DNA repair gene rad51 and growth arrest and DNA damage inducible beta a gene gadd45ba. The upregulated expression of casp3a coupled with altered Bcl-2 associated X protein/B-cell lymphoma 2 ratio (baxa/bcl2a) clearly suggested chronic fluoride exposure induced the apoptotic cascade in zebrafish. Fluoride-exposed zebrafish when challenged with non-lethal dose of fish pathogen A. hydrophila revealed gross histopathology in spleen, bacterial persistence and significant mortality. We report that fluoride interferes with system-level output of pro-inflammatory cytokines tumour necrosis factor-α, interleukin-1β and interferon-γ, as a consequence, bacteria replicate efficiently causing significant fish mortality. We conclude, chronic fluoride exposure impairs the redox balance, affects DNA repair machinery with pro-apoptotic implications and suppresses pro-inflammatory cytokines expression abrogating host immunity to bacterial infections.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Preeti Khatri
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shruti Jain
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Asish Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal 700010, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
42
|
El Nahas AF, Abdel-Razek MAS, Helmy NM, Mahmoud S, Ghazy HA. Impaired antioxidant gene expression by pesticide residues and its relation with other cellular biomarkers in Nile Tilapia (Oreochromis niloticus) from Lake Burullus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:202-209. [PMID: 27940135 DOI: 10.1016/j.ecoenv.2016.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Organochlorines and Organophosphorus are the most commonly used pesticides. These pesticides constitute a considerable contaminating threat due to their excessive agricultural usage which in turn contaminates the aquatic system through agricultural drainage. The aim of this study was to evaluate water and tissue residues of both pesticides in O. niloticus obtained from three different sections in Lake Burullus, Egypt. Assessment of relative change in mRNA levels of GST and Vtg (oxidative stress indicator) was done and its relation with other cellular biomarkers including apoptosis, which is assessed by Cellular apoptosis susceptibility transcript level (CAS), comet assay and micronucleus assays (genotoxicity indicator). Pesticide residue levels in water are fluctuating. In fish tissues, most residues were higher than those found in water and were associated with down regulation of hepatic GST gene and Vtg expression. CAS gene involved in apoptosis, its transcript is down regulated in middle and western sections of the lake with higher pesticide residues. Different degrees of DNA damages in O. niloticus' liver cells were demonstrated by comet assay. Significant increase in the micronucleated cells in the three sections of the lake was observed; the western section fish showed the highest number. Persistent exposures of fish to pesticide caused impairment of antioxidant gene expression. This negatively affects apoptosis associated with damaging DNA and chromosome fragments.
Collapse
Affiliation(s)
- Abeer F El Nahas
- Animal Husbandry and Animal Wealth Department, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Mohamed A S Abdel-Razek
- Department of Chemistry and Toxicity of Pesticides, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Nashwa M Helmy
- Biotechnology department, Animal Health Research Institute, Dokki, Egypt
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Haneen A Ghazy
- Biotechnology department, Animal Health Research Institute, Kafrelsheikh, Egypt
| |
Collapse
|
43
|
Nagarjuna A, Mohan D. Biochemical and Histopathological Changes Induced by Nickel in the Striped Mullet, Mugil cephalus (Linnaeus 1758). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:33-40. [PMID: 27837204 DOI: 10.1007/s00128-016-1961-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The present study is focused on determining the acute and chronic toxicity of nickel (Ni) to fish fingerlings, Mugil cephalus. The 96-h median lethal concentration (LC50) for Ni was found to be 42.2 ± 3.9 mg L-1. Based on the chronic toxicity test for 30 days, "No Observed Effect Concentration", "Lowest Observed Effect Concentration" and "Chronic value" were found to be 2.9 ± 0.14, 4.7 ± 0.14 and 3.7 ± 0.14 mg Ni L-1, respectively. The activities of biomarker enzymes including esterase, superoxide dismutase and malate dehydrogenase showed differential expression and cellular anomalies like hyperplasia and detachment of bipolar cells from photoreceptor cells in the retina of eye of mullet. Cellular anomalies in the retina of fish eye affect the primary function of retina, which is to convert light energy into nerve impulses transferred to the brain via the optic nerve, leading to loss or poor vision.
Collapse
Affiliation(s)
- A Nagarjuna
- Integrated Coastal and Marine Area Management, Government of India, Ministry of Earth Sciences, NIOT Campus, Chennai, Tamil Nadu, India
| | - D Mohan
- Integrated Coastal and Marine Area Management, Government of India, Ministry of Earth Sciences, NIOT Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
44
|
Dutta M, Rajak P, Khatun S, Roy S. Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure. CHEMOSPHERE 2017; 166:255-266. [PMID: 27700992 DOI: 10.1016/j.chemosphere.2016.09.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Sodium fluoride (NaF), one of the most frequently used fluoride compound is composed of Na+ and F-. Apart from its use in water fluoridation, NaF also acts as a major component for different dental products like toothpastes, gels and mouth rinses etc. The present study was carried out to explore the toxic impact of chronic NaF exposure on a non-target organism, Drosophila melanogaster. The larvae exposed to different concentrations of NaF through food showed a significant increase in HSP70 expression both qualitatively and quantitatively. The altered tail length and tail intensity in Comet assay validate the increased DNA damage in treated larvae. The activity of AChE, oxidative stress marker enzymes, phase I and phase II detoxifying enzymes were found to be significantly inhibited in the treated larvae when compared to control though there was no evidence of dose dependent change in each case. The alterations in the mentioned parameters can be due to increased body Fluoride ion (F-) concentration since the analysis with ion electrode analyzer revealed that F- concentration increased significantly with NaF treatment. Hence, the results suggest that D. melanogaster manifest prominent toxic response when subjected to chronic exposure to sub-lethal NaF concentrations.
Collapse
Affiliation(s)
- Moumita Dutta
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Prem Rajak
- Post Graduate Department of Zoology, ABN Seal College, Cooch Behar, West Bengal, India
| | - Salma Khatun
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | - Sumedha Roy
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India.
| |
Collapse
|
45
|
Niu R, Han H, Zhang Y, Wang J, Zhang J, Yin W, Yin X, Sun Z, Wang J. Changes in Liver Antioxidant Status of Offspring Mice Induced by Maternal Fluoride Exposure During Gestation and Lactation. Biol Trace Elem Res 2016; 172:172-178. [PMID: 26613789 DOI: 10.1007/s12011-015-0573-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Abstract
Excessive fluoride intake for a long time has been demonstrated to provoke hepatic oxidative stress in adults. However, the response to fluoride toxicity of liver in newborns exposed to fluoride during embryonic and suckling stages remains unclear. In this study, female Kunming mice were administrated with 25, 50, and 100 mg/L sodium fluoride (NaF) from prenatal day 0 to day 21 after delivery, and the antioxidative status in the liver of their pups at postnatal day 21 was evaluated. The results showed that compared with the control group, NaF significantly increased malondialdehyde (MDA) level and reduced catalase (CAT) activity, while no statistical difference was observed in activities and mRNA expressions of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR). Notably, with comparison to the controls, the protein level of CAT was significantly reduced in medium- and high-fluoride groups, while its relative mRNA abundance was enhanced which could result from the encouragement of the lowered CAT protein expression. These findings suggested that CAT was more susceptible to low-fluoride exposure in early life.
Collapse
Affiliation(s)
- Ruiyan Niu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haijun Han
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuliang Zhang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jinming Wang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianhai Zhang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wei Yin
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiufang Yin
- Yanli Animal Husbandry and Veterinary Station, Yangcheng, Jincheng, Shanxi, China
| | - Zilong Sun
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China.
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.
| | - Jundong Wang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, China.
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
46
|
Mukhopadhyay D, Priya P, Chattopadhyay A. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:352-359. [PMID: 26245810 DOI: 10.1016/j.etap.2015.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
Sodium fluoride (NaF), used as pesticides and for industrial purposes are deposited in the water bodies and therefore affects its biota. Zebrafish exposed to NaF in laboratory condition showed hyperactivity and frequent surfacing activity, somersaulting and vertical swimming pattern as compared to the control group. Reactive oxygen species level was elevated and glutathione level was depleted along with increased malondialdehyde content in the brain. Levels of glutathione-s-transferase (GST), catalase (CAT) and superoxide dismutase were also elevated in the treatment groups. Expression of mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) during stress condition were observed along with Gst, Cat, NADPH: quinone oxidoreductase 1(Nqo1) and p38. Except Keap1, all other genes exhibited elevated expression. Nrf2/Keap1 proteins had similar expression pattern as their corresponding mRNA. The findings in this study might help to understand the molecular mechanism of fluoride induced neurotoxicity in fish.
Collapse
Affiliation(s)
- Debdip Mukhopadhyay
- Molecular Genetics Laboratory, Department of Zoology (Centre for Advanced Studies), Visva-Bharati, Santiniketan 731 235, West Bengal, India
| | - Pooja Priya
- Biology Olympiad Cell, Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research, V. N. Purav Marg, Mankhurd, Anushakti Nagar, Mumbai 400 088, Maharashtra, India
| | - Ansuman Chattopadhyay
- Molecular Genetics Laboratory, Department of Zoology (Centre for Advanced Studies), Visva-Bharati, Santiniketan 731 235, West Bengal, India.
| |
Collapse
|
47
|
Yan X, Yang X, Hao X, Ren Q, Gao J, Wang Y, Chang N, Qiu Y, Song G. Sodium Fluoride Induces Apoptosis in H9c2 Cardiomyocytes by Altering Mitochondrial Membrane Potential and Intracellular ROS Level. Biol Trace Elem Res 2015; 166:210-5. [PMID: 25707396 DOI: 10.1007/s12011-015-0273-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/12/2015] [Indexed: 11/29/2022]
Abstract
Chronic excessive fluoride intake is known to be toxic, and effects of long-term fluorosis on different organ systems have been examined. However, there are few studies about the effects of fluorosis on cardiovascular systems. Here, we studied the fluoride-induced apoptosis in H9c2 cells and determined the underlying molecular mechanisms including the cell viability, intracellular reactive oxygen species (ROS) level, the changes of mitochondrial membrane potential (ΔΨm), and the cell apoptosis. Sodium fluoride (NaF) at concentrations of 0, 2, 4, 8, and 16 mg/L was administered to cultured H9c2 cells for up to 48 h. After the treatment, H9c2 cells were collected and the associated parameters were measured by flow cytometry. Our study found that fluoride not only inhibited H9c2 cell proliferation but also induced cell apoptosis. With the increment of NaF concentration, the apoptotic rates and ROS generation were increased, while the ΔΨm was decreased. In summary, these data suggested that NaF-induced H9c2 cell apoptosis is mediated by direct increased intracellular ROS and downregulated ΔΨm.
Collapse
Affiliation(s)
- Xiaoyan Yan
- Department of Biology, Taiyuan Normal University, (TYNU), Taiyuan, 030031, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Song GH, Huang FB, Gao JP, Liu ML, Pang WB, Li WB, Yan XY, Huo MJ, Yang X. Effects of Fluoride on DNA Damage and Caspase-Mediated Apoptosis in the Liver of Rats. Biol Trace Elem Res 2015; 166:173-82. [PMID: 25693680 DOI: 10.1007/s12011-015-0265-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
Fluoride compounds are abundant and widely distributed in the environment at a variety of concentrations. Further, fluoride induces toxic effects in target organs such as the liver. In this study, we investigated liver histopathology, DNA damage, apoptosis, and the mRNA and protein expressions of caspase-3 and -9 in the rat livers by administering varying concentrations of fluoride (0, 50, 100, 200 mg/L ) for 120 days. The results showed fluoride-induced morphological changes and significantly increased apoptosis and DNA damage in rats exposed to fluoride, especially in response to higher doses. The immunohistochemical and qRT-PCR results indicated that caspase-3, caspase-9 protein positive expression and mRNA relative expression enhanced with increasing NaF concentration. In summary, our findings suggest that chronic exposure to fluoride causes damages to liver histopathology and leads to liver apoptosis through caspase-mediated pathways.
Collapse
Affiliation(s)
- Guo Hua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Agus HH, Sümer S, Erkoç F. Toxicity and molecular effects of di-n-butyl phthalate (DBP) on CYP1A, SOD, and GPx in Cyprinus carpio (common carp). ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:423. [PMID: 26065888 DOI: 10.1007/s10661-015-4622-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Di-n-butyl phthalate (DBP), a widely used plasticizer in the plastic industry, affects regulation of the endocrine system and causes toxicity in animals. In the present study, we evaluated a series of ecotoxicological stress biomarkers in the common carp (Cyprinus carpio) as an experimental model to test for alterations in gene expression at a sublethal concentration of 1 mg/L DBP for 4, 24, and 96 h. In gills, an immediate increase in CYP1A messenger RNA (mRNA) levels was observed within the first 4 h and persisted for 96 h. Protein levels were nearly consistent with mRNA levels. However, a time-dependent inhibition was observed in CYP1A levels in the liver within 96 h. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels increased gradually in liver with exposure time to a maximum level of 11-fold. Varied responses of different tissues were likely due to xenobiotic metabolism of DBP. In conclusion, evaluating the tissue-specific alterations of CYP1A, SOD, and GPx levels can be used as specific and effective biomarkers for ecotoxicological monitoring of DBP pollution. We strongly recommend using molecular tools to ecotoxicologists for aquatic monitoring of newly emerging pollutants.
Collapse
Affiliation(s)
- Hizlan H Agus
- Department of Biology, Faculty of Science, Hacettepe University, 06800, Beytepe, Ankara, Turkey,
| | | | | |
Collapse
|
50
|
Mohanty S, Jagannathan L, Ganguli G, Padhi A, Roy D, Alaridah N, Saha P, Nongthomba U, Godaly G, Gopal RK, Banerjee S, Sonawane A. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish. J Biol Chem 2015; 290:13321-43. [PMID: 25825498 DOI: 10.1074/jbc.m114.598482] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.
Collapse
Affiliation(s)
- Soumitra Mohanty
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Lakshmanan Jagannathan
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India, the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Avinash Padhi
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Debasish Roy
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nader Alaridah
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Pratip Saha
- the Bioinformatics Center, Indian Institute of Science, Bangalore, Karnataka 560012, India, and
| | - Upendra Nongthomba
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Gabriela Godaly
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Ramesh Kumar Gopal
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Sulagna Banerjee
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India, the Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455
| | - Avinash Sonawane
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India,
| |
Collapse
|