1
|
Lee N, Lee D, Lee JH, Lee BS, Kim S, Kim JH, Jeong S. Nanosensor-based imaging of realtime dopamine release in neurons derived from iPSCs of patients with Parkinson's disease. Mater Today Bio 2025; 31:101485. [PMID: 39906200 PMCID: PMC11791356 DOI: 10.1016/j.mtbio.2025.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/01/2025] [Accepted: 01/11/2025] [Indexed: 02/06/2025] Open
Abstract
Dopamine (DA) is an essential neuromodulator that underlies critical aspects of cognitive processes, motor function, and reward systems. Disruptions in DA signaling contribute to various neurodegenerative diseases, including Parkinson's disease (PD). Despite its important role in neuronal function, the impact of DA release/uptake on neurochemical imbalances during neuronal development remains unclear. We propose a novel application of near-infrared catecholamine nanosensor (NIRCat) for real-time visualization of DA neurotransmission among neurodegenerative disease cells. The near-infrared fluorescence (900-1400 nm) of NIRCat allows the semi-quantitative measurement of DA release in living neurons and offers insights into cellular dynamics and neuropathological development. In this study, we applied NIRCat to elucidate DA release in human induced pluripotent stem cells (hiPSCs)-derived dopaminergic neurons from both healthy control and PD patient carrying GBA1 mutations. We accurately quantified electrically stimulated DA release events, identifying distinct 'hotspots' of activity across DA neuronal cells. Our findings present a significantly enhanced spatial and temporal resolution of DA signaling, providing a deeper understanding of the role and balance of DA release in the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Nayeon Lee
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
- Department of Physiology, Pusan National University School of Medicine, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
| | - Dakyeon Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jae Hyeok Lee
- Department of Neurology, School of Medicine, Pusan National University Yangsan Hospital, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
| | - Bo Seok Lee
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
- Department of Physiology, Pusan National University School of Medicine, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jae Ho Kim
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
- Department of Physiology, Pusan National University School of Medicine, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
| | - Sanghwa Jeong
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 50612, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
2
|
Tan YF, Hii LW, Lim WM, Cheong SK, Leong CO, Yee MSL, Mai CW. Polyethylene glycol-phospholipid functionalized single-walled carbon nanotubes for enhanced siRNA systemic delivery. Sci Rep 2024; 14:30098. [PMID: 39627280 PMCID: PMC11615393 DOI: 10.1038/s41598-024-80646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Small interfering RNAs (siRNA) technology has emerged as a promising therapeutic tool for human health conditions like cancer due to its ability to regulate gene silencing. Despite FDA-approved, their delivery remains localized and limiting their systemic use. This study used single-walled carbon nanotubes (SWNTs) functionalized with polyethylene glycolated (PEGylated) phospholipids (PL-PEG) derivatives for systemic siRNA delivery. We developed an siRNA systemic delivery vehicle (SWNT-siRNA) by conjugating SWNT functionalized with PL-PEG containing either amine (PA) or maleimide (MA). The functionalized SWNT with a lower molecular weight of PA produced the SWNT-siRNA conjugate system with the highest stability and high siRNA loading quantity. The system delivered siRNA to a panel of tumour cell lines of different organs (i.e. HeLa, H1299 and MCF-7) and a non-cancerous human embryonic kidney 293 cells (HEK293T) with high biocompatibility and low toxicity. The cellular uptake of SWNT-siRNA conjugates by epithelial cells was found to be energy dependent. Importantly, the presence of P-glycoprotein, a marker for drug resistance, did not inhibit SWNT-mediated siRNA delivery. Mouse xenograft model further confirmed the potential of SWNT-siRNA conjugates with a significant gene knock-down without signs of acute toxicity. These findings pave the way for potential gene therapy applications using SWNTs as delivery vehicles.
Collapse
Affiliation(s)
- Yuen-Fen Tan
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Postgraduate Studies, IMU University, Kuala Lumpur, 57000, Malaysia
- Cytovision Sdn. Bhd, Kuala Lumpur, 57000, Malaysia
| | - Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
| | - Wei-Meng Lim
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Pharmacy, Monash University Malaysia, Shah Alam, 47500, Selangor, Malaysia
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Shah Alam, 43000, Selangor, Malaysia
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Pharmacy, IMU University, Kuala Lumpur, 57000, Malaysia
- AGTC Genomics Sdn. Bhd, Kuala Lumpur, 57000, Malaysia
| | - Maxine Swee-Li Yee
- Nanotechnology Research Group, Center for Nanotechnology and Advanced Materials, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia.
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
3
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
4
|
Yang X, Xu G, Liu X, Zhou G, Zhang B, Wang F, Wang L, Li B, Li L. Carbon nanomaterial-involved EMT and CSC in cancer. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:1-13. [PMID: 34619029 DOI: 10.1515/reveh-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanomaterials (CNMs) are ubiquitous in our daily lives because of the outstanding physicochemical properties. CNMs play curial parts in industrial and medical fields, however, the risks of CNMs exposure to human health are still not fully understood. In view of, it is becoming extremely difficult to ignore the existence of the toxicity of CNMs. With the increasing exploitation of CNMs, it's necessary to evaluate the potential impact of these materials on human health. In recent years, more and more researches have shown that CNMs are contributed to the cancer formation and metastasis after long-term exposure through epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) which is associated with cancer progression and invasion. This review discusses CNMs properties and applications in industrial and medical fields, adverse effects on human health, especially the induction of tumor initiation and metastasis through EMT and CSCs procedure.
Collapse
Affiliation(s)
- Xiaotong Yang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Gongquan Xu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Guiming Zhou
- Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Zhang
- Rushan Hospital of Traditional Chinese Medicine, Weihai, China
| | - Fan Wang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Golfakhrabadi F, Niknejad MR, Kalantari H, Dehghani MA, Shakiba Maram N, Ahangarpour A. Evaluation of the protective effects of berberine and berberine nanoparticle on insulin secretion and oxidative stress induced by carbon nanotubes in isolated mice islets of langerhans: an in vitro study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21781-21796. [PMID: 36279052 DOI: 10.1007/s11356-022-23508-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The increasing use of single-walled carbon nanotubes (SWCNT) in various fields highlights the need to investigate the test toxicity of these nanoparticles in humans. Previous documents showed that SWCNT induced oxidative stress. Oxidative stress and reactive oxygen species (ROS) cause cell dysfunction and reduced insulin secretion. Therefore, this study aimed to investigate the effects of SWCNT on oxidative stress and insulin secretion of islets also evaluate the protective effects of berberine (BBR) and berberine nanoparticles (NP-BBR) as antioxidants on pancreatic β-islets. Double emulsion with solvent evaporation was the technique used to prepare nanoparticles in this study. Islets were isolated and pretreated with various concentrations of BBR and NP-BBR and then treated with single dose of SWCNT (160 μg). The results of this study showed that SWCNT decreased cell viability based on MTT assay, reduced insulin secretion of islets, increased malondialdehyde (MDA) amounts, reactive oxygen species (ROS) levels, reduced glutathione (GSH) levels, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, whereas pretreatment of islets with low doses of BBR (5 and 15 μM) and NP-BBR (5 μM) significantly reversed all changes induced by SWCNT. These findings suggested that SWCNT might trigger other pathways involved in insulin secretion by activating the oxidative stress pathway in the pancreatic islets, reducing insulin secretion, consequently diabetes. BBR and NP-BBR as antioxidants were able to protect pancreatic β-islets and prevent the progression of diabetes.
Collapse
Affiliation(s)
- Fereshteh Golfakhrabadi
- Department of Pharmacognosy, Faculty of Pharmacy, Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plant Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Niknejad
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medical Basic Sciences Research Institute, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medical Basic Sciences Research Institute, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medical Basic Sciences Research Institute, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Shakiba Maram
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Department of Physiology, Faculty of Medicine, Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Khalid A, Yi W, Yoo S, Abbas S, Si J, Hou X, Hou J. Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. NEW J CHEM 2023. [DOI: 10.1039/d2nj04056e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gel chromatography is used to separate single-chirality and selective-diameter SWCNTs. We also explore the use of photothermal therapy and biosensor applications based on single-chirality, selected-diameter, and unique geometric shape.
Collapse
Affiliation(s)
- Asif Khalid
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Sweejiang Yoo
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Shakeel Abbas
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jinhai Si
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Xun Hou
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Science, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| |
Collapse
|
7
|
Du Y, Chen Z, Hussain MI, Yan P, Zhang C, Fan Y, Kang L, Wang R, Zhang J, Ren X, Ge C. Evaluation of cytotoxicity and biodistribution of mesoporous carbon nanotubes (pristine/-OH/-COOH) to HepG2 cells in vitro and healthy mice in vivo. Nanotoxicology 2022; 16:895-912. [PMID: 36704847 DOI: 10.1080/17435390.2023.2170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mesoporous carbon nanotubes (mCNTs) hold great promise interests, owing to their superior nano-platform properties for biomedicine. To fully utilize this potential, the toxicity and biodistribution of pristine and surface-modified mCNTs (-OH/-COOH) should preferentially be addressed. The results of cell viability suggested that pristine mCNTs induced cell death in a concentration-dependent manner. As evidence of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD), pristine mCNTs induced noticeable redox imbalance. 99mTc tracing data suggested that the cellular uptake of pristine mCNTs posed a concentrate-dependent and energy-dependent manner via macropinocytotic and clathrin-dependent pathways, and the main accumulated organs were lung, liver and spleen. With OH modification, the ROS generation, MDA deposition and SOD consumption were evidently reduced compared with the pristine mCNTs at 24/48 h high-dose exposure. With COOH modification, the modified mCNTs only showed a significant difference in SOD consumption at 24/48 h exposure, but there was no significant difference in the measurement of ROS and MDA. The internalization mechanism and organ distribution of modified mCNTs were basically invariant. Together, our study provides evidence that mCNTs and the modified mCNTs all could induce oxidative damage and thereby impair cells. 99mTc-mCNTs can effectively trace the distribution of nanotubes in vivo.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zhipei Chen
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - M Irfan Hussain
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China.,Department of Nuclear Medicine, Peking University International Hospital, Beijing, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiaona Ren
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Changchun Ge
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
8
|
Chen Z, Zhuang J, Pang J, Liu Z, Zhang P, Deng H, Zhang L, Zhuang B. Application of a cationic amylose derivative loaded with single-walled carbon nanotubes for gene delivery therapy and photothermal therapy of colorectal cancer. J Biomed Mater Res A 2022; 110:1052-1061. [PMID: 34994069 PMCID: PMC9302136 DOI: 10.1002/jbm.a.37351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) are cylindrical graphitic helix molecules that exhibit superb mechanical and physical properties. Many polymers, such as polyethylene glycol and glycated chitosan, have been used to modify SWNTs to enhance the stability and biocompatibility of delivery systems; thus, a novel modification for SWNTs with amylose derivatives containing poly(L-lysine) dendrons (ADP@SWNT) is developed. Infrared spectra analysis, 1 H NMR analysis, circular dichroism spectra analysis and thermogravimetric analysis are used to characterize and confirm complex formation. The aqueous dispersion stability, cytotoxicity, gene transfection efficiency and photothermal effect of the complex are studied in vitro and in vivo. Results suggest that the ADP@SWNT complex is successfully synthesized with good water dispersion stability and pDNA transfection capacity. ADP@SWNT/TNFα inhibits tumor growth and metastasis both in vivo and in vitro, and the anti-tumor effect is enhanced by NIR irradiation, suggesting its high potential for application in tumor therapy.
Collapse
Affiliation(s)
- Zechang Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Junbo Zhuang
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiadong Pang
- Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical EngineeringSun Yat‐Sen UniversityGuangzhouChina
| | - Zehao Liu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Penghao Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Haijun Deng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Liming Zhang
- Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical EngineeringSun Yat‐Sen UniversityGuangzhouChina
| | - Baoxiong Zhuang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Sayadi MH, Pavlaki MD, Loureiro S, Martins R, Tyler CR, Mansouri B, Kharkan J, Shekari H. Co-exposure of zinc oxide nanoparticles and multi-layer graphenes in blackfish (Capoeta fusca): evaluation of lethal, behavioural, and histopathological effects. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:425-439. [PMID: 35089487 DOI: 10.1007/s10646-022-02521-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 05/24/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) and multi-layer graphenes (MLGs) are widely used, and due to the lack of appropriate wastewater treatment may end up in the aquatic environment, with unknown consequences to biota. The main purpose of this study was to assess the acute toxicity, histopathological and behavioural changes caused by the exposure of ZnO NPs and MLGs, alone and combined, to the blackfish Capoeta fusca. The estimated mean 96 h-LC50 for ZnO NPs was 4.9 mg L-1 and 68.4 mg L-1 for MLGs. In combination, MLGs increased the acute toxicity of the ZnO NPs. The effects of the different NPs on the gills included hyperplasia, aneurisms, and fusion of the lamellae. In the intestine, exposure to the NPs resulted in an increase in the number and swelling of goblet cells and tissue degeneration. Loss of balance, restlessness, erratic and abnormal swimming patterns were the most common behavioural changes seen in the ZnO NPs' exposed blackfish. In contrast with the acute toxicity findings, MLGs decreased the histopathological and behavioural effects of the ZnO NPs on both gills and intestinal tissues as well as fish behaviour. Our experimental results illustrated insights into the simultaneous exposure assessment of metal-based NPs and carbon nanomaterials, although further research is needed on the interactions exposure of these substances to interpreting the toxicological effects of metal-based nanomaterials seen in exposed organisms.
Collapse
Affiliation(s)
- Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
- Department of Environmental Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran
| | - Maria D Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Roberto Martins
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, UK
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javad Kharkan
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Hossein Shekari
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
10
|
Marzana M, Morsada Z, Faruk MO, Ahmed A, Khan MMA, Jalil MA, Hossain MM, Rahman MM. Nanostructured Carbons: towards Soft-Bioelectronics, Biosensing and Theraputic Applications. CHEM REC 2022; 22:e202100319. [PMID: 35189015 DOI: 10.1002/tcr.202100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Recently, nanostructured carbon-based soft bioelectronics and biosensors have received tremendous attention due to their outstanding physical and chemical properties. The ultrahigh specific surface area, high flexibility, lightweight, high electrical conductivity, and biocompatibility of 1D and 2D nanocarbons, such as carbon nanotubes (CNT) and graphene, are advantageous for bioelectronics applications. These materials improve human life by delivering therapeutic advancements in gene, tumor, chemo, photothermal, immune, radio, and precision therapies. They are also utilized in biosensing platforms, including optical and electrochemical biosensors to detect cholesterol, glucose, pathogenic bacteria (e. g., coronavirus), and avian leucosis virus. This review summarizes the most recent advancements in bioelectronics and biosensors by exploiting the outstanding characteristics of nanocarbon materials. The synthesis and biocompatibility of nanocarbon materials are briefly discussed. In the following sections, applications of graphene and CNTs for different therapies and biosensing are elaborated. Finally, the key challenges and future perspectives of nanocarbon materials for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Maliha Marzana
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79403, USA
| | - Zinnat Morsada
- Department of Textile Engineering, University of South Asia, Dhaka, 1213, Bangladesh
| | - Md Omar Faruk
- Department of Materials Science and Engineering, Binghamton University, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Abbas Ahmed
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Md Manirul Alam Khan
- Department of Electrical and Computer Engineering, University of Memphis, Tennessee, 38152, USA
| | - Mohammad Abdul Jalil
- Department of Textile Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Md Milon Hossain
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, North Carolina, 27606, USA
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Yang X, Xu R, Wen L, Lou Z, Chen Q, Li B. Light-induced thermal convection for collection and removal of carbon nanotubes. FUNDAMENTAL RESEARCH 2022; 2:59-65. [PMID: 38933914 PMCID: PMC11197525 DOI: 10.1016/j.fmre.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 10/19/2022] Open
Abstract
Carbon nanotubes (CNTs) have exhibited immense potential for applications in biology and medicine, and once their intended purpose is fulfilled, the elimination of residual CNTs is essential to avoid negative effects. In this study, we demonstrated the effective collection and simple removal of CNTs dispersed in a suspension via thermal convection. First, a tapered fiber tip with a cone angle and end diameter of 10° and 3 μm, respectively, was fabricated via a heating and pulling method. Further, a laser beam with a power and wavelength of 100 mW and 1.55 μm, respectively, was launched into the tapered fiber tip, which was placed in a CNT suspension, resulting in the formation of a microbubble on the fiber tip. The temperature gradient on the microbubble and suspension surface induced thermal convection in the suspension, which resulted in the accumulation of CNTs on the fiber tip. The experimentally formed CNT cluster possessed a circular top surface with a diameter of 87 μm and an arched cross-section with a height of 19 μm. Furthermore, this CNT cluster was firmly attached to the fiber tip. Therefore, the removal of CNT clusters can be realized by simply removing the fiber tip from the suspension. Moreover, we simulated the thermal convection that caused CNT aggregation. The obtained results indicate that convection near the fiber tip flows toward it, which pushes the CNTs toward the fiber tip and enables their attachment to it. Further, the flow velocity is symmetrically distributed as a Gaussian function, which results in the formation of a circular top surface and arched cross-sectional profile for the CNT cluster. Our method may be applied in biomedicine for the collection and removal of nano-drug residues.
Collapse
Affiliation(s)
- Xianguang Yang
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Rui Xu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Long Wen
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Zaizhu Lou
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Qin Chen
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
12
|
Cheng Y, Chen Z, Yang S, Liu T, Yin L, Pu Y, Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149584. [PMID: 34399324 DOI: 10.1016/j.scitotenv.2021.149584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The extensive production and use of nanomaterials have resulted in the continuous release of nano-sized particles into the environment, and the health risks caused by exposure to these nanomaterials in the occupational population and the general population cannot be ignored. Studies have found that particle exposure is closely related to cardiovascular disease. In addition, there have been many reports that nanomaterials can enter the heart tissue, accumulate and then cause damage. Therefore, in the present article, literature related to nanomaterials-induced cardiotoxicity in recent years was collected from the PubMed database, and then organized and summarized to form a review. This article mainly discusses heart damage caused by nanomaterials from the following three aspects: Firstly, we summarize the research 8 carbon nanotubes, etc. Secondly, we discuss in depth the possible underlying mechanism of the damage to the heart caused by nanoparticles. Oxidative stress damage, mitochondrial damage, inflammation and apoptosis have been found to be key factors. Finally, we summarize the current research models used to evaluate the cardiotoxicity of nanomaterials, highlight reliable emerging technologies and in vitro models that have been used for toxicity evaluation of environmental pollutants in recent years, and indicate their application prospects.
Collapse
Affiliation(s)
- Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
13
|
Takasaka M, Kobayashi S, Usui Y, Haniu H, Tsuruoka S, Aoki K, Saito N. Biokinetic Evaluation of Contrast Media Loaded Carbon Nanotubes Using a Radiographic Device. TOXICS 2021; 9:toxics9120331. [PMID: 34941765 PMCID: PMC8705935 DOI: 10.3390/toxics9120331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Considerable progress has been made in various fields of applied research on the use of carbon nanotubes (CNTs). Because CNTs are fibrous nanomaterials, biosafety of CNTs has been discussed. The biokinetic data of CNTs, such as using the radioisotope of carbon and surface labeling of CNTs, have been reported. However, the use of radioisotopes requires a special facility. In addition, there are problems in the surface labeling of CNTs, including changes in surface properties and labels eliminating over time. In order to solve these problems and properly evaluate the biokinetics of CNTs, the authors synthesize peapods with platinum (Pt) encapsulated within the hollow region of Double-Walled CNTs (DWCNTs) and develop a new system to evaluate biokinetics using widely available imaging equipment. In the cell assay, no significant difference is observed with and without Pt in CNTs. In animal studies, radiography of the lungs of rats that inhaled Pt-peapods show the detectability of Pt inside the CNTs. This new method using Pt-peapods enables image evaluation with a standard radiographic imaging device without changing the surface property of the CNTs and is effective for biokinetics evaluation of CNTs.
Collapse
Affiliation(s)
- Mieko Takasaka
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan; (M.T.); (H.H.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Shinsuke Kobayashi
- USUI Orthopedic Clinic, 6-33 Idegawa, Matsumoto 390-0826, Japan; (S.K.); (Y.U.)
| | - Yuki Usui
- USUI Orthopedic Clinic, 6-33 Idegawa, Matsumoto 390-0826, Japan; (S.K.); (Y.U.)
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan; (M.T.); (H.H.)
| | - Shuji Tsuruoka
- Institute of Carbon Science and Technology, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Matsumoto 380-8553, Japan;
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
- Correspondence: (K.A.); (N.S.)
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan; (M.T.); (H.H.)
- Correspondence: (K.A.); (N.S.)
| |
Collapse
|
14
|
Bao L, Cui X, Wang X, Wu J, Guo M, Yan N, Chen C. Carbon Nanotubes Promote the Development of Intestinal Organoids through Regulating Extracellular Matrix Viscoelasticity and Intracellular Energy Metabolism. ACS NANO 2021; 15:15858-15873. [PMID: 34622660 DOI: 10.1021/acsnano.1c03707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The biological effect of engineered carbon nanotubes (CNTs) as beneficial biomaterials on the intestine, especially on its development, remains unclear. Here, we investigated the profitable effect of CNTs with a different graphene layer and surface modification on the 3D model of intestinal organoids and demonstrated that CNTs (50 μg/mL) promoted the development of intestinal organoids over time (0-5 days). The mechanisms involve the modulation of extracellular matrix (ECM) viscoelasticity and intracellular energy metabolism. In particular, CNTs reduced the hardness of the extracellular matrix through decreasing the elasticity and increasing the viscosity as a result of elevated metalloproteinase and binding to a protein scaffold, which activated the mechanical membrane sensors of cells, Piezo, and downstream P-p38-yes-associated protein (YAP) pathway. Moreover, CNTs altered the metabolic profile of intestinal organoids and induced increased mitochondria activity, respiration, and nutrient absorption. These mechanisms cooperated with each other to promote the proliferation and differentiation of intestinal organoids. In addition, the promoted effect of CNTs is highly dependent on the number of graphene layers, manifested as multiwalled CNTs > single-walled CNTs. Our findings highlight the CNT-intestine interaction and imply the potential of CNTs as biomaterials for intestine-associated tissue engineering.
Collapse
Affiliation(s)
- Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Na Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Zhang C, Dong X, Ong SY, Yao SQ. Live-Cell Imaging of Survivin mRNA by Using a Dual-Color Surface-Cross-Linked Nanoquencher. Anal Chem 2021; 93:12081-12089. [PMID: 34436865 DOI: 10.1021/acs.analchem.1c02385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Precise detection of cancer-related mRNAs can significantly benefit the early diagnosis and potential therapy of cancers. Herein, we report organic dark quencher-encapsulated surface-cross-linked micelles (qSCMs) as a new sort of nanoquencher for construction of potential multiple-color fluorescence imaging nanosensors. Such nanoquenchers featured simple preparation (one-pot), broad-spectrum quenching (450-800 nm), high quenching efficiency (>94%), good stability, negligible cargo leakage, facile covalent surface modification, and finally excellent modularity. As a proof-of-concept demonstration, a mRNA-detecting qSCM nanosensor was generated, capable of simultaneous live-cell imaging of endogenous actin mRNA (a house-keeping gene) and cancer-related survivin mRNA. This nanosensor was found to be GSH- and DNase I-resistant, and with actin mRNA as an intrinsic reference, it was used to image the precise survivin mRNA expression across different mammalian cells through convenient normalization of the signal readouts. Moreover, the nanosensor was further used to quantitatively image the downregulation of endogenous survivin mRNA in HeLa cells upon treatment of YM155 (an imidazolium bioactive compound known to suppresses endogenous survivin mRNA expression). These results clearly demonstrated the promising application of these qSCMs as new nanoquenchers in potential multicolor imaging of various endogenous biomarkers.
Collapse
Affiliation(s)
- Changyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sing Yee Ong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore Graduate School, Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge Road, No. 04-02, Singapore 119077, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore Graduate School, Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge Road, No. 04-02, Singapore 119077, Singapore
| |
Collapse
|
16
|
Gibney S, Hicks JM, Robinson A, Jain A, Sanjuan-Alberte P, Rawson FJ. Toward nanobioelectronic medicine: Unlocking new applications using nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1693. [PMID: 33442962 DOI: 10.1002/wnan.1693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine aims to interface electronic technology with biological components and design more effective therapeutic and diagnostic tools. Advances in nanotechnology have moved the field forward improving the seamless interaction between biological and electronic components. In the lab many of these nanobioelectronic devices have the potential to improve current treatment approaches, including those for cancer, cardiovascular disorders, and disease underpinned by malfunctions in neuronal electrical communication. While promising, many of these devices and technologies require further development before they can be successfully applied in a clinical setting. Here, we highlight recent work which is close to achieving this goal, including discussion of nanoparticles, carbon nanotubes, and nanowires for medical applications. We also look forward toward the next decade to determine how current developments in nanotechnology could shape the growing field of bioelectronic medicine. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Steven Gibney
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andie Robinson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paola Sanjuan-Alberte
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.,Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
17
|
Wang W, Gong W, Zhou S, Han J, Qi D, Qu H. β-cyclodextrin improve the tolerant of freshwater algal Spiny Scenedesmus to chiral drugs venlafaxine and its metabolite. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123076. [PMID: 32540709 DOI: 10.1016/j.jhazmat.2020.123076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
This study based on the freshwater algae Spiny scenedesmus (S. scenedesmus) with tolerance to venlafaxine aiming to investigate algae removal abilities. Here presented for the first time to evaluate the effect of β-cyclodextrin (β-CD) on reduce toxicity and enhance removal ability of venlafaxine and O-desmethylvenlafaxine to S. scenedesmus. Based on dose-response results, the toxicity of R-venlafaxine (EC50 = 6.81 mg·L -1) and R-O-desmethylvenlafaxine (EC50 = 3.36 mg·L -1) to algae were more than two times than those in the presence of β-CD treatment (10.64 mg L -1 for R-venlafaxine and 11.87 mg L -1 for R-O-desmethylvenlafaxine). The significant differences were observed between S-venlafaxine (11.07 mg L -1) and S-O-desmethylvenlafaxine (10.24 mg L -1), which were more toxic than R-forms. The half-lives of R- and S-venlafaxine were 0.8 d and 0.5 d in the presence of β-CD, which were obvious shorter than those in alone treatments. In addition, our experiments not only demonstrated that β-CD performed particularly well for removal of venlafaxine and O-desmethylvenlafaxine, it significantly reduces the toxicity of venlafaxine to alga. These results highlight advantages of β-CD relevant to chiral drugs removal and protection of aquatic organisms, which may have a better application for environmental and ecological safety in future.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Wenwen Gong
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Jiajun Han
- Department of Chemistry, University of Toronto, Rm LM 321, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China
| | - Han Qu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, 810016, China; Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85712, United States.
| |
Collapse
|
18
|
Rodríguez C, Briano S, Leiva E. Increased Adsorption of Heavy Metal Ions in Multi-Walled Carbon Nanotubes with Improved Dispersion Stability. Molecules 2020; 25:molecules25143106. [PMID: 32650371 PMCID: PMC7397306 DOI: 10.3390/molecules25143106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, carbon nanotubes (CNTs) have been intensively studied as an effective adsorbent for the removal of pollutants from wastewater. One of the main problems for its use corresponds to the agglomeration of the CNTs due to the interactions between them, which prevents using their entire surface area. In this study, we test the effect of dispersion of oxidized multi-walled carbon nanotubes (MWCNTs) on the removal of heavy metals from acidic solutions. For this, polyurethane filters were dyed with a well-dispersed oxidized MWCNTs solution using chemical and mechanical dispersion methods. Filters were used in column experiments, and the sorption capacity increased more than six times (600%) compared to experiments with suspended MWCNTs. Further, kinetic experiments showed a faster saturation on MWCNTs in column experiments. These results contribute to a better understanding of the effect of dispersion on the use of CNTs as heavy metal ions adsorbent.
Collapse
Affiliation(s)
- Carolina Rodríguez
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
| | - Sebastián Briano
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
| | - Eduardo Leiva
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (C.R.); (S.B.)
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-2-2354-7224; Fax: +56-2-2354-5876
| |
Collapse
|
19
|
Samak DH, El-Sayed YS, Shaheen HM, El-Far AH, Abd El-Hack ME, Noreldin AE, El-Naggar K, Abdelnour SA, Saied EM, El-Seedi HR, Aleya L, Abdel-Daim MM. Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19058-19072. [PMID: 30499089 DOI: 10.1007/s11356-018-3675-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.
Collapse
Affiliation(s)
- Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hazem M Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Essa M Saied
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
20
|
Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One 2020; 15:e0226791. [PMID: 32374764 PMCID: PMC7202660 DOI: 10.1371/journal.pone.0226791] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, measurements of carbon nanotube toxicity and biodistribution have yielded a wide range of results. Properties such as nanotube type (single-walled vs. multi-walled), purity, length, aggregation state, and functionalization, as well as route of administration, greatly affect both the biocompatibility and biodistribution of carbon nanotubes. These differences suggest that generalizable conclusions may be elusive and that studies must be material- and application-specific. Here, we assess the short- and long-term biodistribution and biocompatibility of a single-chirality DNA-encapsulated single-walled carbon nanotube complex upon intravenous administration that was previously shown to function as an in-vivo reporter of endolysosomal lipid accumulation. Regarding biodistribution and fate, we found bulk specificity to the liver and >90% signal attenuation by 14 days in mice. Using near-infrared hyperspectral microscopy to measure single nanotubes, we found low-level, long-term persistence in organs such as the heart, liver, lung, kidney, and spleen. Measurements of histology, animal weight, complete blood count; biomarkers of organ function all suggest short- and long-term biocompatibility. This work suggests that carbon nanotubes can be used as preclinical research tools in-vivo without affecting acute or long-term health.
Collapse
|
21
|
Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, Gu AZ. Toxicity of Single-Walled Carbon Nanotubes (SWCNTs): Effect of Lengths, Functional Groups and Electronic Structures Revealed by a Quantitative Toxicogenomics Assay. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1348-1364. [PMID: 33537148 PMCID: PMC7853656 DOI: 10.1039/d0en00230e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a group of widely used carbon-based nanomaterials (CNMs) with various applications, which raise increasing public concerns associated with their potential toxicological effect and risks on human and ecosystems. In this report, we comprehensively evaluated the nanotoxicity of SWCNTs with their relationship to varying lengths, functional groups and electronic structures, by employing both newly established quantitative toxicogenomics test, as well as conventional phenotypic bioassays. The objective is to reveal potential cellular toxicity and mechanisms of SWCNTs at the molecular level, and to probe their potential relationships with their morphological, surface, and electronic properties. The results indicated that DNA damage and oxidative stress were the dominant mechanisms of action for all SWCNTs and, the toxicity level and characteristics varied with length, surface functionalization and electronic structure. Distinguishable molecular toxicity fingerprints were revealed for the two SWCNTs with varying length, with short SWCNT exhibiting higher toxicity level than the long one. In terms of surface properties, SWCNT functionalization, namely carboxylation and hydroxylation, led to elevated overall toxicity, especially genotoxicity, as compared to unmodified SWCNT. Carboxylated SWCNT induced a greater toxicity than the hydroxylated SWCNT. The nucleus is likely the primary target site for long, short, and carboxylated SWCNTs and mechanical perturbation is likely responsible for the DNA damage, specifically related to degradation of the DNA double helix structure. Finally, dramatically different electronic structure-dependent toxicity was observed with metallic SWCNT exerting much higher toxicity than the semiconducting one that exhibited minimal toxicity among all SWCNTs.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Corresponding authors: ,
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr., Ithaca, NY 14853
- Corresponding authors: ,
| |
Collapse
|
22
|
Wang X, Zhu Y, Chen M, Yan M, Zeng G, Huang D. How do proteins 'response' to common carbon nanomaterials? Adv Colloid Interface Sci 2019; 270:101-107. [PMID: 31200262 DOI: 10.1016/j.cis.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/01/2022]
Abstract
Carbon nanomaterials are widely produced and applied in biological and environmental fields because of their outstanding physical and chemical properties, which pose a threat to the safety of living organisms and the ecological environment. Therefore, understanding how carbon nanomaterials and their derivatives work on organisms is becoming important. In recent years, more and more researchers have explored the damage of carbon nanomaterials to organisms at the molecular level. This review pays special emphasis on how proteins response to the main carbon nanomaterials (fullerene, carbon nanotubes, graphene and their derivatives). In addition, how to use the interaction between carbon nanomaterials and proteins to do some beneficial things for human and the development of safe nanomaterials is simply discussed. Finally, some suggestions have been made to lay a theoretical foundation for future research.
Collapse
Affiliation(s)
- Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
23
|
Chen M, Sun Y, Liang J, Zeng G, Li Z, Tang L, Zhu Y, Jiang D, Song B. Understanding the influence of carbon nanomaterials on microbial communities. ENVIRONMENT INTERNATIONAL 2019; 126:690-698. [PMID: 30875562 DOI: 10.1016/j.envint.2019.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials (CNMs) are widely used because of their unique advantages in recent years. At the same time, the influence of CNMs on the environment is becoming increasingly prominent. This review mainly introduces the research progress in the effects of fullerenes, multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs) and graphene on microorganisms and their toxicity mechanisms. On this basis, we have analyzed beneficial and adverse effects of fullerenes, graphene, MWCNTs and SWCNTs to microorganisms, and discussed the similarities of the toxicity mechanisms of different CNMs on microorganisms. This review helps provide ideas on how to protect microorganisms from the impacts of carbon nanomaterials, and it will be conductive to providing a strong theoretical basis for better application of carbon nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yan Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Danni Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
24
|
Zhang M, Deng Y, Yang M, Nakajima H, Yudasaka M, Iijima S, Okazaki T. A Simple Method for Removal of Carbon Nanotubes from Wastewater Using Hypochlorite. Sci Rep 2019; 9:1284. [PMID: 30718788 PMCID: PMC6362128 DOI: 10.1038/s41598-018-38307-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/15/2018] [Indexed: 12/01/2022] Open
Abstract
Carbon nanotubes (CNTs) have been applied in a wide range of fields, such as materials, electronics, energy storages, and biomedicine. With the rapid increase in CNTs industrialization, more and more CNT-containing wastewater is being produced. Since concerns about the toxic effects of CNTs on human health persist, CNT-containing wastewater should not be released into the environment without purification, but no effective methods have been reported. In the present study, we report a simple method to eliminate CNTs from industrial or laboratorial wastewater using sodium hypochlorite. Direct treatment of aqueous dispersions with sodium hypochlorite solution completely degraded CNTs into carbon oxides or carbonates ions. Since hypochlorite is environmentally friendly and frequently used as a disinfectant or bleaching agent in domestic cleaning, this method is practical for purification of CNT-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Minfang Zhang
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Yinmei Deng
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mei Yang
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hideaki Nakajima
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masako Yudasaka
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.,Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan
| | - Sumio Iijima
- Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan
| | - Toshiya Okazaki
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
25
|
Chen M, Zhou S, Zhu Y, Sun Y, Zeng G, Yang C, Xu P, Yan M, Liu Z, Zhang W. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. CHEMOSPHERE 2018; 206:255-264. [PMID: 29753288 DOI: 10.1016/j.chemosphere.2018.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology has gained significant development over the past decades, which led to the revolution in the fields of information, medicine, industry, food security and aerospace aviation. Nanotechnology has become a new research hot spot in the world. However, we cannot only pay attention to its benefit to the society and economy, because its wide use has been bringing potential environmental and health effects that should be noticed. This paper reviews the recent progress from 2015-present in the toxicity of various carbon nanomaterials to plants, animals and microbes, and lays the foundation for further study on the environmental and ecological risks of carbon nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shuang Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Yingzhu Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
26
|
Zhu B, Zhu S, Li J, Hui X, Wang GX. The developmental toxicity, bioaccumulation and distribution of oxidized single walled carbon nanotubes in Artemia salina. Toxicol Res (Camb) 2018; 7:897-906. [PMID: 30310666 PMCID: PMC6116804 DOI: 10.1039/c8tx00084k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022] Open
Abstract
With the increasing production and applications of single walled carbon nanotubes (SWCNTs), concerns about the likelihood of SWCNTs being present in the aquatic environment and the subsequent effects on aquatic organisms are emerging. This work aimed to investigate the developmental toxicity, bioaccumulation and distribution of oxidized SWCNTs (O-SWCNTs) in a marine model organism, Artemia salina (A. salina). The results indicated that the hatching rates of capsulated and decapsulated cysts were decreased as the O-SWCNT concentration increased from 0 to 600 mg L-1 at 12, 18, 24 and 36 h. For instar I, II and III larvae exposure to 600 mg L-1, the mean mortality rates were 36.1%, 57.9% and 45.2%, respectively. Both the body length and swimming speed showed a concentration-dependent decrease after exposure to O-SWCNTs for 24 h. The inhibition of swimming may be caused by (1) the malformation of gills; (2) the attachment of O-SWCNTs on the gills. Reactive oxygen species (ROS) and antioxidant enzyme (catalase, superoxide dismutase and glutathione peroxidase) activities substantially increased following exposure, indicating that the toxic effects were related to oxidative stress. O-SWCNTs can be ingested, accumulated and excreted by A. salina, and distributed in the intestine, lipid vesicles and phagocytes. However, the accumulated O-SWCNTs were not completely excreted by A. salina. Uptake kinetics data showed that the O-SWCNT content increased from 1 to 48 h followed by a decrease from 48 to 72 h in the range from 0.08 to 5.7 mg g-1. The combined results so far indicate that O-SWCNTs have the potential to affect aquatic organisms when released into the marine ecosystems.
Collapse
Affiliation(s)
- Bin Zhu
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Song Zhu
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Jian Li
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Xin Hui
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Gao-Xue Wang
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| |
Collapse
|
27
|
Rastogi SK, Kalmykov A, Johnson N, Cohen-Karni T. Bioelectronics with nanocarbons. J Mater Chem B 2018; 6:7159-7178. [PMID: 32254631 DOI: 10.1039/c8tb01600c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Characterizing the electrical activity of cardiomyocytes and neurons is crucial in understanding the complex processes in the heart and brain tissues, both in healthy and diseased states. Micro- and nanotechnologies have significantly improved the electrophysiological investigation of cellular networks. Carbon-based nanomaterials or nanocarbons, such as carbon nanotubes (CNTs), nanodiamonds (NDs) and graphene are promising building blocks for bioelectronics platforms owing to their outstanding chemical and physical properties. In this review, we discuss the various bioelectronics applications of nanocarbons and their derivatives. Furthermore, we touch upon the challenges that remain in the field and describe the emergence of carbon-based hybrid-nanomaterials that will potentially address those limitations, thus improving the capabilities to investigate the electrophysiology of excitable cells, both as a network and at the single cell level.
Collapse
Affiliation(s)
- Sahil Kumar Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
28
|
Zhu S, Luo F, Li J, Zhu B, Wang GX. Biocompatibility assessment of single-walled carbon nanotubes using Saccharomyces cerevisiae as a model organism. J Nanobiotechnology 2018; 16:44. [PMID: 29695232 PMCID: PMC5916727 DOI: 10.1186/s12951-018-0370-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Single-walled carbon nanotubes (SWCNTs) have many potential applications in various fields. Especially, the unique physicochemical properties make them as the prime candidates for applications in biomedical fields. However, biocompatibility of SWCNTs has been a major concern for their applications. In the study, biocompatibility of oxidized SWCNTs (O-SWCNTs) was assessed using Saccharomyces cerevisiae (S. cerevisiae) as a model organism. RESULTS Cell proliferation and viability were significantly changed after exposure to O-SWCNTs (188.2 and 376.4 mg/L) for 24 h. O-SWCNTs were internalized in cells and distributed in cytoplasm, vesicles, lysosomes and cell nucleus. The average O-SWCNTs contents in S. cerevisiae were ranged from 0.18 to 4.82 mg/g during the exposure from 0 to 24 h, and the maximum content was reached at 18 h after exposure. Both penetration and endocytosis were involved in the internalization of O-SWCNTs in S. cerevisiae, and endocytosis was the main pathway. Cellular structures and morphology were changed after exposure to O-SWCNTs, such as undulating appearance at the membrane, shrinking of the cytosol, increased numbers of lipid droplets and disruption of vacuoles. ROS and antioxidant enzymes activities were observably changed following exposure. For the treatment at 376.4 mg/L, 20.8% of the total cells was undergone apoptosis. Decrease of mitochondrial transmembrane potential and leakage of cytochrome c from mitochondria were observed after exposure. Moreover, expression levels of apoptosis-related genes were significantly increased. CONCLUSIONS O-SWCNTs can internalize in S. cerevisiae cells via direct penetration and endocytosis, and distribute in cytoplasm, vesicles, lysosomes and cell nucleus. Besides, O-SWCNTs (188.2 and 376.4 mg/L) can induce apoptosis in S. cerevisiae cells, and oxidative stress is involved in activation of the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Song Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| | - Fei Luo
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| | - Jian Li
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| |
Collapse
|
29
|
Duoni D, Di Z, Chen H, Yin Z, Cui C, Qian W, Han M. Carbon nanotube-alumina strips as robust, rapid, reversible adsorbents of organics. RSC Adv 2018; 8:10715-10718. [PMID: 35540479 PMCID: PMC9078894 DOI: 10.1039/c8ra01233d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/04/2018] [Indexed: 11/22/2022] Open
Abstract
Developing nanostructured adsorbents of organics is crucial for environmental protection with low energy consumption, but care needs to be taken to prevent the loss of nanomaterials because of their small size. This paper reports the fabrication of carbon nanotube (CNT)-alumina strips (CASs) with a high surface area, sufficient mesopores and strongly interacted structure. Use of CASs allowed the rapid and reversible adsorption–desorption of para-xylene, when compared to pristine powders of CNT and activated carbon. Use of CASs is promising for the practical use when packed in a scaled adsorption tower. Strips of carbon nanotube-alumina exhibited robust structure and a better, rapid, reversible adsorption–desorption performance for organics, advantages over compared to pristine nanotube powder and activated carbon.![]()
Collapse
Affiliation(s)
- Duoni Duoni
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Zuoxing Di
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Hang Chen
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Zefang Yin
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Chaojie Cui
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Weizhong Qian
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Minghan Han
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
30
|
Raghavendra AJ, Fritz K, Fu S, Brown JM, Podila R, Shannahan JH. Variations in biocorona formation related to defects in the structure of single walled carbon nanotubes and the hyperlipidemic disease state. Sci Rep 2017; 7:8382. [PMID: 28814800 PMCID: PMC5559455 DOI: 10.1038/s41598-017-08896-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/19/2017] [Indexed: 01/25/2023] Open
Abstract
Ball-milling utilizes mechanical stress to modify properties of carbon nanotubes (CNTs) including size, capping, and functionalization. Ball-milling, however, may introduce structural defects resulting in altered CNT-biomolecule interactions. Nanomaterial-biomolecule interactions result in the formation of the biocorona (BC), which alters nanomaterial properties, function, and biological responses. The formation of the BC is governed by the nanomaterial physicochemical properties and the physiological environment. Underlying disease states such as cardiovascular disease can alter the biological milieu possibly leading to unique BC identities. In this ex vivo study, we evaluated variations in the formation of the BC on single-walled CNTs (SWCNTs) due to physicochemical alterations in structure resulting from ball-milling and variations in the environment due to the high-cholesterol disease state. Increased ball-milling time of SWCNTs resulted in enhanced structural defects. Following incubation in normal mouse serum, label-free quantitative proteomics identified differences in the biomolecular content of the BC due to the ball-milling process. Further, incubation in cholesterol-rich mouse serum resulted in the formation of unique BCs compared to SWCNTs incubated in normal serum. Our study demonstrates that the BC is modified due to physicochemical modifications such as defects induced by ball-milling and physiological disease conditions, which may result in variable biological responses.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA
- Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625, USA
| | - Kristofer Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Sherleen Fu
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jared M Brown
- Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA.
- Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
31
|
Ong LC, Tan YF, Tan BS, Chung FFL, Cheong SK, Leong CO. Single-walled carbon nanotubes (SWCNTs) inhibit heat shock protein 90 (HSP90) signaling in human lung fibroblasts and keratinocytes. Toxicol Appl Pharmacol 2017; 329:347-357. [DOI: 10.1016/j.taap.2017.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/17/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
|
32
|
Qi W, Tian L, An W, Wu Q, Liu J, Jiang C, Yang J, Tang B, Zhang Y, Xie K, Wang X, Li Z, Wu W. Curing the Toxicity of Multi-Walled Carbon Nanotubes through Native Small-molecule Drugs. Sci Rep 2017; 7:2815. [PMID: 28588210 PMCID: PMC5460272 DOI: 10.1038/s41598-017-02770-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
With the development and application of nanotechnology, large amounts of nanoparticles will be potentially released to the environment and possibly cause many severe health problems. Although the toxicity of nanoparticles has been investigated, prevention and treatment of damages caused by nanoparticles have been rarely studied. Therefore, isotope tracing and improved CT imaging techniques were used to investigate the biodistribution influence between oMWCNTs(oxidized multi-walled carbon nanotubes) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/or simvastatin (TD) in vivo. What’s more, biochemical indices in plasma and tissue histology were measured to further study therapeutic effects on the damages of oMWCNTs in mice. Isotope tracing and improved CT imaging results showed that low dosages of DOPC and TD didn’t affect the distribution of oMWCNTs in mice; conversely, the distribution and metabolism of DOPC and TD were influenced by oMWCNTs. Moreover, DOPC and/or TD improved the biocompatibility of oMWCNTs in erythrocyte suspension in vitro. Biochemical index and histopathological results indicated that DOPC and TD didn’t prevent injuries caused by oMWCNTs effectively. But TD showed a good therapeutic effect for damages. This study is the first to investigate prevention and treatment effects of drugs on damages caused by oMWCNTs and provides new insights and breakthroughs for management of nanoparticles on health hazards.
Collapse
Affiliation(s)
- Wei Qi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China.
| | - Longlong Tian
- Lanzhou University, Lanzhou City, 730000, Gansu Province, P.R. China
| | - Wenzhen An
- Lanzhou University, Lanzhou City, 730000, Gansu Province, P.R. China
| | - Qiang Wu
- Lanzhou University, Lanzhou City, 730000, Gansu Province, P.R. China
| | - Jianli Liu
- Lanzhou University Second Hospital, Lanzhou City, 730000, Gansu Province, P.R. China
| | - Can Jiang
- Non-power Nuclear Technology Research & Development Center, Hubei University of Science and Technology, Xianning City, 437000, Hubei Province, P.R. China
| | - Jun Yang
- Institue of Applied and Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China
| | - Bing Tang
- Institue of Applied and Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China
| | - Yafeng Zhang
- Institue of Applied and Electromagnetic Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China
| | - Kangjun Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan City, 430074, Hubei Province, P.R. China
| | - Xinling Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, P.R. China
| | - Zhan Li
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, P.R. China.
| | - Wangsuo Wu
- Lanzhou University, Lanzhou City, 730000, Gansu Province, P.R. China.
| |
Collapse
|
33
|
Rashid MHO, Ralph SF. Carbon Nanotube Membranes: Synthesis, Properties, and Future Filtration Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E99. [PMID: 28468314 PMCID: PMC5449980 DOI: 10.3390/nano7050099] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/16/2017] [Accepted: 04/24/2017] [Indexed: 01/03/2023]
Abstract
Over the course of the past decade, there has been growing interest in the development of different types of membranes composed of carbon nanotubes (CNTs), including buckypapers and composite materials, for an ever-widening range of filtration applications. This article provides an overview of how different types of CNT membranes are prepared and the results obtained from investigations into their suitability for different applications. The latter involve the removal of small particles from air samples, the filtration of aqueous solutions containing organic compounds and/or bacteria, and the separation of individual liquids present in mixtures. A growing number of reports have demonstrated that the incorporation of CNTs into composite membranes confers an improved resistance to fouling caused by biomacromolecules and bacteria. These results are discussed, along with evidence that demonstrates it is possible to further reduce fouling by taking advantage of the inherent conductivity of composite membranes containing CNTs, as well as by using different types of electrochemical stimuli.
Collapse
Affiliation(s)
- Md Harun-Or Rashid
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.
| | - Stephen F Ralph
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia.
| |
Collapse
|
34
|
Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy. PLoS One 2017; 12:e0174687. [PMID: 28369126 PMCID: PMC5378353 DOI: 10.1371/journal.pone.0174687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/12/2017] [Indexed: 12/03/2022] Open
Abstract
The photothermal effect of a marine-oriented xanthophyll carotenoid, astaxanthin (AXT), was characterized based on its potential absorption of visible laser light and conversion of optical light energy into heat for thermal treatment. As an antioxidant and anticancer agent, AXT extracted from marine material can be utilized for photothermal therapy due to its strong light absorption. The current study investigated the feasibility of the marine-based material AXT to increase the therapeutic efficacy of chemo-photothermal therapy (PTT) by assessing photothermal sessions in both cells and tumor tissues. A quasi-cw Q-switched 80 W 532 nm laser system was utilized to induce thermal necrosis in in vitro and in vivo models. An in vitro cytotoxicity study of AXT was implemented using squamous cell carcinoma (VX2) and macrophage (246.7) cell lines. In vivo PTT experiments were performed on 17 rabbits bearing VX2 tumors on their eyes that were treated with or without intratumoral injection of AXT at a dose of 100 μl (300 μg/ml) followed by laser irradiation at a low irradiance of 0.11 W/cm2. Fluorescence microscopy images revealed cellular death via apoptosis and necrosis owing to the dual chemo-photothermal effects induced by AXT. In vivo experimental results demonstrated that the AXT-assisted irradiation entailed a temperature increase by 30.4°C after tumor treatment for 4 min. The relative variations in tumor volume confirmed that the tumors treated with both AXT and laser irradiation completely disappeared 14 days after treatment, but the tumors treated under other conditions gradually grew. Due to selective light absorption, AXT-assisted laser treatment could be an effective thermal therapy for various drug-resistant cancers.
Collapse
|
35
|
Murakami T. Photodynamic Action of Single-Walled Carbon Nanotubes. Chem Pharm Bull (Tokyo) 2017; 65:629-636. [DOI: 10.1248/cpb.c17-00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Aydemir Sezer U, Ozturk K, Aru B, Yanıkkaya Demirel G, Sezer S, Bozkurt MR. Zero valent zinc nanoparticles promote neuroglial cell proliferation: A biodegradable and conductive filler candidate for nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:19. [PMID: 28012153 DOI: 10.1007/s10856-016-5831-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Regeneration of nerve, which has limited ability to undergo self-healing, is one of the most challenging areas in the field of tissue engineering. Regarding materials used in neuroregeneration, there is a recent trend toward electrically conductive materials. It has been emphasized that the capacity of conductive materials to regenerate such tissue having limited self-healing ability improves their clinical utility. However, there have been concerns about the safety of materials or fillers used for conductance due to their lack of degradability. Here, we attempt to use poly(Ɛ-caprolactone) (PCL) matrix consisting of varying proportions of zero valent zinc nanoparticles (Zn NPs) via electrospinning. These conductive, biodegradable, and bioactive materials efficiently promoted neuroglial cell proliferation depending on the amount of Zn NPs present in the PCL matrix. Chemical characterizations indicated that the incorporated Zn NPs do not interact with the PCL matrix chemically and that the Zn NPs improved the tensile properties of the PCL matrix. All composites exhibited linear conductivity under in vitro conditions. In vitro cell culture studies were performed to determine the cytotoxicity and proliferative efficiency of materials containing different proportions of Zn NPs. The results were obtained to explore new conductive fillers that can promote tissue regeneration.
Collapse
Affiliation(s)
- Umran Aydemir Sezer
- Materials Institute, TUBITAK Marmara Research Center, Kocaeli, 41470, Turkey
- Department of Electrical-Electronic Engineering, Sakarya University, Sakarya, 54187, Turkey
| | - Kevser Ozturk
- Institute of Chemical Technology, TUBITAK Marmara Research Center, Kocaeli, 41470, Turkey
| | - Basak Aru
- Department of Immunology Section, Yeditepe University, School of Medicine, İstanbul, 34755, Turkey
| | | | - Serdar Sezer
- Institute of Chemical Technology, TUBITAK Marmara Research Center, Kocaeli, 41470, Turkey.
| | - Mehmet Recep Bozkurt
- Department of Electrical-Electronic Engineering, Sakarya University, Sakarya, 54187, Turkey.
| |
Collapse
|
37
|
Nano-Inclusions Applied in Cement-Matrix Composites: A Review. MATERIALS 2016; 9:ma9121015. [PMID: 28774135 PMCID: PMC5456970 DOI: 10.3390/ma9121015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022]
Abstract
Research on cement-based materials is trying to exploit the synergies that nanomaterials can provide. This paper describes the findings reported in the last decade on the improvement of these materials regarding, on the one hand, their mechanical performance and, on the other hand, the new properties they provide. These features are mainly based on the electrical and chemical characteristics of nanomaterials, thus allowing cement-based elements to acquire "smart" functions. In this paper, we provide a quantitative approach to the reinforcements achieved to date. The fundamental concepts of nanoscience are introduced and the need of both sophisticated devices to identify nanostructures and techniques to disperse nanomaterials in the cement paste are also highlighted. Promising results have been obtained, but, in order to turn these advances into commercial products, technical, social and standardisation barriers should be overcome. From the results collected, it can be deduced that nanomaterials are able to reduce the consumption of cement because of their reinforcing effect, as well as to convert cement-based products into electric/thermal sensors or crack repairing materials. The main obstacle to foster the implementation of such applications worldwide is the high cost of their synthesis and dispersion techniques, especially for carbon nanotubes and graphene oxide.
Collapse
|
38
|
Yao C, Carlisi C, Li Y, Chen D, Ding J, Feng YL. Interaction Potency of Single-Walled Carbon Nanotubes with DNAs: A Novel Assay for Assessment of Hazard Risk. PLoS One 2016; 11:e0167796. [PMID: 27936089 PMCID: PMC5147993 DOI: 10.1371/journal.pone.0167796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/20/2016] [Indexed: 11/23/2022] Open
Abstract
Increasing use of single-walled carbon nanotubes (SWCNTs) necessitates a novel method for hazard risk assessment. In this work, we investigated the interaction of several types of commercial SWCNTs with single-stranded (ss) and double-stranded (ds) DNA oligonucleotides (20-mer and 20 bp). Based on the results achieved, we proposed a novel assay that employed the DNA interaction potency to assess the hazard risk of SWCNTs. It was found that SWCNTs in different sizes or different batches of the same product number of SWCNTs showed dramatically different potency of interaction with DNAs. In addition, the same SWCNTs also exerted strikingly different interaction potency with ss- versus ds- DNAs. The interaction rates of SWCNTs with DNAs were investigated, which could be utilized as the indicator of potential hazard for acute exposure. Compared to solid SWCNTs, the SWCNTs dispersed in liquid medium (2% sodium cholate solution) exhibited dramatically different interaction potency with DNAs. This indicates that the exposure medium may greatly influence the subsequent toxicity and hazard risk produced by SWCNTs. Based on the findings of dose-dependences and time-dependences from the interactions between SWCNTs and DNAs, a new chemistry based assay for hazard risk assessment of nanomaterials including SWCNTs has been presented.
Collapse
Affiliation(s)
- Chunhe Yao
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Cristina Carlisi
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Yuning Li
- Department of Chemical Engineering, Department of Chemistry, and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, Canada
| | - Da Chen
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, Illinois, United States
| | - Jianfu Ding
- Security and Disruptive Technologies, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
39
|
Li MS, Wu SC, Shih YH. Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship. JOURNAL OF HAZARDOUS MATERIALS 2016; 315:35-41. [PMID: 27152974 DOI: 10.1016/j.jhazmat.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/27/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Multiwall carbon nanotubes (MWCNTs) have been used as an adsorbent for evaluating the gas/solid partitioning of selected volatile organic compounds (VOCs). In this study, 15 VOCs were probed to determine their gas/solid partitioning coefficient (LogKd) using inverse gas chromatography at different relative humidity (RH) levels. Interactions between MWCNTs and VOCs were analyzed by regressing the observed LogKd with the linear solvation energy relationship (LSER). The results demonstrate that the MWCNT carbonyl and carboxyl groups provide high adsorption capacity for the VOCs (LogKd 3.72-5.24g/kg/g/L) because of the π-/n-electron pair interactions and hydrogen-bond acidity. The increasing RH gradually decreased the LogKd and shifted the interactions to dipolarity/polarizability, hydrogen-bond basicity, and cavity formation. The derived LSER equations provided adequate fits of LogKd, which is useful for VOC-removal processes and fate prediction of VOC contaminants by MWCNT adsorption in the environment.
Collapse
Affiliation(s)
- Mei-Syue Li
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Siang Chen Wu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
40
|
Park EJ, Hong YS, Lee BS, Yoon C, Jeong U, Kim Y. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation. ENVIRONMENTAL RESEARCH 2016; 148:184-195. [PMID: 27078092 DOI: 10.1016/j.envres.2016.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries.
Collapse
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, Daejeon 302-718, Republic of Korea.
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Yongbong-Ro, Buk-Gu, Gwangju 500-757, Republic of Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul 126-16, Republic of Korea
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| |
Collapse
|