1
|
Xu J, Zhang Y, Yuan B, Wang Y, Wang J, Yuan Y. A novel one-tube RPA/CRISPR melting curve detection sensing system based on unique 3'-toehold nucleic acid aptamer for Bacillus anthracis detection. Talanta 2025; 295:128306. [PMID: 40398044 DOI: 10.1016/j.talanta.2025.128306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Developing effective detection methods for Bacillus anthracis is essential for our public health system to accurately detect hidden anthrax outbreaks. Herein, we introduce a unique 3'-toehold nucleic acid aptamer (probes) into Cas12a biosensor, combined with RPA, to establish a rapid (1h), specific, and sensitive (1copy/μL) detection method for B. anthracis. The design behind this approach is that the target sequence is amplified via RPA, and the amplification product triggers the crRNA/Cas12a complex to degrade the 3' toehold probes, which are analyzed using melting curve analysis on a specific instrument, naming a one-tube RPA/CRISPR melting curve detection (ORCMD) sensing system. Furthermore, ORCMD is used to detect the B. anthracis spores-positive or negative soil samples from the location of world War-II site (Harbin, China), B. anthracis was precisely identified as other methods, suggesting its significant practical application potential. This system enriches the CRISPR detection technology toolbox, compared to other CRISPR-based sensing strategies, the concept of the 3' toehold probes offers distinct advantages in the development of CRISPR-based multi-target detection methods.
Collapse
Affiliation(s)
- Jianhao Xu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Yitong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Yan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences (AMMS), Beijing, 100071, China.
| |
Collapse
|
2
|
Osborne S, Kam O, Thacker S, Wescott R, Vo C, Wu JJ, Rojek NW, Norton SA. Review of category A bioweapons with cutaneous features: Epidemiology, clinical presentation, and contemporary management strategies. J Am Acad Dermatol 2025:S0190-9622(25)00179-3. [PMID: 39909347 DOI: 10.1016/j.jaad.2025.01.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major health organizations recognize various pathogens as potential bioweapons. Category A bioweapons (anthrax, plague, smallpox, tularemia, and viral hemorrhagic fevers) are the highest priority due to their ease of spread and high mortality rates. As these conditions have cutaneous manifestations, dermatologists may have an important role as front-line responders to indolent or bioterrorism threats. Few dermatologists are adequately prepared to approach the diagnosis and management of these conditions if encountered. Furthermore, despite improvements made in identifying, diagnosing, and treating these conditions over the past 10 years, there persists an absence of a synthesized distribution of these updates customized to adequately equip dermatologists. In this paper, we review the epidemiology, transmission, and dermatologic signs and symptoms of the category A bioweapons listed above. We also offer an overview of the evidence-based strategies for diagnosis and management and provide access to each states' guidelines for reporting these conditions.
Collapse
Affiliation(s)
- Sara Osborne
- University of Minnesota, Twin Cities School of Medicine, Minneapolis, Minnesota
| | - Olivia Kam
- Stony Brook School of Medicine, Stony Brook, New York
| | | | - Raquel Wescott
- University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Carolynne Vo
- University of California, Riverside School of Medicine, Riverside, California
| | - Jashin J Wu
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Nathan W Rojek
- Department of Dermatology, University of California, Irvine, California.
| | - Scott A Norton
- Departments of Dermatology and Preventive Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
3
|
Rani S, Ramesh V, Khatoon M, Shijili M, Archana CA, Anand J, Sagar N, Sekar YS, Patil AV, Palavesam A, Barman NN, Patil SS, Hemadri D, Suresh KP. Identification of molecular and cellular infection response biomarkers associated with anthrax infection through comparative analysis of gene expression data. Comput Biol Med 2025; 184:109431. [PMID: 39556915 DOI: 10.1016/j.compbiomed.2024.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Bacillus anthracis, a gram-positive bacillus capable of forming spores, causes anthrax in mammals, including humans, and is recognized as a potential biological weapon agent. The diagnosis of anthrax is challenging due to variable symptoms resulting from exposure and infection severity. Despite the availability of a licensed vaccines, their limited long-term efficacy underscores the inadequacy of current human anthrax vaccines, highlighting the urgent need for next-generation alternatives. Our study aimed to identify molecular biomarkers and essential biological pathways for the early detection and accurate diagnosis of human anthrax infection. Using a comparative analysis of Bacillus anthracis gene expression data from the Gene Expression Omnibus (GEO) database, this cost-effective approach enables the identification of shared differentially expressed genes (DEGs) across separate microarray datasets without additional hybridization. Three microarray datasets (GSE34407, GSE14390, and GSE12131) of B. anthracis-infected human cell lines were analyzed via the GEO2R tool to identify shared DEGs. We identified 241 common DEGs (70 upregulated and 171 downregulated) from cell lines treated similarly to lethal toxins. Additionally, 10 common DEGs (5 upregulated and 5 downregulated) were identified across different treatments (lethal toxins and spores) and cell lines. Network meta-analysis identified JUN and GATAD2A as the top hub genes for overexpression, and NEDD4L and GULP1 for underexpression. Furthermore, prognostic analysis and SNP detection of the two identified upregulated hub genes were carried out in conjunction with machine learning classification models, with SVM yielding the best classification accuracy of 87.5 %. Our comparative analysis of Bacillus anthracis infection revealed striking similarities in gene expression 241 profiles across diverse datasets, despite variations in treatments and cell lines. These findings underscore how anthrax infection activates shared genes across different cell types, emphasizing this approach in the discovery of novel gene markers. These markers offer insights into pathogenesis and may lead to more effective therapeutic strategies. By identifying these genetic indicators, we can advance the development of precise immunotherapies, potentially enhancing vaccine efficacy and treatment outcomes.
Collapse
Affiliation(s)
- Swati Rani
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - Varsha Ramesh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - Mehnaj Khatoon
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - M Shijili
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - C A Archana
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - Jayashree Anand
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - N Sagar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - Yamini S Sekar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - Archana V Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - Azhahianambi Palavesam
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600051, India
| | - N N Barman
- College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, 781001, India
| | - S S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - Diwakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India
| | - K P Suresh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, 560064, India.
| |
Collapse
|
4
|
Ashique S, Biswas A, Mohanto S, Srivastava S, Hussain MS, Ahmed MG, Subramaniyan V. Anthrax: A narrative review. New Microbes New Infect 2024; 62:101501. [PMID: 39497912 PMCID: PMC11532300 DOI: 10.1016/j.nmni.2024.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024] Open
Abstract
Bacillus anthracis is a zoonotic bacterium, majorly responsible for causing human anthrax and the possibility of the outbreak spreading globally. Herbivorous animals serve as the inherent reservoir for the disease, whereas all endothermic species are vulnerable. Humans contract the disease inadvertently by contact with diseased animals or animal products or through the consumption or handling of infected flesh. There is no such reported data indicating the transmission of anthrax from human to human, which further does not guarantee the bacterium's mutations and new transmission route. Nevertheless, it can lead to various infections, including endophthalmitis, bacteremia, cutaneous infection, central nervous system infection, and pneumonia. Therefore, it is crucial to examine the present epidemiological situation of human anthrax in densely populated nations, including the altered symptoms, indications in people, and the method of transmission. This article highlights the current diagnostic methods for human anthrax, further examines the available therapy options and future perspectives in treatment protocol. This narrative review resulted from a simple search strategy on "PubMed", "ScienceDirect", "ClinicalTrials.gov" and web reports using "AND" as Boolean operator with search keywords, i.e., "Anthrax" AND "Infection", "Anthrax" AND "Pandemic", "Anthrax" AND "Infectious disease", "Anthrax" AND "Vaccine", "Anthrax" AND "Diagnosis" shows minimal narrative literature in between 2024 and 2005. Furthermore, this narrative review highlights the potential approaches for detecting anthrax infection, establishing suitable protocols for prevention, and focusing on the current epidemiology and available therapeutics, vaccine and its future developmental strategies for the prevention of infectious disorder.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118, West Bengal, India
- UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Pertea M, Luca S, Moraru DC, Veliceasa B, Filip A, Grosu OM, Poroch V, Panuta A, Luca CM, Avadanei AN, Lunca S. Upper Limb Compartment Syndrome-An Extremely Rare Life-Threatening Complication of Cutaneous Anthrax. Microorganisms 2024; 12:1240. [PMID: 38930622 PMCID: PMC11205670 DOI: 10.3390/microorganisms12061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Cutaneous anthrax is a disease caused by a Gram-positive bacillus, spore-forming Bacillus anthracis (BA). Cutaneous anthrax accounts for 95% of all anthrax cases, with mortality between 10-40% in untreated forms. The most feared complication, which can be life-threatening and is rarely encountered and described in the literature, is compartment syndrome. (2) Methods: We report a series of six cases of cutaneous anthrax from the same endemic area. In two of the cases, the disease was complicated by compartment syndrome. The systematic review was conducted according to systematic review guidelines, and the PubMed, Google Scholar, and Web of Science databases were searched for publications from 1 January 2008 to 31 December 2023. The keywords used were: "cutaneous anthrax" and "compartment syndrome by cutaneous anthrax". (3) Results: For compartment syndrome, emergency surgical intervention for decompression was required, along with another three surgeries, with hospitalization between 21 and 23 days. In the systematic review, among the 37 articles, 29 did not contain cases focusing on compartment syndrome of the thoracic limb in cutaneous anthrax. The results were included in a Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram. (4) Conclusions: Early recognition of the characteristic cutaneous lesions and compartment syndrome with early initiation of antibiotics and urgent surgical treatment is the lifesaving solution.
Collapse
Affiliation(s)
- Mihaela Pertea
- Department Plastic Surgery and Reconstructive, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.P.); (S.L.); (D.C.M.); (O.M.G.)
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania;
| | - Stefana Luca
- Department Plastic Surgery and Reconstructive, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.P.); (S.L.); (D.C.M.); (O.M.G.)
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania;
| | - Dan Cristian Moraru
- Department Plastic Surgery and Reconstructive, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.P.); (S.L.); (D.C.M.); (O.M.G.)
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania;
| | - Bogdan Veliceasa
- Department of Orthopaedics and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Orthopaedics and Traumatology, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandru Filip
- Department of Orthopaedics and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Orthopaedics and Traumatology, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Oxana Madalina Grosu
- Department Plastic Surgery and Reconstructive, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.P.); (S.L.); (D.C.M.); (O.M.G.)
| | - Vladimir Poroch
- Department of Palliative Care, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Palliative Oncological Clinic, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Andrian Panuta
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania;
- Department of Surgery I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Catalina Mihaela Luca
- Department of Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Clinic of Infectious Diseases, “Sf. Parascheva” Clinical Hospital of Infectious Diseases, 700116 Iasi, Romania
| | - Andrei Nicolae Avadanei
- Department of Vascular Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Sorinel Lunca
- Department of Surgery I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Second Oncological Clinic, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
6
|
Manzulli V, Cordovana M, Serrecchia L, Rondinone V, Pace L, Farina D, Cipolletta D, Caruso M, Fraccalvieri R, Difato LM, Tolve F, Vetritto V, Galante D. Application of Fourier Transform Infrared Spectroscopy to Discriminate Two Closely Related Bacterial Species: Bacillus anthracis and Bacillus cereus Sensu Stricto. Microorganisms 2024; 12:183. [PMID: 38258007 PMCID: PMC10821103 DOI: 10.3390/microorganisms12010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Fourier transform infrared spectroscopy (FTIRS) is a diagnostic technique historically used in the microbiological field for the characterization of bacterial strains in relation to the specific composition of their lipid, protein, and polysaccharide components. For each bacterial strain, it is possible to obtain a unique absorption spectrum that represents the fingerprint obtained based on the components of the outer cell membrane. In this study, FTIRS was applied for the first time as an experimental diagnostic tool for the discrimination of two pathogenic species belonging to the Bacillus cereus group, Bacillus anthracis and Bacillus cereus sensu stricto; these are two closely related species that are not so easy to differentiate using classical microbiological methods, representing an innovative technology in the field of animal health.
Collapse
Affiliation(s)
- Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | | | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Lorenzo Pace
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Donatella Farina
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Dora Cipolletta
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Marta Caruso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Rosa Fraccalvieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Laura Maria Difato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Francesco Tolve
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Valerio Vetritto
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| |
Collapse
|
7
|
Abstract
The outer membrane of gram-negative bacteria is primarily composed of lipopolysaccharide (LPS). In addition to protection, LPS defines the distinct serogroups used to identify bacteria specifically. Furthermore, LPS also act as highly potent stimulators of innate immune cells, a phenomenon essential to understanding pathogen invasion in the body. The complex multi-step process of LPS binding to cells involves several binding partners, including LPS binding protein (LBP), CD14 in both membrane-bound and soluble forms, membrane protein MD-2, and toll-like receptor 4 (TLR4). Once these pathways are activated, pro-inflammatory cytokines are eventually expressed. These binding events are also affected by the presence of monomeric or aggregated LPS. Traditional techniques to detect LPS include the rabbit pyrogen test, the monocyte activation test and Limulus-based tests. Modern approaches are based on protein, antibodies or aptamer binding. Recently, novel techniques including electrochemical methods, HPLC, quartz crystal microbalance (QCM), and molecular imprinting have been developed. These approaches often use nanomaterials such as gold nanoparticles, quantum dots, nanotubes, and magnetic nanoparticles. This chapter reviews current developments in endotoxin detection with a focus on modern novel techniques that use various sensing components, ranging from natural biomolecules to synthetic materials. Highly integrated and miniaturized commercial endotoxin detection devices offer a variety of options as the scientific and technologic revolution proceeds.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Taiwo Adeniji
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Dhanbir Lingden
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO, United States.
| |
Collapse
|
8
|
Metrailer MC, Hoang TTH, Jiranantasak T, Luong T, Hoa LM, Ngoc DB, Pham QT, Pham VK, Hung TTM, Huong VTL, Pham TL, Ponciano JM, Hamerlinck G, Dang DA, Norris MH, Blackburn JK. Spatial and phylogenetic patterns reveal hidden infection sources of Bacillus anthracis in an anthrax outbreak in Son La province, Vietnam. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105496. [PMID: 37678701 DOI: 10.1016/j.meegid.2023.105496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Bacillus anthracis, the bacterial cause of anthrax, is a zoonosis affecting livestock and wildlife often spilling over into humans. In Vietnam, anthrax has been nationally reportable since 2015 with cases occurring annually, mostly in the northern provinces. In April 2022, an outbreak was reported in Son La province following the butchering of a water buffalo, Bubalus bubalis. A total of 137 humans from three villages were likely exposed to contaminated meat from the animal. Early epidemiological investigations suggested a single animal was involved in all exposures. Five B. anthracis isolates were recovered from human clinical cases along with one from the buffalo hide, another from associated maggots, and one from soil at the carcass site. The isolates were whole genome sequenced, allowing global, regional, and local molecular epidemiological analyses of the outbreak strains. All recovered B. anthracis belong to the A.Br.001/002 lineage based on canonical single nucleotide polymorphism analysis (canSNP). Although not previously identified in Vietnam, this lineage has been identified in the nearby countries of China, India, Indonesia, Thailand, as well as Australia. A twenty-five marker multi-locus variable number tandem repeat analysis (MLVA-25) was used to investigate the relationship between human, soil, and buffalo strains. Locally, four MLVA-25 genotypes were identified from the eight isolates. This level of genetic diversity is unusual for the limited geography and timing of cases and differs from past literature using MLVA-25. The coupled spatial and phylogenetic data suggest this outbreak originated from multiple, likely undetected, animal sources. These findings were further supported by local news reports that identified at least two additional buffalo deaths beyond the initial animal sampled in response to the human cases. Future outbreak response should include intensive surveillance for additional animal cases and additional molecular epidemiological traceback to identify pathogen sources.
Collapse
Affiliation(s)
- Morgan C Metrailer
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | - Treenate Jiranantasak
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Tan Luong
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Luong Minh Hoa
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Do Bich Ngoc
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Quang Thai Pham
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Van Khang Pham
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | | | | | | | | | | | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Michael H Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jason K Blackburn
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
de Andrade TS, Camargo CH, Campos KR, Reis AD, Santos MBDN, Zanelatto VN, Takagi EH, Sacchi CT. Whole genome sequencing of Bacillus anthracis isolated from animal in the 1960s, Brazil, belonging to the South America subclade. Comp Immunol Microbiol Infect Dis 2023; 100:102027. [PMID: 37517212 DOI: 10.1016/j.cimid.2023.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Bacillus anthracis causes anthrax disease and can affect humans and other animals. This zoonotic disease has an impact on the economic and health aspects. B. anthracis population is divided into three major clades: A (with worldwide distribution), B, and C (restricted to specific regions). Anthrax is most common in agricultural regions of central and southwestern Asia, sub-Saharan Africa, Southern and Eastern Europe, the Caribbean, and Central and South America. Here, we sequenced by short and long reads technologies to generate a hybrid assembly of a lineage of B. anthracis recovered from animal source in the 1960s in Brazil. Isolate identification was confirmed by phenotypic/biochemical tests and MALDI-TOF MS. Antimicrobial susceptibility was performed by in-house broth microdilution. B. anthracis IAL52 was susceptible to penicillin, amoxicillin, doxycycline, levofloxacin, and tetracycline but non-susceptible to ciprofloxacin. IAL52 was classified as sequence type ST2, clade A.Br.069 (V770 group). Sequencing lineages of B. anthracis, especially from underrepresented regions, can help determine the evolution of this critical zoonotic and virulent pathogen.
Collapse
Affiliation(s)
- Tânia Sueli de Andrade
- Núcleo de Coleção de Culturas de Micro-organismos, Adolfo Lutz Instituto, São Paulo, SP, Brazil.
| | | | | | | | | | - Vanessa Nieri Zanelatto
- Núcleo de Coleção de Culturas de Micro-organismos, Adolfo Lutz Instituto, São Paulo, SP, Brazil
| | | | | |
Collapse
|
10
|
Wales A, Mackintosh A. JMM Profile: Bacillus anthracis. J Med Microbiol 2023; 72. [PMID: 37602808 DOI: 10.1099/jmm.0.001747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Graphical abstract
Principal routes of
Bacillus anthracis
infection and stages of anthrax pathogenesis, consistent with current understandings. Depending on the route of infection, germination of spores may happen in extracellular tissue fluid, or following phagocytosis (a). Successful infection of host cells leads to toxin-associated cell death and release of vegetative cells and toxin (b). Toxin binds and enters other host cells (c), including those of the immune system, disrupting function. In some cases this leads to systemic disease, which typically is fatal.
Collapse
Affiliation(s)
- Andrew Wales
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| | - Adrienne Mackintosh
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone Surrey, KT15 3LJ, UK
| |
Collapse
|
11
|
Tyśkiewicz R, Fedorowicz M, Nakonieczna A, Zielińska P, Kwiatek M, Mizak L. Electrochemical, optical and mass-based immunosensors: A comprehensive review of Bacillus anthracis detection methods. Anal Biochem 2023; 675:115215. [PMID: 37343693 DOI: 10.1016/j.ab.2023.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
A biosensor is an analytical device whose main components include transducer and bioreceptor segments. The combination of biological recognition with the ligand is followed by transformation into physical or chemical signals. Many publications describe biological sensors as user-friendly, easy, portable, and less time-consuming than conventional methods. Among major categories of methods for the detection of Bacillus anthracis, such as culture-based microbiological method, polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), microarray-based techniques sensors with bioreceptors have been highlighted which particular emphasis is placed on herein. There are several types of biosensors based on various chemical or physical transducers (e.g., electrochemical, optical, piezoelectric, thermal or magnetic electrodes) and the type of biological materials used (e.g., enzymes, nucleic acids, antibodies, cells, phages or tissues). In recent decades, antibody-based sensors have increasingly gained popularity due to their reliability, sensitivity and rapidness. The fundamental principle of antibody-based sensors is mainly based on the molecular recognition between antigens and antibodies. Therefore, immunosensors that detect B. anthracis surface antigens can provide a rapid tool for detecting anthrax bacilli and spores, especially in situ. This review provides a comprehensive summary of immunosensor-based methods using electrochemical, optical, and mass-based transducers to detect B. anthracis.
Collapse
Affiliation(s)
- Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network - New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110, Puławy, Poland.
| | - Magdalena Fedorowicz
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| | - Aleksandra Nakonieczna
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| | - Paulina Zielińska
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| | - Magdalena Kwiatek
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| | - Lidia Mizak
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| |
Collapse
|
12
|
Xu LD, Zhu J, Ding SN. Highly-fluorescent carbon dots grown onto dendritic silica nanospheres for anthrax protective antigen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1836-1840. [PMID: 35521778 DOI: 10.1039/d2ay00623e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Direct synthesis of carbon dots on uniform mesoporous nanospheres is an ideal way to impart fluorescence properties to the nanomaterials and retain its original uniformity. Carbon dot-based nanospheres with high quantum yield (aqueous solution, 89.3%) were synthesized by the one-step hydrothermal treatment of sodium citrate and dendritic silica spheres grafted with N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane. Its excellent chemical properties such as fluorescence, stability, homogeneity and dispersion enable it to achieve a sensitive, specific, rapid and low-cost detection of anthrax protective antigen when used as a signal for immunochromatography.
Collapse
Affiliation(s)
- Lai-Di Xu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
13
|
Harioputro DR, Sanjaya W, Werdiningsih Y. COMPARISON OF PROPOLIS EFFECTS ON TUMOR NECROSIS FACTOR ALPHA AND MALONDIALDEHYDE BETWEEN INHALATION AND CUTANEOUS ANTHRAX ANIMAL MODELS. Afr J Infect Dis 2021; 16:1-5. [PMID: 35047724 PMCID: PMC8751393 DOI: 10.21010/ajid.v16i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inflammatory response and oxidative stress can be found in anthrax characterized by increased level of serum Tumor Necrosis Factor Alpha (TNF-α) and Malondialdehyde (MDA). The use of antibiotics in anthrax has been known to cause some disturbing side-effects, such as allergic reaction, nausea, vomiting, and antibiotic resistance. Thus, ethanolic extract of propolis (EEP) might be the alternative regimen, due to its anti-inflammatory and antioxidant properties. This study aimed to compare the effects of ethanolic extract of propolis (EEP) on TNF-α and MDA between the inhalation and cutaneous anthrax animal model. MATERIALS AND METHODS This was an experimental study with a post-test-only control group design on 40 samples of Rattus norvegicus. Samples were randomized into 5 groups: control, inhalation anthrax model, inhalation anthrax model + EEP, cutaneous anthrax model, and cutaneous anthrax model + EEP. After 14 days, the level of TNF-α and MDA were measured. To compare the data, we used the ANOVA test continued by the post-hoc Turkey test. RESULTS The results obtained showed that the level of TNF-α and MDA between the inhalation and cutaneous anthrax animal models treated with EEP were statistically different (p < 0.05). The P5 group showed the lowest level of TNF-α (6.822 ± 0.383 pg/ml) and MDA (2.717 ± 0.383 nmol/ml). CONCLUSION EEP has a better effect on reducing TNF-α and MDA in cutaneous anthrax animal models compared to the inhalation anthrax animal model.
Collapse
Affiliation(s)
- Dhani Redhono Harioputro
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Wisnu Sanjaya
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Yulyani Werdiningsih
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
14
|
Santos JAM, Santos CLAA, Freitas Filho JR, Menezes PH, Freitas JCR. Polyacetylene Glycosides: Isolation, Biological Activities and Synthesis. CHEM REC 2021; 22:e202100176. [PMID: 34665514 DOI: 10.1002/tcr.202100176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
Polyacetylene glycosides (PAGs) constitute a relatively small class of secondary metabolites characterized by the presence of a sugar unit anomerically connected to a polyacetylene. These compounds are found in fungi, seaweed, and more often in plants. PAGs exhibit a wide range of biological and pharmacological activities and, as a result, the literature of these compounds has grown exponentially in recent years.
Collapse
Affiliation(s)
- Jonh A M Santos
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil.,Instituto Federal de Pernambuco, Barreiros, PE, Brazil
| | - Cláudia L A A Santos
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife,PE, Brazil
| | - João R Freitas Filho
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Paulo H Menezes
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife,PE, Brazil
| | - Juliano C R Freitas
- Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| |
Collapse
|
15
|
Apriliana U, Wibawa H, Ruhiat E, Untari T, Indarjulianto S. Isolation and identification of avirulent strains of Bacillus anthracis from environmental samples in Central Java, Indonesia. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.204-211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Anthrax is a non-contagious infectious disease caused by Bacillus anthracis. The bacteria form spores that are resistant to extreme conditions and can contaminate the environment for decades. This study aimed to detect and characterize B. anthracis found in endemic areas of anthrax in Yogyakarta and Central Java province, Indonesia.
Materials and Methods: Soil samples were collected from Gunungkidul regency, Yogyakarta province (n=315) and Boyolali regency, Central Java province (n=100). Additional soil samples (n=10) and straw samples (n=5) were obtained from Pati regency, Central Java province. The isolation and identification of B. anthracis were performed using conventional methods: Morphology of bacteria colony in solid media, Gram staining, capsule staining, spores staining, and motility test. Isolates were further identified using polymerase chain reaction (PCR) against Ba813, lef (pXO1), and capC (pXO2) gene. An avirulent vaccine strain of B. anthracis (strain 34F2) was used as a control.
Results: Only four samples grew on blood agar with a ground-glass appearance, white-gray colony (Gunungkidul and avirulent strain) or yellowish (Boyolali and Pati). All were Gram-positive, presented chains, square-ended rods, spores, and were then identified as B. anthracis. Boyolali, Pati, and avirulent strain isolates had slightly different characteristics, including the growth of non-mucoid in the bicarbonate agar medium, and their uncapsulated form. The PCR showed two Gunungkidul isolates which amplified three genes, including Ba813, lef, and capC. Contrarily, the other isolates did not amplify the capC gene.
Conclusion: Gunungkidul isolates were identified as virulent strains of B. anthracis while Boyolali and Pati isolates were proposed as avirulent strains. This is the first report of isolation and identification of avirulent strains of B. anthracis in Central Java, Indonesia.
Collapse
Affiliation(s)
- Ully Apriliana
- Disease Investigation Center Wates, Jalan Raya Jogja-Wates Km 27 Po Box 18, Wates, Yogyakarta, 55602, Indonesia; Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2, Karangmalang, Yogyakarta, 55281, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates, Jalan Raya Jogja-Wates Km 27 Po Box 18, Wates, Yogyakarta, 55602, Indonesia
| | - Endang Ruhiat
- Disease Investigation Center Wates, Jalan Raya Jogja-Wates Km 27 Po Box 18, Wates, Yogyakarta, 55602, Indonesia
| | - Tri Untari
- Department of Internal Medicine , Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2, Karangmalang, Yogyakarta, 55281, Indonesia
| | - Soedarmanto Indarjulianto
- Department of Internal Medicine , Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2, Karangmalang, Yogyakarta, 55281, Indonesia
| |
Collapse
|
16
|
Popescu CP, Zaharia M, Nica M, Stanciu D, Moroti R, Benea S, Melinte V, Vasile T, Ceausu E, Ruta S, Florescu SA. Anthrax meningoencephalitis complicated with brain abscess - A case report. Int J Infect Dis 2021; 108:217-219. [PMID: 33989773 DOI: 10.1016/j.ijid.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Bacillus anthracis is a sporulating gram-positive rod whose main route of entry into the human body is cutaneous. Anthrax meningitis is usually fulminant and fatal. We present here a successfully treated case of anthrax meningoencephalitis complicated with brain abscess. The patient was a shepherd, with disease onset 7 days prior to hospital admission with fever, chills, occipital headache, and vertigo, followed by right hemiplegia, motor aphasia, agitation and coma. He had cutaneous lesions with black eschar on the limbs, which was a clue (along with his occupation), for diagnosis suspicion. The polymerase chain reaction for B. anthracis DNA was positive in both cerebrospinal fluid and cutaneous lesions. The cerebrospinal fluid was compatible with bacterial meningitis without being haemorrhagic. Magnetic resonance imaging showed meningeal enhancement and multiple intraparenchymal heterogeneous lesions with an important haemorrhagic component in the left parietal lobe, surrounded by vasogenic oedema with maintenance, 22 days later, of the left parietal lobe lesion, having a ring contrast enhancement and a central diffusion restriction, compatible with an abscess. From admission, he was intensively treated with combined large-spectrum antibiotics; this could be the most valuable factor in the successful outcome.
Collapse
Affiliation(s)
- Corneliu Petru Popescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania.
| | - Mihaela Zaharia
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Maria Nica
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Delia Stanciu
- Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Ruxandra Moroti
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Prof. Dr. Matei Bals National Institute of Infectious Diseases, Romania
| | - Serban Benea
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Prof. Dr. Matei Bals National Institute of Infectious Diseases, Romania
| | - Violeta Melinte
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Teodor Vasile
- Bicêtre University Hospital, Department of Adult Radiology, APH Paris, France
| | - Emanoil Ceausu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Simona Ruta
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| |
Collapse
|
17
|
A Whole-Genome-Based Gene-by-Gene Typing System for Standardized High-Resolution Strain Typing of Bacillus anthracis. J Clin Microbiol 2021; 59:e0288920. [PMID: 33827898 PMCID: PMC8218748 DOI: 10.1128/jcm.02889-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing (WGS) has been established for bacterial subtyping and is regularly used to study pathogen transmission, to investigate outbreaks, and to perform routine surveillance. Core-genome multilocus sequence typing (cgMLST) is a bacterial subtyping method that uses WGS data to provide a high-resolution strain characterization. This study aimed at developing a novel cgMLST scheme for Bacillus anthracis, a notorious pathogen that causes anthrax in livestock and humans worldwide. The scheme comprises 3,803 genes that were conserved in 57 B. anthracis genomes spanning the whole phylogeny. The scheme has been evaluated and applied to 584 genomes from 50 countries. On average, 99.5% of the cgMLST targets were detected. The cgMLST results confirmed the classical canonical single-nucleotide-polymorphism (SNP) grouping of B. anthracis into major clades and subclades. Genetic distances calculated based on cgMLST were comparable to distances from whole-genome-based SNP analysis with similar phylogenetic topology and comparable discriminatory power. Additionally, the application of the cgMLST scheme to anthrax outbreaks from Germany and Italy led to a definition of a cutoff threshold of five allele differences to trace epidemiologically linked strains for cluster typing and transmission analysis. Finally, the association of two clusters of B. anthracis with human cases of injectional anthrax in four European countries was confirmed using cgMLST. In summary, this study presents a novel cgMLST scheme that provides high-resolution strain genotyping for B. anthracis. This scheme can be used in parallel with SNP typing methods to facilitate rapid and harmonized interlaboratory comparisons, essential for global surveillance and outbreak analysis. The scheme is publicly available for application by users, including those with little bioinformatics knowledge.
Collapse
|
18
|
Kisaakye E, Ario AR, Bainomugisha K, Cossaboom CM, Lowe D, Bulage L, Kadobera D, Sekamatte M, Lubwama B, Tumusiime D, Tusiime P, Downing R, Buule J, Lutwama J, Salzer JS, Matkovic E, Ritter J, Gary J, Zhu BP. Outbreak of Anthrax Associated with Handling and Eating Meat from a Cow, Uganda, 2018. Emerg Infect Dis 2021; 26:2799-2806. [PMID: 33219644 PMCID: PMC7706970 DOI: 10.3201/eid2612.191373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
On April 20, 2018, the Kween District Health Office in Kween District, Uganda reported 7 suspected cases of human anthrax. A team from the Uganda Ministry of Health and partners investigated and identified 49 cases, 3 confirmed and 46 suspected; no deaths were reported. Multiple exposures from handling the carcass of a cow that had died suddenly were significantly associated with cutaneous anthrax, whereas eating meat from that cow was associated with gastrointestinal anthrax. Eating undercooked meat was significantly associated with gastrointestinal anthrax, but boiling the meat for >60 minutes was protective. We recommended providing postexposure antimicrobial prophylaxis for all exposed persons, vaccinating healthy livestock in the area, educating farmers to safely dispose of animal carcasses, and avoiding handling or eating meat from livestock that died of unknown causes.
Collapse
|
19
|
Ntono V, Eurien D, Bulage L, Kadobera D, Harris J, Ario AR. Cutaneous anthrax outbreak associated with handling dead animals, Rhino Camp sub-county: Arua District, Uganda, January-May 2018. ONE HEALTH OUTLOOK 2021; 3:8. [PMID: 33910648 PMCID: PMC8082813 DOI: 10.1186/s42522-021-00040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND On 18 January 2018 a 40 year old man presented with skin lesions at Rhino Camp Health Centre. A skin lesion swab was collected on 20 January 2018 and was confirmed by PCR at Uganda Virus Research Institute on 21 January 2018. Subsequently, about 9 persons were reported to have fallen ill after reporting contact with livestock that died suddenly. On 9 February 2018, Arua District notified Uganda Ministry of Health of a confirmed anthrax outbreak among humans in Rhino Camp sub-county. We investigated to determine the scope and mode of transmission and exposures associated with identified anthrax to guide control and prevention measures. METHODS We defined a suspected cutaneous anthrax case as onset of skin lesions (e.g., papule, vesicle, or eschar) in a person residing in Rhino Camp sub-county, Arua District from 25 December 2017 to 31 May 2018. A confirmed case was a suspected case with PCR-positivity for Bacillus anthracis from a clinical sample. We identified cases by reviewing medical records at Rhino Camp Health Centre. We also conducted additional case searches in the affected community with support from Community Health Workers. In a retrospective cohort study, we interviewed all members of households in which at least one person had contact with the carcasses of or meat from animals suspected to have died of anthrax. We collected and tested hides of implicated animals using an anthrax rapid diagnostic test. RESULTS We identified 14 case-patients (1 confirmed, 13 suspected); none died. Only males were affected (affected proportion: 12/10,000). Mean age of case-persons was 33 years (SD: 22). The outbreak lasted for 5 months, from January 2018-May 2018, peaking in February. Skinning (risk ratio = 2.7, 95% CI = 1.1-6.7), dissecting (RR = 3.0, 95% CI = 1.2-7.6), and carrying dead animals (RR = 2.7, 95% CI = 1.1-6.7) were associated with increased risk of illness, as were carrying dissected parts of animals (RR = 2.9, 95% CI 1.3-6.5) and preparing and cooking the meat (RR = 2.3, 95% CI 0.9-5.9). We found evidence of animal remains on pastureland. CONCLUSION Multiple exposures to the hides and meat of animals that died suddenly were associated with this cutaneous anthrax outbreak in Arua District. We recommended public education about safe disposal of carcasses of livestock that die suddenly.
Collapse
Affiliation(s)
- Vivian Ntono
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Daniel Eurien
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Lilian Bulage
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Daniel Kadobera
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Julie Harris
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Alex Riolexus Ario
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| |
Collapse
|
20
|
Leonard TE, Siratan E, Hartiadi LY, Crystalia AA. Insights into antimicrobial peptides in fighting anthrax: A review. Drug Dev Res 2021; 82:754-766. [PMID: 33580543 DOI: 10.1002/ddr.21803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/31/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Anthrax is an infectious disease occurring worldwide and is a threat to global society due to its possible misuse as a biological weapon. Bacillus anthracis is the etiologic agent of this disease which can be transmitted via inhalation, ingestion, and skin contact. Globally, it is estimated around 2000 anthrax cases occur per year. Upon infection, the organism can cause cytolysis of macrophage and produce exotoxin capable of inducing edema and lymphatic blockage. Another challenge posed by the organism is the ability to form spores in harsh conditions. Various antibiotics have been used to fight the disease. However, like many other microbes, B. anthracis may develop resistance, thus the discovery of new therapeutics is urgently required. Antimicrobial peptides (AMPs) have been discovered since 1980s and attracted researchers in the antimicrobial field. In this review, the work and studies on the attempts to discover potent AMPs to treat anthrax together with the brief overview of the synthesis and modification pathways of several AMPs have been presented.
Collapse
Affiliation(s)
- Theodore Ebenezer Leonard
- Department of Pharmacy, Indonesia International Institute for Life Sciences (i3L), Jakarta, Indonesia
| | - Elsabda Siratan
- Department of Pharmacy, Indonesia International Institute for Life Sciences (i3L), Jakarta, Indonesia
| | - Leonny Yulita Hartiadi
- Department of Pharmacy, Indonesia International Institute for Life Sciences (i3L), Jakarta, Indonesia
| | - Audrey Amira Crystalia
- Department of Pharmacy, Indonesia International Institute for Life Sciences (i3L), Jakarta, Indonesia
| |
Collapse
|
21
|
Abstract
Persons who inject drugs are at high risk for skin and soft tissue infections. Infections range from simple abscesses and uncomplicated cellulitis to life-threatening and limb-threatening infections. These infections are predominantly caused by gram-positive organisms with Staphylococcus aureus, Streptococcus pyogenes, and other streptococcal species being most common. Although antimicrobial therapy has an important role in treatment of these infections, surgical incision, drainage, and debridement of devitalized tissue are primary. Strategies that decrease the frequency of injection drug use, needle sharing, use of contaminated equipment, and other risk behaviors may be effective in preventing these infections in persons who inject drugs.
Collapse
Affiliation(s)
- Henry F Chambers
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, 1001 Potrero Avenue, Building 30, Room 3400, San Francisco, CA 94110, USA.
| |
Collapse
|
22
|
Amakawa M, Gunawardana S, Jabbour A, Hernandez A, Pasos C, Alameh S, Martchenko Shilman M, Levitin A. Repurposing Clinically Approved Drugs for the Treatment of Bacillus cereus, a Surrogate for Bacillus anthracis. ACS OMEGA 2020; 5:21929-21939. [PMID: 32905429 PMCID: PMC7469645 DOI: 10.1021/acsomega.0c03207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 05/28/2023]
Abstract
Of the numerous infectious diseases afflicting humans, anthrax disease, caused by Bacillus anthracis, poses a major threat in its virulence and lack of effective treatment. The currently lacking standards of care, as well as the lengthy drug approval process, demonstrate the pressing demand for treatment for B. anthracis infections. The present study screened 1586 clinically approved drugs in an attempt to identify repurposable compounds against B. cereus, a relative strain that shares many physical and genetic characteristics with B. anthracis. Our study yielded five drugs that successfully inhibited B. cereus growth: dichlorophen, oxiconazole, suloctidil, bithionol, and hexestrol. These drugs exhibited varying levels of efficacy in broad-spectrum experiments against several Gram-positive and Gram-negative bacterial strains, with hexestrol showing the greatest inhibition across all tested strains. Through tests for the efficacy of each drug on B. cereus, bithionol was the single most potent compound on both solid and liquid media and exhibited even greater eradication of B. cereus in combination with suloctidil on solid agar. This multifaceted in vitro study of approved drugs demonstrates the potential to repurpose these drugs as treatments for anthrax disease in a time-efficient manner to address a global health need.
Collapse
|
23
|
Rondinone V, Serrecchia L, Parisi A, Fasanella A, Manzulli V, Cipolletta D, Galante D. Genetic characterization of Bacillus anthracis strains circulating in Italy from 1972 to 2018. PLoS One 2020; 15:e0227875. [PMID: 31931511 PMCID: PMC6957342 DOI: 10.1371/journal.pone.0227875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/31/2019] [Indexed: 11/18/2022] Open
Abstract
In Italy anthrax is an endemic disease, with a few outbreaks occurring almost every year. We surveyed 234 B. anthracis strains from animals (n = 196), humans (n = 3) and the environment (n = 35) isolated during Italian outbreaks in the years 1972-2018. Despite the considerable genetic homogeneity of B. anthracis, the strains were effectively differentiated using canonical single nucleotide polymorphisms (CanSNPs) assay and multiple-locus variable-number tandem repeat analysis (MLVA). The phylogenetic identity was determined through the characterization of 14 CanSNPs. In addition, a subsequent 31-loci MLVA assay was also used to further discriminate B. anthracis genotypes into subgroups. The analysis of 14 CanSNPs allowed for the identification of four main lineages: A.Br.011/009, A.Br.008/011 (respectively belonging to A.Br.008/009 sublineage, also known Trans-Eurasian or TEA group), A.Br.005/006 and B.Br.CNEVA. A.Br.011/009, the most common subgroup of lineage A, is the major genotype of B. anthracis in Italy. The MLVA analysis revealed the presence of 55 different genotypes in Italy. Most of the genotypes are genetically very similar, supporting the hypothesis that all strains evolved from a local common ancestral strain, except for two genotypes representing the branch A.Br.005/006 and B.Br.CNEVA. The genotyping analysis applied in this study remains a very valuable tool for studying the diversity, evolution, and molecular epidemiology of B. anthracis.
Collapse
Affiliation(s)
- Valeria Rondinone
- Anthrax Reference Institute of Italy, Experimental Zooprophylactic Institute of Apulia and Basilicata Regions, Foggia, Italy
| | - Luigina Serrecchia
- Anthrax Reference Institute of Italy, Experimental Zooprophylactic Institute of Apulia and Basilicata Regions, Foggia, Italy
| | - Antonio Parisi
- Anthrax Reference Institute of Italy, Experimental Zooprophylactic Institute of Apulia and Basilicata Regions, Foggia, Italy
| | - Antonio Fasanella
- Anthrax Reference Institute of Italy, Experimental Zooprophylactic Institute of Apulia and Basilicata Regions, Foggia, Italy
| | - Viviana Manzulli
- Anthrax Reference Institute of Italy, Experimental Zooprophylactic Institute of Apulia and Basilicata Regions, Foggia, Italy
| | - Dora Cipolletta
- Anthrax Reference Institute of Italy, Experimental Zooprophylactic Institute of Apulia and Basilicata Regions, Foggia, Italy
| | - Domenico Galante
- Anthrax Reference Institute of Italy, Experimental Zooprophylactic Institute of Apulia and Basilicata Regions, Foggia, Italy
| |
Collapse
|
24
|
Nayak P, Sodha SV, Laserson KF, Padhi AK, Swain BK, Hossain SS, Shrivastava A, Khasnobis P, Venkatesh SR, Patnaik B, Dash KC. A cutaneous Anthrax outbreak in Koraput District of Odisha-India 2015. BMC Public Health 2019; 19:470. [PMID: 32326927 PMCID: PMC6696704 DOI: 10.1186/s12889-019-6787-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Cutaneous anthrax in humans is associated with exposure to infected animals or animal products and has a case fatality rate of up to 20% if untreated. During May to June 2015, an outbreak of cutaneous anthrax was reported in Koraput district of Odisha, India, an area endemic for anthrax. We investigated the outbreak to identify risk factors and recommend control measures. Method We defined a cutaneous anthrax case as skin lesions (e.g., papule, vesicle or eschar) in a person residing in Koraput district with illness onset between February 1 and July 15, 2015. We established active surveillance through a house to house survey to ascertain additional cases and conducted a 1:2 unmatched case control study to identify modifiable risk factors. In case control study, we included cases with illness onset between May 1 and July 15, 2015. We defined controls as neighbours of case without skin lesions since last 3 months. Ulcer exudates and rolled over swabs from wounds were processed in Gram stain in the Koraput district headquarter hospital laboratory. Result We identified 81 cases (89% male; median age 38 years [range 5–75 years]) including 3 deaths (case fatality rate = 4%). Among 37 cases and 74 controls, illness was significantly associated with eating meat of ill cattle (OR: 14.5, 95% CI: 1.4–85.7) and with close handling of carcasses of ill animals such as burying, skinning, or chopping (OR: 342, 95% CI: 40.5–1901.8). Among 20 wound specimens collected, seven showed spore-forming, gram positive bacilli, with bamboo stick appearance suggestive of Bacillus anthracis. Conclusion Our investigation revealed significant associations between eating and handling of ill animals and presence of anthrax-like organisms in lesions. We immediately initiated livestock vaccination in the area, educated the community on safe handling practices and recommended continued regular anthrax animal vaccinations to prevent future outbreaks.
Collapse
Affiliation(s)
- Priyakanta Nayak
- National Centre for Disease Control, 22 Shamnath Marg, Civil Lines, New Delhi, India.
| | - Samir V Sodha
- United States Centers for Disease Control and Prevention, Delhi, India.,Division of Global Health Protection, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Kayla F Laserson
- United States Centers for Disease Control and Prevention, Delhi, India.,Division of Global Health Protection, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Arun K Padhi
- Directorate of Health Services, Bhubaneswar, Odisha, India
| | | | - Shaikh S Hossain
- United States Centers for Disease Control and Prevention, Delhi, India
| | - Aakash Shrivastava
- National Centre for Disease Control, 22 Shamnath Marg, Civil Lines, New Delhi, India
| | - Pradeep Khasnobis
- National Centre for Disease Control, 22 Shamnath Marg, Civil Lines, New Delhi, India
| | - Srinivas R Venkatesh
- National Centre for Disease Control, 22 Shamnath Marg, Civil Lines, New Delhi, India
| | - Bikash Patnaik
- Directorate of Health Services, Bhubaneswar, Odisha, India
| | - Kailash C Dash
- Directorate of Health Services, Bhubaneswar, Odisha, India
| |
Collapse
|
25
|
Dupke S, Barduhn A, Franz T, Leendertz FH, Couacy-Hymann E, Grunow R, Klee SR. Analysis of a newly discovered antigen of Bacillus cereus biovar anthracis for its suitability in specific serological antibody testing. J Appl Microbiol 2018; 126:311-323. [PMID: 30253024 DOI: 10.1111/jam.14114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Abstract
AIMS The aim of this work was to identify a protein which can be used for specific detection of antibodies against Bacillus cereus biovar anthracis (Bcbva), an anthrax-causing pathogen that so far has been described in African rainforest areas. METHODS AND RESULTS Culture supernatants of Bcbva and classic Bacillus anthracis (Ba) were analysed by gel electrophoresis, and a 35-kDa protein secreted only by Bcbva and not Ba was detected. The protein was identified as pXO2-60 by mass spectrometry. Sequence analysis showed that Ba is unable to secrete this protein due to a premature stop codon in the sequence for the signal peptide. Immunization of five outbred mice with sterile bacterial culture supernatants of Bcbva revealed an immune response in ELISA against pXO2-60 (three mice positive, one borderline) and the protective antigen (PA; four mice). When supernatants of classic Ba were injected into mice or human sera from anthrax patients were analysed, only antibodies against PA were detected. CONCLUSIONS In combination with PA, the pXO2-60 protein can be used for the detection of antibodies specific against Bcbva and discriminating from Ba. SIGNIFICANCE AND IMPACT OF THE STUDY After further validation, serological assays based on pXO2-60 can be used to perform seroprevalence studies to determine the epidemiology of B. cereus bv anthracis in affected countries and assess its impact on the human population.
Collapse
Affiliation(s)
- S Dupke
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens (ZBS2), Berlin, Germany
| | - A Barduhn
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens (ZBS2), Berlin, Germany
| | - T Franz
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens (ZBS2), Berlin, Germany
| | - F H Leendertz
- Robert Koch-Institute, Epidemiology of Highly Pathogenic Microorganisms (P3), Berlin, Germany
| | - E Couacy-Hymann
- Laboratoire National d'Appui au Développement Agricole (LANADA), Laboratoire Central Vétérinaire de Bingerville (LCVB), Bingerville, Côte d'Ivoire
| | - R Grunow
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens (ZBS2), Berlin, Germany
| | - S R Klee
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens (ZBS2), Berlin, Germany
| |
Collapse
|
26
|
Milroy CM, Kepron C, Parai JL. Histologic Changes In Recreational Drug Misuse. Acad Forensic Pathol 2018; 8:653-691. [PMID: 31240063 DOI: 10.1177/1925362118797740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/24/2018] [Indexed: 11/15/2022]
Abstract
Use of recreational drugs is associated with a number of histologic changes. These may be related to the method of administration or due to systemic effects of the drugs. This paper reviews the histopathological features seen following recreational drug use. With injection, there may be local effects from abscess formation and systemic effects may result in amyloidosis. Injections have been associated with necrotizing fasciitis, anthrax, and clostridial infections. Systemic effects include infective endocarditis, with the risk of embolization, and abscesses may be seen in organs in the absence of infective endocarditis. Viral complications of injection include hepatitis and human immunodeficiency virus (HIV) infection. Injecting crushed tablets can result in intravascular granulomata in the lungs. Smoking drugs is associated with intraalveolar changes, including blackand brown-pigmented macrophages in crack cocaine and cannabis smoking, respectively. Snorting may result in intraalveolar granulomata forming when crush tablets are used and there may be systemic granulomata. Stimulants are associated with cardiovascular and cerebrovascular pathology, including contraction band necrosis and myocardial fibrosis, as well as coronary artery dissection. Stimulants may cause hyperpyrexia and rhabdomyolysis, which may be associated with changes in multiple organs including myoglobin casts in the kidney. Opioids cause respiratory depression and this can be associated with inhalational pneumonia and hypoxia in other organs if there is resuscitation and a period of survival. Ketamine use has been associated with changes in the urothelium and the liver. This paper reviews histology changes that may be seen in drug-related deaths using illustrative cases.
Collapse
|
27
|
Zhang D, Liu W, Wen Z, Li B, Liu S, Li J, Chen W. Establishment of a New Zealand White Rabbit Model for Lethal Toxin (LT) Challenge and Efficacy of Monoclonal Antibody 5E11 in the LT-Challenged Rabbit Model. Toxins (Basel) 2018; 10:E289. [PMID: 30002351 PMCID: PMC6071005 DOI: 10.3390/toxins10070289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Anthrax caused by Bacillus anthracis is a lethal infectious disease, especially when inhaled, and the mortality rate approaches 100% without treatment. The anthrax antitoxin monoclonal antibody (MAb) 5E11 is a humanized antibody that targets the anthrax protective antigen (PA). The efficacy of 5E11 needs proper animal models. However, anthrax spores are extremely dangerous, so experiments must be conducted under Biosafety Level 3 conditions. Considering the critical effects of lethal toxin (LT) on hosts during infection, we report the establishment of a LT-challenged rabbit model, which caused 100% mortality with a dose of 2 mg PA + 1 mg LF, while a 4 mg PA + 2 mg LF challenge could limit death to within three days. Then, we evaluated 5E11 efficacy against LT. A prophylactic study showed that the i.v. administration of 40 mg/kg 5E11 four days before lethal dose LT challenge could lead to 100% survival. In therapeutic studies, the i.v. administration of 40 mg/kg 5E11 10 min after lethal dose LT challenge could provide complete protection. Overall, we developed a new LT-challenged rabbit model, and our results indicate that 5E11 shows potential for the clinical application in anthrax treatment.
Collapse
Affiliation(s)
- Duanyang Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Weicen Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Zhonghua Wen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Bing Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Shuling Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.
| |
Collapse
|
28
|
Vieira AR, Salzer JS, Traxler RM, Hendricks KA, Kadzik ME, Marston CK, Kolton CB, Stoddard RA, Hoffmaster AR, Bower WA, Walke HT. Enhancing Surveillance and Diagnostics in Anthrax-Endemic Countries. Emerg Infect Dis 2018; 23. [PMID: 29155651 PMCID: PMC5711320 DOI: 10.3201/eid2313.170431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Naturally occurring anthrax disproportionately affects the health and economic welfare of poor, rural communities in anthrax-endemic countries. However, many of these countries have limited anthrax prevention and control programs. Effective prevention of anthrax outbreaks among humans is accomplished through routine livestock vaccination programs and prompt response to animal outbreaks. The Centers for Disease Control and Prevention uses a 2-phase framework when providing technical assistance to partners in anthrax-endemic countries. The first phase assesses and identifies areas for improvement in existing human and animal surveillance, laboratory diagnostics, and outbreak response. The second phase provides steps to implement improvements to these areas. We describe examples of implementing this framework in anthrax-endemic countries. These activities are at varying stages of completion; however, the public health impact of these initiatives has been encouraging. The anthrax framework can be extended to other zoonotic diseases to build on these efforts, improve human and animal health, and enhance global health security.
Collapse
|
29
|
Guo J, Wang A, Yang K, Ding H, Hu Y, Yang Y, Huang S, Xu J, Liu T, Yang H, Xin Z. Isolation, characterization and antimicrobial activities of polyacetylene glycosides from Coreopsis tinctoria Nutt. PHYTOCHEMISTRY 2017; 136:65-69. [PMID: 28104231 DOI: 10.1016/j.phytochem.2016.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Polyacetylene glycosides, (6Z, 12E)-tetradecadiene-8,10-diyne-1-ol-3(R)-O-β-D-glucopyranoside (trivially named coreoside E) and (6Z, 12E)-tetradecadiene-8,10-diyne-1-ol-3(R)-O-β-L-arabinopyranosyl-(1 → 2)-β-D-glucopyranoside (trivially named coreoside F), were isolated from buds of Coreopsis tinctoria Nutt., together with one known compound, coreoside B. Their chemical structures were elucidated by extensive spectroscopic analysis and on the basis of their chemical reactivities. Coreoside E exhibited high levels of antimicrobial activity against Staphylococcus aureus and Bacillus anthracis with minimum inhibitory concentrations of 27 ± 0.27 and 18 ± 0.40 μM, respectively, whereas coreoside F and coreoside B showed weak antimicrobial activity against S. aureus and B. anthracis.
Collapse
Affiliation(s)
- Jia Guo
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ao Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ke Yang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hao Ding
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Yimin Hu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yumeng Yang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Siqi Huang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jingguo Xu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tianxing Liu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haiyan Yang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, People's Republic of China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
30
|
Adenine and benzimidazole-based mimics of REP-3123 as antibacterial agents against Clostridium difficile and Bacillus anthracis: Design, synthesis and biological evaluation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bfopcu.2016.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Head BM, Rubinstein E, Meyers AFA. Alternative pre-approved and novel therapies for the treatment of anthrax. BMC Infect Dis 2016; 16:621. [PMID: 27809794 PMCID: PMC5094018 DOI: 10.1186/s12879-016-1951-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the causative agent of anthrax, is a spore forming and toxin producing rod-shaped bacterium that is classified as a category A bioterror agent. This pathogenic microbe can be transmitted to both animals and humans. Clinical presentation depends on the route of entry (direct contact, ingestion, injection or aerosolization) with symptoms ranging from isolated skin infections to more severe manifestations such as cardiac or pulmonary shock, meningitis, and death. To date, anthrax is treatable if antibiotics are administered promptly and continued for 60 days. However, if treatment is delayed or administered improperly, the patient's chances of survival are decreased drastically. In addition, antibiotics are ineffective against the harmful anthrax toxins and spores. Therefore, alternative therapeutics are essential. In this review article, we explore and discuss advances that have been made in anthrax therapy with a primary focus on alternative pre-approved and novel antibiotics as well as anti-toxin therapies. METHODS A literature search was conducted using the University of Manitoba search engine. Using this search engine allowed access to a greater variety of journals/articles that would have otherwise been restricted for general use. In order to be considered for discussion for this review, all articles must have been published later than 2009. RESULTS The alternative pre-approved antibiotics demonstrated high efficacy against B. anthracis both in vitro and in vivo. In addition, the safety profile and clinical pharmacology of these drugs were already known. Compounds that targeted underexploited bacterial processes (DNA replication, RNA synthesis, and cell division) were also very effective in combatting B. anthracis. In addition, these novel compounds prevented bacterial resistance. Targeting B. anthracis virulence, more specifically the anthrax toxins, increased the length of which treatment could be administered. CONCLUSIONS Several novel and pre-existing antibiotics, as well as toxin inhibitors, have shown increasing promise. A combination treatment that targets both bacterial growth and toxin production would be ideal and probably necessary for effectively combatting this armed bacterium.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Ethan Rubinstein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Adrienne F. A. Meyers
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
- National Laboratory for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
32
|
Friebe S, van der Goot FG, Bürgi J. The Ins and Outs of Anthrax Toxin. Toxins (Basel) 2016; 8:toxins8030069. [PMID: 26978402 PMCID: PMC4810214 DOI: 10.3390/toxins8030069] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - F Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| | - Jérôme Bürgi
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
33
|
Common and Dangerous Skin Infections. CURRENT DERMATOLOGY REPORTS 2016. [DOI: 10.1007/s13671-016-0128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
D'Amelio E, Gentile B, Lista F, D'Amelio R. Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon. ENVIRONMENT INTERNATIONAL 2015; 85:133-146. [PMID: 26386727 DOI: 10.1016/j.envint.2015.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
PURPOSE Anthrax is caused by Bacillus anthracis, which can naturally infect livestock, wildlife and occupationally exposed humans. However, for its resistance due to spore formation, ease of dissemination, persistence in the environment and high virulence, B. anthracis has been considered the most serious bioterrorism agent for a long time. During the last century anthrax evolved from limited natural disease to potentially global threat if used as bioweapon. Several factors may mitigate the consequences of an anthrax attack, including 1. the capability to promptly recognize and manage the illness and its public health consequences; 2. the limitation of secondary contamination risk through an appropriate decontamination; and 3. the evolution of genotyping methods (for microbes characterization at high resolution level) that can influence the course and/or focus of investigations, impacting the response of the government to an attack. METHODS A PubMed search has been done using the key words “bioterrorism anthrax”. RESULTS Over one thousand papers have been screened and the most significant examined to present a comprehensive literature review in order to discuss the current knowledge and strategies in preparedness for a possible deliberate release of B. anthracis spores and to indicate the most current and complete documents in which to deepen. CONCLUSIONS The comprehensive analysis of the two most relevant unnatural anthrax release events, Sverdlovsk in the former Soviet Union (1979) and the contaminated letters in the USA (2001), shows that inhalational anthrax may easily and cheaply be spread resulting in serious consequences. The damage caused by an anthrax attack can be limited if public health organization, first responders, researchers and investigators will be able to promptly manage anthrax cases and use new technologies for decontamination methods and in forensic microbiology.
Collapse
Affiliation(s)
| | - Bernardina Gentile
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Raffaele D'Amelio
- Sapienza University of Rome, Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Via di Grottarossa 1039, 00189 Rome, Italy.
| |
Collapse
|
35
|
Goossens PL, Tournier JN. Crossing of the epithelial barriers by Bacillus anthracis: the Known and the Unknown. Front Microbiol 2015; 6:1122. [PMID: 26500645 PMCID: PMC4598578 DOI: 10.3389/fmicb.2015.01122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
Anthrax, caused by Bacillus anthracis, a Gram-positive spore-forming bacterium, is initiated by the entry of spores into the host body. There are three types of human infection: cutaneous, inhalational, and gastrointestinal. For each form, B. anthracis spores need to cross the cutaneous, respiratory or digestive epithelial barriers, respectively, as a first obligate step to establish infection. Anthrax is a toxi-infection: an association of toxemia and rapidly spreading infection progressing to septicemia. The pathogenicity of Bacillus anthracis mainly depends on two toxins and a capsule. The capsule protects bacilli from the immune system, thus promoting systemic dissemination. The toxins alter host cell signaling, thereby paralyzing the immune response of the host and perturbing the endocrine and endothelial systems. In this review, we will mainly focus on the events and mechanisms leading to crossing of the respiratory epithelial barrier, as the majority of studies have addressed inhalational infection. We will discuss the critical gaps of knowledge that need to be addressed to gain a comprehensive view of the initial steps of inhalational anthrax. We will then discuss the few data available on B. anthracis crossing the cutaneous and digestive epithelia.
Collapse
Affiliation(s)
- Pierre L Goossens
- Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur , Paris, France
| | - Jean-Nicolas Tournier
- Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur , Paris, France ; Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées , Brétigny-sur-Orge, France ; Ecole du Val-de-Grâce , Paris, France
| |
Collapse
|
36
|
Wycoff K, Maclean J, Belle A, Yu L, Tran Y, Roy C, Hayden F. Anti-infective immunoadhesins from plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1078-93. [PMID: 26242703 PMCID: PMC4749143 DOI: 10.1111/pbi.12441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 05/22/2023]
Abstract
Immunoadhesins are recombinant proteins that combine the ligand-binding region of a receptor or adhesion molecule with immunoglobulin constant domains. All FDA-approved immunoadhesins are designed to modulate the interaction of a human receptor with its normal ligand, such as Etanercept (Enbrel(®) ), which interferes with the binding of tumour necrosis factor (TNF) to the TNF-alpha receptor and is used to treat inflammatory diseases such as rheumatoid arthritis. Like antibodies, immunoadhesins have long circulating half-lives, are readily purified by affinity-based methods and have the avidity advantages conferred by bivalency. Immunoadhesins that incorporate normal cellular receptors for viruses or bacterial toxins hold great, but as yet unrealized, potential for treating infectious disease. As decoy receptors, immunoadhesins have potential advantages over pathogen-targeted monoclonal antibodies. Planet Biotechnology has specialized in developing anti-infective immunoadhesins using plant expression systems. An immunoadhesin incorporating the cellular receptor for anthrax toxin, CMG2, potently blocks toxin activity in vitro and protects animals against inhalational anthrax. An immunoadhesin based on the receptor for human rhinovirus, ICAM-1, potently blocks infection of human cells by one of the major causes of the common cold. An immunoadhesin targeting the MERS coronavirus is in an early stage of development. We describe here the unique challenges involved in designing and developing immunoadhesins targeting infectious diseases in the hope of inspiring further research into this promising class of drugs.
Collapse
Affiliation(s)
| | | | | | - Lloyd Yu
- Planet Biotechnology Inc., Hayward, CA, USA
| | - Y Tran
- Planet Biotechnology Inc., Hayward, CA, USA
| | - Chad Roy
- Tulane National Primate Research Center, Covington, LA, USA
| | - Frederick Hayden
- University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
37
|
First Autochthonous Coinfected Anthrax in an Immunocompetent Patient. Case Rep Med 2015; 2015:325093. [PMID: 26451148 PMCID: PMC4586956 DOI: 10.1155/2015/325093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Cutaneous anthrax has a mortality rate of 20% if no antibacterial treatment is applied. The clinical manifestations of cutaneous anthrax are obviously striking, but coinfection may produce atypical lesions and mask the clinical manifestations and proper laboratory diagnosis. Anthrax is known to be more common in the Middle East and Iran is one of the countries in which the zoonotic form of anthrax may still be encountered. We report a case of a 19-years-old male who used to apply Venetian ceruse on his skin. Venetian ceruse (also known as Spirits of Saturn) is an old cosmetic product used for skin whitening traditionally made from sheep's spinal cord. The patient referred to the Referral Laboratory, Mazandaran University of Medical Sciences, Sari, Iran, with atypical dermatosis, pronounced pain, and oedema of the affected tissue. It was confirmed by both conventional and molecular analysis that culture was a mixture of Bacillus anthracis and Trichophyton interdigitale. The patient was initially treated with ceftriaxone (1000 mg/day for two weeks), gentamicin (1.5–2 mg/kg/day), terbinafine (200 mg/week for one month), and 1% clotrimazole cream (5 weeks) two times per day which resulted in gradual improvement. No relapse could be detected after one-year follow-up. Anthrax infection might present a broader spectrum of symptoms than expected by clinicians. These unfamiliar characteristics may lead to delayed diagnosis, inadequate treatment, and higher mortality rate. Clinicians need to be aware of this issue in order to have successful management over this infection.
Collapse
|
38
|
Kempsell KE, Kidd SP, Lewandowski K, Elmore MJ, Charlton S, Yeates A, Cuthbertson H, Hallis B, Altmann DM, Rogers M, Wattiau P, Ingram RJ, Brooks T, Vipond R. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis. Front Microbiol 2015; 6:747. [PMID: 26322022 PMCID: PMC4534840 DOI: 10.3389/fmicb.2015.00747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 01/26/2023] Open
Abstract
A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.
Collapse
Affiliation(s)
| | | | | | | | - Sue Charlton
- Public Health England Porton Down, Salisbury, UK
| | | | | | | | - Daniel M Altmann
- Department of Medicine, University College London, Hammersmith Hospital London, UK
| | - Mitch Rogers
- Public Health England Porton Down, Salisbury, UK
| | - Pierre Wattiau
- Department of Bacterial Diseases, CODA-CERVA (Veterinary and Agrochemical Research Centre) Brussels, Belgium
| | - Rebecca J Ingram
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK
| | - Tim Brooks
- Public Health England Porton Down, Salisbury, UK
| | | |
Collapse
|
39
|
Fronczek CF, Yoon JY. Biosensors for Monitoring Airborne Pathogens. ACTA ACUST UNITED AC 2015; 20:390-410. [DOI: 10.1177/2211068215580935] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 01/15/2023]
|
40
|
Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor. Toxins (Basel) 2015; 7:2598-614. [PMID: 26184312 PMCID: PMC4516931 DOI: 10.3390/toxins7072598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 11/17/2022] Open
Abstract
Bacillus anthracis adenylyl cyclase toxin edema factor (EF) is one component of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the eukaryotic Ca2+-sensor calmodulin (CaM) leads to massive cAMP production resulting in edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, thus reducing production of reactive oxygen species (ROS) used for host defense in activated neutrophils and thereby facilitating bacterial growth. Methionine (Met) residues in CaM, important for interactions between CaM and its binding partners, can be oxidized by ROS. We investigated the impact of site-specific oxidation of Met in CaM on EF activation using thirteen CaM-mutants (CaM-mut) with Met to leucine (Leu) substitutions. EF activation shows high resistance to oxidative modifications in CaM. An intact structure in the C-terminal region of oxidized CaM is sufficient for major EF activation despite altered secondary structure in the N-terminal region associated with Met oxidation. The secondary structures of CaM-mut were determined and described in previous studies from our group. Thus, excess cAMP production and the associated impairment of host defence may be afforded even under oxidative conditions in activated neutrophils.
Collapse
|
41
|
Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor. PLoS One 2015; 10:e0124017. [PMID: 25946093 PMCID: PMC4422518 DOI: 10.1371/journal.pone.0124017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP into the second messenger cAMP. Membranous AC1 (AC1) is involved in processes of memory and learning and in muscle pain. The AC toxin edema factor (EF) of Bacillus anthracis is involved in the development of anthrax. Both ACs are stimulated by the eukaryotic Ca2+-sensor calmodulin (CaM). The CaM-AC interaction could constitute a potential target to enhance or impair the AC activity of AC1 and EF to intervene in above (patho)physiological mechanisms. Thus, we analyzed the impact of 39 compounds including typical CaM-inhibitors, an anticonvulsant, an anticholinergic, antidepressants, antipsychotics and Ca2+-antagonists on CaM-stimulated catalytic activity of AC1 and EF. Compounds were tested at 10 μM, i.e., a concentration that can be reached therapeutically for certain antidepressants and antipsychotics. Calmidazolium chloride decreased CaM-stimulated AC1 activity moderately by about 30%. In contrast, CaM-stimulated EF activity was abrogated by calmidazolium chloride and additionally decreased by chlorpromazine, felodipine, penfluridol and trifluoperazine by about 20–40%. The activity of both ACs was decreased by calmidazolium chloride in the presence and absence of CaM. Thus, CaM-stimulated AC1 activity is more insensitive to inhibition by small molecules than CaM-stimulated EF activity. Inhibition of AC1 and EF by calmidazolium chloride is largely mediated via a CaM-independent allosteric mechanism.
Collapse
|
42
|
Ohanjanian L, Remy KE, Li Y, Cui X, Eichacker PQ. An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis. Expert Opin Investig Drugs 2015; 24:851-65. [PMID: 25920540 DOI: 10.1517/13543784.2015.1041587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sepsis with Bacillus anthracis infection has a very high mortality rate despite appropriate antibiotic and supportive therapies. Over the past 15 years, recent outbreaks in the US and in Europe, coupled with anthrax's bioterrorism weapon potential, have stimulated efforts to develop adjunctive therapies to improve clinical outcomes. Since lethal toxin and edema toxin (LT and ET) make central contributions to the pathogenesis of B. anthracis, these have been major targets in this effort. AREAS COVERED Here, the authors review different investigative biopharmaceuticals that have been recently identified for their therapeutic potential as inhibitors of LT or ET. Among these inhibitors are two antibody preparations that have been included in the Strategic National Stockpile (SNS) and several more that have reached Phase I testing. Presently, however, many of these candidate agents have only been studied in vitro and very few tested in bacteria-challenged models. EXPERT OPINION Although a large number of drugs have been identified as potential therapeutic inhibitors of LT and ET, in most cases their testing has been limited. The use of the two SNS antibody therapies during a large-scale exposure to B. anthracis will be difficult. Further testing and development of agents with oral bioavailability and relatively long shelf lives should be a focus for future research.
Collapse
Affiliation(s)
- Lernik Ohanjanian
- National Institutes of Health, Clinical Center, Critical Care Medicine Department , Building 10, Room 2C145, Bethesda, MD 20892 , USA +1 301 402 2914 ; +1 301 402 1213 ;
| | | | | | | | | |
Collapse
|
43
|
A case of fatal gastrointestinal anthrax in north eastern iran. Case Rep Infect Dis 2015; 2015:875829. [PMID: 25918652 PMCID: PMC4396999 DOI: 10.1155/2015/875829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 11/17/2022] Open
Abstract
Background. Bacillus species are aerobic or facultative anaerobic, gram-positive, or gram-variable spore-forming rods. They are ubiquitous in the environmental sources. Bacillus anthracis may usually cause three forms of anthrax: inhalation, gastrointestinal, and cutaneous. The gastrointestinal (GI) anthrax develops after eating contaminated meat. In this paper we report septic intestinal anthrax. Case Presentation. We report an isolation of Bacillus anthracis from blood culture of patient with intestinal anthrax. Bacillus anthracis was isolated from a blood culture of a 34-year-old man who had a history of severe abdominal pain, bloody diarrhea, nausea, vomiting, fever, sweating, and lethargy within 4 to 5 days after eating the meat of domestic goat. He had evidence of severe infection and septic shock and did not respond to treatments and subsequently expired 9 hours after hospitalization. Conclusion. Gastrointestinal anthrax is characterized by rapid onset, fever, and septicemia. Rapid diagnosis and prompt initiation of antibiotic therapy can help in survival. Most of previous cases of septicemic anthrax were related to injection drug users but, in our case, septicemia occurred after gastrointestinal anthrax.
Collapse
|
44
|
Ogawa H, Fujikura D, Ohnuma M, Ohnishi N, Hang'ombe BM, Mimuro H, Ezaki T, Mweene AS, Higashi H. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species. PLoS One 2015; 10:e0122004. [PMID: 25774512 PMCID: PMC4361551 DOI: 10.1371/journal.pone.0122004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/09/2015] [Indexed: 11/30/2022] Open
Abstract
Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.
Collapse
Affiliation(s)
- Hirohito Ogawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Daisuke Fujikura
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Miyuki Ohnuma
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naomi Ohnishi
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Bernard M. Hang'ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Pathogenic Microbes Repository Unit, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takayuki Ezaki
- Department of Microbiology, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Aaron S. Mweene
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Hideaki Higashi
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
45
|
Periorbital cellulitis due to cutaneous anthrax. Int Ophthalmol 2015; 35:843-5. [PMID: 25763844 DOI: 10.1007/s10792-015-0057-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Abstract
Virgil's plague of the ancient world, Bacillus anthracis, is rare in developed nations. Unfortunately rural communities across the globe continue to be exposed to this potentially lethal bacterium. Herein we report a case of periorbital cutaneous anthrax infection in a 3-year-old girl from the rural area surrounding Harare, Zimbabwe with a brief review of the literature.
Collapse
|
46
|
Goel AK. Anthrax: A disease of biowarfare and public health importance. World J Clin Cases 2015; 3:20-33. [PMID: 25610847 PMCID: PMC4295216 DOI: 10.12998/wjcc.v3.i1.20] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/05/2023] Open
Abstract
Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis (B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spores are extremely resistant to natural conditions and can survive for several decades in the environment. B. anthracis spores enter the body through skin lesion (cutaneous anthrax), lungs (pulmonary anthrax), or gastrointestinal route (gastrointestinal anthrax) and germinate, giving rise to the vegetative form. Anthrax is a concern of public health also in many countries where agriculture is the main source of income including India. Anthrax has been associated with human history for a very long time and regained its popularity after Sept 2001 incidence in United States. The present review article describes the history, biology, life cycle, pathogenicity, virulence, epidemiology and potential of B. anthracis as biological weapon.
Collapse
|
47
|
Fate of Bacillus anthracis during production of laboratory-scale cream cheese and homemade-style yoghurt. Food Microbiol 2014; 46:336-341. [PMID: 25475304 DOI: 10.1016/j.fm.2014.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/28/2014] [Accepted: 08/17/2014] [Indexed: 11/21/2022]
Abstract
The viability of Bacillus anthracis during production and storage of cream cheese and yoghurt was evaluated. Experimental cheeses were manufactured from whole milk inoculated with a suspension of B. anthracis vegetative cells and spores at a final concentration of 10(4) cfu/ml. Lactic acid bacteria (LAB) and lab ferment were used to induce milk ripening and milk coagulation. The pH-value of the contaminated milk dropped below 4.5 within the first 6 h and the amount of LAB increased by approximately 2-logs. During cheese production and storage at 5-9 °C for 24 days no growth of B. anthracis was observed. The amount of vegetative cells and spores fluctuated by 1-log. Inoculation of whole milk with heat-treated spores at 10(4) cfu/ml resulted in a slight increase of vegetative cell counts during the first 6 h. This indicated that germination occurred, but replication of vegetative cells was still inhibited in the produced cheese. Incubation of cheeses at room temperature or heating after milk coagulation strongly reduced the amount of LAB but had no effect on the growth behaviour of B. anthracis. The vegetative cell and spore content remained steady at 10(4) cfu/100 mg. During yoghurt production the pH-value decreased within 5 h below 5 and growth of B. anthracis was inhibited throughout storage. A pH-value of 5 or less is likely a critical factor to control the growth of B. anthracis. However, spores remained viable in experimental cream cheeses and yoghurts and are a potential risk of infection.
Collapse
|
48
|
Pottage T, Goode E, Wyke S, Bennett AM. Responding to biological incidents--what are the current issues in remediation of the contaminated environment? ENVIRONMENT INTERNATIONAL 2014; 72:133-139. [PMID: 24530001 DOI: 10.1016/j.envint.2014.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Since 2000 there have been a number of biological incidents resulting in environmental contamination with Bacillus anthracis, the causative agent of anthrax. These incidents include the US anthrax attacks in 2001, the US and UK drumming incidents in 2006-2008 and more recently, anthrax contamination of heroin in 2009/2010 and 2012/2013. Remediation techniques used to return environments to normal have varied between incidents, with different decontamination technologies being employed. Many factors need to be considered before a remediation strategy or recovery option can be implemented, including; cost, time (length of application), public perception of risk, and sampling strategies (and results) to name a few. These incidents have demonstrated that consolidated guidance for remediating biologically contaminated environments in the aftermath of a biological incident was required. The UK Recovery Handbook for Biological Incidents (UKRHBI) is a project led by Public Health England (PHE), formerly the Health Protection Agency (HPA) to provide guidance and advice on how to remediate the environment following a biological incident or outbreak of infection, and is expected to be published in 2015.
Collapse
Affiliation(s)
- T Pottage
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| | - E Goode
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - S Wyke
- Centre for Radiation, Chemicals and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK
| | - A M Bennett
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| |
Collapse
|
49
|
Ascough S, Ingram RJ, Abarra A, Holmes AJ, Maillere B, Altmann DM, Boyton RJ. Injectional anthrax infection due to heroin use induces strong immunological memory. J Infect 2014; 68:200-3. [PMID: 24513100 DOI: 10.1016/j.jinf.2013.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
50
|
|