1
|
Laganà A, Visalli G, Facciolà A, Celesti C, Iannazzo D, Di Pietro A. Uptake of Breathable Nano- and Micro-Sized Polystyrene Particles: Comparison of Virgin and Oxidised nPS/mPS in Human Alveolar Cells. TOXICS 2023; 11:686. [PMID: 37624191 PMCID: PMC10459673 DOI: 10.3390/toxics11080686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Airborne micro- and nanoplastics are widely spread and pose a risk to human health. The third polymer plastic most commonly produced and present in atmospheric fallout is polystyrene (PS). For these reasons and for a more realistic assessment of biological effects, we examined in-home oxidised (ox-, simulating photoaging) nPS/mPS (0.1 and 1 μm), comparing the effects with virgin ones (v-). On human alveolar cells (A549), we quantified the cellular uptake, using FITC-functionalised nPS/mPS, while cytotoxicity, changes in the acidic compartment, ROS production, mitochondrial function, and DNA damage were assessed to study the effects of internalised v- and ox-nPS/mPS. The results showed that the uptake was dose-dependent and very fast (1 h), since, at the lowest dose (1.25 µg/well), it was 20.8% and 21.8% of nPS and mPS, respectively. Compared to v-, significant ROS increases, DNA damage, and mitochondrial impairment were observed after exposure to ox-nPS/mPS. The enhancement of effects due to environmental aging processes highlighted the true potential impact on human health of these airborne pollutants.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (G.V.); (A.F.)
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche s.p.a., 98124 Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (G.V.); (A.F.)
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (G.V.); (A.F.)
| | - Consuelo Celesti
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98125 Messina, Italy; (C.C.); (D.I.)
| | - Daniela Iannazzo
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98125 Messina, Italy; (C.C.); (D.I.)
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.L.); (G.V.); (A.F.)
| |
Collapse
|
2
|
Visalli G, Laganà A, Facciolà A, Iaconis A, Curcio J, Pollino S, Celesti C, Scalese S, Libertino S, Iannazzo D, Di Pietro A. Enhancement of biological effects of oxidised nano- and microplastics in human professional phagocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104086. [PMID: 36842547 DOI: 10.1016/j.etap.2023.104086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/24/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Micro and nanoplastics are ubiquitous pollutants that can cause adverse health effects even in humans. Effects of virgin and oxidised (simulating the aging processes) polystyrene nano (nPS) and micro particles (mPS) with diameters of 0.1 and 1 µm were studied on human professional phagocytes (i.e., monocyte cells THP-1 and macrophage-like mTHP-1 cells). After characterization by ATR-FTIR, UV-Vis spectroscopy, SEM and dynamic light-scattering analyses, the particles were FITC functionalised to quantify cellular uptake. Changes in the cell compartments were studied by acrydine orange and the pro-oxidant, cytotoxic and genotoxic effects were assessed. Phagocytosis was dose- and time- dependent and at 24 h 52% of nPS and 58% of mPS were engulfed. Despite the high homeostasis of professional phagocytes, significant ROS increases and DNA damage were observed after exposure to oxidised particles. The results highlight that the environmental aging processes enhances the adverse health effects of micro and nanoplastics.
Collapse
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.p.a., 98124 Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Antonella Iaconis
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Jessica Curcio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Santa Pollino
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Consuelo Celesti
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98125 Messina, Italy
| | - Silvia Scalese
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada n.5, I-95121 Catania, Italy
| | - Sebania Libertino
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada n.5, I-95121 Catania, Italy
| | - Daniela Iannazzo
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98125 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
3
|
Gagan JM, Cao K, Zhang YA, Zhang J, Davidson TL, Pastor JV, Moe OW, Hsia CCW. Constitutive transgenic alpha-Klotho overexpression enhances resilience to and recovery from murine acute lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 321:L736-L749. [PMID: 34346778 DOI: 10.1152/ajplung.00629.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AIMS Normal lungs do not express alpha-Klotho (Klotho) protein but derive cytoprotection from circulating soluble Klotho. It is unclear whether chronic supranormal Klotho levels confer additional benefit. To address this, we tested the age-related effects of Klotho overexpression on acute lung injury (ALI) and recovery. METHODS Transgenic Klotho-overexpressing (Tg-Kl) and wild-type (WT) mice (2 and 6 months old) were exposed to hyperoxia (95% O2; 72 h) then returned to normoxia (21% O2; 24 h) (Hx-R). Control mice were kept in normoxia. Renal and serum Klotho, lung histology, and bronchoalveolar lavage fluid oxidative damage markers were assessed. Effects of hyperoxia were tested in human embryonic kidney cells stably expressing Klotho. A549 lung epithelial cells transfected with Klotho cDNA or vector were exposed to cigarette smoke; lactate dehydrogenase and double-strand DNA breaks were measured. RESULTS Serum Klotho decreased with age. Hyperoxia suppressed renal Klotho at both ages and serum Klotho at 2-months of age. Tg-Kl mice at both ages and 2-months-old WT mice survived Hx-R; 6-months-old Tg-Kl mice showed lower lung damage than age-matched WT mice. Hyperoxia directly inhibited Klotho expression and release in vitro; Klotho transfection attenuated cigarette smoke-induced cytotoxicity and DNA double-strand breaks in lung epithelial cells. CONCLUSIONS Young animals with chronic high baseline Klotho expression are more resistant to ALI. Chronic constitutive Klotho overexpression in older Tg-Kl animals attenuates hyperoxia-induced lung damage and improves survival and short-term recovery despite an acute reduction in serum Klotho level during injury. We conclude that chronic enhancement of Klotho expression increases resilience to ALI.
Collapse
Affiliation(s)
- Joshuah M Gagan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Khoa Cao
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yu-An Zhang
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jianning Zhang
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Taylor L Davidson
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Johanne V Pastor
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orson W Moe
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Connie C W Hsia
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108365. [PMID: 34083039 PMCID: PMC8287787 DOI: 10.1016/j.mrrev.2021.108365] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for a variety of diseases, including cancer and immune-mediated inflammatory diseases. Tobacco smoke contains a mixture of chemicals, including a host of reactive oxygen- and nitrogen species (ROS and RNS), among others, that can damage cellular and sub-cellular targets, such as lipids, proteins, and nucleic acids. A growing body of evidence supports a key role for smoking-induced ROS and the resulting oxidative stress in inflammation and carcinogenesis. This comprehensive and up-to-date review covers four interrelated topics, including 'smoking', 'oxidative stress', 'inflammation', and 'cancer'. The review discusses each of the four topics, while exploring the intersections among the topics by highlighting the macromolecular damage attributable to ROS. Specifically, oxidative damage to macromolecular targets, such as lipid peroxidation, post-translational modification of proteins, and DNA adduction, as well as enzymatic and non-enzymatic antioxidant defense mechanisms, and the multi-faceted repair pathways of oxidized lesions are described. Also discussed are the biological consequences of oxidative damage to macromolecules if they evade the defense mechanisms and/or are not repaired properly or in time. Emphasis is placed on the genetic- and epigenetic alterations that may lead to transcriptional deregulation of functionally-important genes and disruption of regulatory elements. Smoking-associated oxidative stress also activates the inflammatory response pathway, which triggers a cascade of events of which ROS production is an initial yet indispensable step. The release of ROS at the site of damage and inflammation helps combat foreign pathogens and restores the injured tissue, while simultaneously increasing the burden of oxidative stress. This creates a vicious cycle in which smoking-related oxidative stress causes inflammation, which in turn, results in further generation of ROS, and potentially increased oxidative damage to macromolecular targets that may lead to cancer initiation and/or progression.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
5
|
Cellai F, Bonassi S, Cristaudo A, Bonotti A, Neri M, Ceppi M, Bruzzone M, Milić M, Munnia A, Peluso M. Chromatographic Detection of 8-Hydroxy-2'-Deoxyguanosine in Leukocytes of Asbestos Exposed Workers for Assessing Past and Recent Carcinogen Exposures. Diagnostics (Basel) 2020; 10:E239. [PMID: 32326213 PMCID: PMC7235992 DOI: 10.3390/diagnostics10040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022] Open
Abstract
Asbestos fibers include a group of silicate minerals that occur in the environment and are widely employed in occupational settings. Asbestos exposure has been associated to various chronic diseases; such as pulmonary fibrosis; mesothelioma; and lung cancer; often characterized by a long period of latency. Underlying mechanisms that are behind the carcinogenic effect of asbestos have not been fully clarified. Therefore; we have conducted an epidemiological study to evaluate the relationship between 8-hydroxy-2'-deoxyguanosine (8-oxodG), one of the most reliable biomarkers of oxidative stress and oxidative DNA damage; and asbestos exposure in the peripheral blood of residents in Tuscany and Liguria regions; Italy; stratified by occupational exposure to this carcinogen. Levels of 8-oxodG were expressed such as relative adduct labeling (RAL); the frequency of 8-oxodG per 105 deoxyguanosine was significantly higher among exposed workers with respect to the controls; i.e., 3.0 ± 0.2 Standard Error (SE) in asbestos workers versus a value of 1.3 ± 0.1 (SE) in unexposed controls (p < 0.001). When the relationship with occupational history was investigated; significant higher levels of 8-oxodG were measured in current and former asbestos workers vs. healthy controls; 3.1 ± 0.3 (SE) and 2.9 ± 0.2 (SE), respectively. After stratification for occupational history; a significant 194% excess of adducts was found in workers with 10 or more years of past asbestos exposure (p < 0.001). 8-oxodG can be used for medical surveillance programs of cohorts of workers with past and recent exposures to carcinogens for the identification of subjects requiring a more intense clinical surveillance.
Collapse
Affiliation(s)
- Filippo Cellai
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (F.C.); (A.M.)
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (S.B.); (M.N.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56010 Pisa, Italy;
- Occupational Medicine Unit, University of Pisa, 56010 Pisa, Italy;
| | | | - Monica Neri
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (S.B.); (M.N.)
| | - Marcello Ceppi
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16131 Genoa, Italy; (M.C.); (M.B.)
| | - Marco Bruzzone
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, 16131 Genoa, Italy; (M.C.); (M.B.)
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Armelle Munnia
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (F.C.); (A.M.)
| | - Marco Peluso
- Cancer Risk Factor Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy; (F.C.); (A.M.)
| |
Collapse
|
6
|
Izzotti A, Balansky R, Micale RT, Pulliero A, La Maestra S, De Flora S. Modulation of smoke-induced DNA and microRNA alterations in mouse lung by licofelone, a triple COX-1, COX-2 and 5-LOX inhibitor. Carcinogenesis 2020; 41:91-99. [PMID: 31562745 PMCID: PMC7456342 DOI: 10.1093/carcin/bgz158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/29/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation plays a crucial role in the carcinogenesis process and, in particular, in smoking-related carcinogenesis. Therefore, anti-inflammatory agents provide an interesting perspective in the prevention of smoking-associated cancers. Among nonsteroidal anti-inflammatory drugs (NSAIDs), licofelone is a triple inhibitor of both cyclooxygenases (COX-1 and COX-2) and of 5-lipooxygenase (5-LOX) that has shown some encouraging results in cancer prevention models. We previously showed that the dietary administration of licofelone, starting after weanling, to Swiss H mice exposed for 4 months to mainstream cigarette smoke since birth attenuated preneoplastic lesions of inflammatory nature in both lung and urinary tract, and had some effects on the yield of lung tumors at 7.5 months of age. The present study aimed at evaluating the early modulation by licofelone of pulmonary DNA and RNA alterations either in smoke-free or smoke-exposed H mice after 10 weeks of exposure. Licofelone protected the mice from the smoke-induced loss of body weight and significantly attenuated smoke-induced nucleotide alterations by decreasing the levels of bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine in mouse lung. Moreover, the drug counteracted dysregulation by smoke of several pulmonary microRNAs involved in stress response, inflammation, apoptosis, and oncogene suppression. However, even in smoke-free mice administration of the drug had significant effects on a broad panel of microRNAs and, as assessed in a subset of mice used in a parallel cancer chemoprevention study, licofelone even enhanced the smoke-induced systemic genotoxic damage after 4 months of exposure. Therefore, caution should be paid when administering licofelone to smokers for long periods.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Sun L, Shao H, Li M, Zhou W. Differential expression of TLRs and AKAP3 in cigarette smoked mice testis. Andrologia 2019; 51:e13309. [PMID: 31074059 DOI: 10.1111/and.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 11/27/2022] Open
Abstract
Toll-like receptors (TLRs) are expressed in Sertoli cells and Leydig cells and can initiate testicular innate immune responses. The A-kinase anchor protein 3 (AKAP3), a family of scaffolding protein, was reported to be expressed only in testis and plays important regulatory roles during spermatogenesis. Our present study aimed to investigate the differential expression of TLRs family and AKAP3 in cigarette smoked Kunming mice testis. To check the effect of cigarette smoke, mice were randomly divided (n = 5 each) and exposed to cigarette smoke (2 hr/day with 10 cigarettes) for six consecutive days followed by one exposure-free day. The exposure lasted for zero (control), 1, 3, 5 and 7 months respectively. The IHC results showed that expression of AKAP3 protein is mainly located in sperm cells and the mean density of which was significantly lower than that of control mice. Real-time PCR results showed that expression of AKAP3 was significantly increased at early CS exposure (1 month) and then returned to normal in subsequent months. TLR2-7, TLR13, Myd88 and Traf6 mRNA expression are much lower compared to control, especially after 3-month cigarette smoke exposure, the time of which is almost consistent with sperm cycle. The present study suggests that TLR signal pathway and AKAP3 may play roles in spermatogenesis.
Collapse
Affiliation(s)
- Liping Sun
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Henan, China
| | - Hua Shao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Henan, China
| | - Meng Li
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Henan, China
| | - Wenshan Zhou
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Henan, China
| |
Collapse
|
8
|
Visalli G, Ferlazzo N, Facciolà A, Picerno I, Navarra M, Di Pietro A. Ex vivo evaluation of the effects of a white grape juice extract on lymphocytic mitochondrial functions. Nat Prod Res 2018; 34:580-584. [PMID: 30307316 DOI: 10.1080/14786419.2018.1490906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The physio-pathological role of mitochondria in aging and age-related diseases has stimulated the search for compounds able to promote mitochondrial functionality. Our study was designed to evaluate the effect of a white grape juice extract (WGJe) on mitochondrial activity, in an ex vivo experimental model consisting of activated lymphocytes obtained from a younger age group and an older age group of subjects. WGJe steadily decreased the lymphocytic mitochondrial mass in the older subjects, without a relevant effect in their younger counterpart, and significantly enhanced Δψm in both groups investigated. Finally, WGJe reduced the endogenous mitochondrial production of H2O2 in all subjects. The results support the potential use of WGJe to improve mitochondrial functionality, thus maintaining human health and slowing down aging.
Collapse
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Isa Picerno
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Santucci-Pereira J, Pogash TJ, Patel A, Hundal N, Barton M, Camoirano A, Micale RT, La Maestra S, Balansky R, De Flora S, Russo J. Aspirin abrogates impairment of mammary gland differentiation induced by early in life second-hand smoke in mice. Carcinogenesis 2018; 39:1037-1044. [PMID: 29788174 PMCID: PMC6067120 DOI: 10.1093/carcin/bgy064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 01/25/2023] Open
Abstract
Epidemiological studies show that there is limited evidence that tobacco smoking causes breast cancer in humans. In rodents, many tobacco smoke chemicals cause mammary gland tumors. This study evaluated the mammary gland differentiation in mice exposed to environmental cigarette smoke (ECS), using 3R4F Kentucky reference cigarettes, starting after birth and continuing daily for 10 weeks (total particulate exposure 95 mg/m3; CO 610 ppm). We also analyzed the effects of oral administration of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin (1600 mg/kg) or naproxen (320 mg/kg), on mammary gland differentiation, either in unexposed or ECS-exposed mice. The ECS exposure caused delay of mammary glands development. We speculate that this delay may result from aryl hydrocarbon receptor (AHR) signaling activation, which has an antiestrogenic effect and crosstalk to the estrogen metabolism pathway. Similarly, naproxen impaired gland differentiation in unexposed and ECS-exposed mice, while aspirin hindered its development only in unexposed mice. The lack of differentiation induced by the NSAIDs could be explained by their antiestrogenic effect through inhibition of aldo-keto reductases. In ECS-exposed animals, aspirin induced intense lobular formation, which could indicate that aspirin is counteracting the AHR signaling induced by ECS. Based on the differentiation induced by aspirin in ECS-exposed animals, we postulate that these mice would be less susceptible to mammary carcinogenesis. Our results suggest that exposure to smoke at an early age impairs the development of the mammary gland, thus resulting in a longer period of susceptibility and increased risk of breast cancer. However, addition of aspirin can abrogate this effect.
Collapse
Affiliation(s)
- Julia Santucci-Pereira
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, USA
| | - Thomas J Pogash
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, USA
| | - Aman Patel
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, USA
| | - Navroop Hundal
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, USA
| | - Maria Barton
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, USA
- Department of Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anna Camoirano
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Roumen Balansky
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Laboratory of Chemical Mutagenesis and Carcinogenesis, National Center of Oncology, Sofia, Bulgaria
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Jose Russo
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center - Temple University Health System, Philadelphia, PA, USA
| |
Collapse
|
10
|
Balansky R, Ganchev G, Iltcheva M, Dimitrova E, Micale RT, La Maestra S, De Flora S. Carcinogenic response and other histopathological alterations in mice exposed to cigarette smoke for varying time periods after birth. Carcinogenesis 2018; 39:580-587. [PMID: 29370344 DOI: 10.1093/carcin/bgy013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
In spite of the outstanding role of tobacco smoking in human carcinogenesis, it is difficult to reproduce its effects in experimental animals. Based on the knowledge that a variety of mechanisms account for a higher susceptibility to carcinogens early in life, we have developed a murine model in which mainstream cigarette smoke becomes convincingly carcinogenic. The standard model involves exposure to smoke for 4 months, starting after birth, followed by an additional 3-4 months in filtered air. We evaluated herein the time- and dose-dependent response, at 7.5 months of life, of Swiss H mice that had been exposed to smoke for either 1, 2 or 4 months after birth. A one-month exposure, corresponding to a period of intense alveolarization, was sufficient to induce most inflammatory, degenerative and preneoplastic pulmonary lesions, including emphysema and alveolar epithelial hyperplasia, blood vessel proliferation and hemangiomas, reflecting an early proangiogenic role of smoking, and microadenomas bearing ki-67-positive proliferating cells as well as urinary bladder epithelial hyperplasia. Two months of exposure were needed to induce pulmonary adenomas and urinary bladder papillomas in males only, which highlights a protective role of estrogens in urinary bladder carcinogenesis. Four months, which in humans would correspond to the postnatal period, puberty, adolescence and early adulthood, were needed to induce other lesions, including tubular epithelial hyperplasia of kidney, bronchial epithelial hyperplasia and especially pulmonary malignant tumors. These findings highlight the concept that preneoplastic and neoplastic lesions occurring in adulthood can be induced by exposure to smoke early in life.
Collapse
Affiliation(s)
| | | | | | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| |
Collapse
|
11
|
Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells. Int J Mol Sci 2017; 18:ijms18050939. [PMID: 28468256 PMCID: PMC5454852 DOI: 10.3390/ijms18050939] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 02/01/2023] Open
Abstract
Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe3O4-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe3O4-NPs. Significant dose–response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.
Collapse
|
12
|
Nesi RT, de Souza PS, Dos Santos GP, Thirupathi A, Menegali BT, Silveira PCL, da Silva LA, Valença SS, Pinho RA. Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice. Int J Chron Obstruct Pulmon Dis 2016; 11:603-10. [PMID: 27042047 PMCID: PMC4809330 DOI: 10.2147/copd.s93958] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species (ROS) are important in the pathogenesis of pulmonary injury induced by cigarette smoke (CS) exposure, and physical exercise (Ex) is useful in combating impaired oxidative process. We verified the preventive effects of Ex on lung oxidative markers induced by smoking. In this study, 36 mice (C57BL-6, 30-35 g) were split into four groups: control, CS, Ex, and CS plus Ex. Ex groups were given prior physical training in water (2×30 min/d, 5 days/wk, 8 weeks). After training, the CS groups were subjected to passive exposure to four cigarettes, 3 × per day, for 60 consecutive days. After 24 hours from the last exposure, CS animals were sacrificed, and lung samples were collected for further analysis. Left lung sample was prepared for histological analysis, and right lung was used for biochemical analysis (superoxide, hydroxyproline, lipid peroxidation [thiobarbituric acid reactive species], protein carbonylation [carbonyl groups formation], superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx] activities). Group comparisons were evaluated by analysis of variance (ANOVA). Results were expressed as mean ± standard deviation, with P<0.05 considered significantly different. Preventive Ex impeded histological changes and increased the enzymatic defense system (SOD and GPx) by reducing oxidative damage in lipids and proteins. This preventive effect of prior physical Ex alleviates damage caused by CS exposure.
Collapse
Affiliation(s)
- Renata Tiscoski Nesi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Priscila Soares de Souza
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giulia Pedroso Dos Santos
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Anand Thirupathi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruno T Menegali
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Luciano Acordi da Silva
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samuel Santos Valença
- Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
13
|
La Maestra S, D’Agostini F, Izzotti A, Micale RT, Mastracci L, Camoirano A, Balansky R, Trosko JE, Steele VE, De Flora S. Modulation by aspirin and naproxen of nucleotide alterations and tumors in the lung of mice exposed to environmental cigarette smoke since birth. Carcinogenesis 2015; 36:1531-1538. [PMID: 26464196 PMCID: PMC4675832 DOI: 10.1093/carcin/bgv149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/03/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
Chemoprevention provides an important strategy for cancer control in passive smokers. Due to the crucial role played by smoke-related chronic inflammation in lung carcinogenesis, of special interest are extensively used pharmacological agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs). We evaluated the ability of aspirin and naproxen, inhibitors of both cyclooxygenase-1 and cyclooxygenase -2, to modulate environmental cigarette smoke (ECS)-induced lung carcinogenesis in A/J mice of both genders. Based on a subchronic toxicity study in 180 postweaning mice, we used 1600 mg/kg diet aspirin and 320 mg/kg diet naproxen. In the tumor chemoprevention study, using 320 mice, exposure to ECS started soon after birth and administration of NSAIDs started after weaning. At 10 weeks of life, the NSAIDs did not affect the presence of occult blood in feces. As assessed in a subset of 40 mice, bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine levels were considerably increased in ECS-exposed mice and, irrespective of gender, both NSAIDs remarkably inhibited these nucleotide alterations. After exposure for 4 months followed by 5 months in filtered air, ECS induced a significant increase in the yield of surface lung tumors, the 43.7% of which were adenomas and the 56.3% were adenocarcinomas. Oct-4 (octamer-binding transcription factor 4), a marker of cell stemness, was detected in some adenocarcinoma cells. The NAIDs attenuated the yield of lung tumors, but prevention of ECS-induced lung adenomas was statistically significant only in female mice treated with aspirin, which supports a role for estrogens in ECS-related lung carcinogenesis and highlights the antiestrogenic properties of NSAIDs.
Collapse
Affiliation(s)
- Sebastiano La Maestra
- Department of Health Sciences and
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia 1756, Bulgaria
- National Food Safety Toxicological Center, Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
- National Cancer Institute, Division of Cancer Prevention, Chemopreventive Agent Development Research Group, Bethesda, MD 20892, USA
| | - Francesco D’Agostini
- Department of Health Sciences and
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia 1756, Bulgaria
- National Food Safety Toxicological Center, Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
- National Cancer Institute, Division of Cancer Prevention, Chemopreventive Agent Development Research Group, Bethesda, MD 20892, USA
| | - Alberto Izzotti
- Department of Health Sciences and
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia 1756, Bulgaria
- National Food Safety Toxicological Center, Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
- National Cancer Institute, Division of Cancer Prevention, Chemopreventive Agent Development Research Group, Bethesda, MD 20892, USA
| | - Rosanna T. Micale
- Department of Health Sciences and
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia 1756, Bulgaria
- National Food Safety Toxicological Center, Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
- National Cancer Institute, Division of Cancer Prevention, Chemopreventive Agent Development Research Group, Bethesda, MD 20892, USA
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy
| | - Anna Camoirano
- Department of Health Sciences and
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy
- National Center of Oncology, Sofia 1756, Bulgaria
- National Food Safety Toxicological Center, Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
- National Cancer Institute, Division of Cancer Prevention, Chemopreventive Agent Development Research Group, Bethesda, MD 20892, USA
| | | | - James E. Trosko
- National Food Safety Toxicological Center, Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Vernon E. Steele
- National Cancer Institute, Division of Cancer Prevention, Chemopreventive Agent Development Research Group, Bethesda, MD 20892, USA
| | - Silvio De Flora
- *To whom correspondence should be addressed. Tel: +39 010 3538500; Fax: +39 010 3538504;
| |
Collapse
|
14
|
Brunst KJ, Baccarelli AA, Wright RJ. Integrating mitochondriomics in children's environmental health. J Appl Toxicol 2015; 35:976-91. [PMID: 26046650 PMCID: PMC4714560 DOI: 10.1002/jat.3182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022]
Abstract
The amount of scientific research linking environmental exposures and childhood health outcomes continues to grow; yet few studies have teased out the mechanisms involved in environmentally-induced diseases. Cells can respond to environmental stressors in many ways: inducing oxidative stress/inflammation, changes in energy production and epigenetic alterations. Mitochondria, tiny organelles that each retains their own DNA, are exquisitely sensitive to environmental insults and are thought to be central players in these pathways. While it is intuitive that mitochondria play an important role in disease processes, given that every cell of our body is dependent on energy metabolism, it is less clear how environmental exposures impact mitochondrial mechanisms that may lead to enhanced risk of disease. Many of the effects of the environment are initiated in utero and integrating mitochondriomics into children's environmental health studies is a critical priority. This review will highlight (i) the importance of exploring environmental mitochondriomics in children's environmental health, (ii) why environmental mitochondriomics is well suited to biomarker development in this context, and (iii) how molecular and epigenetic changes in mitochondria and mitochondrial DNA (mtDNA) may reflect exposures linked to childhood health outcomes.
Collapse
Affiliation(s)
- Kelly J. Brunst
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Rosalind J. Wright
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
15
|
Visalli G, Riso R, Facciolà A, Mondello P, Caruso C, Picerno I, Di Pietro A, Spataro P, Bertuccio MP. Higher levels of oxidative DNA damage in cervical cells are correlated with the grade of dysplasia and HPV infection. J Med Virol 2015; 88:336-44. [DOI: 10.1002/jmv.24327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Romana Riso
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Alessio Facciolà
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | | | - Carmela Caruso
- Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences; University of Messina; Messina Italy
| | - Isa Picerno
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Angela Di Pietro
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Pasquale Spataro
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Maria Paola Bertuccio
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| |
Collapse
|
16
|
Uchiyama T, Koike R, Yuma Y, Okamoto K, Arimoto-Kobayashi S, Suzuki T, Negishi T. Somatic-cell mutation induced by short exposures to cigarette smoke in urate-null, oxidative stress-sensitive Drosophila. Mutagenesis 2015; 31:9-15. [PMID: 26138228 DOI: 10.1093/mutage/gev051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We previously reported that a urate-null strain of Drosophila is hypersensitive to cigarette smoke (CS), and we suggested that CS induces oxidative stress in Drosophila because uric acid is a potent antioxidant. Although the carcinogenic risk of CS exposure is widely recognized; documentation of in vivo genotoxic activity of environmental CS, especially gaseous-phase CS, remains inconclusive. To date, somatic-cell mutations in Drosophila resulting from exposure to CS have not been detected via the somatic mutation and recombination test (wing spot test) with wild-type flies, a widely used Drosophila assay for the detection of somatic-cell mutation; moreover, genotoxicity has not been documented via a DNA repair test that involves DNA repair-deficient Drosophila. In this study, we used a new Drosophila strain (y v ma-l; mwh) to examine the mutagenicity induced by gaseous-phase CS; these flies are urate-null due to a mutation in ma-l, and they are heterozygous for multiple wing hair (mwh), a mutation that functions as a marker for somatic-cell mutation. In an assay with this newly developed strain, a superoxide anion-producing weed-killer, paraquat, exhibited significant mutagenicity; in contrast, paraquat was hardly mutagenic with a wild-type strain. Drosophila larvae were exposed to CS for 2, 4 or 6h, and then kept at 25°C on instant medium until adulthood. After eclosion, mutant spots, which consisted of mutant hairs on wings, were scored. The number of mutant spots increased significantly in an exposure time-dependent manner in the urate-null females (ma-l (-/-)), but not in the urate-positive females (ma-l (+/-)). In this study, we showed that short-term exposure to CS was mutagenic in this in vivo system. In addition, we obtained suggestive data regarding reactive oxygen species production in larva after CS exposure using the fluorescence probe H2DCFDA. These results suggest that oxidative damage, which might be countered by uric acid, was partly responsible for induction of somatic cell mutations in Drosophila larvae exposed to CS.
Collapse
Affiliation(s)
| | | | | | | | | | - Toshinori Suzuki
- School of Pharmacy, Shujitsu University, Okayama 703-8516, Japan
| | | |
Collapse
|
17
|
La Maestra S, De Flora S, Micale RT. Effect of cigarette smoke on DNA damage, oxidative stress, and morphological alterations in mouse testis and spermatozoa. Int J Hyg Environ Health 2015; 218:117-22. [DOI: 10.1016/j.ijheh.2014.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/19/2014] [Accepted: 08/29/2014] [Indexed: 12/17/2022]
|
18
|
Chen HW, Huang CS, Li CC, Lin AH, Huang YJ, Wang TS, Yao HT, Lii CK. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats. Toxicol Appl Pharmacol 2014; 280:1-9. [DOI: 10.1016/j.taap.2014.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
19
|
Comparative analysis of cigarette smoke induced cellular proteome distributions on bovine aortic endothelial cells. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Itoh M, Tsuji T, Nakamura H, Yamaguchi K, Fuchikami JI, Takahashi M, Morozumi Y, Aoshiba K. Systemic effects of acute cigarette smoke exposure in mice. Inhal Toxicol 2014; 26:464-473. [PMID: 24932561 DOI: 10.3109/08958378.2014.917346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Cigarette smoke (CS) causes both pulmonary and extrapulmonary disorders. OBJECTIVE To determine the pulmonary and extrapulmonary effects of acute CS exposure in regard to inflammation, oxidative stress and DNA damage. MATERIALS AND METHODS Mice were exposed to CS for 10 days and then their lungs, heart, liver, pancreas, kidneys, gastrocnemius muscle and subcutaneous (inguinal and flank) and visceral (retroperitoneum and periuterus) adipose tissues were excised. Bronchoalveolar lavage fluid samples were obtained for differential cell analysis. Inflammatory cell infiltration of the tissues was assessed by immunohistochemistry for Mac-3(+) cells, F4/80(+) cells and CD45(+) cells. Oxidative stress was determined by immunohistochemistry for thymidine glycol (a marker of DNA peroxidation) and 4-hydroxy hexenal (a marker of lipid peroxidation), by enzyme-linked immunosorbent assay for protein carbonyls (a marker of protein peroxidation) and by measurements of enzyme activities of glutathione peroxidase, superoxide dismutase and catalase. DNA double-strand breaks were assessed by immunohistochemistry for γH2AX. RESULTS CS exposure-induced inflammatory cell infiltration, oxidative stress and DNA damage in the lung. Neither inflammatory cell infiltration nor DNA damage was observed in any extrapulmonary organs. However, oxidative stress was increased in the heart and inguinal adipose tissue. DISCUSSIONS Induction of inflammatory cell infiltration and DNA damage by acute CS exposure was confined to the lung. However, an increased oxidative burden occurred in the heart and some adipose tissue, as well as in the lung. CONCLUSIONS Although extrapulmonary effects of CS are relatively modest compared with the pulmonary effects, some extrapulmonary organs are vulnerable to CS-induced oxidative stress.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center , Ibaraki , Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chao MW, Erkekoglu P, Tseng CY, Ye W, Trudel LJ, Skipper PL, Tannenbaum SR, Wogan GN. Intracellular generation of ROS by 3,5-dimethylaminophenol: persistence, cellular response, and impact of molecular toxicity. Toxicol Sci 2014; 141:300-13. [PMID: 24973092 DOI: 10.1093/toxsci/kfu127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Epidemiological studies have demonstrated extensive human exposure to the monocyclic aromatic amines, particularly to 3,5-dimethylaniline, and found an association between exposure to these compounds and risk for bladder cancer. Little is known about molecular mechanisms that might lead to the observed risk. We previously suggested that the hydroxylated 3,5-dimethylaniline metabolite, 3,5-dimethylaminophenol (3,5-DMAP), played a central role in effecting genetic change through the generation of reactive oxygen species (ROS) in a redox cycle with 3,5-dimethylquinoneimine. Experiments here characterize ROS generation by 3,5-DMAP exposure in nucleotide repair-proficient and -deficient Chinese hamster ovary cells as a function of time. Besides, various cellular responses discussed herein indicate that ROS production is the principal cause of cytotoxicity. Fluorescence microscopy of cells exposed to 3,5-DMAP confirmed that ROS production occurs in the nuclear compartment, as suggested by a previous study demonstrating covalent linkage between 3,5-DMAP and histones. 3,5-DMAP was also compared with 3,5-dimethylhydroquinone to determine whether substitution of one of the phenolic hydroxyl groups by an amino group had a significant effect on some of the investigated parameters. The comparatively much longer duration of observable ROS produced by 3,5-DMAP (7 vs. 1 day) provides further evidence that 3,5-DMAP becomes embedded in the cellular matrix in a form capable of continued redox cycling. 3,5-DMAP also induced dose-dependent increase of H2O2 and ·OH, which were determined as the major free radicals contributing to the cytotoxicity and apoptosis mediated via caspase-3 activation. Overall, this study provides insight into the progression of alkylaniline-induced toxicity.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli City, Taoyuan 32023, Taiwan Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Pinar Erkekoglu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Sihhiye-Ankara, Turkey
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Chungli City, Taoyuan 32023, Taiwan
| | - Wenjie Ye
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Laura J Trudel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Paul L Skipper
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Gerald N Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
22
|
Bajerová P, Adam M, Bajer T, Ventura K. Comparison of various techniques for the extraction and determination of antioxidants in plants. J Sep Sci 2014; 37:835-44. [DOI: 10.1002/jssc.201301139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Petra Bajerová
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Martin Adam
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Tomáš Bajer
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| | - Karel Ventura
- University of PardubiceFaculty of Chemical TechnologyDepartment of Analytical Chemistry Pardubice Czech Republic
| |
Collapse
|