1
|
Li J, Li W, Wang S, Zheng H, Bao J, Wang Y, Jin H. The evaluation and molecular mechanisms of hepatotoxicity induced by trans-emodin dianthrones isolated from Polygonum multiflorum Thunb. in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119916. [PMID: 40319934 DOI: 10.1016/j.jep.2025.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb. (PM) is a traditional Chinese medicine with pharmacological activities such as anti-inflammatory, anti-oxidation and anti-aging. An increasing number of reports have documented liver injury associated with PM both domestically and internationally. In our previous study, we found that dianthrones from PM showed strong hepatotoxicity in the zebrafish model and may be potential toxicity markers. However, the in vitro hepatotoxicity and molecular mechanisms of dianthrones remain to be elucidated. AIM OF THE STUDY Trans-emodin dianthrones is a dianthrones compound isolated from PM. In this study, we focused on the hepatotoxicity and molecular mechanism of the trans-emodin dianthrones. MATERIALS AND METHODS HepG2 cells were used to evaluate hepatotoxicity and study the molecular mechanism of trans-emodin dianthrones in vitro. After administration of trans-emodin dianthrones, CCK-8 was used to detect cell viability, biochemical method was used to detect hepatotoxicity and antioxidant levels, reactive oxygen species (ROS) content and mitochondrial membrane potential (MMP) were analyzed by flow cytometry, the expression levels of JNK/Bax signaling pathway, PI3K/AKT/mTOR signaling pathway and apoptosis-related proteins were detected by Western blotting. Redox and mitochondria-related gene expression levels were detected by qPCR. RESULTS Trans-emodin dianthrones reduced cell viability and activated apoptosis and the process was regulated by JNK/Bax and PI3K/AKT/mTOR pathways. Trans-emodin dianthrones activates JNK and AKT, thereby initiating the ROS-driven apoptosis cascade and increasing ROS-mediated cell damage, highlighting the importance of ROS stress in PM-induced hepatotoxicity. CONCLUSION Trans-emodin dianthrones exhibited significant hepatotoxicity at the level of HepG2 cells, and its mechanism is related to inhibiting the antioxidant system, causing mitochondrial dysfunction and inducing apoptosis induced by JNK/Bax and PI3K/AKT/mTOR pathways.
Collapse
Affiliation(s)
- Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China
| | - Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haiyun Zheng
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 102206, China.
| |
Collapse
|
2
|
Ortega-Vallbona R, Méndez R, Tolosa L, Escher SE, Castell JV, Gozalbes R, Serrano-Candelas E. Uncovering the toxicity mechanisms of a series of carboxylic acids in liver cells through computational and experimental approaches. Toxicology 2024; 504:153764. [PMID: 38428665 DOI: 10.1016/j.tox.2024.153764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Hepatotoxicity poses a significant concern in drug design due to the potential liver damage that can be caused by new drugs. Among common manifestations of hepatotoxic damage is lipid accumulation in hepatic tissue, resulting in liver steatosis or phospholipidosis. Carboxylic derivatives are prone to interfere with fatty acid metabolism and cause lipid accumulation in hepatocytes. This study investigates the toxic behaviour of 24 structurally related carboxylic acids in hepatocytes, specifically their ability to cause accumulation of fatty acids and phospholipids. Using high-content screening (HCS) assays, we identified two distinct lipid accumulation patterns. Subsequently, we developed structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR) models to determine relevant molecular substructures and descriptors contributing to these adverse effects. Additionally, we calculated physicochemical properties associated with lipid accumulation in hepatocytes and examined their correlation with our chemical structure characteristics. To assess the applicability of our findings to a wide range of chemical compounds, we employed two external datasets to evaluate the distribution of our QSAR descriptors. Our study highlights the significance of subtle molecular structural variations in triggering hepatotoxicity, such as the presence of nitrogen or the specific arrangement of substitutions within the carbon chain. By employing our comprehensive approach, we pinpointed specific molecules and elucidated their mechanisms of toxicity, thus offering valuable insights to guide future toxicology investigations.
Collapse
Affiliation(s)
- Rita Ortega-Vallbona
- ProtoQSAR SL., Centro Europeo de Empresas e Innovación (CEEI), Parque Tecnológico de Valencia, Av. Benjamín Franklin, 12, Valencia, Paterna 46980, Spain
| | - Rebeca Méndez
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, Valencia 46026, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, Valencia 46026, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, C/ Monforte de Lemos, Madrid 28029, Spain
| | - Sylvia E Escher
- Fraunhofer ITEM, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, Hannover 30625, Germany
| | - José V Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular. Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez, 15, Valencia 46010, Spain; CIBEREHD, ISCIII, C/ Monforte de Lemos, Madrid 28029, Spain.
| | - Rafael Gozalbes
- ProtoQSAR SL., Centro Europeo de Empresas e Innovación (CEEI), Parque Tecnológico de Valencia, Av. Benjamín Franklin, 12, Valencia, Paterna 46980, Spain; Moldrug AI Systems SL, c/Olimpia Arozena Torres 45, Valencia 46018, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR SL., Centro Europeo de Empresas e Innovación (CEEI), Parque Tecnológico de Valencia, Av. Benjamín Franklin, 12, Valencia, Paterna 46980, Spain
| |
Collapse
|
3
|
Haller K, Doß S, Sauer M. In Vitro Hepatotoxicity of Routinely Used Opioids and Sedative Drugs. Curr Issues Mol Biol 2024; 46:3022-3038. [PMID: 38666919 PMCID: PMC11049542 DOI: 10.3390/cimb46040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
A hepatocyte cell line was used to determine the hepatotoxicity of sedatives and opioids, as the hepatotoxicity of these drugs has not yet been well characterized. This might pose a threat, especially to critically ill patients, as they often receive high cumulative doses for daily analgosedation and often already have impaired liver function due to an underlying disease or complications during treatment. A well-established biosensor based on HepG2/C3A cells was used for the determination of the hepatotoxicity of commonly used sedatives and opioids in the intensive care setting (midazolam, propofol, s-ketamin, thiopental, fentanyl, remifentanil, and sufentanil). The incubation time was 2 × 3 days with clinically relevant (Cmax) and higher concentrations (C5× and C10×) of each drug in cell culture medium or human plasma. Afterward, we measured the cell count, vitality, lactate dehydrogenase (LDH), mitochondrial dehydrogenase activity, cytochrome P 450 1A2 (CYP1A2), and albumin synthesis. All tested substances reduced the viability of hepatocyte cells, but sufentanil and remifentanil showed more pronounced effects. The cell count was diminished by sufentanil in both the medium and plasma and by remifentanil only in plasma. Sufentanil and remifentanil also led to higher values of LDH in the cell culture supernatant. A reduction of mitochondrial dehydrogenase activity was seen with the use of midazolam and s-ketamine. Microalbumin synthesis was reduced in plasma after its incubation with higher concentrations of sufentanil and remifentanil. Remifentanil and s-ketamine reduced CYP1A2 activity, while propofol and thiopental increased it. Our findings suggest that none of the tested sedatives and opioids have pronounced hepatotoxicity. Sufentanil, remifentanil, and s-ketamine showed moderate hepatotoxic effects in vitro. These drugs should be given with caution to patients vulnerable to hepatotoxic drugs, e.g., patients with pre-existing liver disease or liver impairment as part of their underlying disease (e.g., hypoxic hepatitis or cholestatic liver dysfunction in sepsis). Further studies are indicated for this topic, which may use more complex cell culture models and global pharmacovigilance reports, addressing the limitation of the used cell model: HepG2/C3A cells have a lower metabolic capacity due to their low levels of CYP enzymes compared to primary hepatocytes. However, while the test model is suitable for parental substances, it is not for toxicity testing of metabolites.
Collapse
Affiliation(s)
- Katharina Haller
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany;
| | - Sandra Doß
- Department Extracorporeal Therapy Systems (EXTHER), Fraunhofer Institute for Cell Therapy and Immunology, Schillingallee 68, 18057 Rostock, Germany;
| | - Martin Sauer
- Department Extracorporeal Therapy Systems (EXTHER), Fraunhofer Institute for Cell Therapy and Immunology, Schillingallee 68, 18057 Rostock, Germany;
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Schillingallee 35, 18057 Rostock, Germany
- Center for Anesthesiology and Intensive Care Medicine, Hospital of Magdeburg, Birkenallee 34, 39130 Magdeburg, Germany
| |
Collapse
|
4
|
Zheleva-Dimitrova D, Simeonova R, Kondeva-Burdina M, Savov Y, Balabanova V, Zengin G, Petrova A, Gevrenova R. Antioxidant and Hepatoprotective Potential of Echinops ritro L. Extracts on Induced Oxidative Stress In Vitro/In Vivo. Int J Mol Sci 2023; 24:9999. [PMID: 37373147 DOI: 10.3390/ijms24129999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Echinops ritro L. (Asteraceae) is traditionally used in the treatment of bacterial/fungal infections and respiratory and heart ailments. The aim of this study was to evaluate the potential of extracts from E. ritro leaves (ERLE) and flowering heads (ERFE) as antioxidant and hepatoprotective agents on diclofenac-induced lipid peroxidation and oxidative stress under in vitro and in vivo conditions. In isolated rat microsomes and hepatocytes, the extracts significantly alleviated oxidative stress by increasing cell viability and GSH levels and reducing LDH efflux and MDA production. During in vivo experiments, the administration of the ERFE alone or in combination with diclofenac resulted in a significant increase in cellular antioxidant protection and a decrease in lipid peroxidation witnessed by key markers and enzymes. A beneficial influence on the activity of the drug-metabolizing enzymes ethylmorphine-N-demetylase and aniline hydroxylase in liver tissue was found. In the acute toxicity test evaluation, the ERFE showed no toxicity. In the ultrahigh-performance liquid chromatography-high-resolution mass spectrometry analysis, 95 secondary metabolites were reported for the first time, including acylquinic acids, flavonoids, and coumarins. Protocatechuic acid O-hexoside, quinic, chlorogenic and 3, 5-dicaffeoylquinic acid, apigenin; apigenin 7-O-glucoside, hyperoside, jaceosidene, and cirsiliol dominated the profiles. The results suggest that both extracts should be designed for functional applications with antioxidant and hepatoprotective capacity.
Collapse
Affiliation(s)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Yonko Savov
- Institute of Emergency Medicine "N. I Pirogov", Bul. Totleben 21, 1606 Sofia, Bulgaria
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya 42130, Turkey
| | - Alexandra Petrova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
5
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
6
|
Tomás RMF, Bissoyi A, Congdon TR, Gibson MI. Assay-ready Cryopreserved Cell Monolayers Enabled by Macromolecular Cryoprotectants. Biomacromolecules 2022; 23:3948-3959. [PMID: 35972897 PMCID: PMC9472225 DOI: 10.1021/acs.biomac.2c00791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Cell monolayers underpin the discovery and screening
of new drugs
and allow for fundamental studies of cell biology and disease. However,
current cryopreservation technologies do not allow cells to be stored
frozen while attached to tissue culture plastic. Hence, cells must
be thawed from suspension, cultured for several days or weeks, and
finally transferred into multiwell plates for the desired application.
This inefficient process consumes significant time handling cells,
rather than conducting biomedical research or other value-adding activities.
Here, we demonstrate that a synthetic macromolecular cryoprotectant
enables the routine, reproducible, and robust cryopreservation of
biomedically important cell monolayers, within industry-standard tissue
culture multiwell plates. The cells are simply thawed with media and
placed in an incubator ready to use within 24 h. Post-thaw cell recovery
values were >80% across three cell lines with low well-to-well
variance.
The cryopreserved cells retained healthy morphology, membrane integrity,
proliferative capacity, and metabolic activity; showed marginal increases
in apoptotic cells; and responded well to a toxicological challenge
using doxorubicin. These discoveries confirm that the cells are “assay-ready”
24 h after thaw. Overall, we show that macromolecular cryoprotectants
can address a long-standing cryobiological challenge and offers the
potential to transform routine cell culture for biomedical discovery.
Collapse
Affiliation(s)
- Ruben M F Tomás
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Akalabya Bissoyi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
7
|
高 亚, 朱 安, 李 璐, 张 涛, 王 硕, 单 丹, 李 盈, 王 旗. [Cytotoxicity and underlying mechanism of evodiamine in HepG2 cells]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:1107-1114. [PMID: 34916690 PMCID: PMC8695168 DOI: 10.19723/j.issn.1671-167x.2021.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate evodiamine (EVO)-induced hepatotoxicity and the underlying mechanism. METHODS HepG2 cells were treated with EVO (0.04-25 μmol/L) for different time intervals, and the cell survival rate was examined by cell counting kit-8 (CCK-8) method. After HepG2 cells were treated with EVO (0.2, 1 and 5 μmol/L) for 48 h, the alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) activities and total bilirubin (TBIL) content of supernatant were detected. A multifunctional microplate reader was used to detect the intracellular superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in HepG2 cells to evaluate the level of cell lipid peroxidation damage. The interactions between EVO and apoptosis, autophagy or ferroptosis-associated proteins were simulated by molecular docking. The HepG2 cells were stained by mitochondrial membrane potential (MMP) fluorescent probe (JC-10) and annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI), and MMP and apoptosis in HepG2 cells were detected by flow cytometry. The protein expression levels of caspase-9, caspase-3, bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2) were detected by Western blot. RESULTS The cell survival rate was significantly reduced after the HepG2 cells were exposed to EVO (0.04-25 μmol/L) in a time- and dose-dependent manner. The half maximal inhibitory concentration (IC50) of the HepG2 cells treated with EVO for 24, 48 and 72 h were 85.3, 6.6 and 4.7 μmol/L, respectively. After exposure to EVO (0.2, 1 and 5 μmol/L) for 48 h, the ALT, AST, LDH, ALP activities and TBIL content in the HepG2 cell culture supernatant, and the MDA content in the cells were increased, and SOD enzyme activity was decreased. Molecular docking results showed that EVO interacted with apoptosis-associated proteins (caspase-9 and caspase-3) better. JC-10 and Annexin V-FITC/PI staining assays demonstrated that EVO could decrease MMP and promote apoptosis in the HepG2 cells. Western blot results indicated that the protein expressions of cleaved caspase-9 and cleaved caspase-3 were upregulated in the HepG2 cell treated with EVO for 48 h. In contrast, the protein expressions of pro-caspase-3, BSEP and MRP2 were downregulated. CONCLUSION These results suggested that 0.2, 1 and 5 μmol/L EVO had the potential hepatotoxicity, and the possible mechanism involved lipid peroxidation damage, cell apoptosis, and cholestasis.
Collapse
Affiliation(s)
- 亚东 高
- 北京大学公共卫生学院毒理学系,北京 100191Department of Toxicology, Peking University School of Public Health, Beijing 100191, China
| | - 安 朱
- 北京大学公共卫生学院毒理学系,北京 100191Department of Toxicology, Peking University School of Public Health, Beijing 100191, China
| | - 璐迪 李
- 北京大学公共卫生学院毒理学系,北京 100191Department of Toxicology, Peking University School of Public Health, Beijing 100191, China
| | - 涛 张
- 北京大学公共卫生学院毒理学系,北京 100191Department of Toxicology, Peking University School of Public Health, Beijing 100191, China
| | - 硕 王
- 北京大学公共卫生学院毒理学系,北京 100191Department of Toxicology, Peking University School of Public Health, Beijing 100191, China
| | - 丹萍 单
- 北京大学公共卫生学院毒理学系,北京 100191Department of Toxicology, Peking University School of Public Health, Beijing 100191, China
| | - 盈姿 李
- 北京大学公共卫生学院毒理学系,北京 100191Department of Toxicology, Peking University School of Public Health, Beijing 100191, China
| | - 旗 王
- 北京大学公共卫生学院毒理学系,北京 100191Department of Toxicology, Peking University School of Public Health, Beijing 100191, China
- 国家中医药管理局中药配伍减毒重点研究室,北京 100191Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, China
- 食品安全毒理学研究与评价北京市重点实验室,北京 100191Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| |
Collapse
|
8
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
9
|
The in vitro assessment of the toxicity of volatile, oxidisable, redox-cycling compounds: phenols as an example. Arch Toxicol 2021; 95:2109-2121. [PMID: 34032869 PMCID: PMC8166692 DOI: 10.1007/s00204-021-03036-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 10/27/2022]
Abstract
Phenols are regarded as highly toxic chemicals. Their effects are difficult to study in in vitro systems because of their ambiguous fate (degradation, auto-oxidation and volatility). In the course of in vitro studies of a series of redox-cycling phenols, we found evidences of cross-contamination in several in vitro high-throughput test systems, in particular by trimethylbenzene-1, 4-diol/trimethylhydroquinone (TMHQ) and 2,6-di-tertbutyl-4-ethylphenol (DTBEP), and investigated in detail the physicochemical basis for such phenomenon and how to prevent it. TMHQ has fast degradation kinetics followed by significant diffusion rates of the resulting quinone to adjacent wells, other degradation products being able to air-diffuse as well. DTBEP showed lower degradation kinetics, but a higher diffusion rate. In both cases the in vitro toxicity was underestimated because of a decrease in concentration, in addition to cross-contamination to neighbouring wells. We identified four degradation products for TMHQ and five for DTBEP indicating that the current effects measured on cells are not only attributable to the parent phenolic compound. To overcome these drawbacks, we investigated in detail the physicochemical changes occurring in the course of the incubation and made use of gas-permeable and non-permeable plastic seals to prevent it. Diffusion was greatly prevented by the use of both plastic seals, as revealed by GC-MS analysis. Gas non-permeable plastic seals, reduced to a minimum compounds diffusion as well oxidation and did not affect the biological performance of cultured cells. Hence, no toxicological cross-contamination was observed in neighbouring wells, thus allowing a more reliable in vitro assessment of phenol-induced toxicity.
Collapse
|
10
|
Skolik RA, Solocinski J, Konkle ME, Chakraborty N, Menze MA. Global changes to HepG2 cell metabolism in response to galactose treatment. Am J Physiol Cell Physiol 2021; 320:C778-C793. [PMID: 33439775 DOI: 10.1152/ajpcell.00460.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor cell proliferation requires sufficient metabolic flux through the pentose phosphate pathway to meet the demand for biosynthetic precursors and to increase protection against oxidative stress which in turn requires an upregulation of substrate flow through glycolysis. This metabolic poise is often coupled with a shift in ATP production from mitochondrial OXPHOS to substrate-level phosphorylation. Despite major advances that were facilitated by using tumor-derived cell lines in research areas spanning from membrane to cytoskeletal biology, this distorted metabolic profile limits their impact as a model in physiology and toxicology. Substitution of glucose with galactose in the cell culture medium has been demonstrated to shift ATP production from substrate-level phosphorylation to mitochondrial OXPHOS. This increase in oxygen utilization is coupled to a global metabolic reorganization with potential impacts on macromolecule biosynthesis and cellular redox homeostasis, but a comprehensive analysis on the effects of sugar substitution in tumor-derived cells is still missing. To address this gap in knowledge we performed transcriptomic and metabolomic analyses on human hepatocellular carcinoma (HepG2) cells adapted to either glucose or galactose as the aldohexose source. We observed a shift toward oxidative metabolism in all primary metabolic pathways at both transcriptomic and metabolomic levels. We also observed a decrease in nicotinamide dinucleotide (NAD(P)) levels and subcellular NAD+-to-NADH ratios in cells cultured with galactose compared with glucose control cells. Our results suggest that galactose reduces both glycolytic and biosynthetic flux and restores a metabolic poise in HepG2 cells that closely reflects the metabolic state observed in primary hepatocytes.
Collapse
Affiliation(s)
- R A Skolik
- Department of Biology, University of Louisville, Louisville, Kentucky
| | - J Solocinski
- Department of Mechanical Engineering, University of Michigan, Dearborn, Michigan
| | - M E Konkle
- Department of Chemistry, Ball State University, Muncie, Indiana
| | - N Chakraborty
- Department of Mechanical Engineering, University of Michigan, Dearborn, Michigan
| | - M A Menze
- Department of Biology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
11
|
Donato MT, Tolosa L. High-Content Screening for the Detection of Drug-Induced Oxidative Stress in Liver Cells. Antioxidants (Basel) 2021; 10:antiox10010106. [PMID: 33451093 PMCID: PMC7828515 DOI: 10.3390/antiox10010106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a major cause of drug development failure, post-marketing warnings and restriction of use. An improved understanding of the mechanisms underlying DILI is required for better drug design and development. Enhanced reactive oxygen species (ROS) levels may cause a wide spectrum of oxidative damage, which has been described as a major mechanism implicated in DILI. Several cell-based assays have been developed as in vitro tools for early safety risk assessments. Among them, high-content screening technology has been used for the identification of modes of action, the determination of the level of injury and the discovery of predictive biomarkers for the safety assessment of compounds. In this paper, we review the value of in vitro high-content screening studies and evaluate how to assess oxidative stress induced by drugs in hepatic cells, demonstrating the detection of pre-lethal mechanisms of DILI as a powerful tool in human toxicology.
Collapse
Affiliation(s)
- María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
- Correspondence: (M.T.D.); (L.T.); Tel.: +34-961-246-649 (M.D.); +34-961-246-619 (L.T.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Correspondence: (M.T.D.); (L.T.); Tel.: +34-961-246-649 (M.D.); +34-961-246-619 (L.T.)
| |
Collapse
|
12
|
Matsui T, Miyamoto N, Saito F, Shinozawa T. Molecular Profiling of Human Induced Pluripotent Stem Cell-Derived Cells and their Application for Drug Safety Study. Curr Pharm Biotechnol 2020; 21:807-828. [PMID: 32321398 DOI: 10.2174/1389201021666200422090952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced toxicity remains one of the leading causes of discontinuation of the drug candidate and post-marketing withdrawal. Thus, early identification of the drug candidates with the potential for toxicity is crucial in the drug development process. With the recent discovery of human- Induced Pluripotent Stem Cells (iPSC) and the establishment of the differentiation protocol of human iPSC into the cell types of interest, the differentiated cells from human iPSC have garnered much attention because of their potential applicability in toxicity evaluation as well as drug screening, disease modeling and cell therapy. In this review, we expanded on current information regarding the feasibility of human iPSC-derived cells for the evaluation of drug-induced toxicity with a focus on human iPSCderived hepatocyte (iPSC-Hep), cardiomyocyte (iPSC-CMs) and neurons (iPSC-Neurons). Further, we CSAHi, Consortium for Safety Assessment using Human iPS Cells, reported our gene expression profiling data with DNA microarray using commercially available human iPSC-derived cells (iPSC-Hep, iPSC-CMs, iPSC-Neurons), their relevant human tissues and primary cultured human cells to discuss the future direction of the three types of human iPSC-derived cells.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Norimasa Miyamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Fumiyo Saito
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | | |
Collapse
|
13
|
Walker PA, Ryder S, Lavado A, Dilworth C, Riley RJ. The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Arch Toxicol 2020; 94:2559-2585. [PMID: 32372214 PMCID: PMC7395068 DOI: 10.1007/s00204-020-02763-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Early identification of toxicity associated with new chemical entities (NCEs) is critical in preventing late-stage drug development attrition. Liver injury remains a leading cause of drug failures in clinical trials and post-approval withdrawals reflecting the poor translation between traditional preclinical animal models and human clinical outcomes. For this reason, preclinical strategies have evolved over recent years to incorporate more sophisticated human in vitro cell-based models with multi-parametric endpoints. This review aims to highlight the evolution of the strategies adopted to improve human hepatotoxicity prediction in drug discovery and compares/contrasts these with recent activities in our lab. The key role of human exposure and hepatic drug uptake transporters (e.g. OATPs, OAT2) is also elaborated.
Collapse
Affiliation(s)
- Paul A Walker
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | - Stephanie Ryder
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Andrea Lavado
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Clive Dilworth
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.,Alderley Park Accelerator, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Robert J Riley
- Cyprotex Discovery Ltd., No.24 Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| |
Collapse
|
14
|
Qu D, Jiang M, Huang D, Zhang H, Feng L, Chen Y, Zhu X, Wang S, Han J. Synergistic Effects of The Enhancements to Mitochondrial ROS, p53 Activation and Apoptosis Generated by Aspartame and Potassium Sorbate in HepG2 Cells. Molecules 2019; 24:E457. [PMID: 30696035 PMCID: PMC6384600 DOI: 10.3390/molecules24030457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 01/26/2023] Open
Abstract
The safety of food additives has been widely concerned. Using single additives in the provisions of scope is safe, but the combination of additives, may induce additive, synergy, antagonism and other joint effects. This study investigated the cytotoxicity of aspartame (AT) together with potassium sorbate (PS). Thiazolyl Blue Tetrazolium Bromide (MTT) assay indicated that AT and PS had IC50 values of 0.48 g/L and 1.25 g/L at 24 h, respectively. High content analysis (HCA) showed that both AT and PS had a negative effect on mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and DNA damage while the joint group behaved more obviously. The biochemical assays revealed typical cell morphological changes and the activation of cytochrome c and caspase-3 verified apoptosis induced by AT together with PS. With dissipation of MMP and increase of cell membrane permeability (CMP), it indicated AT together with PS-induced apoptosis was mediated by mitochondrial pathway. Meanwhile, p53 were involved in DNA damage, and the ratio of Bax/Bcl-2 was increased. Moreover, excessive ROS induced by AT together with PS is a key initiating factor for apoptosis. All these results proved that p53 was involved in apoptosis via mitochondria-mediated pathway and the process was regulated by ROS.
Collapse
Affiliation(s)
- Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Mengxue Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Dongping Huang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Hui Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Lifang Feng
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Yuewen Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Xuan Zhu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Suhua Wang
- Wenzhou Entry-exit Inspection and Quarantine Bureau, Wenzhou 325027, China.
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| |
Collapse
|
15
|
Metabolic activity testing can underestimate acute drug cytotoxicity as revealed by HepG2 cell clones overexpressing cytochrome P450 2C19 and 3A4. Toxicology 2019; 412:37-47. [DOI: 10.1016/j.tox.2018.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
|
16
|
Kenna JG, Uetrecht J. Do In Vitro Assays Predict Drug Candidate Idiosyncratic Drug-Induced Liver Injury Risk? Drug Metab Dispos 2018; 46:1658-1669. [PMID: 30021844 DOI: 10.1124/dmd.118.082719] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022] Open
Abstract
In vitro assays are commonly used during drug discovery to try to decrease the risk of idiosyncratic drug-induced liver injury (iDILI). But how effective are they at predicting risk? One of the most widely used methods evaluates cell cytotoxicity. Cytotoxicity assays that used cell lines that are very different from normal hepatocytes, and high concentrations of drug, were not very accurate at predicting idiosyncratic drug reaction risk. Even cytotoxicity assays that use more biologically normal cells resulted in many false-positive and false-negative results. Assays that quantify reactive metabolite formation, mitochondrial injury, and bile salt export pump (BSEP) inhibition have also been described. Although evidence suggests that reactive metabolite formation and BSEP inhibition can play a role in the mechanism of iDILI, these assays are not very accurate at predicting risk. In contrast, inhibition of the mitochondrial electron transport chain appears not to play an important role in the mechanism of iDILI, although other types of mitochondrial injury may do so. It is likely that there are many additional mechanisms by which drugs can cause iDILI. However, simply measuring more parameters is unlikely to provide better predictive assays unless those parameters are actually involved in the mechanism of iDILI. Hence, a better mechanistic understanding of iDILI is required; however, mechanistic studies of iDILI are very difficult. There is substantive evidence that most iDILI is immune mediated; therefore, the most accurate assays may involve those that determine immune responses to drugs. New methods to manipulate immune tolerance may greatly facilitate development of more suitable methods.
Collapse
Affiliation(s)
- J Gerry Kenna
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| | - Jack Uetrecht
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| |
Collapse
|
17
|
Kammerer S, Küpper JH. Human hepatocyte systems for in vitro toxicology analysis. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/jcb-179012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah Kammerer
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| |
Collapse
|
18
|
Shin DS, Seo H, Yang JY, Joo J, Im SH, Kim SS, Kim SK, Bae MA. Quantitative Evaluation of Cytochrome P450 3A4 Inhibition and Hepatotoxicity in HepaRG 3-D Spheroids. Int J Toxicol 2018; 37:393-403. [DOI: 10.1177/1091581818780149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Predicting drug–drug interactions (DDIs) is an important step during drug development to avoid unexpected side effects. Cytochrome P450 (CYP) 3A4 is the most abundant human hepatic phase I enzyme, which metabolizes >50% of therapeutic drugs. Therefore, it is essential to test the potential of a drug candidate to induce CYP3A4 expression or inhibit its activity. Recently, 3-dimensional (3-D) mammalian cell culture models have been adopted in drug discovery research to assess toxicity, DDIs, and pharmacokinetics. In this study, we applied a human 3-D spheroid culture protocol using HepaRG cells combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess its ability to predict CYP3A4 inhibition. Levels of midazolam, a specific substrate of CYP3A4, were used to determine the long-term metabolic capacity of CYP3A4. Midazolam was decreased in the 3-D HepaRG culture system by ∼80% over 7 days, whereas its primary metabolite, 1-hydroxymidazolam, increased by ∼40%. Next, we assessed hepatotoxicity by determining the cytotoxicity of known hepatotoxicants in HepaRG spheroids, HepG2 cells, and primary human hepatocytes. Significant differences in cytotoxicity were detected in the system using 3-D HepaRG spheroids. These results suggest that 3-D HepaRG spheroids are a good model for prediction of CYP inhibition and hepatotoxicity in screening of early drug candidates.
Collapse
Affiliation(s)
- Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Hyewon Seo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Jeongmin Joo
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - So Hee Im
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
19
|
Roth AD, Lama P, Dunn S, Hong S, Lee MY. Polymer coating on a micropillar chip for robust attachment of PuraMatrix peptide hydrogel for 3D hepatic cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:634-644. [PMID: 29853133 DOI: 10.1016/j.msec.2018.04.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
Abstract
For better mimicking tissues in vivo and developing predictive cell models for high-throughput screening (HTS) of potential drug candidates, three-dimensional (3D) cell cultures have been performed in various hydrogels. In this study, we have investigated several polymer coating materials to robustly attach PuraMatrix peptide hydrogel on a micropillar chip for 3D culture of Hep3B human hepatic cells, which can be used as a tool for high-throughput assessment of compound hepatotoxicity. Among several amphiphilic polymers with maleic anhydride groups tested, 0.01% (w/v) poly(maleic anhydride-alt-1-octadecene) (PMA-OD) provided superior coating properties with no PuraMatrix spot detachment from the micropillar chip and no air bubble entrapment in a complementary microwell chip. To maintain Hep3B cell viability in PuraMatrix gel on the chip, gelation conditions were optimized in the presence of additional salts, at different seeding densities, and for growth medium washes. As a result, salts in growth media were sufficient for gelation, and relatively high cell seeding at 6 million cells/mL and two media washes for pH neutralization were required. With optimized 3D cell culture conditions, controlled gene expression and compound toxicity assessment were successfully demonstrated by using recombinant adenoviruses carrying genes for green and red fluorescent proteins as well as six model compounds. Overall, PuraMatrix hydrogel on the chip was suitable for 3D cell encapsulation, gene expression, and rapid toxicity assessment.
Collapse
Affiliation(s)
- Alexander David Roth
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States
| | - Pratap Lama
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States
| | - Stephen Dunn
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States
| | - Stephen Hong
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States.
| |
Collapse
|
20
|
Zhang Y, den Braver-Sewradj SP, den Braver MW, Hiemstra S, Vermeulen NPE, van de Water B, Commandeur JNM, Vos JC. Glutathione S-Transferase P1 Protects Against Amodiaquine Quinoneimines-Induced Cytotoxicity but Does Not Prevent Activation of Endoplasmic Reticulum Stress in HepG2 Cells. Front Pharmacol 2018; 9:388. [PMID: 29720942 PMCID: PMC5915463 DOI: 10.3389/fphar.2018.00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Formation of the reactive amodiaquine quinoneimine (AQ-QI) and N-desethylamodiaquine quinoneimine (DEAQ-QI) plays an important role in the toxicity of the anti-malaria drug amodiaquine (AQ). Glutathione conjugation protects against AQ-induced toxicity and GSTP1 is able to conjugate its quinoneimine metabolites AQ-QI and DEA-QI with glutathione. In this study, HepG2 cells transiently transfected with the human GSTP1 construct were utilized to investigate the protective effect of GSTP1 in a cellular context. HepG2 cells were exposed to synthesized QIs, which bypasses the need for intracellular bioactivation of AQ or DEAQ. Exposure was accompanied by decreased cell viability, increased caspase 3 activity, and decreased intracellular GSH levels. Using high-content imaging-based BAC-GFP reporters, it was shown that AQ-QI and DEAQ-QI specifically activated the endoplasmic reticulum (ER) stress response. In contrast, oxidative stress, DNA damage, or inflammatory stress responses were not activated. Overexpression of GSTP1 resulted in a two-fold increase in GSH-conjugation of the QIs, attenuated QI-induced cytotoxicity especially under GSH-depletion condition, abolished QIs-induced apoptosis but did not significantly inhibit the activation of the ER stress response. In conclusion, these results indicate a protective role of GSTP1 by increasing enzymatic detoxification of AQ-QI and DEAQ-QI and suggest a second protective mechanism by interfering with ER stress induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Clinical Pharmacokinetics Research Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shalenie P den Braver-Sewradj
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michiel W den Braver
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Steven Hiemstra
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J C Vos
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
DeGroot DE, Swank A, Thomas RS, Strynar M, Lee MY, Carmichael PL, Simmons SO. mRNA transfection retrofits cell-based assays with xenobiotic metabolism. J Pharmacol Toxicol Methods 2018; 92:77-94. [PMID: 29555536 DOI: 10.1016/j.vascn.2018.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 01/21/2023]
Abstract
The US EPA's ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to false positive (chemical is detoxified in vivo) as well as false negative results (chemical is bioactivated in vivo) and thus potential mischaracterization of chemical hazard. To address this challenge, the ten most prevalent human liver cytochrome P450 (CYP) enzymes were introduced into a human cell line (HEK293T) with low endogenous metabolic capacity. The CYP enzymes were introduced via transfection of modified mRNAs as either singlets or as a mixture in relative proportions as expressed in human liver. Initial experiments using luminogenic substrates demonstrate that CYP enzyme activities are significantly increased when co-transfected with an mRNA encoding a CYP accessory protein, P450 oxidoreductase (POR). Transfected HEK293T cells demonstrate the ability to produce predicted metabolites following treatment with well-studied CYP substrates for at least 18 h post-treatment. As a demonstration of how this method can be used to retrofit existing HTS assays, a proof-of-concept screen for cytotoxicity in HEK293T cells was conducted using 56 test compounds. The results demonstrate that the xenobiotic metabolism conferred by transfection of CYP-encoding mRNAs shifts the dose-response relationship for some of the tested chemicals such as aflatoxin B1 (bioactivation) and fenazaquin (detoxification). Overall, transfection of CYP-encoding mRNAs is an effective and portable solution for retrofitting existing cell-based HTS assays with metabolic competence.
Collapse
Affiliation(s)
| | - Adam Swank
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, USA
| | | | - Mark Strynar
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, USA
| | - Mi-Young Lee
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | | |
Collapse
|
22
|
Eftekhari A, Ahmadian E, Azarmi Y, Parvizpur A, Fard JK, Eghbal MA. The Effects of Cimetidine, N-Acetylcysteine, and Taurine on Thioridazine Metabolic Activation and Induction of Oxidative Stress in Isolated Rat Hepatocytes. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1724-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Xu J, Oda S, Yokoi T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol In Vitro 2018; 48:286-301. [PMID: 29407385 DOI: 10.1016/j.tiv.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Immortalized liver cells have been used for evaluating the toxicity of compounds; however, excessive glutathione is considered to lessen cytotoxicity. In this study, we compared the effects of glutathione depletion on cytotoxicities of drugs using HepaRG and HepG2 cells, which express and lack drug-metabolizing enzymes, respectively, for predicting drug-induced liver injury (DILI) risks. These cells were pre-incubated with L-buthionine-S,R-sulfoximine (BSO) and then exposed to 34 test compounds with various DILI risks for 24 h. ATP level exhibited the highest predictability of DILI among tested parameters. BSO treatment rendered cells susceptible to drug-induced cytotoxicity when evaluated by cell viability and caspase 3/7 activity with the sensitivity of cell viability from 50% in non-treated HepaRG cells to 71% in BSO-treated HepaRG cells. These results indicate that cytotoxicity assays using GSH-depleted HepaRG cells improve the predictability of DILI risks. However, HepaRG cells were not always superior to HepG2 cells when assessed by ATP level. The combination of HepG2 and HepaRG cells index produced the best prediction in the cases of caspase 3/7 acitivity and ATP level. In conclusions, the developed highly sensitive cell-based assay using GSH-reduced cells would be useful for predicting potential DILI risks at an early stage of drug development.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
24
|
Su Y, Chen Z, Yan L, Lian F, You J, Wang X, Tang N. Optimizing combination of liver-enriched transcription factors and nuclear receptors simultaneously favors ammonia and drug metabolism in liver cells. Exp Cell Res 2018; 362:504-514. [PMID: 29253535 DOI: 10.1016/j.yexcr.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
The HepG2 cell line is widely used in studying liver diseases because of its immortalization, but its clinical application is limited by its low expression of the urea synthesis key enzymes and cytochromes P450 (CYPs). On the basis of our previous work, we investigated the transcriptional regulation of arginase 1 (Arg1) and ornithine transcarbamylase (OTC) in HepG2 cells. We also screened for the optimal combination of liver enrichment transcription factors (LETFs) and xenobiotic nuclear receptors that can promote the expression of key urea synthases and five major CYPs in HepG2 cells. Thus, recombinant HepG2 cells were established. Results showed that C/EBPβ, not C/EBPα, could upregulate expression of Arg1 and PGC1α and HNF4α cooperatively regulate the expression of OTC. The two optimal combinations C/EBPβ+HNF4α+HNF6+PXR and C/EBPβ+HNF4α+HNF6+CAR were selected. Compared with the control cells, the recombinant HepG2 cells modified by the two optimal combinations exhibited enhanced ammonia metabolism and CYP enzyme activity. Moreover, the HepG2/(C/EBPβ+HNF4α+HNF6+PXR) cells more strongly reduced ammonia than any other combination tested in this study. The present work indicated that optimizing the combination of transcription factors will simultaneously promote hepatocyte ammonia metabolism and drug metabolism. The recombinant HepG2 liver cell line constructed by the optimal combination provided an improved alternative means for bioartificial liver applications and drug toxicity testing.
Collapse
Affiliation(s)
- Yongfa Su
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhanfei Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Linlin Yan
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fen Lian
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhua You
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
25
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Qu D, Gu Y, Feng L, Han J. High Content Analysis technology for evaluating the joint toxicity of sunset yellow and sodium sulfite in vitro. Food Chem 2017; 233:135-143. [DOI: 10.1016/j.foodchem.2017.04.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 04/05/2017] [Accepted: 04/17/2017] [Indexed: 11/15/2022]
|
27
|
Chen Y, Zeng L, Wang Y, Tolleson WH, Knox B, Chen S, Ren Z, Guo L, Mei N, Qian F, Huang K, Liu D, Tong W, Yu D, Ning B. The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p. Biochem Pharmacol 2017; 145:178-191. [PMID: 28822783 DOI: 10.1016/j.bcp.2017.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 1A2 (CYP1A2) is one of the most abundant and important drug metabolizing enzymes in human liver. However, little is known about the post-transcriptional regulation of CYP1A2, especially the mechanisms involving microRNAs (miRNAs). This study applied a systematic approach to investigate the post-transcriptional regulation of CYP1A2 by miRNAs. Candidate miRNAs targeting the 3'-untranslated region (3'-UTR) of CYP1A2 were screened in silico, resulting in the selection of sixty-two potential miRNAs for further analysis. The levels of two miRNAs, hsa-miR-132-5p and hsa-miR-221-5p, were inversely correlated with the expression of CYP1A2 mRNA transcripts in normal human liver tissue samples represented in The Cancer Genome Atlas (TCGA) dataset. The interactions between these miRNAs and cognate CYP1A2 mRNA sequences were evaluated using luciferase reporter gene studies and electrophoretic mobility shift assays, by which a direct interaction was confirmed involving hsa-miR-132-5p and a cognate binding site present in the CYP1A2 3'-UTR. Experiments by which hsa-miR-132-5p or random miRNA controls were introduced into HepG2, Huh-7 and HepaRG hepatic cell lines showed that only hsa-miR-132-5p suppressed the endogenous and lansoprazole-induced expression of CYP1A2, at biological activity, protein production, and mRNA transcript levels. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and lactate dehydrogenase (LDH) assays showed that hsa-miR-132-5p attenuates CYP1A2-mediated, lansoprazole-enhanced, flutamide-induced hepatic cell toxicity. Results from multilayer experiments demonstrate that hsa-miR-132-5p suppresses the expression of CYP1A2 and that this suppression is able to decrease the extent of an adverse drug-drug interaction involving lansoprazole and flutamide.
Collapse
Affiliation(s)
- Yinting Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Linjuan Zeng
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yong Wang
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bridgett Knox
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Zhen Ren
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Nan Mei
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Feng Qian
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - David Liu
- Longevity Center of CHI St. Vincent Hospital, Little Rock, AR 72205, USA
| | - Weida Tong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Baitang Ning
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
28
|
Tolosa L, Jiménez N, Pérez G, Castell JV, Gómez-Lechón MJ, Donato MT. Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol 2017; 92:383-399. [PMID: 28762043 PMCID: PMC5773651 DOI: 10.1007/s00204-017-2036-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury (DILI) has a considerable impact on human health and is a major challenge in drug safety assessments. DILI is a frequent cause of liver injury and a leading reason for post-approval drug regulatory actions. Considerable variations in the expression levels of both cytochrome P450 (CYP) and conjugating enzymes have been described in humans, which could be responsible for increased susceptibility to DILI in some individuals. We herein explored the feasibility of the combined use of HepG2 cells co-transduced with multiple adenoviruses that encode drug-metabolising enzymes, and a high-content screening assay to evaluate metabolism-dependent drug toxicity and to identify metabolic phenotypes with increased susceptibility to DILI. To this end, HepG2 cells with different expression levels of specific drug-metabolism enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, GSTM1 and UGT2B7) were exposed to nine drugs with reported hepatotoxicity. A panel of pre-lethal mechanistic parameters (mitochondrial superoxide production, mitochondrial membrane potential, ROS production, intracellular calcium concentration, apoptotic nuclei) was used. Significant differences were observed according to the level of expression and/or the combination of several drug-metabolism enzymes in the cells created ad hoc according to the enzymes implicated in drug toxicity. Additionally, the main mechanisms implicated in the toxicity of the compounds were also determined showing also differences between the different types of cells employed. This screening tool allowed to mimic the variability in drug metabolism in the population and showed a highly efficient system for predicting human DILI, identifying the metabolic phenotypes associated with increased DILI risk, and indicating the mechanisms implicated in their toxicity.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Jiménez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Gabriela Pérez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain.
| |
Collapse
|
29
|
Zhang H, Yin M, Huang L, Wang J, Gong L, Liu J, Sun B. Evaluation of the Cellular and Animal Models for the Study of Antioxidant Activity: A Review. J Food Sci 2017; 82:278-288. [PMID: 28117894 DOI: 10.1111/1750-3841.13605] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023]
Abstract
The mechanisms of antioxidant activities of phytochemicals are highly complex, so various methods to study them have been developed. However, the diverse available methods show inconsistent results. Different stressors, cell models, and animal models have been used to evaluate the antioxidant properties of phytochemicals. However, the literature still lacks a summary of the effects of different stressors, cell models, and animal models on the evaluation of antioxidant activities. Therefore, the mechanisms of action of different oxidative stimuli and the characteristics of the available cell models and animal models are summarized in this review.
Collapse
Affiliation(s)
- Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Meng Yin
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Lianyan Huang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, 100048, China.,Key Laboratory of Space Nutrition and Food Engineering, Beijing, 100094, China
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Jie Liu
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| |
Collapse
|
30
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
31
|
Yang XX, Gu W, Liang L, Yan HL, Wang YF, Bi Q, Zhang T, Yu J, Rao GX. Screening for the bioactive constituents of traditional Chinese medicines—progress and challenges. RSC Adv 2017. [DOI: 10.1039/c6ra25765h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The search for lead compounds from traditional Chinese medicines (TCMs) may be promising for new drug development.
Collapse
Affiliation(s)
- Xing-Xin Yang
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Wen Gu
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Li Liang
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Hong-Li Yan
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Yan-Fang Wang
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Qian Bi
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Ting Zhang
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Jie Yu
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province
| | - Gao-Xiong Rao
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province
| |
Collapse
|
32
|
Donato MT, Gómez-Lechón MJ, Tolosa L. Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies. Expert Opin Drug Discov 2016; 12:201-211. [DOI: 10.1080/17460441.2017.1271784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Fondo de Investigaciones Sanitarias, CIBEREHD, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Fondo de Investigaciones Sanitarias, CIBEREHD, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
33
|
Asakura M, Karaki F, Fujii H, Atsuda K, Itoh T, Fujiwara R. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. Sci Rep 2016; 6:35633. [PMID: 27759084 PMCID: PMC5069476 DOI: 10.1038/srep35633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/03/2016] [Indexed: 01/27/2023] Open
Abstract
Vildagliptin is a potent, orally active inhibitor of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes mellitus. It has been reported that vildagliptin can cause hepatic dysfunction in patients. However, the molecular-mechanism of vildagliptin-induced liver dysfunction has not been elucidated. In this study, we employed an expression microarray to determine hepatic genes that were highly regulated by vildagliptin in mice. We found that pro-inflammatory S100 calcium-binding protein (S100) a8 and S100a9 were induced more than 5-fold by vildagliptin in the mouse liver. We further examined the effects of vildagliptin and its major metabolite M20.7 on the mRNA expression levels of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. In HepG2 cells, vildagliptin, M20.7, and sitagliptin - another DPP-4 inhibitor - induced S100A9 mRNA. In HL-60 cells, in contrast, S100A8 and S100A9 mRNAs were significantly induced by vildagliptin and M20.7, but not by sitagliptin. The release of S100A8/A9 complex in the cell culturing medium was observed in the HL-60 cells treated with vildagliptin and M20.7. Therefore, the parental vildagliptin- and M20.7-induced release of S100A8/A9 complex from immune cells, such as neutrophils, might be a contributing factor of vildagliptin-associated liver dysfunction in humans.
Collapse
Affiliation(s)
- Mitsutoshi Asakura
- Graduate School of Pharmaceutical Sciences (M.A.) and School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Fumika Karaki
- Graduate School of Pharmaceutical Sciences (M.A.) and School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Hideaki Fujii
- Graduate School of Pharmaceutical Sciences (M.A.) and School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Koichiro Atsuda
- Graduate School of Pharmaceutical Sciences (M.A.) and School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tomoo Itoh
- Graduate School of Pharmaceutical Sciences (M.A.) and School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Ryoichi Fujiwara
- Graduate School of Pharmaceutical Sciences (M.A.) and School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
34
|
Gómez-Lechón MJ, Tolosa L, Donato MT. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing. Expert Opin Drug Metab Toxicol 2016; 13:137-148. [PMID: 27671376 DOI: 10.1080/17425255.2017.1238459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.
Collapse
Affiliation(s)
- M José Gómez-Lechón
- a Unidad de Hepatología Experimental , Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Valencia , Spain.,b CIBEREHD, FIS , Spain
| | - Laia Tolosa
- a Unidad de Hepatología Experimental , Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Valencia , Spain
| | - M Teresa Donato
- a Unidad de Hepatología Experimental , Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Valencia , Spain.,b CIBEREHD, FIS , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
35
|
Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9737920. [PMID: 27689095 PMCID: PMC5027328 DOI: 10.1155/2016/9737920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of late-stage clinical drug attrition, market withdrawal, black-box warnings, and acute liver failure. Consequently, it has been an area of focus for toxicologists and clinicians for several decades. In spite of considerable efforts, limited improvements in DILI prediction have been made and efforts to improve existing preclinical models or develop new test systems remain a high priority. While prediction of intrinsic DILI has improved, identifying compounds with a risk for idiosyncratic DILI (iDILI) remains extremely challenging because of the lack of a clear mechanistic understanding and the multifactorial pathogenesis of idiosyncratic drug reactions. Well-defined clinical diagnostic criteria and risk factors are also missing. This paper summarizes key data interpretation challenges, practical considerations, model limitations, and the need for an integrated risk assessment. As demonstrated through selected initiatives to address other types of toxicities, opportunities exist however for improvement, especially through better concerted efforts at harmonization of current, emerging and novel in vitro systems or through the establishment of strategies for implementation of preclinical DILI models across the pharmaceutical industry. Perspectives on the incorporation of newer technologies and the value of precompetitive consortia to identify useful practices are also discussed.
Collapse
|
36
|
Simulation of interindividual differences in inactivation of reactive para -benzoquinone imine metabolites of diclofenac by glutathione S -transferases in human liver cytosol. Toxicol Lett 2016; 255:52-62. [DOI: 10.1016/j.toxlet.2016.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/11/2023]
|
37
|
den Braver-Sewradj SP, den Braver MW, Vermeulen NP, Commandeur JN, Richert L, Vos JC. Inter-donor variability of phase I/phase II metabolism of three reference drugs in cryopreserved primary human hepatocytes in suspension and monolayer. Toxicol In Vitro 2016; 33:71-9. [DOI: 10.1016/j.tiv.2016.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
|
38
|
Characterization of cytochrome P450 isoforms involved in sequential two-step bioactivation of diclofenac to reactive p-benzoquinone imines. Toxicol Lett 2016; 253:46-54. [PMID: 27130197 DOI: 10.1016/j.toxlet.2016.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/08/2016] [Accepted: 04/22/2016] [Indexed: 11/23/2022]
Abstract
Idiosyncratic drug-induced lever injury (IDILI) is a rare but severe side effect of diclofenac (DF). Several mechanisms have been proposed as cause of DF-induced toxicity including the formation of protein-reactive diclofenac-1',4'-quinone imine (DF-1',4'-QI) and diclofenac-2,5-quinone imine (DF-2,5-QI). Formation of these p-benzoquinone imines result from two-step oxidative metabolism involving aromatic hydroxylation to 4'-hydroxydiclofenac and 5-hydroxydiclofenac followed by dehydrogenation to DF-1',4'-QI and DF-2,5-QI, respectively. Although the contribution of individual cytochrome P450s (CYPs) in aromatic hydroxylation of DF is well studied, the enzymes involved in the dehydrogenation reactions have been poorly characterized. The results of the present study show that both formation of 4'-hydroxydiclofenac and it subsequent bioactivation to DF-1',4'-QI is selectively catalyzed by CYP2C9. However, the two-step bioactivation to DF-2,5-QI appears to be catalyzed with highest activity by two different CYPs: 5-hydroxylation of DF is predominantly catalyzed by CYP3A4, whereas its subsequent bioactivation to DF-2,5-QI is catalyzed with 14-fold higher intrinsic clearance by CYP2C9. The fact that both CYPs involved in two-step bioactivation of DF show large interindividual variability may play a role in different susceptibility of patients to DF-induced IDILI. Furthermore, expression levels of these enzymes and protective enzymes might be important factors determining sensitivity of in vitro models for hepatotoxicity.
Collapse
|
39
|
Huang L, Zou S, Deng J, Dai T, Jiang J, Jia Y, Dai R, Xie S. Development of an optimized cytotoxicity assay system for CYP3A4-mediated metabolic activation via modified piggyBac transposition. Toxicol In Vitro 2016; 32:132-7. [DOI: 10.1016/j.tiv.2015.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/12/2015] [Accepted: 12/13/2015] [Indexed: 12/25/2022]
|
40
|
Saito J, Okamura A, Takeuchi K, Hanioka K, Okada A, Ohata T. High content analysis assay for prediction of human hepatotoxicity in HepaRG and HepG2 cells. Toxicol In Vitro 2016; 33:63-70. [PMID: 26921665 DOI: 10.1016/j.tiv.2016.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 02/23/2016] [Indexed: 01/02/2023]
Abstract
Drug-induced liver injury (DILI) results in the termination of drug development or withdrawal of a drug from the market. The establishment of a predictive, high-throughput preclinical test system to evaluate potential clinical DILI is therefore required. Here, we established a high content analysis (HCA) assay in human hepatocyte cell lines such as the HepaRG with normal expression levels of CYP enzymes and HepG2 with extremely low expression levels of CYP enzymes. Clinical DILI or non-DILI compounds were evaluated for reactive oxygen species (ROS) production, glutathione (GSH) consumption, and mitochondrial membrane potential (MMP) attenuation. A proportion of DILI compounds induced ROS generation, GSH depletion, and MMP dysfunction, which was consistent with reported mechanisms of DILI of these compounds. In particular, DILI compounds that deplete GSH via reactive metabolites exhibited a more marked decrease in intracellular GSH or increase in ROS production in HepaRG cells than in HepG2 cells. Comparison of the two cell lines with different levels of CYP expression might help clarify the contribution of metabolism to hepatocyte toxicity. These results suggest that the HCA assay in HepaRG and HepG2 cells might help improve the accuracy of evaluating clinical DILI potential during drug screening.
Collapse
Affiliation(s)
- Junichiro Saito
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan.
| | - Ai Okamura
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Kenichiro Takeuchi
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Kenichi Hanioka
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Takeji Ohata
- Research Program Management Office, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| |
Collapse
|
41
|
Ghallab A. Highlight report: New methods for quantification of bile canalicular dynamics. EXCLI JOURNAL 2016; 14:1264-6. [PMID: 26862326 PMCID: PMC4743477 DOI: 10.17179/excli2015-763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Ahmed Ghallab
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
42
|
Gómez-Lechón MJ, Tolosa L, Donato MT. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol 2015; 36:752-68. [PMID: 26691983 DOI: 10.1002/jat.3277] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/21/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is a significant leading cause of hepatic dysfunction, drug failure during clinical trials and post-market withdrawal of approved drugs. Many cases of DILI are unexpected reactions of an idiosyncratic nature that occur in a small group of susceptible individuals. Intensive research efforts have been made to understand better the idiosyncratic DILI and to identify potential risk factors. Metabolic bioactivation of drugs to form reactive metabolites is considered an initiation mechanism for idiosyncratic DILI. Reactive species may interact irreversibly with cell macromolecules (covalent binding, oxidative damage), and alter their structure and activity. This review focuses on proposed in vitro screening strategies to predict and reduce idiosyncratic hepatotoxicity associated with drug bioactivation. Compound incubation with metabolically competent biological systems (liver-derived cells, subcellular fractions), in combination with methods to reveal the formation of reactive intermediates (e.g., formation of adducts with liver proteins, metabolite trapping or enzyme inhibition assays), are approaches commonly used to screen the reactivity of new molecules in early drug development. Several cell-based assays have also been proposed for the safety risk assessment of bioactivable compounds. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Activation, Metabolic
- Animals
- Cell Culture Techniques/trends
- Cell Line
- Cells, Cultured
- Chemical and Drug Induced Liver Injury/epidemiology
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/pathology
- Coculture Techniques/trends
- Drug Evaluation, Preclinical/trends
- Drugs, Investigational/adverse effects
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacokinetics
- Humans
- In Vitro Techniques/trends
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Microfluidics/methods
- Microfluidics/trends
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Microsomes, Liver/metabolism
- Models, Biological
- Pluripotent Stem Cells/cytology
- Pluripotent Stem Cells/drug effects
- Pluripotent Stem Cells/metabolism
- Pluripotent Stem Cells/pathology
- Recombinant Proteins/metabolism
- Risk Assessment
- Risk Factors
- Tissue Scaffolds/trends
Collapse
Affiliation(s)
- M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- CIBEREHD, FIS, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- CIBEREHD, FIS, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| |
Collapse
|
43
|
Joshi P, Lee MY. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures. BIOSENSORS 2015; 5:768-90. [PMID: 26694477 PMCID: PMC4697144 DOI: 10.3390/bios5040768] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| |
Collapse
|
44
|
Widera A. Highlight report: overview of hepatoprotective compounds. Arch Toxicol 2015; 89:2453-4. [PMID: 26612366 DOI: 10.1007/s00204-015-1639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Agata Widera
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
45
|
Bolt HM. Highlight report: biomarkers of acetaminophen-induced liver injury. Arch Toxicol 2015; 89:2193-4. [PMID: 26531746 DOI: 10.1007/s00204-015-1629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- H M Bolt
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, IfADo, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
46
|
Teppner M, Böss F, Ernst B, Pähler A. Application of lipid peroxidation products as biomarkers for flutamide-induced oxidative stress in vitro. Toxicol Lett 2015; 238:53-9. [DOI: 10.1016/j.toxlet.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022]
|
47
|
Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells. Sci Rep 2015; 5:14633. [PMID: 26419945 PMCID: PMC4588569 DOI: 10.1038/srep14633] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/02/2015] [Indexed: 11/09/2022] Open
Abstract
Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.
Collapse
|
48
|
Herzog N, Katzenberger N, Martin F, Schmidtke KU, K JH. Generation of cytochrome P450 3A4-overexpressing HepG2 cell clones for standardization of hepatocellular testosterone 6β-hydroxylation activity. ACTA ACUST UNITED AC 2015. [DOI: 10.3233/jcb-15002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Moulin F, Flint O. In VitroModels for the Prediction of Drug-Induced Liver Injury in Lead Discovery. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/9783527673643.ch07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch Toxicol 2015; 89:1007-22. [PMID: 25787152 DOI: 10.1007/s00204-015-1503-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 01/13/2023]
Abstract
High-content screening is the application of automated microscopy and image analysis to both cell biology and drug discovery. Over the last decade, this technique has emerged as a useful technology that allows the simultaneous measurement of different parameters at a single-cell level. Hepatotoxicity is a compelling reason for drug nonapprovals and withdrawals. It is recognized that the safety of a compound cannot be based on a single in vitro assay, and existing methods are not predictive of drug-induced toxicity. However, different HCS assays have been recently demonstrated as being powerful for identifying different mechanisms implicated in drug-induced toxicity with high sensitivity and specificity. These assays integrate the data obtained from different cell function indicators and can be easily incorporated into basic screening processes for the safety evaluation and selection of drug candidates; thus, they contribute greatly to lessen the likelihood of drug failure. Exploring the use of cellular imaging technology in drug-induced liver injury by reviewing the different tests proposed provides evidence that this technology has a strong impact on drug discovery.
Collapse
|