1
|
Huerta Sanchez LL, Sankaran M, Li TL, Doan H, Chiu A, Shulman E, Shab G, Kippin TE, Szumlinski KK. Profiling prefrontal cortex protein expression in rats exhibiting an incubation of cocaine craving following short-access self-administration procedures. Front Psychiatry 2023; 13:1031585. [PMID: 36684008 PMCID: PMC9846226 DOI: 10.3389/fpsyt.2022.1031585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Incubation of drug-craving refers to a time-dependent increase in drug cue-elicited craving that occurs during protracted withdrawal. Historically, rat models of incubated cocaine craving employed extended-access (typically 6 h/day) intravenous drug self-administration (IV-SA) procedures, although incubated cocaine craving is reported to occur following shorter-access IV-SA paradigms. The notoriously low-throughput of extended-access IV-SA prompted us to determine whether two different short-access IV-SA procedures akin to those in the literature result in qualitatively similar changes in glutamate receptor expression and the activation of downstream signaling molecules within prefrontal cortex (PFC) subregions as those reported previously by our group under 6h-access conditions. Methods For this, adult, male Sprague-Dawley rats were trained to intravenously self-administer cocaine for 2 h/day for 10 consecutive days (2-h model) or for 6 h on day 1 and 2 h/day for the remaining 9 days of training (Mixed model). A sham control group was also included that did not self-administer cocaine. Results On withdrawal day 3 or 30, rats were subjected to a 2-h test of cue-reinforced responding in the absence of cocaine and a time-dependent increase in drug-seeking was observed under both IV-SA procedures. Immunoblotting of brain tissue collected immediately following the cue test session indicated elevated phospho-Akt1, phospho-CaMKII and Homer2a/b expression within the prelimbic subregion of the PFC of cocaine-incubated rats. However, we failed to detect incubation-related changes in Group 1 metabotropic glutamate receptor or ionotropic glutamate receptor subunit expression in either subregion. Discussion These results highlight further a role for Akt1-related signaling within the prelimbic cortex in driving incubated cocaine craving, and provide novel evidence supporting a potential role also for CaMKII-dependent signaling through glutamate receptors in this behavioral phenomenon.
Collapse
Affiliation(s)
- Laura L. Huerta Sanchez
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mathangi Sankaran
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Taylor L. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Hoa Doan
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Alvin Chiu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Eleanora Shulman
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Gabriella Shab
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
2
|
Effects of Sex and Estrous Cycle on the Time Course of Incubation of Cue-Induced Craving following Extended-Access Cocaine Self-Administration. eNeuro 2021; 8:ENEURO.0054-21.2021. [PMID: 34290059 PMCID: PMC8362687 DOI: 10.1523/eneuro.0054-21.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/17/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Cocaine addiction is a devastating public health epidemic that continues to grow. Studies focused on identifying biological factors influencing cocaine craving and relapse vulnerability are necessary to promote abstinence in recovering drug users. Sex and ovarian hormones are known to influence cocaine addiction liability and relapse vulnerability in both humans and rodents. Previous studies have investigated sex differences in the time-dependent intensification or "incubation" of cue-induced cocaine craving that occurs during withdrawal from extended-access cocaine self-administration and have identified changes across the rat reproductive cycle (estrous cycle). Female rats in the estrus stage of the cycle (Estrus Females), the phase during which ovulation occurs, show an increase in the magnitude of incubated cue-induced cocaine craving compared with females in all other phases of the estrous cycle (Non-Estrus Females). Here we extend these findings by assessing incubated craving across the estrous cycle during earlier withdrawal periods (withdrawal day 1 and 15) and later withdrawal periods (withdrawal day 48). We found that this increase in the magnitude of incubated craving during estrus (Estrus Females) is present on withdrawal day 15, but not on withdrawal day 1, and further increases by withdrawal day 48. No difference in the magnitude of incubated craving was observed between Males and Non-Estrus Females. Our data indicate that the effects of hormonal fluctuations on cue-induced cocaine craving intensify during the first month and a half of withdrawal, showing an interaction among abstinence length, estrous cycle fluctuations, and cocaine craving.
Collapse
|
3
|
Vanderschuren LJMJ, Ahmed SH. Animal Models of the Behavioral Symptoms of Substance Use Disorders. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a040287. [PMID: 32513674 PMCID: PMC8327824 DOI: 10.1101/cshperspect.a040287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To more effectively manage substance use disorders, it is imperative to understand the neural, genetic, and psychological underpinnings of addictive behavior. To contribute to this understanding, considerable efforts have been made to develop translational animal models that capture key behavioral characteristics of addiction on the basis of DSM5 criteria of substance use disorders. In this review, we summarize empirical evidence for the occurrence of addiction-like behavior in animals. These symptoms include escalation of drug use, neurocognitive deficits, resistance to extinction, exaggerated motivation for drugs, increased reinstatement of drug seeking after extinction, preference for drugs over nondrug rewards, and resistance to punishment. The occurrence of addiction-like behavior in laboratory animals has opened the opportunity to investigate the neural, genetic, and psychological background of key aspects of addiction, which may ultimately contribute to the prevention and treatment of substance use disorders.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Serge H Ahmed
- Université de Bordeaux, Bordeaux Neurocampus, Institut des Maladies Neurodégénératives, CNRS UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
4
|
The role of circTmeff-1 in incubation of context-induced morphine craving. Pharmacol Res 2021; 170:105722. [PMID: 34116208 DOI: 10.1016/j.phrs.2021.105722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/08/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023]
Abstract
A progressive increase in drug craving following drug exposure is an important trigger of relapse. CircularRNAs (CircRNAs), key regulators of gene expression, play an important role in neurological diseases. However, the role of circRNAs in drug craving is unclear. In the present study, we trained mice to morphine conditioned place preference (CPP) and collected the nucleus accumbens (NAc) sections on abstinence day 1 (AD1) and day 14 (AD14) for RNA-sequencing. CircTmeff-1, which was highly expressed in the NAc core, was associated with incubation of context-induced morphine craving. The gain- and loss- of function showed that circTmeff-1 was a positive regulator of incubation. Simultaneously, the expression of miR-541-5p and miR-6934-3p were down-regulated in the NAc core during the incubation period. The dual luciferase reporter, RNA pulldown, and fluorescence insitu hybridization assays confirmed that miR-541-5p and miR-6934-3p bind to circTmeff-1 selectively. Furthermore, bioinformatics and western blot analysis suggested that vesicle-associated membrane protein 1 (VAMP1) and neurofascin (NFASC), both overlapping targets of miR-541-5p and miR-6934-3p, were highly expressed during incubation. Lastly, AAV-induced down-regulation of circTmeff-1 decreased VAMP1 and NFASC expression and incubation of morphine craving. These findings suggested that circTmeff-1, a novel circRNA, promotes incubation of context-induced morphine craving by sponging miR-541/miR-6934 in the NAc core. Thus, circTmeff-1 represents a potential therapeutic target for context-induced opioid craving, following prolonged abstinence.
Collapse
|
5
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
6
|
Li X, Caprioli D, Marchant NJ. Recent updates on incubation of drug craving: a mini-review. Addict Biol 2015; 20:872-6. [PMID: 25440081 DOI: 10.1111/adb.12205] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cue-induced drug craving progressively increases after prolonged withdrawal from drug self-administration in laboratory animals, a behavioral phenomenon termed 'incubation of drug craving.' Studies over the years have revealed several important neural mechanisms contributing to incubation of drug craving. In this mini-review, we first discuss three excellent Addiction Biology publications on incubation of drug craving in both human and laboratory animals. We then review several key publications from the past year on behavioral and mechanistic findings related to incubation of drug craving.
Collapse
Affiliation(s)
- Xuan Li
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
| | - Daniele Caprioli
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
| | - Nathan J. Marchant
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| |
Collapse
|
7
|
Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res 2014; 279:240-54. [PMID: 25449839 DOI: 10.1016/j.bbr.2014.11.018] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 01/04/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here, we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the "addiction phase" examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF's potential relevance to treating cocaine addiction.
Collapse
Affiliation(s)
- Xuan Li
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD, USA.
| | - Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
8
|
Tunstall BJ, Kearns DN. Reinstatement in a cocaine versus food choice situation: reversal of preference between drug and non-drug rewards. Addict Biol 2014; 19:838-48. [PMID: 23551949 DOI: 10.1111/adb.12054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent studies show that when given a mutually exclusive choice between cocaine and food, rats almost exclusively choose food. The present experiment investigated potential shifts in preference between levers associated with either food or cocaine that might occur during extinction (food and cocaine no longer available) and during footshock-induced, cocaine-primed and food-primed reinstatement. During self-administration sessions where food and cocaine were simultaneously available, rats demonstrated a stable food preference, choosing food over cocaine on 83% of trials. During extinction when neither reinforcer was available, no preference between levers was evident and responding decreased until rats responded on the previously food- and cocaine-associated levers at equally low rates. Footshock resulted in a non-specific reinstatement of responding upon both levers, while cocaine priming resulted in a significant preference for cocaine seeking over food seeking. This suggests that the mechanism underlying footshock-induced reinstatement is distinct from that of cocaine-primed reinstatement. Food priming engendered a mild, non-specific increase in responding on both levers. Although rats generally prefer food over cocaine when presented with a choice between these primary reinforcers, the present results suggest that in certain situations, cocaine-seeking behavior prevails over food-seeking behavior.
Collapse
Affiliation(s)
| | - David N. Kearns
- Psychology Department; American University; Washington, DC USA
| |
Collapse
|
9
|
Lutgen V, Kong L, Kau KS, Madayag A, Mantsch JR, Baker DA. Time course of cocaine-induced behavioral and neurochemical plasticity. Addict Biol 2014; 19:529-38. [PMID: 22970924 PMCID: PMC3525779 DOI: 10.1111/j.1369-1600.2012.00493.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Factors that result in augmented reinstatement, including increased withdrawal period duration and high levels of cocaine consumption, may provide insight into relapse vulnerability. The neural basis of augmented reinstatement may arise from more pronounced changes in plasticity required for reinstatement and/or the emergence of plasticity expressed only during a specific withdrawal period or under specific intake conditions. In this study, we examined the impact of withdrawal period duration and cocaine intake on the magnitude of cocaine-primed reinstatement and extracellular glutamate in the nucleus accumbens, which has been shown to be required for cocaine-primed reinstatement. Rats were assigned to self-administer under conditions resulting in low (2 hours/day; 0.5 mg/kg/infusion, IV) or high (6 hours/day; 1.0 mg/kg/infusion, IV) levels of cocaine intake. After 1, 21 or 60 days of withdrawal, drug seeking and extracellular glutamate levels in the nucleus accumbens were measured before and after a cocaine injection. Cocaine-reinstated lever pressing and elevated extracellular glutamate at every withdrawal time point tested, which is consistent with the conclusion that increased glutamatergic signaling in the nucleus accumbens, is required for cocaine-induced reinstatement. Interestingly, high-intake rats exhibited augmented reinstatement at every time point tested, yet failed to exhibit higher levels of cocaine-induced increases in extracellular glutamate relative to low-intake rats. Our current data indicate that augmented reinstatement in high-intake rats is not due to relative differences in extracellular levels of glutamate in the nucleus accumbens, but rather may stem from intake-dependent plasticity.
Collapse
Affiliation(s)
- Victoria Lutgen
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Linghai Kong
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Kristen S. Kau
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Aric Madayag
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| |
Collapse
|
10
|
Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci 2013; 16:1644-51. [PMID: 24077564 PMCID: PMC3815713 DOI: 10.1038/nn.3533] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/04/2013] [Indexed: 12/15/2022]
Abstract
In rat models of drug relapse and craving, cue-induced cocaine seeking progressively increases after drug withdrawal. This ‘incubation of cocaine craving’ is partially mediated by time-dependent adaptations at glutamatergic synapses in nucleus accumbens. However, the circuit-level adaptations mediating this plasticity remain elusive. Here we studied silent synapses—often regarded as immature synapses that express stable NMDA receptors with AMPA receptors either absent or labile—in basolateral amygdala-to-accumbens projection in incubation of cocaine craving. Silent synapses were detected within this projection during early withdrawal from cocaine. As the withdrawal period progressed, these silent synapses became ‘unsilenced’, a process involving synaptic insertion of calcium-permeable AMPA receptors (CP-AMPARs). In vivo optogenetic stimulation-induced downregulation of CP-AMPARs at amygdala-to-NAc synapses, which re-silenced some of the previously silent synapses after prolonged withdrawal, decreased cocaine incubation. Our finding indicates that silent synapse-based reorganization of the amygdala-to-accumbens projection is critical for persistent cocaine craving and relapse after withdrawal.
Collapse
|
11
|
Kappa opioid receptors regulate stress-induced cocaine seeking and synaptic plasticity. Neuron 2013; 77:942-54. [PMID: 23473323 DOI: 10.1016/j.neuron.2012.12.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 12/23/2022]
Abstract
Stress facilitates reinstatement of addictive drug seeking in animals and promotes relapse in humans. Acute stress has marked and long-lasting effects on plasticity at both inhibitory and excitatory synapses on dopamine neurons in the ventral tegmental area (VTA), a key region necessary for drug reinforcement. Stress blocks long-term potentiation at GABAergic synapses on dopamine neurons in the VTA (LTPGABA), potentially removing a normal brake on activity. Here we show that blocking kappa opioid receptors (KORs) prior to forced-swim stress rescues LTPGABA. In contrast, blocking KORs does not prevent stress-induced potentiation of excitatory synapses nor morphine-induced block of LTPGABA. Using a kappa receptor antagonist as a selective tool to test the role of LTPGABA in vivo, we find that blocking KORs within the VTA prior to forced-swim stress prevents reinstatement of cocaine seeking. These results suggest that KORs may represent a useful therapeutic target for treatment of stress-triggered relapse in substance abuse.
Collapse
|
12
|
Abstract
It is increasingly recognized that studying drug taking in laboratory animals does not equate to studying genuine addiction, characterized by loss of control over drug use. This has inspired recent work aimed at capturing genuine addiction-like behavior in animals. In this work, we summarize empirical evidence for the occurrence of several DSM-IV-like symptoms of addiction in animals after extended drug use. These symptoms include escalation of drug use, neurocognitive deficits, resistance to extinction, increased motivation for drugs, preference for drugs over nondrug rewards, and resistance to punishment. The fact that addiction-like behavior can occur and be studied in animals gives us the exciting opportunity to investigate the neural and genetic background of drug addiction, which we hope will ultimately lead to the development of more effective treatments for this devastating disorder.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | | |
Collapse
|
13
|
Li X, DeJoseph M, Urban JH, Bahi A, Dreyer JL, Meredith GE, Ford KA, Ferrario CR, Loweth JA, Wolf ME. Different roles of BDNF in nucleus accumbens core versus shell during the incubation of cue-induced cocaine craving and its long-term maintenance. J Neurosci 2013; 33:1130-42. [PMID: 23325250 PMCID: PMC3711541 DOI: 10.1523/jneurosci.3082-12.2013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/09/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) contributes to diverse types of plasticity, including cocaine addiction. We investigated the role of BDNF in the rat nucleus accumbens (NAc) in the incubation of cocaine craving over 3 months of withdrawal from extended access cocaine self-administration. First, we confirmed by immunoblotting that BDNF levels are elevated after this cocaine regimen on withdrawal day 45 (WD45) and showed that BDNF mRNA levels are not altered. Next, we explored the time course of elevated BDNF expression using immunohistochemistry. Elevation of BDNF in the NAc core was detected on WD45 and further increased on WD90, whereas elevation in shell was not detected until WD90. Surface expression of activated tropomyosin receptor kinase B (TrkB) was also enhanced on WD90. Next, we used viral vectors to attenuate BDNF-TrkB signaling. Virus injection into the NAc core enhanced cue-induced cocaine seeking on WD1 compared with controls, whereas no effect was observed on WD30 or WD90. Attenuating BDNF-TrkB signaling in shell did not affect cocaine seeking on WD1 or WD45 but significantly decreased cocaine seeking on WD90. These results suggest that basal levels of BDNF transmission in the NAc core exert a suppressive effect on cocaine seeking in early withdrawal (WD1), whereas the late elevation of BDNF protein in NAc shell contributes to incubation in late withdrawal (WD90). Finally, BDNF protein levels in the NAc were significantly increased after ampakine treatment, supporting the novel hypothesis that the gradual increase of BDNF levels in NAc accompanying incubation could be caused by increased AMPAR transmission during withdrawal.
Collapse
Affiliation(s)
| | | | | | - Amine Bahi
- Department of Anatomy, United Arab Emirates University, Alabama-Ain, United Arab Emirates, and
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Gloria E. Meredith
- Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | | | | | | | | |
Collapse
|
14
|
Barnea-Ygael N, Yadid G, Yaka R, Ben-Shahar O, Zangen A. Cue-induced reinstatement of cocaine seeking in the rat "conflict model": effect of prolonged home-cage confinement. Psychopharmacology (Berl) 2012; 219:875-83. [PMID: 21792542 PMCID: PMC3260342 DOI: 10.1007/s00213-011-2416-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 07/11/2011] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES Drug addiction is not just the repeated administration of drugs, but compulsive drug use maintained despite the accumulation of adverse consequences for the user. In an attempt to introduce adverse consequences of drug seeking to laboratory animals, we have developed the "conflict model," in which the access of rats to a reinforcing lever allowing self-administration requires passing of an electrified grid floor. In this model, the current intensity leading to complete abstinence from drug seeking can be measured individually. The present study was designed to evaluated whether reinstatement of drug or natural reward seeking, despite the presence of the electrical barrier, can be achieved by presentation of discrete cues that were associated with the reward, and whether prolonged home-cage confinement can facilitate such reinstatement in this model. METHODS The "conflict model" was used to test cue-induced reinstatement in the presence of the electrical barrier, after 1 or 14 days of home-cage confinement, in groups of rats that were previously trained to self-administer cocaine or sucrose. RESULTS Although similar shock intensity was required to suppress sucrose or cocaine self-administration, subjects exhibited significantly lower response to sucrose-associated as compared to cocaine-associated cues, during the reinstatement test. Importantly, cue-induced reinstatement of cocaine seeking was attenuated following 14 days of home-cage confinement. CONCLUSIONS The incorporation of aversive consequence in the self-administration model enable detection of what can be interpreted as a compulsive component unique to drug reinforcers. Moreover, the effect of the aversive consequence seems to increase following home-cage confinement.
Collapse
Affiliation(s)
- N Barnea-Ygael
- The Weizmann Institute of Science, 76100 Rehovot, Israel,The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - G Yadid
- Bar Ilan University, Ramat-Gan, Israel
| | - R Yaka
- The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - O Ben-Shahar
- University of California, Santa Barbara, 93106-9660 CA, USA
| | - A Zangen
- The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
15
|
The science of making drug-addicted animals. Neuroscience 2011; 211:107-25. [PMID: 21864653 DOI: 10.1016/j.neuroscience.2011.08.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022]
Abstract
Research involving animal models of drug addiction can be viewed as a sort of reverse psychiatry. Contrary to clinicians who seek to treat addicted people to become and remain abstinent, researchers seek to make drug-naïve animals addicted to a drug with known addictive properties in humans. The goals of this research are to better understand the neuroscience of drug addiction and, ultimately, to translate this knowledge into effective treatments for people with addiction. The present review will not cover the vast literature that has accumulated over the past 50 years on animal models of drug addiction. It is instead more modestly devoted to recent research spanning the past decade on drug self-administration-based models of addiction in the rat (the animal species most frequently used in the field), with a special focus on current efforts to model compulsive cocaine use as opposed to nonaddictive use. Surprisingly, it turns out that modeling compulsive cocaine use in rats is possible but more difficult than previously thought. In fact, it appears that resilience to cocaine addiction is the norm in rats. As in human cocaine users, only few individual rats would be vulnerable. This conclusion has several important implications for future research on the neuroscience of cocaine addiction and on preclinical medication development.
Collapse
|
16
|
Airavaara M, Pickens CL, Stern AL, Wihbey KA, Harvey BK, Bossert JM, Liu QR, Hoffer BJ, Shaham Y. Endogenous GDNF in ventral tegmental area and nucleus accumbens does not play a role in the incubation of heroin craving. Addict Biol 2011; 16:261-72. [PMID: 21182575 PMCID: PMC3059093 DOI: 10.1111/j.1369-1600.2010.00281.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) activity in ventral tegmental area (VTA) mediates the time-dependent increases in cue-induced cocaine-seeking after withdrawal (incubation of cocaine craving). Here, we studied the generality of these findings to incubation of heroin craving. Rats were trained to self-administer heroin for 10 days (6 hours/day; 0.075 mg/kg/infusion; infusions were paired with a tone-light cue) and tested for cue-induced heroin-seeking in extinction tests after 1, 11 or 30 withdrawal days. Cue-induced heroin seeking was higher after 11 or 30 days than after 1 day (incubation of heroin craving), and the time-dependent increases in extinction responding were associated with time-dependent changes in GDNF mRNA expression in VTA and nucleus accumbens. Additionally, acute accumbens (but not VTA) GDNF injections (12.5 µg/side) administered 1-3 hours after the last heroin self-administration training session enhanced the time-dependent increases in extinction responding after withdrawal. However, the time-dependent increases in extinction responding after withdrawal were not associated with changes in GDNF protein expression in VTA and accumbens. Additionally, interfering with endogenous GDNF function by chronic delivery of anti-GDNF monoclonal neutralizing antibodies (600 ng/side/day) into VTA or accumbens had no effect on the time-dependent increases in extinction responding. In summary, heroin self-administration and withdrawal regulate VTA and accumbens GDNF mRNA expression in a time-dependent manner, and exogenous GDNF administration into accumbens but not VTA potentiates cue-induced heroin seeking. However, based on the GDNF protein expression and the anti-GDNF monoclonal neutralizing antibodies manipulation data, we conclude that neither accumbens nor VTA endogenous GDNF mediates the incubation of heroin craving.
Collapse
Affiliation(s)
- Mikko Airavaara
- Intramural Research Program and National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Erb S. Evaluation of the relationship between anxiety during withdrawal and stress-induced reinstatement of cocaine seeking. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:798-807. [PMID: 19969038 DOI: 10.1016/j.pnpbp.2009.11.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/13/2009] [Accepted: 11/30/2009] [Indexed: 01/30/2023]
Abstract
The initial termination of cocaine consumption in human addicts is associated with heightened anxiety states and low levels of craving. Craving, however, tends to increase progressively over time, remains high for extended periods of time, and can be exacerbated by stressors, leading to relapse. Laboratory rats, likewise, exhibit heightened states of anxiety after withdrawal from drug, and follow a time course of cocaine seeking that parallels the time course of craving reported in humans. In addition, laboratory rats show heightened susceptibility to relapse when exposed to stressors after extended periods of withdrawal, and exhibit persistent and heightened expressions of stress-induced anxiety. The general objective of this paper is to consider the relationship between anxiety states after withdrawal from cocaine and stress-induced reinstatement of cocaine seeking in laboratory rats, and to identify the neural substrates involved. The focus of the review is on studies addressing the roles of corticotropin-releasing factor (CRF) and noradrenaline pathways of the extended amygdala circuitry, and their direct or indirect interactions with the mesocorticolimbic dopamine system, in anxiety after withdrawal from cocaine and stress-induced reinstatement of cocaine seeking. Furthermore, the effects of time after withdrawal from cocaine and amount of cocaine exposure during self-administration on the activity of CRF, noradrenaline, and dopamine pathways of the extended amygdala and mesocorticolimbic systems will be considered. The review will highlight how changing levels of activity within these systems may serve to alter the nature of the relationship between anxiety and stress-induced reinstatement of cocaine seeking at different times after withdrawal from cocaine.
Collapse
Affiliation(s)
- Suzanne Erb
- Center for Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C 1A4.
| |
Collapse
|
19
|
Wolf ME. Regulation of AMPA receptor trafficking in the nucleus accumbens by dopamine and cocaine. Neurotox Res 2010; 18:393-409. [PMID: 20361291 DOI: 10.1007/s12640-010-9176-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 12/27/2022]
Abstract
Nucleus accumbens (NAc) neurons are excited primarily by AMPA-type glutamate receptors (AMPAR). This is required for cocaine seeking in animal models of cocaine addiction, suggesting AMPAR transmission in the NAc as a key control point for cocaine-related behaviors. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that may be important in two different stages of addiction: learning about drugs and drug-related cues during the period of drug exposure, and persistent vulnerability to craving and relapse after abstinence is achieved. The first example is drawn from studies of cultured NAc neurons. Elevation of dopamine levels (as would occur following cocaine exposure) facilitates activity-dependent strengthening of excitatory synapses onto medium spiny neurons, the main cell type and projection neuron of the NAc. This occurs because activation of D1-class dopamine receptors primes AMPAR for synaptic insertion. This may create a temporal window in which stimuli related to cocaine-taking are more efficacious at eliciting synaptic plasticity and thus being encoded into memory. The second example involves rat models of cocaine addiction. Cell surface and synaptic expression of AMPAR on NAc neurons is persistently increased after withdrawal from repeated cocaine exposure. We hypothesize that this increases the reactivity of NAc neurons to glutamate inputs from cortex and limbic structures, facilitating the ability of these inputs to trigger cocaine seeking and thus contributing to the persistent vulnerability to relapse that characterizes addiction.
Collapse
Affiliation(s)
- Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA.
| |
Collapse
|
20
|
Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev 2010; 35:185-211. [PMID: 20109488 DOI: 10.1016/j.neubiorev.2010.01.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/17/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
This review focuses on cocaine-induced postsynaptic plasticity in the nucleus accumbens (NAc) involving changes in AMPA receptor (AMPAR) transmission. First, fundamental properties of AMPAR in the NAc are reviewed. Then, we provide a detailed and critical analysis of literature demonstrating alterations in AMPAR transmission in association with behavioral sensitization to cocaine and cocaine self-administration. We conclude that cocaine exposure leads to changes in AMPAR transmission that depend on many factors including whether exposure is contingent or non-contingent, the duration of withdrawal, and whether extinction training has occurred. The relationship between changes in AMPAR transmission and responding to cocaine or cocaine-paired cues can also be affected by these variables. However, after prolonged withdrawal in the absence of extinction training, our findings and others lead us to propose that AMPAR transmission is enhanced, resulting in stronger responding to drug-paired cues. Finally, many results indicate that the state of synaptic transmission in the NAc after cocaine exposure is associated with impairment of AMPAR-dependent plasticity. This may contribute to a broad range of addiction-related behavioral changes.
Collapse
Affiliation(s)
- Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, United States.
| | | |
Collapse
|
21
|
Madayag A, Kau KS, Lobner D, Mantsch JR, Wisniewski S, Baker DA. Drug-induced plasticity contributing to heightened relapse susceptibility: neurochemical changes and augmented reinstatement in high-intake rats. J Neurosci 2010; 30:210-7. [PMID: 20053903 PMCID: PMC2823262 DOI: 10.1523/jneurosci.1342-09.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/21/2022] Open
Abstract
A key in understanding the neurobiology of addiction and developing effective pharmacotherapies is revealing drug-induced plasticity that results in heightened relapse susceptibility. Previous studies have demonstrated that increased extracellular glutamate, but not dopamine, in the nucleus accumbens core (NAcc) is necessary for cocaine-induced reinstatement. In this report, we examined whether drug-induced adaptations that are necessary to generate cocaine-induced reinstatement also determine relapse vulnerability. To do this, rats were assigned to self-administer cocaine under conditions resulting in low (2 h/d; 0.5 mg/kg/infusion, i.v.) or high (6 h/d; 1.0 mg/kg/infusion, i.v.) levels of drug intake since these manipulations produce groups of rats exhibiting differences in the magnitude of cocaine-induced reinstatement. Approximately 19 d after the last session, cocaine-induced drug seeking and extracellular levels of glutamate and dopamine in the NAcc were measured. Contrary to our hypothesis, high-intake rats exhibited a more robust cocaine-induced increase in extracellular levels of dopamine but not glutamate. Further, increased reinstatement in high-intake rats was no longer observed when the D(1) receptor antagonist SCH-23390 was infused into the NAcc. The sensitized dopamine response to cocaine in high-intake rats may involve blunted cystine-glutamate exchange by system x(c(-)). Reduced (14)C-cystine uptake through system x(c(-)) was evident in NAcc tissue slices obtained from high-intake rats, and the augmented dopamine response in these rats was no longer observed when subjects received the cysteine prodrug N-acetyl cysteine. These data reveal a role for drug-induced NAcc dopamine in heightened relapse vulnerability observed in rats with a history of high levels of drug intake.
Collapse
Affiliation(s)
- Aric Madayag
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Kristen S. Kau
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Samantha Wisniewski
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
22
|
Two modes of intense cocaine bingeing: increased persistence after social defeat stress and increased rate of intake due to extended access conditions in rats. Psychopharmacology (Berl) 2009; 206:109-20. [PMID: 19513697 PMCID: PMC4371736 DOI: 10.1007/s00213-009-1584-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 05/26/2009] [Indexed: 12/19/2022]
Abstract
RATIONALE Escalated, binge-like patterns of cocaine self-administration are engendered by repeated, intermittent exposure to episodes of social defeat stress, as well as by extended drug access. OBJECTIVES The present study investigated if prior exposure to brief episodes of social defeat stress would intensify the escalation of cocaine self-administration associated with extended access conditions. The consequences of both stress sensitization and prolonged access were further assessed with progressive ratio (PR) break points and during a 24-h variable dose "binge". METHODS Male Long-Evans rats were exposed to four episodes of defeat stress (days 1-4-7-10), and their locomotor response to cocaine was assessed 10 days later. Rats were subsequently implanted with intravenous catheters. After acquisition, stressed and control rats were allowed daily short (1 h/day) or extended (6 h/day) sessions of cocaine self-administration for 14 days (0.75 mg/kg/infusion). In sequence, we determined break points for cocaine on PR tests and assessed drug intake patterns during a 24-h variable dose binge. RESULTS Defeat stress induced cross-sensitization to a cocaine challenge, increased break points for cocaine, and produced persistent, escalated cocaine taking during a 24-h binge. Rats with extended access to cocaine-both stressed and controls-similarly escalated their drug intake throughout the 14 days. Extended access conditions accelerated the rate of cocaine self-administration in the first half of the binge, indicated by shorter post-infusion intervals, but failed to amplify the accumulated drug intake in non-stressed controls. CONCLUSIONS Both social defeat stress and drug access conditions may engender escalated cocaine intake via distinct mechanisms that regulate drug self-administration.
Collapse
|
23
|
Lu L, Wang X, Wu P, Xu C, Zhao M, Morales M, Harvey BK, Hoffer BJ, Shaham Y. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol Psychiatry 2009; 66:137-45. [PMID: 19345340 PMCID: PMC3150198 DOI: 10.1016/j.biopsych.2009.02.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ventral tegmental area (VTA) brain-derived neurotrophic factor (BDNF) contributes to time-dependent increases in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Here, we studied the role of glial cell line-derived neurotrophic factor (GDNF) in incubation of cocaine craving because, like BDNF, GDNF provides trophic support to midbrain dopamine neurons. METHODS We first trained rats to self-administer intravenous cocaine for 10 days (6 hours/d, cocaine injections were paired with a tone-light cue). We then manipulated VTA GDNF function and assessed cue-induced cocaine seeking in extinction tests after withdrawal from cocaine. RESULTS VTA injections of an adeno-associated virus (AAV) vector containing rat GDNF cDNA (5 x 10(8) viral genomes) on withdrawal Day 1 increased cue-induced cocaine seeking on withdrawal days 11 and 31; this effect was not observed after VTA injections of an AAV viral vector containing red fluorescent protein (RFP). Additionally, VTA, but not substantial nigra (SN), GDNF injections (1.25 microg or 12.5 microg/side) immediately after the last cocaine self-administration session increased cue-induced drug seeking on withdrawal days 3 and 10; this effect was reversed by VTA injections of U0126, which inhibits the activity of extracellular signal-regulated kinases (ERK). Finally, interfering with VTA GDNF function by chronic delivery of anti-GDNF monoclonal neutralizing antibodies via minipumps (600 ng/side/d) during withdrawal Days 1-14 prevented the time-dependent increases in cue-induced cocaine seeking on withdrawal days 11 and 31. CONCLUSIONS Our results indicate that during the first weeks of withdrawal from cocaine self-administration, GDNF-dependent neuroadaptations in midbrain VTA neurons play an important role in the development of incubation of cocaine craving.
Collapse
Affiliation(s)
- Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Earlier studies suggest that opioid receptors in the ventral tegmental area, but not the nucleus accumbens (NAc), play a role in relapse to drug-seeking behavior. However, environmental stimuli that elicit relapse also release the endogenous opioid beta-endorphin in the NAc. Using a within-session extinction/reinstatement paradigm in rats that self-administer cocaine, we found that NAc infusions of the mu-opioid receptor (MOR) agonist DAMGO moderately reinstated responding on the cocaine-paired lever at low doses (1.0-3.0 ng/side), whereas the delta-opioid receptor (DOR) agonist DPDPE induced greater responding at higher doses (300-3000 ng/side) that also enhanced inactive lever responding. Using doses of either agonist that induced responding on only the cocaine-paired lever, we found that DAMGO-induced responding was blocked selectively by pretreatment with the MOR antagonist, CTAP, whereas DPDPE-induced responding was selectively blocked by the DOR antagonist, naltrindole. Cocaine-primed reinstatement was blocked by intra-NAc CTAP but not naltrindole, indicating a role for endogenous MOR-acting peptides in cocaine-induced reinstatement of cocaine-seeking behavior. In this regard, intra-NAc infusions of beta-endorphin (100-1000 ng/side) induced marked cocaine-seeking behavior, an effect blocked by intra-NAc pretreatment with the MOR but not DOR antagonist. Conversely, cocaine seeking elicited by the enkephalinase inhibitor thiorphan (1-10 microg/side) was blocked by naltrindole but not CTAP. MOR stimulation in more dorsal caudate-putamen sites was ineffective, whereas DPDPE infusions induced cocaine seeking. Together, these findings establish distinct roles for MOR and DOR in cocaine relapse and suggest that NAc MOR could be an important therapeutic target to neutralize the effects of endogenous beta-endorphin release on cocaine relapse.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cocaine/pharmacology
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Disease Models, Animal
- Dopamine Uptake Inhibitors/pharmacology
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Male
- Narcotic Antagonists/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Nucleus Accumbens/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Recurrence
- Reward
- Self Administration
- Substance Withdrawal Syndrome/drug therapy
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- beta-Endorphin/metabolism
- beta-Endorphin/pharmacology
Collapse
Affiliation(s)
- Diana Simmons
- Department of Psychiatry and the Neuroscience Graduate Program, The Seay Center for Basic and Applied Research in Psychiatric Illness, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
25
|
Li YQ, Li FQ, Wang XY, Wu P, Zhao M, Xu CM, Shaham Y, Lu L. Central amygdala extracellular signal-regulated kinase signaling pathway is critical to incubation of opiate craving. J Neurosci 2008; 28:13248-57. [PMID: 19052216 PMCID: PMC3733549 DOI: 10.1523/jneurosci.3027-08.2008] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/25/2008] [Accepted: 10/17/2008] [Indexed: 11/21/2022] Open
Abstract
Cue-induced drug-seeking in rodents progressively increases after withdrawal from operant self-administration of cocaine, heroin, methamphetamine, and alcohol, a phenomenon termed "incubation of drug craving." Here, we used the opiate drug morphine and explored whether incubation of drug craving also occurs in a pavlovian conditioned place preference (CPP) procedure in which rats learn to associate drug effects with a distinct environmental context. We also explored the role of amygdala extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in this incubation. We found that the expression of morphine CPP progressively increases over the first 14 d after the last drug exposure in rats receiving four pairings of low-dose (1 or 3 mg/kg) but not high-dose (10 mg/kg) morphine with a distinct environment. The progressive increase in low-dose (3 mg/kg) morphine CPP was associated with increased ERK phosphorylation (a measure of ERK activity) and CREB (a downstream target of ERK) phosphorylation in central but not basolateral amygdala. Furthermore, inhibition of central but not basolateral amygdala ERK and CREB phosphorylation by U0126 [1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene] decreased the enhanced (incubated) drug CPP after 14 d of withdrawal from morphine. Finally, stimulation of central amygdala ERK and CREB phosphorylation by NMDA enhanced drug CPP after 1 d of withdrawal from morphine, an effect reversed by U0126. These findings indicate that the rat's response to environmental cues previously paired with morphine progressively increases or incubates over the first 14 d of withdrawal from low but not high morphine doses. Additionally, this "incubation of morphine craving" is mediated by acute activation of central amygdala ERK pathway.
Collapse
Affiliation(s)
- Yan-Qin Li
- National Institute on Drug Dependence, Peking University, Beijing 100083, China, and
| | - Fang-Qiong Li
- National Institute on Drug Dependence, Peking University, Beijing 100083, China, and
| | - Xiao-Yi Wang
- National Institute on Drug Dependence, Peking University, Beijing 100083, China, and
| | - Ping Wu
- National Institute on Drug Dependence, Peking University, Beijing 100083, China, and
| | - Mei Zhao
- National Institute on Drug Dependence, Peking University, Beijing 100083, China, and
| | - Chun-Mei Xu
- National Institute on Drug Dependence, Peking University, Beijing 100083, China, and
| | - Yavin Shaham
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing 100083, China, and
| |
Collapse
|
26
|
Stewart J. Review. Psychological and neural mechanisms of relapse. Philos Trans R Soc Lond B Biol Sci 2008; 363:3147-58. [PMID: 18640921 DOI: 10.1098/rstb.2008.0084] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Relapse, the resumption of drug taking after periods of abstinence, remains the major problem for the treatment of addiction. Even when drugs are unavailable for long periods or when users are successful in curbing their drug use for extended periods, individuals remain vulnerable to events that precipitate relapse. Behavioural studies in humans and laboratory animals show that drug-related stimuli, drugs themselves and stressors are powerful events for the precipitation of relapse. Molecular, neurochemical and anatomical studies have identified lasting neural changes that arise from mere exposure to drugs and other enduring changes that arise from learning about the relationship between drug-related stimuli and drug effects. Chronic drug exposure increases sensitivity of some systems of the brain to the effects of drugs and stressful events. These changes, combined with those underlying conditioning and learning, perpetuate vulnerability to drug-related stimuli. Circuits of the brain involved are those of the mesocorticolimbic dopaminergic system and its glutamatergic connections, and the corticotropin-releasing factor and noradrenergic systems of the limbic brain. This paper reviews advances in our understanding of how these systems mediate the effects of events that precipitate relapse and of how lasting changes in these systems can perpetuate vulnerability to relapse.
Collapse
Affiliation(s)
- Jane Stewart
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Kuntz KL, Twining RC, Baldwin AE, Vrana KE, Grigson PS. Heroin self-administration: I. Incubation of goal-directed behavior in rats. Pharmacol Biochem Behav 2008; 90:344-8. [PMID: 18471868 PMCID: PMC3636717 DOI: 10.1016/j.pbb.2008.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
This study used heroin self-administration to investigate incubation of goal-directed heroin-seeking behavior following abstinence. Male Sprague-Dawley rats self-administered heroin on a fixed ratio 10 (FR10) schedule of reinforcement with licking of an empty spout serving as the operant behavior during 14 daily 3 h sessions. After this acquisition period, all rats received a 90 min extinction session following either 1 day or 14 days of home cage abstinence. When the extinction session occurred after only 1 day of home cage abstinence, rats with a history of heroin self-administration divided their responses equally between the previously "active" and "inactive" spouts. However, when the extinction session occurred following 14 days of home cage abstinence, the rats exhibited marked goal-directed heroin-seeking behavior by licking more on the previously "active" than "inactive" spout. These findings demonstrate that heroin-seeking behavior incubates over time, resulting in goal-directed heroin-seeking behavior in rats following 14 days but not 1 day of abstinence. Moreover, this facilitatory effect occurred in response to a different training schedule, lower total drug intake, and shorter periods of daily access than previously reported with heroin.
Collapse
Affiliation(s)
- Kara L Kuntz
- Department of Pharmacology, Pennsylvania State University College of Medicine, R130, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
28
|
Aujla H, Martin-Fardon R, Weiss F. Rats with extended access to cocaine exhibit increased stress reactivity and sensitivity to the anxiolytic-like effects of the mGluR 2/3 agonist LY379268 during abstinence. Neuropsychopharmacology 2008; 33:1818-26. [PMID: 17895914 DOI: 10.1038/sj.npp.1301588] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate 2/3 receptors (mGluR2/3) are emerging targets for the reduction of stress that contributes to drug relapse. The effect of a history of cocaine escalation on stress reactivity during abstinence and the role of mGlu2/3 receptors in stress in these animals were tested. Experiment 1-Rats trained to self-administer cocaine, under short (ShA, 1-h) or long (LgA, 6-h) access conditions, or noncaloric food pellets (Ctrl, 1-h), were tested for stress reactivity in the shock-probe defensive burying test following 1, 14, 42, or 84 days of abstinence. Experiment 2-Experimentally naive rats receiving the mGlu2/3 receptor agonist LY379268 (0, 0.3, 1.0, or 3.0 mg/kg) were tested in the defensive burying test to establish the anxiolytic efficacy of this compound in this model. Experiment 3-Rats with a history of ShA vs LgA cocaine self-administration, or a history of operant responding reinforced by noncaloric food pellets, were tested in the defensive burying test, following administration of LY379268 (0.3, 1.0, or 3.0 mg/kg) at 14 days of abstinence. LgA rats exhibited a two- to threefold increase in defensive burying at 1, 14, and 42 days of abstinence compared to ShA or control animals. LY379268 (3.0 mg/kg) reduced burying in all groups, whereas the 1.0-mg/kg dose reduced burying only in the LgA group. A robust and enduring increase in stress reactivity developed in rats with a history of daily 6-h access to cocaine. The anxiolytic-like effects of LY379268 identify mGlu2/3 receptors as targets for ameliorating stress-associated relapse risk, and point toward the possibility that a history of cocaine escalation in rats may modify glutamatergic function.
Collapse
Affiliation(s)
- Harinder Aujla
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
29
|
Tomie A, Grimes KL, Pohorecky LA. Behavioral characteristics and neurobiological substrates shared by Pavlovian sign-tracking and drug abuse. BRAIN RESEARCH REVIEWS 2008; 58:121-35. [PMID: 18234349 PMCID: PMC2582385 DOI: 10.1016/j.brainresrev.2007.12.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 11/07/2007] [Accepted: 12/08/2007] [Indexed: 11/18/2022]
Abstract
Drug abuse researchers have noted striking similarities between behaviors elicited by Pavlovian sign-tracking procedures and prominent symptoms of drug abuse. In Pavlovian sign-tracking procedures, repeated paired presentations of a small object (conditioned stimulus, CS) with a reward (unconditioned stimulus, US) elicits a conditioned response (CR) that typically consists of approaching the CS, contacting the CS, and expressing consummatory responses at the CS. Sign-tracking CR performance is poorly controlled and exhibits spontaneous recovery and long-term retention, effects that resemble relapse. Sign-tracking resembles psychomotor activation, a syndrome of behavioral responses evoked by addictive drugs, and the effects of sign-tracking on corticosterone levels and activation of dopamine pathways resemble the neurobiological effects of abused drugs. Finally, the neurobiological profile of individuals susceptible to sign-tracking resembles the pathophysiological profile of vulnerability to drug abuse, and vulnerability to sign-tracking predicts vulnerability to impulsive responding and alcohol self-administration. Implications of sign-tracking for models of drug addiction are considered.
Collapse
Affiliation(s)
- Arthur Tomie
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA.
| | | | | |
Collapse
|
30
|
Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology 2008; 56 Suppl 1:177-85. [PMID: 18565549 PMCID: PMC2635336 DOI: 10.1016/j.neuropharm.2008.04.022] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/14/2008] [Accepted: 04/18/2008] [Indexed: 11/21/2022]
Abstract
Cue-induced drug-seeking in rodents progressively increases after withdrawal from cocaine, suggesting that cue-induced cocaine craving incubates over time. Here, we explored the role of the medial prefrontal cortex (mPFC, a brain area previously implicated in cue-induced cocaine seeking) in this incubation. We trained rats to self-administer cocaine for 10days (6h/day, infusions were paired with a tone-light cue), and then assessed after 1 or 30 withdrawal days the effect of exposure to cocaine cues on lever presses in extinction tests. We found that cue-induced cocaine-seeking in the extinction tests was higher after 30 withdrawal days than after 1day. The time-dependent increases in extinction responding were associated with large (ventral mPFC) or modest (dorsal mPFC) increases in ERK phosphorylation (a measure of ERK activity and an index of neuronal activation). After 30 withdrawal days, ventral but not dorsal injections of muscimol+baclofen (GABAa+GABAb receptor agonists that inhibit neuronal activity) decreased extinction responding. After 1 withdrawal day, ventral but not dorsal mPFC injections of bicuculline+saclofen (GABAa+GABAb receptor antagonists that increase neuronal activity) strongly increased extinction responding. Finally, muscimol+baclofen had minimal effect on extinction responding after 1day, and in cocaine-experienced rats, ventral mPFC injections of muscimol+baclofen or bicuculline+saclofen had no effect on lever presses for an oral sucrose solution. The present results indicate that ventral mPFC neuronal activity plays an important role in the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eisuke Koya
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
31
|
Protracted time-dependent increases in cocaine-seeking behavior during cocaine withdrawal in female relative to male rats. Psychopharmacology (Berl) 2008; 198:63-75. [PMID: 18265959 DOI: 10.1007/s00213-008-1089-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Female rats display higher sensitivity to cocaine relative to males under a variety of conditions. Time-dependent increases in cocaine-seeking behavior (as measured by nonreinforced operant responses) during cocaine withdrawal have been reported in male, but not female, rats. OBJECTIVES The present study determines sex and estrous cycle influences on time-dependent changes in cocaine-seeking behavior. MATERIALS AND METHODS Male and female Sprague-Dawley rats were reinforced for "active lever" responses by a cocaine infusion (0.50 mg/kg/infusion, i.v., fixed ratio schedule of reinforcement, FR1) followed by a 20-s time-out when reinforcement was not delivered. Infusions were paired with a light + tone conditioned stimulus. Next, rats underwent cocaine withdrawal for 1, 14, 60, or 180 days before testing cocaine-seeking behavior. Each rat was tested for extinction of operant responding, conditioned-cued reinstatement, and cocaine-primed (10 mg/kg, i.p.) reinstatement. RESULTS Both males and females displayed a time-dependent increase in cocaine-seeking behavior (active lever presses) under extinction of operant responding and conditioned-cued reinstatement conditions after 60 days of cocaine withdrawal. Moreover, cocaine-seeking behavior during extinction of operant responding in females, but not males, remained elevated at 180 days of cocaine withdrawal. Furthermore, females tested during estrus exhibited higher cocaine-seeking behavior under both extinction of operant responding and cocaine-primed reinstatement conditions relative to other rats independent of the duration of cocaine withdrawal. CONCLUSIONS The effects of reproductive cycle and withdrawal duration on cocaine-seeking behavior are additive and time-dependent increases in cocaine-seeking behavior are more enduring in females than in male rats.
Collapse
|
32
|
Cummins E, Leri F. Unreinforced responding during limited access to heroin self-administration. Pharmacol Biochem Behav 2008; 90:420-7. [PMID: 18479741 DOI: 10.1016/j.pbb.2008.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/21/2008] [Accepted: 03/29/2008] [Indexed: 11/29/2022]
Abstract
These studies were designed to explore a peculiar behavior displayed by rats during the acquisition of heroin self-administration (0.05 mg/kg/infusion) on a fixed-ratio 1 schedule of reinforcement in limited access conditions (i.e. 3 h/day). Rats trained under these conditions develop a tendency to emit extra lever presses during the time of heroin infusions (unreinforced responses). We found that a similar behavior develops in animals responding for sucrose pellets, but not for intravenous infusions of cocaine (0.5 mg/kg/infusion, 3 h/day). In sucrose trained rats, unreinforced responses emitted during the delivery of sucrose pellets was enhanced by food deprivation. In heroin trained rats, development of unreinforced responding was accompanied by an increase in responding for heroin on a progressive ratio schedule, and by a reduction of the depressant action of heroin (3 mg/kg, SC) on locomotor activity. On the basis of these findings, we concluded that unreinforced responding during heroin self-administration reflects a change in the motivation to obtain the drug, as well as a reduced sensitivity the motor impairing action of heroin. This suggests that acquisition of heroin self-administration is regulated by a balance between drug effects that promote and limit heroin intake.
Collapse
Affiliation(s)
- Erin Cummins
- Department of Psychology, University of Guelph, Guelph (ON), Canada N1G 2W1
| | | |
Collapse
|
33
|
Ben-Shahar O, Posthumus EJ, Waldroup SA, Ettenberg A. Heightened drug-seeking motivation following extended daily access to self-administered cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:863-9. [PMID: 18281138 PMCID: PMC2290735 DOI: 10.1016/j.pnpbp.2008.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/25/2022]
Abstract
Rats allowed extended daily access (6 h) to cocaine, consume high doses of the drug and escalate their cocaine intake over days, resembling the pattern of cocaine use seen in human addicts. The current study was designed to test whether such animals would also demonstrate the heightened motivation to seek cocaine seen in human addicts. Rats were trained to lever press for i.v. cocaine (0.25 mg/infusion) over a 5-day period of 1 h sessions. Subjects were then assigned to either a brief-access (1 h/day) or an extended-access condition for an additional 10 days. Control rats lever pressed for i.v. saline. Following the final self-administration session animals were tested for their motivation to receive cocaine in an operant runway apparatus. Extended-access animals exhibited significantly higher motivation for cocaine in the runway (where they received 1.0 mg/kg cocaine i.v. upon goal-box entry) as was evident by faster run times and less ambivalence about entering the goal box (i.e. retreat behavior) than either brief-access or control subjects. Brief and extended-access animals, tested in the Elevated Plus Maze, exhibited comparable and significant increases in anxiety following a single 1.0 mg/kg i.v. injection of cocaine, as compared to saline control animals that were challenged with i.v. saline infusion. Together, these data suggest that extended access to cocaine results in an especially high motivation for the drug that is not accounted for by reductions in the anxiogenic properties of cocaine.
Collapse
Affiliation(s)
- Osnat Ben-Shahar
- Department of Psychology, University of California, Santa Barbara, CA 93106-9660, United States.
| | | | | | | |
Collapse
|
34
|
Mantsch JR, Baker DA, Francis DM, Katz ES, Hoks MA, Serge JP. Stressor- and corticotropin releasing factor-induced reinstatement and active stress-related behavioral responses are augmented following long-access cocaine self-administration by rats. Psychopharmacology (Berl) 2008; 195:591-603. [PMID: 17899015 PMCID: PMC3888801 DOI: 10.1007/s00213-007-0950-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Stressful events during periods of drug abstinence likely contribute to relapse in cocaine-dependent individuals. Excessive cocaine use may increase susceptibility to stressor-induced relapse through alterations in brain corticotropin-releasing factor (CRF) responsiveness. OBJECTIVES This study examined stressor- and CRF-induced cocaine seeking and other stress-related behaviors in rats with different histories of cocaine self-administration (SA). MATERIALS AND METHODS Rats self-administered cocaine under short-access (ShA; 2 h daily) or long-access (LgA; 6 h daily) conditions for 14 days or were provided access to saline and were tested for reinstatement by a stressor (electric footshock), cocaine or an icv injection of CRF and for behavioral responsiveness on the elevated plus maze, in a novel environment and in the light-dark box after a 14- to 17-day extinction/withdrawal period. RESULTS LgA rats showed escalating patterns of cocaine SA and were more susceptible to reinstatement by cocaine, EFS, or icv CRF than ShA rats. Overall, cocaine SA increased activity in the center field of a novel environment, on the open arms of the elevated plus maze, and in the light compartment of a light-dark box. In most cases, the effects of cocaine SA were dependent on the pattern/amount of cocaine intake with statistically significant differences from saline self-administering controls only observed in LgA rats. CONCLUSIONS When examined after several weeks of extinction/withdrawal, cocaine SA promotes a more active pattern of behavior during times of stress that is associated with a heightened susceptibility to stressor-induced cocaine-seeking behavior and may be the consequence of augmented CRF regulation of addiction-related neurocircuitry.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Schroeder Health Complex, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Evidence for an important link between sensitization of midbrain dopamine (DA) neuron reactivity and enhanced self-administration of amphetamine and cocaine has been reported. To the extent that exposure to nicotine also sensitizes nucleus accumbens DA reactivity, it is likely that it will also impact subsequent drug taking. It is thus necessary to gain an understanding of the long-term effects of exposure to nicotine on nicotinic acetylcholine receptors (nAChRs), neuronal excitability and behavior. A review of the literature is presented in which different regimens of nicotine exposure are assessed for their effects on upregulation of nAChRs, induction of LTP in interconnected midbrain nuclei and development of long-lasting locomotor and DA sensitization. Exposure to nicotine upregulates nAChRs and nAChR currents and produces LTP of excitatory inputs to midbrain DA neurons. These effects appear in the hours to days following exposure. Exposure to nicotine also leads to long-lasting sensitization of nicotine's nucleus accumbens DA and locomotor activating effects. These effects appear days to weeks after drug exposure. A model is proposed in which nicotine exposure regimens that produce transient nAChR upregulation and LTP consequently produce long-lasting sensitization of midbrain DA neuron reactivity and nicotine-induced behaviors. These neuroadaptations are proposed to constitute critical components of the mechanisms underlying the initiation, maintenance and escalation of drug use.
Collapse
Affiliation(s)
- P Vezina
- Department of Psychiatry, The University of Chicago, 5841 S. Maryland Avenue, MC3077, Chicago, IL 60637, United States.
| | | | | |
Collapse
|
36
|
Uejima JL, Bossert JM, Poles GC, Lu L. Systemic and central amygdala injections of the mGluR2/3 agonist LY379268 attenuate the expression of incubation of sucrose craving in rats. Behav Brain Res 2007; 181:292-6. [PMID: 17537525 DOI: 10.1016/j.bbr.2007.04.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/18/2007] [Accepted: 04/27/2007] [Indexed: 11/22/2022]
Abstract
We previously reported that systemic or central amygdala injections of the mGluR(2/3) agonist LY379268 (which decreases glutamate release) prevented enhanced cue-induced cocaine seeking in extinction tests after prolonged withdrawal (incubation of cocaine craving). Here, we report that systemic and central amygdala injections of LY379268 also prevented the enhanced cue-induced sucrose seeking in extinction tests after prolonged sucrose-free period (incubation of sucrose craving). These findings suggest that central amygdala glutamate plays an important role in the incubation of reward craving after withdrawal from both drug and non-drug rewards.
Collapse
Affiliation(s)
- Jamie L Uejima
- Neurobiology of Relapse Section, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD 22124, USA
| | | | | | | |
Collapse
|
37
|
Allen RM, Dykstra LA, Carelli RM. Continuous exposure to the competitive N-methyl-D: -aspartate receptor antagonist, LY235959, facilitates escalation of cocaine consumption in Sprague-Dawley rats. Psychopharmacology (Berl) 2007; 191:341-51. [PMID: 17225167 DOI: 10.1007/s00213-006-0661-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/26/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Chronic high dose consumption of cocaine is associated with significant negative effects to individual users and society. Nevertheless, the precise mechanisms that mediate increases in cocaine consumption in a drug-using individual are not fully understood. OBJECTIVES This study used a long access version of the drug self-administration procedure to determine whether escalation of cocaine consumption is mediated by increased activity through N-methyl-D: -aspartate (NMDA) receptors. MATERIALS AND METHODS Male Sprague-Dawley rats (n = 63) were first trained to self-administer cocaine (0.33 mg/infusion, i.v.) under a fixed-ratio 1 schedule of reinforcement. After training, some rats were implanted with subcutaneous osmotic minipumps filled with vehicle or the competitive NMDA receptor antagonist, LY235959, and subsequently allowed to self-administer cocaine in short (2 h) or long (6 h) access self-administration sessions. RESULTS Vehicle-treated rats escalated cocaine self-administration across 14 long-access self-administration sessions. Rats treated with LY235959 via osmotic minipump, but not twice daily injections, escalated cocaine self-administration at a greater rate and to a greater degree than vehicle-treated rats. In post-escalation cocaine dose-infusion tests, rats treated continuously with LY235959 self-administered more cocaine (0.08-1.32 mg/infusion) than vehicle-treated rats, regardless of access condition, shifting the dose-infusion curves upward. During extinction sessions, which were conducted after the escalation phase of the study, rats that had long (6 h) access to cocaine stopped responding sooner than rats that had short (2 h) access to cocaine, independent of LY235959 treatment. CONCLUSIONS These data are consistent with hypo-glutamatergic consequences of repeated cocaine exposure.
Collapse
Affiliation(s)
- Richard M Allen
- Department of Psychology, University of Colorado at Denver and Health Sciences Center, Downtown Denver Campus, CB# 173, P.O. Box 173364, Denver, CO 80217, USA.
| | | | | |
Collapse
|
38
|
Lu L, Uejima JL, Gray SM, Bossert JM, Shaham Y. Systemic and central amygdala injections of the mGluR(2/3) agonist LY379268 attenuate the expression of incubation of cocaine craving. Biol Psychiatry 2007; 61:591-8. [PMID: 16893525 DOI: 10.1016/j.biopsych.2006.04.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/13/2006] [Accepted: 04/17/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND We and others reported time-dependent increases in cue-induced cocaine seeking after withdrawal, suggesting that craving incubates over time. Recently, we found that central amygdala extracellular signal-regulated kinases (ERK) and glutamate are involved in this incubation. Here, we further explored the role of central amygdala glutamate in the incubation of cocaine craving by determining the effect of systemic or central amygdala injections of the mGluR2/3 agonist LY379268 (which decreases glutamate release) on cue-induced cocaine seeking during early and late withdrawal. METHODS Rats were trained to self-administer cocaine for 10 days (6 hours/day); infusions were paired with a tone-light cue. Cocaine seeking and craving after systemic or central amygdala injections of LY379268 were then assessed in extinction tests in the presence of the cocaine-associated cues during early (day 3) or late (day 21) withdrawal. RESULTS Systemic (1.5 or 3 mg/kg) or central amygdala (.5 or 1.0 microg/side) injections of LY379268 attenuated enhanced extinction responding on day 21 but had no effect on lower extinction responding on day 3. CONCLUSIONS Results confirm our previous findings on the role of central amygdala glutamate in the incubation of cocaine craving and together with previous reports suggest that mGluR(2/3) agonists should be considered in the treatment of drug relapse.
Collapse
Affiliation(s)
- Lin Lu
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
39
|
Shen RY, Choong KC, Thompson AC. Long-term reduction in ventral tegmental area dopamine neuron population activity following repeated stimulant or ethanol treatment. Biol Psychiatry 2007; 61:93-100. [PMID: 16697354 DOI: 10.1016/j.biopsych.2006.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Drugs of abuse exert profound effects on the mesolimbic/mesocortical dopaminergic (DA) systems. Few studies have investigated the long-term adaptations in ventral tegmental area (VTA) DA neuron activity after repeated exposure to drugs of abuse. We investigated changes in the electrical activity of VTA DA neurons after cessation from treatment with several stimulants and ethanol. METHODS Adult rats were treated with stimulants (amphetamine: 2 mg/kg per day, 5 days/week, 2 weeks; cocaine: 15 mg/kg per day, 5 days/week, 2 weeks; nicotine: .5 mg/kg per day, 5 days; ethanol: 10 g/kg per day, 3 weeks) and the single-unit activity of VTA DA neurons was studied in vivo 3 to 6 weeks later. RESULTS Stimulant and ethanol treatment decreased basal VTA DA neuron population activity but not firing rate or firing pattern. This effect was reversed by acute apomorphine, suggesting that the underlying mechanism for reduced population activity was depolarization inactivation. Anesthesia did not confound this result, as similar effects were observed in amphetamine-treated rats recorded in a conscious preparation. CONCLUSIONS Reduced basal VTA DA neuron population activity presumably due to depolarization inactivation is a common and long-term neuroadaptation to repeated treatment with stimulants and ethanol. This change in VTA DA neuron activity could underlie the persistent nature of addiction-associated behaviors.
Collapse
Affiliation(s)
- Roh-Yu Shen
- Research Institute on Addictions, University at Buffalo, Buffalo, New York 14203, USA.
| | | | | |
Collapse
|
40
|
Shepard JD, Chuang DT, Shaham Y, Morales M. Effect of methamphetamine self-administration on tyrosine hydroxylase and dopamine transporter levels in mesolimbic and nigrostriatal dopamine pathways of the rat. Psychopharmacology (Berl) 2006; 185:505-13. [PMID: 16555063 DOI: 10.1007/s00213-006-0316-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 01/05/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE AND OBJECTIVES Many studies have examined the effect of experimenter-delivered methamphetamine on the mesolimbic and nigrostriatal dopamine pathways. In contrast, little is known about the effect of methamphetamine self-administration on these neuronal pathways. We studied the effect of methamphetamine self-administration on two key regulators of dopamine transmission, tyrosine hydroxylase (TH), and dopamine transporter (DAT), in components of the mesolimbic and nigrostriatal dopamine pathways. METHODS Rats self-administered methamphetamine (0.1 mg/kg per infusion, fixed-ratio-1 reinforcement schedule) or saline (control condition) for 9 h/day over 10 days. The brains of these rats were collected after 1 or 30 days of forced abstinence and the expression levels of TH and DAT were assayed by in situ, hybridization and western blot. RESULTS TH mRNA and protein levels were increased in the ventral tegmental area (VTA, the cell body region of the mesolimbic dopamine system) and the substantia nigra pars compacta (SNC, the cell body region of the nigrostriatal dopamine system) after 1 day, but not 30 days, of forced abstinence from methamphetamine. In contrast, methamphetamine self-administration had no effect on TH protein levels in dopaminergic terminals located in the nucleus accumbens and caudate-putamen. In addition, methamphetamine self-administration had no effect on DAT mRNA levels in the VTA. CONCLUSIONS Results suggest that extended daily access to self-administered methamphetamine results in a transient, short-lasting effect on mesolimbic and nigrostriatal dopamine neurons of the rat brain.
Collapse
Affiliation(s)
- Jack D Shepard
- Cellular Neurobiology Research Branch, IRP/NIDA/NIH, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|