1
|
Takım U, Gökçay H. A Prospective Study on Postmethylphenidate Treatment Changes in Premature Ejaculation Among Adults With Attention-Deficit/Hyperactivity Disorder. Am J Ther 2025; 32:e117-e124. [DOI: 10.1097/mjt.0000000000001850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Background:
Methylphenidate is widely used to treat attention-deficit/hyperactivity disorder (ADHD), but its impact on comorbid conditions such as premature ejaculation (PE) and impulsivity in adult patients with ADHD is underexplored.
Study Question:
How does methylphenidate treatment affect impulsivity and PE symptoms in adults with ADHD?
Study Design:
A prospective cohort study at Erzurum City Hospital included 53 adult patients with ADHD diagnosed through the Structured Clinical Interview for DSM-5 Disorders. Of these, 34 had comorbid PE and 19 did not.
Measures and Outcomes:
Primary outcomes were changes in ADHD symptoms, impulsivity, and PE, measured by the Adult ADHD Self-Report Scale (ASRS), Urgency, Premeditation, Perseverance, and Sensation Seeking Impulsive Behavior Scale, and the Arabic Index of Premature Ejaculation (AIPE). Secondary outcomes included the correlation between methylphenidate dosage and symptom improvement and predictors of changes in PE symptoms.
Results:
A significant reduction was observed in the ASRS total score, which decreased from 51.7 ± 9.0 (mean ± SD) to 32.5 ± 8.4 (P < 0.001). Urgency, Premeditation, Perseverance, and Sensation Seeking Impulsive Behavior Scale scores also showed a significant decrease from 125.1 ± 14.3 to 97.0 ± 5.0 (P < 0.001). The AIPE scores, measured in points, increased from 22.4 ± 9.3 to 32.5 ± 8.4 (P < 0.001), suggesting improved control over ejaculation. Correlation analysis revealed a significant positive correlation between the immediate-release methylphenidate dose and improvements in ASRS total scores (r = 0.485, P < 0.001). Regression analysis indicated that the pretreatment AIPE score (β = −0.529, P < 0.001) was a significant predictor of posttreatment changes.
Conclusions:
Treatment with methylphenidate was associated with a decrease in both impulsivity and PE symptoms in adults with ADHD, particularly with immediate-release formulations. These findings highlight the importance of considering comorbid conditions in ADHD treatment.
Collapse
Affiliation(s)
- Uğur Takım
- Department of Psychiatry, University of Health Sciences, Erzurum City Hospital, Erzurum, Turkey; and
| | - Hasan Gökçay
- Department of Psychiatry, Sarkisla State Hospital, Sivas, Turkey
| |
Collapse
|
2
|
Pardossi S, Cuomo A, Koukouna D, Pinzi M, Firenzuoli B, Fagiolini A. Methylphenidate in Borderline Personality Disorder: Assessing Its Therapeutic Potential and Limitations. Life (Basel) 2025; 15:380. [PMID: 40141725 PMCID: PMC11944194 DOI: 10.3390/life15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Impulsivity is increasingly recognized as a transdiagnostic feature that spans multiple psychiatric disorders, including borderline personality disorder (BPD), bipolar disorder, and substance use disorders. In BPD, impulsive behaviors manifest as substance misuse, risky sexual activity, self-injury, and other maladaptive patterns. This review article updates the clinical and preclinical literature to explore the biological and psychological bases of impulsivity in BPD and considers whether methylphenidate (MPH) can be used as a treatment in this context. Although no medication is specifically approved for BPD, limited evidence from patients with comorbid BPD and attention-deficit/hyperactivity disorder (ADHD) indicates that MPH may reduce impulsivity and improve key symptoms. In addition, real-world data indicate that MPH may be associated with better outcomes and a lower risk of suicidal behaviors in patients with BPD. Nevertheless, such evidence remains scant, particularly among those with a primary diagnosis of BPD without a diagnosis of ADHD. Larger, methodologically rigorous studies are needed to clarify the efficacy and safety of MPH in targeting impulsivity within this population. An improved understanding of dopaminergic mechanisms may eventually shed light on MPH's therapeutic role in BPD, although current data remain preliminary. Overall, recognizing impulsivity as a core symptom rather than focusing exclusively on diagnostic boundaries may facilitate more tailored and effective interventions for BPD.
Collapse
Affiliation(s)
- Simone Pardossi
- Department of Molecular Medicine, School of Medicine, University of Siena, 53100 Siena, Italy; (A.C.); (D.K.); (M.P.); (B.F.); (A.F.)
| | | | | | | | | | | |
Collapse
|
3
|
Madhyastha S, Rao MS, Renno WM. Serotonergic and Adrenergic Neuroreceptor Manipulation Ameliorates Core Symptoms of ADHD through Modulating Dopaminergic Receptors in Spontaneously Hypertensive Rats. Int J Mol Sci 2024; 25:2300. [PMID: 38396978 PMCID: PMC10888658 DOI: 10.3390/ijms25042300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The core symptoms of attention deficit hyperactivity disorder (ADHD) are due to the hypofunction of the brain's adrenergic (NE) and dopamine (DA) systems. Drugs that enhance DA and NE neurotransmission in the brain by blocking their transporters or receptors are the current therapeutic strategies. Of late, the emerging results point out the serotonergic (5-HT) system, which indirectly modulates the DA activity in reducing the core symptoms of ADHD. On this basis, second-generation antipsychotics, which utilize 5-HT receptors, were prescribed to children with ADHD. However, it is not clear how serotonergic receptors modulate the DA activity to minimize the symptoms of ADHD. The present study investigates the efficacy of serotonergic and alpha-2 adrenergic receptor manipulation in tackling the core symptoms of ADHD and how it affects the DA neuroreceptors in the brain regions involved in ADHD. Fifteen-day-old male spontaneously hypertensive rats (SHRs) received 5-HT1A agonist (ipsapirone) or 5-HT2A antagonist (MDL 100907) (i.p.) or alpha-2 agonist (GFC) from postnatal days 15 to 42 along with age-matched Wistar Kyoto rats (WKY) (n = 8 in each group). ADHD-like behaviors were assessed using a battery of behavioral tests during postnatal days 44 to 65. After the behavioral tests, rat brains were processed to estimate the density of 5-HT1A, 5-HT2A, DA-D1, and DA-D2 neuroreceptors in the prefrontal cortex, the striatum, and the substantia nigra. All three neuroreceptor manipulations were able to minimize the core symptoms of ADHD in SHRs. The positive effect was mainly associated with the upregulation of 5-HT2A receptors in all three areas investigated, while 5-HT1A was in the prefrontal cortex and the substantia nigra. Further, the DA-D1 receptor expression was downregulated by all three neuroreceptor manipulations except for alpha-2 adrenergic receptor agonists in the striatum and 5-HT2A antagonists in the substantia nigra. The DA-D2 expression was upregulated in the striatum while downregulated in the prefrontal cortex and the substantia nigra. In this animal model study, the 5-HT1A agonist or 5-HT2A antagonist monotherapies were able to curtail the ADHD symptoms by differential expression of DA receptors in different regions of the brain.
Collapse
Affiliation(s)
- Sampath Madhyastha
- Department of Anatomy, College of Medicine, Kuwait University, Safat 13110, Kuwait; (M.S.R.); (W.M.R.)
| | | | | |
Collapse
|
4
|
Tripp G, Wickens J. Using rodent data to elucidate dopaminergic mechanisms of ADHD: Implications for human personality. PERSONALITY NEUROSCIENCE 2024; 7:e2. [PMID: 38384667 PMCID: PMC10877278 DOI: 10.1017/pen.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 02/23/2024]
Abstract
An altered behavioral response to positive reinforcement has been proposed to be a core deficit in attention deficit hyperactivity disorder (ADHD). The spontaneously hypertensive rat (SHR), a congenic animal strain, displays a similarly altered response to reinforcement. The presence of this genetically determined phenotype in a rodent model allows experimental investigation of underlying neural mechanisms. Behaviorally, the SHR displays increased preference for immediate reinforcement, increased sensitivity to individual instances of reinforcement relative to integrated reinforcement history, and a steeper delay of reinforcement gradient compared to other rat strains. The SHR also shows less development of incentive to approach sensory stimuli, or cues, that predict reward after repeated cue-reward pairing. We consider the underlying neural mechanisms for these characteristics. It is well known that midbrain dopamine neurons are initially activated by unexpected reward and gradually transfer their responses to reward-predicting cues. This finding has inspired the dopamine transfer deficit (DTD) hypothesis, which predicts certain behavioral effects that would arise from a deficient transfer of dopamine responses from actual rewards to reward-predicting cues. We argue that the DTD predicts the altered responses to reinforcement seen in the SHR and individuals with ADHD. These altered responses to reinforcement in turn predict core symptoms of ADHD. We also suggest that variations in the degree of dopamine transfer may underlie variations in personality dimensions related to altered reinforcement sensitivity. In doing so, we highlight the value of rodent models to the study of human personality.
Collapse
Affiliation(s)
- Gail Tripp
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
5
|
Silic B, Aggarwal M, Liyanagama K, Tripp G, Wickens JR. Conditioned approach behavior of SHR and SD rats during Pavlovian conditioning. Behav Brain Res 2023; 443:114348. [PMID: 36796486 DOI: 10.1016/j.bbr.2023.114348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Individual differences in reward-related learning are relevant to many behavioral disorders. Sensory cues that predict reward can become incentive stimuli that adaptively support behavior, or alternatively, cause maladaptive behaviors. The spontaneously hypertensive rat (SHR) expresses a genetically determined elevated sensitivity to delay of reward, and has been extensively studied as a behavioral model for attention deficit hyperactivity disorder (ADHD). We investigated reward-related learning in the SHR, comparing them to Sprague-Dawley (SD) rats as a reference strain. A standard Pavlovian conditioned approach task was used, in which a lever cue was followed by reward. Lever presses could occur while the lever was extended, but had no effect on reward delivery. The behavior of both the SHRs and the SD rats showed that they learnt that the lever cue predicted reward. However, the pattern of behavior differed between the strains. During lever cue presentation, SD rats pressed the lever more often and made fewer magazine entries than SHRs. When lever contacts that did not result in lever presses were analyzed, there was no significant difference between SHRs and SDs. These results suggest that the SHRs attributed less incentive value to the conditioned stimulus than the SD rats. During the presentation of the conditioned cue, cue directed responses are called sign tracking responses, whereas responses directed towards the food magazine are called goal tracking responses. Analysis of behavior using a standard Pavlovian conditioned approach index to quantify sign and goal tracking tendencies showed that both strains had a tendency towards goal tracking in this task. However, the SHRs showed a significantly greater goal tracking tendency than the SD rats. Taken together, these findings suggest that attribution of incentive value to reward predicting cues is attenuated in SHRs, which might explain their elevated sensitivity to delay of reward.
Collapse
Affiliation(s)
- Bozena Silic
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mayank Aggarwal
- Laboratory for Integrated Theoretical Neuroscience, Center for Brain Science, RIKEN, Japan
| | - Kavinda Liyanagama
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Gail Tripp
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeffery R Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
6
|
Panfil K, Small R, Kirkpatrick K. Effects of methylphenidate on impulsive choice and delay aversion in Lewis rats. Behav Pharmacol 2023; 34:169-Btii. [PMID: 36752349 PMCID: PMC10006322 DOI: 10.1097/fbp.0000000000000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD), a common behavioral disorder in children and young adults, is characterized by symptoms of impulsivity, inattention, and hyperactivity. The purpose of this study was to evaluate the Lewis rat strain as a model of ADHD by testing their impulsive choices. Lewis rats were compared to their source strain, the Wistar rat, on an impulsive choice task. Rats completed the tasks on and off methylphenidate, a commonly prescribed medication for ADHD. Off methylphenidate, Lewis rats made more impulsive choices than Wistar rats. Analyses of acquisition of choice behavior suggested that both strains were able to discriminate reward sizes, but Lewis rats still chose the smaller-sooner option more than the larger-later (LL) option when the delays to reward were the same. This may be due to an aversion to the LL lever, which was associated with the longest delays to reward. Higher doses of methylphenidate increased LL choices in Lewis rats but decreased LL choices in Wistar rats. Altogether, these results suggest Lewis rats may be a viable model for ADHD in individuals whose symptoms are characterized by impulsive choices.
Collapse
Affiliation(s)
- Kelsey Panfil
- Department of Psychological Sciences, Kansas State University, Manhattan, Kansas, USA
| | | | | |
Collapse
|
7
|
Sjoberg E, Ottåsen HM, Wilner RG, Johansen EB. Previous experience with delays affects delay discounting in animal model of ADHD. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:4. [PMID: 36782239 PMCID: PMC9926738 DOI: 10.1186/s12993-022-00199-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/31/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND ADHD is a disorder where a common symptom is impulsive behaviour, a broad term associated with making sub-optimal choices. One frequently used method to investigate impulsive behaviour is delay discounting, which involves choosing between a small, immediate reinforcer and a delayed, larger one. Choosing the small immediate reinforcer is by itself, however, not sufficient for terming the choice impulsive, as all organisms eventually switch to choosing the small, immediate reinforcer when the delay to the larger reinforcer becomes long. This switch can be termed impulsive only when it occurs more frequently, or at shorter LL delays, than typically observed in normal controls. A poorly understood aspect is how choice is influenced by previous experience with delays. Using an animal model of Attention-Deficit/Hyperactivity Disorder, the Spontaneously Hypertensive Rat, we manipulated the order of exposure to delays in a delay discounting task. Following a preference test, the Ascending group experienced gradually increasing delays between choice and reinforcer while the Descending group were exposed to these delays in reverse order. RESULTS The results showed that the Descending group chose the small, immediate reinforcer over the larger delayed to a much larger extent than the Ascending group, and continued to do so even when the delay component was ultimately removed. Strain effects were found in the Ascending group, with SHRs switching to the small, immediate reinforcer earlier than controls as the delay to the larger reinforcer increased. CONCLUSION The data suggests that delay discounting is affected by history of exposure to delayed consequences. When reinforcement contingencies are incrementally changed from having no response-reinforcer delay to a long delay, discounting of delayed consequences is gradual. However, a sudden change from no delay to a long delay, without intermediate training, results in a rapid switch to the small, immediate reinforcer option, and this behaviour is somewhat resilient to the shortening and eventual removal of the large reinforcer delay. The implication is that attempting to reduce already existing impulsive behaviour in children with ADHD will require gradual habituation and not sudden changes in reinforcement contingencies.
Collapse
Affiliation(s)
- Espen Sjoberg
- Kristiania University College, Prinsens gate 7-9, 0152 Oslo, Norway
- Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway
| | - H. M. Ottåsen
- Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway
| | - R. G. Wilner
- University of Bergen, Sydnesplassen 7, 5007 Bergen, Norway
| | - E. B. Johansen
- Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway
| |
Collapse
|
8
|
Oliveras I, Cañete T, Sampedro-Viana D, Río-Álamos C, Tobeña A, Corda MG, Giorgi O, Fernández-Teruel A. Neurobehavioral Profiles of Six Genetically-based Rat Models of Schizophrenia- related Symptoms. Curr Neuropharmacol 2023; 21:1934-1952. [PMID: 36809938 PMCID: PMC10514524 DOI: 10.2174/1570159x21666230221093644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/24/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder with high heterogeneity in its symptoms clusters. The effectiveness of drug treatments for the disorder is far from satisfactory. It is widely accepted that research with valid animal models is essential if we aim at understanding its genetic/ neurobiological mechanisms and finding more effective treatments. The present article presents an overview of six genetically-based (selectively-bred) rat models/strains, which exhibit neurobehavioral schizophrenia-relevant features, i.e., the Apomorphine-susceptible (APO-SUS) rats, the Low-prepulse inhibition rats, the Brattleboro (BRAT) rats, the Spontaneously Hypertensive rats (SHR), the Wisket rats and the Roman High-Avoidance (RHA) rats. Strikingly, all the strains display impairments in prepulse inhibition of the startle response (PPI), which remarkably, in most cases are associated with novelty-induced hyperlocomotion, deficits of social behavior, impairment of latent inhibition and cognitive flexibility, or signs of impaired prefrontal cortex (PFC) function. However, only three of the strains share PPI deficits and dopaminergic (DAergic) psychostimulant-induced hyperlocomotion (together with prefrontal cortex dysfunction in two models, the APO-SUS and RHA), which points out that alterations of the mesolimbic DAergic circuit are a schizophrenia-linked trait that not all models reproduce, but it characterizes some strains that can be valid models of schizophrenia-relevant features and drug-addiction vulnerability (and thus, dual diagnosis). We conclude by putting the research based on these genetically-selected rat models in the context of the Research Domain Criteria (RDoC) framework, suggesting that RDoC-oriented research programs using selectively-bred strains might help to accelerate progress in the various aspects of the schizophrenia-related research agenda.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
9
|
Prepubertal methylphenidate leads to sex-dependent differences in probabilistic discounting. Pharmacol Biochem Behav 2022; 218:173424. [PMID: 35780911 DOI: 10.1016/j.pbb.2022.173424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Prescription psychostimulants, such as methylphenidate (MPH), have served as a first line treatment for ADHD and associated developmental disorders since 1961. Psychostimulants has been shown to improve attention, response inhibition, and reduce hyperactivity in patients with ADHD, as well as in non-clinical human populations and animals. While there is a considerable amount of preclinical research investigating the effects of stimulant medications on reward sensitivity and basic learning in male rats, less is understood about their effects in females. Further, there are competing theories on the long-term cognitive impact of MPH, specifically in children who do not have ADHD. To this end, Long-Evans female and male rats were exposed to methylphenidate (0, 2.5, 5 mg/kg, BID, IP) for 20 days during early development (PD10-29). After discontinuation of MPH into adulthood, rats (beginning PD 60) were trained and tested for risk-preference using a 2-choice probabilistic discounting task. For this task, rats were given an option between a 'large-risky' choice (3 sugar pellets delivered on a probabilistic VR schedule) and 'small-certain' choice (1 sugar pellet delivered on a FR schedule). Rats were subsequently tested on an open field conflict test. The results demonstrate that prepubertal exposure to MPH can have lasting effects on decision-making. Specifically, female rats treated with 2.5 mg/kg MPH displayed a decrease in preference for the risky option, whereas male rats treated with the same dose showed an overall increase in preference compared to sex-matched controls. Irrespective of sex, rats treated with 2.5 mg/kg MPH also demonstrated a decrease in anxiety/inhibitory behavior on the modified open field test compared to controls. These results were not due to differences in locomotor behavior. Overall, the study contributes to the growing body of evidence to suggest that MPH exposure early in development can have a sex-dependent impact on decision-making in adulthood.
Collapse
|
10
|
Stanford SC. Animal Models of ADHD? Curr Top Behav Neurosci 2022; 57:363-393. [PMID: 35604570 DOI: 10.1007/7854_2022_342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To describe animals that express abnormal behaviors as a model of Attention-Deficit Hyperactivity Disorder (ADHD) implies that the abnormalities are analogous to those expressed by ADHD patients. The diagnostic features of ADHD comprise inattentiveness, impulsivity, and hyperactivity and so these behaviors are fundamental for validation of any animal model of this disorder. Several experimental interventions such as neurotoxic lesion of neonatal rats with 6-hydroxydopamine (6-OHDA), genetic alterations, or selective inbreeding of rodents have produced animals that express each of these impairments to some extent. This article appraises the validity of claims that these procedures have produced a model of ADHD, which is essential if they are to be used to investigate the underlying cause(s) of ADHD and its abnormal neurobiology.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
11
|
Sjoberg EA, Ramos S, López-Tolsa GE, Johansen EB, Pellón R. The irrelevancy of the inter-trial interval in delay-discounting experiments on an animal model of ADHD. Behav Brain Res 2021; 408:113236. [PMID: 33727048 DOI: 10.1016/j.bbr.2021.113236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/19/2023]
Abstract
Delay discounting involves choosing between a small, immediate reward, and a larger but delayed one. As the delay between choice and large reward gets longer, people with ADHD tend to become impulsive faster than controls, indicated by a switch in preference from the large to the smaller reward. Choosing the smaller reward when the larger is considered reward maximizing is labeled impulsive behaviour. It is well documented that increased delays between choice and reward affects choice preference in both humans and other animals. Other variables such as the inter-trial interval or trial length are observed to have an effect on human discounting, but their effect on discounting in other animals is largely assumed rather than tested. In the current experiment, we tested this assumption. One group of rats was exposed to increasing delays between choosing the large reward and receiving it, while another group experienced longer inter-trial intervals that were equal in length to the delays in the other group. This ensured that trial length was controlled for in delay discounting, but that the delay function and inter-trial intervals could be manipulated and measured separately. Results showed that while the delay between choice and reward caused impulsive behaviour in rats, the length of the inter-trial interval (and by extension trial length) had no impact on choice behaviour. A follow-up experiment found this to be the case even if the length of the inter-trial interval was signaled with audio cues. These results suggest that rats, and possibly animals in general, are insensitive to time between trials, and therefore cannot easily represent human counterparts on the task.
Collapse
Affiliation(s)
- Espen A Sjoberg
- Department of Behavioral Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, Oslo, 0130, Norway; School of Health Sciences, Kristiania University College, Chr. Krohgs Gate 32A, Oslo, 0186, Norway
| | - Sergio Ramos
- Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Madrid, 28040, Spain
| | - Gabriela E López-Tolsa
- Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Madrid, 28040, Spain; Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Espen Borgå Johansen
- Department of Behavioral Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, Oslo, 0130, Norway
| | - Ricardo Pellón
- Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Madrid, 28040, Spain.
| |
Collapse
|
12
|
Dupuy C, Castelnau P, Mavel S, Lefevre A, Nadal-Desbarats L, Bodard S, Busson J, Dufour-Rainfray D, Blasco H, Emond P, Galineau L. SHR/NCrl rats as a model of ADHD can be discriminated from controls based on their brain, blood, or urine metabolomes. Transl Psychiatry 2021; 11:235. [PMID: 33888684 PMCID: PMC8062531 DOI: 10.1038/s41398-021-01344-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. The neurobiological mechanisms underlying ADHD are still poorly understood, and its diagnosis remains difficult due to its heterogeneity. Metabolomics is a recent strategy for the holistic exploration of metabolism and is well suited for investigating the pathophysiology of diseases and finding molecular biomarkers. A few clinical metabolomic studies have been performed on peripheral samples from ADHD patients but are limited by their access to the brain. Here, we investigated the brain, blood, and urine metabolomes of SHR/NCrl vs WKY/NHsd rats to better understand the neurobiology and to find potential peripheral biomarkers underlying the ADHD-like phenotype of this animal model. We showed that SHR/NCrl rats can be differentiated from controls based on their brain, blood, and urine metabolomes. In the brain, SHR/NCrl rats displayed modifications in metabolic pathways related to energy metabolism and oxidative stress further supporting their importance in the pathophysiology of ADHD bringing news arguments in favor of the Neuroenergetic theory of ADHD. Besides, the peripheral metabolome of SHR/NCrl rats also shared more than half of these differences further supporting the importance of looking at multiple matrices to characterize a pathophysiological condition of an individual. This also stresses out the importance of investigating the peripheral energy and oxidative stress metabolic pathways in the search of biomarkers of ADHD.
Collapse
Affiliation(s)
- Camille Dupuy
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Pierre Castelnau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU Tours, Tours, France
| | - Sylvie Mavel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Antoine Lefevre
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Sylvie Bodard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Julie Busson
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Diane Dufour-Rainfray
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU Tours, Tours, France
| | - Helene Blasco
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU Tours, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU Tours, Tours, France
| | | |
Collapse
|
13
|
Dela Peña I, Shen G, Shi WX. Droxidopa alters dopamine neuron and prefrontal cortex activity and improves attention-deficit/hyperactivity disorder-like behaviors in rats. Eur J Pharmacol 2021; 892:173826. [PMID: 33347825 DOI: 10.1016/j.ejphar.2020.173826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Finding alternative treatments for attention-deficit/hyperactivity disorder (ADHD) is crucial given the safety and efficacy problems of current ADHD medications. Droxidopa, also known as L-threo-dihydroxyphenylserine (L-DOPS), is a norepinephrine prodrug that enhances brain norepinephrine and dopamine levels. In this study, we used electrophysiological tests to examine effects of L-DOPS on the prefrontal cortex (PFC) and dopamine neurons in the ventral tegmental area. We also conducted behavioral tests to assess L-DOPS' effects on ADHD-like behaviors in rats. In chloral hydrate-anesthetized rats, PFC local field potentials oscillated between the active, depolarized UP state and the hyperpolarized DOWN state. Mimicking the effect of d-amphetamine, L-DOPS, given after the peripheral amino acid decarboxylase inhibitor, benserazide (BZ), increased the amount of time the PFC spent in the UP state, indicating an excitatory effect of L-DOPS on PFC neurons. Like d-amphetamine, L-DOPS also inhibited dopamine neurons, an effect significantly reversed by the D2-like receptor antagonist raclopride. In the behavioral tests, BZ + L-DOPS improved hyperactivity, inattention and impulsive action of the adolescent spontaneously hypertensive rat (SHR/NCrl), well-validated animal model of the combined type of ADHD. BZ + L-DOPS also reduced impulsive choice and impulsive action of Wistar rats, but did not ameliorate the inattentiveness of Wistar Kyoto rats (WKY/NCrl), proposed model of the ADHD-predominantly inattentive type. In conclusion, L-DOPS produced effects on the PFC and dopamine neurons characteristic of drugs used to treat ADHD. BZ + L-DOPS ameliorated ADHD-like behaviors in rats suggesting its potential as an alternative ADHD treatment.
Collapse
Affiliation(s)
- Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, 92350, USA.
| | - Guofang Shen
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, 92350, USA
| | - Wei-Xing Shi
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, 92350, USA; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| |
Collapse
|
14
|
ADHD-like behaviors caused by inactivation of a transcription factor controlling the balance of inhibitory and excitatory neuron development in the mouse anterior brainstem. Transl Psychiatry 2020; 10:357. [PMID: 33087695 PMCID: PMC7578792 DOI: 10.1038/s41398-020-01033-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
The neural circuits regulating motivation and movement include midbrain dopaminergic neurons and associated inhibitory GABAergic and excitatory glutamatergic neurons in the anterior brainstem. Differentiation of specific subtypes of GABAergic and glutamatergic neurons in the mouse embryonic brainstem is controlled by a transcription factor Tal1. This study characterizes the behavioral and neurochemical changes caused by the absence of Tal1 function. The Tal1cko mutant mice are hyperactive, impulsive, hypersensitive to reward, have learning deficits and a habituation defect in a novel environment. Only minor changes in their dopaminergic system were detected. Amphetamine induced striatal dopamine release and amphetamine induced place preference were normal in Tal1cko mice. Increased dopamine signaling failed to stimulate the locomotor activity of the Tal1cko mice, but instead alleviated their hyperactivity. Altogether, the Tal1cko mice recapitulate many features of the attention and hyperactivity disorders, suggesting a role for Tal1 regulated developmental pathways and neural structures in the control of motivation and movement.
Collapse
|
15
|
Heyer-Osorno R, Juárez J. Modafinil reduces choice impulsivity while increasing motor activity in preadolescent rats treated prenatally with alcohol. Pharmacol Biochem Behav 2020; 194:172936. [PMID: 32360693 DOI: 10.1016/j.pbb.2020.172936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Rats exposed prenatally to alcohol show a reduction in the spontaneous activity of dopaminergic neurons of the ventral tegmental area (VTA), as well as greater impulsive behavior and motor activity, behavioral alterations that have been related to dopaminergic dysfunction. Modafinil (MOD) is a dopamine (DA) reuptake blocker prescribed to treat sleep disorders; however, in recent years it has been used for the treatment of ADHD with positive results. Also, studies in humans and rodents show beneficial effects on learning and attention; however, studies evaluating MOD effects on impulsivity are few and show contradictory results. The purpose of this work was to evaluate the effect of a daily dose of MOD (60 mg/kg i.g.) on cognitive (or choice) impulsivity and motor activity in male preadolescent rats exposed prenatally to alcohol or sucrose (isocaloric control). MOD reduced the impulsive responses in a delay discounting task (DDT) at the same time that increased the motor activity, in both healthy and prenatal alcohol treated rats; however, MOD reduced the response latency in DDT only in prenatal alcohol treated rats. This differential effect of DA activation on impulsivity and motor activity show that the MOD dose that improves the impulse control, does not necessarily decrease motor activity, and suggests a possible differential neural mechanism underlying the expression of these behaviors. On the other hand, the changes in the response latency, only in prenatal alcohol treated groups, suggest that decision-making in animals with a dopaminergic dysfunction is more susceptible to be affected by MOD action.
Collapse
Affiliation(s)
- Rocio Heyer-Osorno
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Juárez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
16
|
Bouchatta O, Manouze H, Ba-M'Hamed S, Landry M, Bennis M. Neonatal 6-OHDA Lesion Model in Mouse Induces Cognitive Dysfunctions of Attention-Deficit/Hyperactivity Disorder (ADHD) During Young Age. Front Behav Neurosci 2020; 14:27. [PMID: 32174817 PMCID: PMC7054716 DOI: 10.3389/fnbeh.2020.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a syndrome characterized by impaired attention, impulsivity and hyperactivity in children. These symptoms are often maintained in adults. During adolescence, prefrontal cortex develops connectivity with other brain regions to engage executive functions such as, latent inhibition, attention and inhibitory control. In our previous work, we demonstrated the validity of the neonatal 6-Hydroxydopamine (6-OHDA) mouse model, a classical neurodevelopmental model mimicking major symptoms of the human ADHD pathology. In order to evaluate pathological forms of executive functions and impulsive behavior in 6-OHDA mice during young age, we first tested latent inhibition (LI) after weaning, and then we evaluated the impulsive behavior using a cliff avoidance reaction test. Our results demonstrated that 6-OHDA mice showed disruption in latent inhibition, suggesting a deficit in selective attention, and displayed repetitive peering-down behavior, indicating a maladaptive impulsive behavior. Subsequently, to assess impulsivity and attention in young mice, we performed a modified 5-choice serial reaction time task test (5-CSRTT), optimizing the degree of food restriction for young animals and shortening the training duration. This test allowed us to demonstrate a deficit in inhibitory control and a loss of accuracy of 6-OHDA mice in the 5-CSRTT. In conclusion, we demonstrated that the 6-OHDA mouse model reproduces human symptoms of ADHD in childhood and early adulthood periods, as seen in human. Taken together, the 6-OHDA mouse model will be useful alongside other animal models to understand the neurobiological mechanisms underlying complex, heterogeneous neurological disorders.
Collapse
Affiliation(s)
- Otmane Bouchatta
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco.,University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Centre Paul Broca-Nouvelle Aquitaine, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Houria Manouze
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| | - Saadia Ba-M'Hamed
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| | - Marc Landry
- University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Centre Paul Broca-Nouvelle Aquitaine, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
17
|
Abstract
Molecular and functional imaging techniques have been used and combined with pharmacological probes to evaluate the role of dopamine in impulsivity. Overall, strong evidence links striatal dopaminergic function with impulsivity, measured by self-reports and laboratory tests of cognitive control and reward-based decision-making. The combination of molecular imaging using positron emission tomography (PET) with functional magnetic resonance imaging (fMRI) specifically implicates striatal D2-type dopamine receptors (i.e., D2 and D3) and corticostriatal connectivity in cognitive control. Low levels of striatal and midbrain D2-type receptor availability correlate with self-reported impulsivity, whereas striatal D2-type receptor availability shows positive correlation with motor response inhibition and cognitive flexibility. Impulsive choice on reward-based decision-making tasks also is related to deficits in striatal D2-type dopamine receptor availability, and there is evidence for an inverted U-shaped function in this relationship, reflecting an optimum of striatal dopaminergic activity. Findings from studies of clinical populations that present striatal dopamine D2-type receptor deficits as well as healthy control research participants identify D2-type receptors as therapeutic targets to improve cognitive control.
Collapse
Affiliation(s)
- Edythe D London
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Department of Molecular and Medical Pharmacology, and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Ramos S, López-Tolsa GE, Sjoberg EA, Pellón R. Effect of Schedule-Induced Behavior on Responses of Spontaneously Hypertensive and Wistar-Kyoto Rats in a Delay-Discounting Task: A Preliminary Report. Front Behav Neurosci 2019; 13:255. [PMID: 31798428 PMCID: PMC6874143 DOI: 10.3389/fnbeh.2019.00255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Delay discounting is the loss of the subjective value of an outcome as the time to its delivery increases. It has been suggested that organisms can become more tolerant of this delay when engaging in schedule-induced behaviors. Schedule-induced behaviors are those that develop at a high rate during intermittent reinforcement schedules without the need of arranged contingency to the reinforcer, and they have been considered as a model of compulsivity. There is evidence that relates compulsivity to greater delay discounting. The rate of delay discounting represents how impulsive the subject is, as the rate of discounting increases the higher the impulsivity. Thus, the main purpose of this study was to undertake a preliminary evaluation of whether developing schedule-induced behaviors affects performance in a delay-discounting task, by comparing spontaneously hypertensive rats (SHRs) and Wistar-Kyoto (WKY) rats. The rats were exposed to a task that consisted of presenting the subjects with two levers: one produced a small, immediate food reinforcer while the other one produced a larger, delayed reinforcer. During Condition A, the levers were presented, and a water bottle and a running wheel were available in the conditioning chambers; during Condition B, only the levers were presented. SHR and WKY rats developed schedule-induced behaviors during Condition A and showed no difference in discounting rates, contradicting previous reports. Lick allocation during response-reinforcer delays and the inter-trial interval (ITI) showed, respectively, pre- and post-food distributions. Discounting rates during Condition B (when rats could not engage in schedule-induced behaviors) did not reach statistical significance difference among strains of animals, although it was observed a tendency for WKY to behave more self-controlled. Likewise it was not found any effect of schedule-induced behavior on discounting rates, however, a tendency for WKY rats to behave more impulsive during access to drink and run seems to tentatively support the idea of schedule-induced behavior as a model of compulsivity in those rats, being impulsivity simply defined as an excess in behavior.
Collapse
Affiliation(s)
- Sergio Ramos
- Animal Learning and Behavior Laboratory, Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Gabriela E López-Tolsa
- Animal Learning and Behavior Laboratory, Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Espen A Sjoberg
- Animal Behavior Laboratories, Department of Behavioral Science, Oslo Metropolitan University, Oslo, Norway
- Schools of Health Sciences, Kristiania University College, Oslo, Norway
| | - Ricardo Pellón
- Animal Learning and Behavior Laboratory, Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
19
|
Differential effect of modafinil on impulsivity, attention and motor activity in preadolescent rats prenatally treated with alcohol. Brain Res 2019; 1722:146395. [DOI: 10.1016/j.brainres.2019.146395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
|
20
|
Alves MB, Laureano DP, Dalle Molle R, Machado TD, Salvador APDA, Miguel PM, Lupinsky D, Dalmaz C, Silveira PP. Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiol Behav 2019; 204:336-346. [PMID: 30880239 DOI: 10.1016/j.physbeh.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
Recent studies have implicated a role for impulsivity in the altered eating behaviors and the increased risk for obesity consistently associated with intrauterine growth restriction (IUGR). Changes in dopamine transmission within prefrontal areas are believed to contribute to these adverse outcomes. Here we investigated the impulsive behavior toward a delayed reward and evaluated dopamine levels and its receptors in the medial prefrontal (mPFC) and orbitofrontal (OFC) cortex of female adult rats exposed to IUGR. From day 10 of pregnancy and until birth, Sprague-Dawley dams received either an ad libitum (Adlib) or a 50% food-restricted (FR) diet. At birth, all pups were adopted by Adlib mothers, generating the groups Adlib/Adlib (control) and FR/Adlib (intrauterine growth-restricted). Adult impulsive behavior was evaluated using a Tolerance to Delay of Reward Task. In vivo dopamine responses to sweet food intake were measured by voltammetry, and D1, D2 and DAT levels were accessed by Western Blot. Animals from FR group showed a pronounced aversion to delayed rewards. DA response to sweet food was found to be blunted in the mPFC of FR animals, whereas in the OFC, the DA levels appear to be unaffected by reward consumption. Moreover, FR animals presented reduced D1 receptors in the OFC and a later increase in the mPFC D2 levels. These findings suggest that IUGR female rats are more impulsive and that the associated mechanism involves changes in the dopamine signaling in both the mPFC and OFC.
Collapse
Affiliation(s)
- Márcio Bonesso Alves
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Daniela Pereira Laureano
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Dalle Molle
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tania Diniz Machado
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Patrícia Maidana Miguel
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Derek Lupinsky
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics & Psychobiology, McGill University, Canada
| |
Collapse
|
21
|
Young spontaneously hypertensive rats (SHRs) display prodromal schizophrenia-like behavioral abnormalities. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:169-176. [PMID: 30500412 DOI: 10.1016/j.pnpbp.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/05/2018] [Accepted: 11/24/2018] [Indexed: 11/24/2022]
Abstract
The Spontaneously Hypertensive Rat (SHR) strain has been suggested as an animal model of schizophrenia, considering that adult SHRs display behavioral abnormalities that mimic the cognitive, psychotic and negative symptoms of the disease and are characteristic of its animal models. SHRs display: (I) deficits in fear conditioning and latent inhibition (modeling cognitive impairments), (II) deficit in prepulse inhibition of startle reflex (reflecting a deficit in sensorimotor gating, and associated with psychotic symptoms), (III) diminished social behavior (modeling negative symptoms) and (IV) hyperlocomotion (modeling the hyperactivity of the dopaminergic mesolimbic system/ psychotic symptoms). These behavioral abnormalities are reversed specifically by the administration of antipsychotic drugs. Here, we performed a behavioral characterization of young (27-50 days old) SHRs in order to investigate potential early behavioral abnormalities resembling the prodromal phase of schizophrenia. When compared to Wistar rats, young SHRs did not display hyperlocomotion or PPI deficit, but exhibited diminished social interaction and impaired fear conditioning and latent inhibition. These findings are in accordance with the clinical course of schizophrenia: manifestation of social and cognitive impairments and absence of full-blown psychotic symptoms in the prodromal phase. The present data reinforce the SHR strain as a model of schizophrenia, expanding its validity to the prodromal phase of the disorder.
Collapse
|
22
|
Leffa DT, Ferreira SG, Machado NJ, Souza CM, Rosa FD, de Carvalho C, Kincheski GC, Takahashi RN, Porciúncula LO, Souza DO, Cunha RA, Pandolfo P. Caffeine and cannabinoid receptors modulate impulsive behavior in an animal model of attentional deficit and hyperactivity disorder. Eur J Neurosci 2019; 49:1673-1683. [PMID: 30667546 DOI: 10.1111/ejn.14348] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/15/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
Attention deficit and hyperactivity disorder (ADHD) is characterized by impaired levels of hyperactivity, impulsivity, and inattention. Adenosine and endocannabinoid systems tightly interact in the modulation of dopamine signaling, involved in the neurobiology of ADHD. In this study, we evaluated the modulating effects of the cannabinoid and adenosine systems in a tolerance to delay of reward task using the most widely used animal model of ADHD. Spontaneous Hypertensive Rats (SHR) and Wistar-Kyoto rats were treated chronically or acutely with caffeine, a non-selective adenosine receptor antagonist, or acutely with a cannabinoid agonist (WIN55212-2, WIN) or antagonist (AM251). Subsequently, animals were tested in the tolerance to delay of reward task, in which they had to choose between a small, but immediate, or a large, but delayed, reward. Treatment with WIN decreased, whereas treatment with AM251 increased the choices of the large reward, selectively in SHR rats, indicating a CB1 receptor-mediated increase in impulsive behavior. An acute pre-treatment with caffeine blocked WIN effects. Conversely, a chronic treatment with caffeine increased the impulsive phenotype and potentiated the WIN effects. The results indicate that both cannabinoid and adenosine receptors modulate impulsive behavior in SHR: the antagonism of cannabinoid receptors might be effective in reducing impulsive symptoms present in ADHD; in addition, caffeine showed the opposite effects on impulsive behavior depending on the length of treatment. These observations are of particular importance to consider when therapeutic manipulation of CB1 receptors is applied to ADHD patients who consume coffee.
Collapse
Affiliation(s)
- Douglas T Leffa
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carolina M Souza
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Fernanda da Rosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cristiane de Carvalho
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Grasielle C Kincheski
- Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Reinaldo N Takahashi
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lisiane O Porciúncula
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pablo Pandolfo
- Department of Neurobiology, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
23
|
Freund N, Jordan CJ, Lukkes JL, Norman KJ, Andersen SL. Juvenile exposure to methylphenidate and guanfacine in rats: effects on early delay discounting and later cocaine-taking behavior. Psychopharmacology (Berl) 2019; 236:685-698. [PMID: 30411140 DOI: 10.1007/s00213-018-5096-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
RATIONALE Both methylphenidate (MPH), a catecholamine reuptake blocker, and guanfacine, an alpha2A agonist, are used to treat attention-deficit hyperactivity disorder (ADHD). Childhood impulsivity, including delay discounting, is associated with increased substance use during adolescence. These effects can be mitigated by juvenile exposure to MPH, but less is known about the long-term effects of developmental exposure to guanfacine in males and females. OBJECTIVE This study aims to determine sex differences and dose-dependent effects of juvenile exposure to MPH or guanfacine on delay-discounting and later cocaine self-administration. METHODS The dose-dependent effects of vehicle, MPH (0.5, 1, and 2 mg/kg p.o.) or guanfacine (0.003, 0.03, and 0.3 mg/kg, i.p.) on discounting were determined in male and female Sprague-Dawley rats beginning at postnatal day (P)20. At P90, the amount, motivation, and sensitivity to cocaine following early drug exposure were determined with self-administration. RESULTS Guanfacine, but not MPH, significantly reduced weight by 22.9 ± 4.6% in females. MPH dose dependently decreased delay discounting in both juvenile males and females, while guanfacine was only effective in males. Discounting was associated with cocaine self-administration in vehicle males (R2 = -0.4, P < 0.05) and self-administration was reduced by guanfacine treatment (0.3 mg/kg). Guanfacine significantly decreased cocaine sensitivity in both sexes. CONCLUSIONS These data suggest that MPH is effective in reducing delay discounting in both sexes. Due to both weight loss and ineffectiveness on discounting in females, guanfacine should be used only in males to reduce delay discounting and later cocaine use.
Collapse
Affiliation(s)
- Nadja Freund
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA.,Division of Experimental and Molecular Psychiatry, LWL University Hospital Bochum, Bochum, Germany.,Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Chloe J Jordan
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA.,Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin J Norman
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Susan L Andersen
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA, USA. .,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA.
| |
Collapse
|
24
|
Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective. Pediatr Res 2019; 85:198-215. [PMID: 30367160 DOI: 10.1038/s41390-018-0222-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Perinatal brain injury is a leading cause of death and disability in young children. Recent advances in obstetrics, reproductive medicine and neonatal intensive care have resulted in significantly higher survival rates of preterm or sick born neonates, at the price of increased prevalence of neurological, behavioural and psychiatric problems in later life. Therefore, the current focus of experimental research shifts from immediate injury processes to the consequences for brain function in later life. The aetiology of perinatal brain injury is multi-factorial involving maternal and also labour-associated factors, including not only placental insufficiency and hypoxia-ischaemia but also exposure to high oxygen concentrations, maternal infection yielding excess inflammation, genetic factors and stress as important players, all of them associated with adverse long-term neurological outcome. Several animal models addressing these noxious stimuli have been established in the past to unravel the underlying molecular and cellular mechanisms of altered brain development. In spite of substantial efforts to investigate short-term consequences, preclinical evaluation of the long-term sequelae for the development of cognitive and neuropsychiatric disorders have rarely been addressed. This review will summarise and discuss not only current evidence but also requirements for experimental research providing a causal link between insults to the developing brain and long-lasting neurodevelopmental disorders.
Collapse
|
25
|
Leffa DT, Pandolfo P, Gonçalves N, Machado NJ, de Souza CM, Real JI, Silva AC, Silva HB, Köfalvi A, Cunha RA, Ferreira SG. Adenosine A 2A Receptors in the Rat Prelimbic Medial Prefrontal Cortex Control Delay-Based Cost-Benefit Decision Making. Front Mol Neurosci 2018; 11:475. [PMID: 30618621 PMCID: PMC6306464 DOI: 10.3389/fnmol.2018.00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022] Open
Abstract
Adenosine A2A receptors (A2ARs) were recently described to control synaptic plasticity and network activity in the prefrontal cortex (PFC). We now probed the role of these PFC A2AR by evaluating the behavioral performance (locomotor activity, anxiety-related behavior, cost-benefit decision making and working memory) of rats upon downregulation of A2AR selectively in the prelimbic medial PFC (PLmPFC) via viral small hairpin RNA targeting the A2AR (shA2AR). The most evident alteration observed in shA2AR-treated rats, when compared to sh-control (shCTRL)-treated rats, was a decrease in the choice of the large reward upon an imposed delay of 15 s assessed in a T-maze-based cost-benefit decision-making paradigm, suggestive of impulsive decision making. Spontaneous locomotion in the open field was not altered, suggesting no changes in exploratory behavior. Furthermore, rats treated with shA2AR in the PLmPFC also displayed a tendency for higher anxiety levels in the elevated plus maze (less entries in the open arms), but not in the open field test (time spent in the center was not affected). Finally, working memory performance was not significantly altered, as revealed by the spontaneous alternation in the Y-maze test and the latency to reach the platform in the repeated trial Morris water maze. These findings constitute the first direct demonstration of a role of PFC A2AR in the control of behavior in physiological conditions, showing their major contribution for the control of delay-based cost-benefit decisions.
Collapse
Affiliation(s)
- Douglas T Leffa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Pandolfo
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Neurobiology, Fluminense Federal University, Niterói, Brazil
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carolina M de Souza
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Post-Graduate Program in Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Joana I Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António C Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Attila Köfalvi
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Miguel PM, Deniz BF, Deckmann I, Confortim HD, Diaz R, Laureano DP, Silveira PP, Pereira LO. Prefrontal cortex dysfunction in hypoxic-ischaemic encephalopathy contributes to executive function impairments in rats: Potential contribution for attention-deficit/hyperactivity disorder. World J Biol Psychiatry 2018; 19:547-560. [PMID: 28105895 DOI: 10.1080/15622975.2016.1273551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The attention-deficit/hyperactivity disorder (ADHD) compromises the quality of life of individuals including adaptation to the social environment. ADHD aetiology includes perinatal conditions such as hypoxic-ischaemic events; preclinical studies have demonstrated attentional deficits and impulsive-hyperactive outcomes after neonatal hypoxic and/or ischaemic intervention, but data are missing to understand this relationship. Thus, the aim of this study was to evaluate executive function (EF) and impulsivity, and tissue integrity and dopaminergic function in the prefrontal cortex (PFC) of rats submitted to hypoxia-ischaemia (HI). METHODS At postnatal day (PND) 7, male Wistar rats were divided into control (n = 10) and HI groups (n = 11) and the HI procedure was conducted. At PND60, the animals were tested in the attentional set-shifting (ASS) task to EF and in the tolerance to delay of reward for assessment of impulsivity. After, morphological analysis and the dopaminergic system were evaluated in the PFC. RESULTS Animals subjected to HI had impairments in EF evidenced by a behavioural inflexibility that was correlated to PFC atrophy. Moreover, HI animals presented reduced D2 receptors in the ipsilateral side of ischaemia in the PFC. CONCLUSIONS Animals submitted to HI presented impaired EF associated with tissue atrophy and dopaminergic disturbance in the PFC.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Bruna Ferrary Deniz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Iohanna Deckmann
- b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Heloísa Deola Confortim
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Ramiro Diaz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Daniela Pereira Laureano
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Patrícia Pelufo Silveira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,c Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,d Ludmer Centre for Neuroinformatics and Mental Health , Douglas Mental Health University Institute, McGill University , Montreal , QC , Canada
| | - Lenir Orlandi Pereira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
27
|
Peres FF, Diana MC, Levin R, Suiama MA, Almeida V, Vendramini AM, Santos CM, Zuardi AW, Hallak JEC, Crippa JA, Abílio VC. Cannabidiol Administered During Peri-Adolescence Prevents Behavioral Abnormalities in an Animal Model of Schizophrenia. Front Pharmacol 2018; 9:901. [PMID: 30186164 PMCID: PMC6113576 DOI: 10.3389/fphar.2018.00901] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is considered a debilitating neurodevelopmental psychiatric disorder and its pharmacotherapy remains problematic without recent major advances. The development of interventions able to prevent the emergence of schizophrenia would therefore represent an enormous progress. Here, we investigated whether treatment with cannabidiol (CBD - a compound of Cannabis sativa that presents an antipsychotic profile in animals and humans) during peri-adolescence would prevent schizophrenia-like behavioral abnormalities in an animal model of schizophrenia: the spontaneously hypertensive rat (SHR) strain. Wistar rats and SHRs were treated with vehicle or CBD from 30 to 60 post-natal days. In experiment 1, schizophrenia-like behaviors (locomotor activity, social interaction, prepulse inhibition of startle and contextual fear conditioning) were assessed on post-natal day 90. Side effects commonly associated with antipsychotic treatment were also evaluated: body weight gain and catalepsy throughout the treatment, and oral dyskinesia 48 h after treatment interruption and on post-natal day 90. In experiment 2, serum levels of triglycerides and glycemia were assessed on post-natal day 61. In experiment 3, levels of BDNF, monoamines, and their metabolites were evaluated on post-natal days 61 and 90 in the prefrontal cortex and striatum. Treatment with CBD prevented the emergence of SHRs' hyperlocomotor activity (a model for the positive symptoms of schizophrenia) and deficits in prepulse inhibition of startle and contextual fear conditioning (cognitive impairments). CBD did not induce any of the potential motor or metabolic side effects evaluated. Treatment with CBD increased the prefrontal cortex 5-HIAA/serotonin ratio and the levels of 5-HIAA on post-natal days 61 and 90, respectively. Our data provide pre-clinical evidence for a safe and beneficial effect of peripubertal and treatment with CBD on preventing positive and cognitive symptoms of schizophrenia, and suggest the involvement of the serotoninergic system on this effect.
Collapse
Affiliation(s)
- Fernanda F Peres
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana C Diana
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Raquel Levin
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Mayra A Suiama
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Valéria Almeida
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Ana M Vendramini
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Camila M Santos
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Antônio W Zuardi
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaime E C Hallak
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Crippa
- National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine, National Council for Scientific and Technological Development, Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
28
|
Peres FF, Eufrásio RÁ, Gouvêa DA, Diana MC, Santos CM, Swardfager W, Abílio VC, Cogo-Moreira H. A schizophrenia-like behavioral trait in the SHR model: Applying confirmatory factor analysis as a new statistical tool. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:16-22. [PMID: 29625156 DOI: 10.1016/j.pnpbp.2018.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/01/2022]
Abstract
Questionnaires that assess symptoms of schizophrenia patients undergo strict statistical validation, often using confirmatory factor analysis (CFA). CFA allows testing the existence of a trait that both collectively explains the symptoms and gathers the information in a single general index. In rodents, some behaviors are used to model psychiatric symptoms, but no single test or paradigm adequately captures the disorder's phenotype in toto. This work investigated the existence of a behavioral trait in the SHR strain underlying five behavioral tasks used in schizophrenia animal studies and altered in this strain: locomotor activity, rearing behavior, social interaction, prepulse inhibition of startle and contextual fear conditioning. The analysis was conducted on a sample of Wistar (n = 290) and Spontaneously Hypertensive Rats (SHRs, n = 290). CFA showed the existence of a continuous trait in both strains, and higher values among SHRs. This work is the first to demonstrate the existence of a schizophrenia-like trait in an animal model. We suggest that using CFA to evaluate behavioral parameters in animals might facilitate the pre-clinical investigation of psychiatric disorders, diminishing the gap between animal and human studies.
Collapse
Affiliation(s)
- Fernanda Fiel Peres
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; LiNC, Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry and Medical Psychology, Federal University of São Paulo, São Paulo, Brazil; National Institute for Translational Medicine, INCT-TM, CNPq, FAPESP, CAPES, Ribeirão Preto, Brazil
| | - Raí Álvares Eufrásio
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; LiNC, Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry and Medical Psychology, Federal University of São Paulo, São Paulo, Brazil
| | - Douglas Albuquerque Gouvêa
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; LiNC, Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry and Medical Psychology, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana Cepollaro Diana
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; LiNC, Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry and Medical Psychology, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Maurício Santos
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; LiNC, Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry and Medical Psychology, Federal University of São Paulo, São Paulo, Brazil
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Vanessa Costhek Abílio
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; LiNC, Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry and Medical Psychology, Federal University of São Paulo, São Paulo, Brazil; National Institute for Translational Medicine, INCT-TM, CNPq, FAPESP, CAPES, Ribeirão Preto, Brazil
| | - Hugo Cogo-Moreira
- LiNC, Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry and Medical Psychology, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
29
|
Yokota T, Struzik ZR, Jurica P, Horiuchi M, Hiroyama S, Li J, Takahara Y, Ogawa K, Nishitomi K, Hasegawa M, Cichocki A. Semi-Automated Biomarker Discovery from Pharmacodynamic Effects on EEG in ADHD Rodent Models. Sci Rep 2018; 8:5202. [PMID: 29581452 PMCID: PMC5980101 DOI: 10.1038/s41598-018-23450-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/13/2018] [Indexed: 11/16/2022] Open
Abstract
We propose a novel semi-automatic approach to design biomarkers for capturing pharmacodynamic effects induced by pharmacological agents on the spectral power of electroencephalography (EEG) recordings. We apply this methodology to investigate the pharmacodynamic effects of methylphenidate (MPH) and atomoxetine (ATX) on attention deficit/hyperactivity disorder (ADHD), using rodent models. We inject the two agents into the spontaneously hypertensive rat (SHR) model of ADHD, the Wistar-Kyoto rat (WKY), and the Wistar rat (WIS), and record their EEG patterns. To assess individual EEG patterns quantitatively, we use an integrated methodological approach, which consists of calculating the mean, slope and intercept parameters of temporal records of EEG spectral power using a smoothing filter, outlier truncation, and linear regression. We apply Fisher discriminant analysis (FDA) to identify dominant discriminants to be heuristically consolidated into several new composite biomarkers. Results of the analysis of variance (ANOVA) and t-test show benefits in pharmacodynamic parameters, especially the slope parameter. Composite biomarker evaluation confirms their validity for genetic model stratification and the effects of the pharmacological agents used. The methodology proposed is of generic use as an approach to investigating thoroughly the dynamics of the EEG spectral power.
Collapse
Affiliation(s)
- Tatsuya Yokota
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | - Peter Jurica
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | | | - Junhua Li
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | - Yuji Takahara
- SHIONOGI & Co., Ltd., Futaba, Toyonaka, Osaka, Japan
| | - Koichi Ogawa
- SHIONOGI & Co., Ltd., Futaba, Toyonaka, Osaka, Japan.
| | | | | | | |
Collapse
|
30
|
Nishitomi K, Yano K, Kobayashi M, Jino K, Kano T, Horiguchi N, Shinohara S, Hasegawa M. Systemic administration of guanfacine improves food-motivated impulsive choice behavior primarily via direct stimulation of postsynaptic α 2A-adrenergic receptors in rats. Behav Brain Res 2018; 345:21-29. [PMID: 29476896 DOI: 10.1016/j.bbr.2018.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
Impulsive choice behavior, which can be assessed using the delay discounting task, is a characteristic of various psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Guanfacine is a selective α2A-adrenergic receptor agonist that is clinically effective in treating ADHD. However, there is no clear evidence that systemic guanfacine administration reduces impulsive choice behavior in the delay discounting task in rats. In the present study, we examined the effect of systemic guanfacine administration on food-motivated impulsive choice behavior in rats and the neuronal mechanism underlying this effect. Repeated administration of either guanfacine, methylphenidate, or atomoxetine significantly enhanced impulse control, increasing the number of times the rats chose a large but delayed reward in a dose-dependent manner. The effect of guanfacine was significantly blocked by pretreatment with an α2A-adrenergic receptor antagonist. Furthermore, the effect of guanfacine remained unaffected in rats pretreated with a selective noradrenergic neurotoxin, consistent with a post-synaptic action. In contrast, the effect of atomoxetine on impulsive choice behavior was attenuated by pretreatment with the noradrenergic neurotoxin. These results provide the first evidence that systemically administered guanfacine reduces impulsive choice behavior in rats and that direct stimulation of postsynaptic, rather than presynaptic, α2A-adrenergic receptors is involved in this effect.
Collapse
Affiliation(s)
- Kouhei Nishitomi
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi Co. Ltd., Toyonaka, Osaka, Japan.
| | - Koji Yano
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi Co. Ltd., Toyonaka, Osaka, Japan
| | - Mika Kobayashi
- Drug Efficacy Evaluation Services 3, Drug Efficacy Evaluation and Research Technology Service, Shionogi Techno Advance Research Co. Ltd., Toyonaka, Osaka, Japan
| | - Kohei Jino
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi Co. Ltd., Toyonaka, Osaka, Japan
| | - Takuya Kano
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi Co. Ltd., Toyonaka, Osaka, Japan
| | - Naotaka Horiguchi
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi Co. Ltd., Toyonaka, Osaka, Japan
| | - Shunji Shinohara
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi Co. Ltd., Toyonaka, Osaka, Japan
| | - Minoru Hasegawa
- Pain & Neuroscience, Drug Discovery & Disease Research Laboratory, Shionogi Co. Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
31
|
Rostron CL, Gaeta V, Brace LR, Dommett EJ. Instrumental conditioning for food reinforcement in the spontaneously hypertensive rat model of attention deficit hyperactivity disorder. BMC Res Notes 2017; 10:525. [PMID: 29084583 PMCID: PMC5661932 DOI: 10.1186/s13104-017-2857-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/23/2017] [Indexed: 01/17/2023] Open
Abstract
Background The spontaneously hypertensive rat is thought to show good validity as a model of attention deficit hyperactivity disorder, in part because of impaired delayed reinforcement behaviour, corresponding to the dynamic developmental theory of the disorder. However, some previous studies may have been confounded use of fluid reward. Therefore, the objective of this study was to assess the spontaneously hypertensive rat and two comparison strains (Wistar and Wistar Kyoto) using a non-delayed food reinforcement paradigm in an attempt to advance knowledge of basic learnt behaviour in this strain, without potentially confounding reward sensitivity, which could impact on motivation to learn. Rats were trained on a fixed ratio 1 two choice discrimination schedule, extinction, reacquisition and reversal. We also tested non-reinforced spontaneous alternation to facilitate data interpretation. Results The spontaneously hypertensive rat displayed slower shaping and reduced on task activity during task acquisition, contrasting with previous results which indicate either enhanced responding and an impairment only when a delay is used; we suggest several reasons for this. In line with previous work, the same strain exhibited poor extinguishing of behaviour but were not impaired to the same extent on reversal of the discrimination. Finally, non-reinforced alternations on a Y-maze were also reduced in the spontaneously hypertensive rat. Conclusions In sum, the spontaneously hypertensive rat appear to show poor response inhibition in reinforced and non-reinforced contexts. However, impaired response inhibition was reduced during reversal when an opposite response produced food reward alongside presentation of the conditioned stimulus. We discuss the possibility of enhanced attribution of incentive salience to cues in this strain and highlight several points of caution for researchers conducting behavioural assessments using the spontaneously hypertensive rat and their associated comparison strains. Electronic supplementary material The online version of this article (10.1186/s13104-017-2857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire L Rostron
- Dept Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Victoria Gaeta
- Dept Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Louise R Brace
- Dept Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Eleanor J Dommett
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Addison House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
32
|
Methylphenidate and Atomoxetine-Responsive Prefrontal Cortical Genetic Overlaps in "Impulsive" SHR/NCrl and Wistar Rats. Behav Genet 2017; 47:564-580. [PMID: 28744604 DOI: 10.1007/s10519-017-9861-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 01/24/2023]
Abstract
Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.
Collapse
|
33
|
Sjoberg EA. Logical fallacies in animal model research. Behav Brain Funct 2017; 13:3. [PMID: 28202023 PMCID: PMC5312558 DOI: 10.1186/s12993-017-0121-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Background Animal models of human behavioural deficits involve conducting experiments on animals with the hope of gaining new knowledge that can be applied to humans. This paper aims to address risks, biases, and fallacies associated with drawing conclusions when conducting experiments on animals, with focus on animal models of mental illness. Conclusions Researchers using animal models are susceptible to a fallacy known as false analogy, where inferences based on assumptions of similarities between animals and humans can potentially lead to an incorrect conclusion. There is also a risk of false positive results when evaluating the validity of a putative animal model, particularly if the experiment is not conducted double-blind. It is further argued that animal model experiments are reconstructions of human experiments, and not replications per se, because the animals cannot follow instructions. This leads to an experimental setup that is altered to accommodate the animals, and typically involves a smaller sample size than a human experiment. Researchers on animal models of human behaviour should increase focus on mechanistic validity in order to ensure that the underlying causal mechanisms driving the behaviour are the same, as relying on face validity makes the model susceptible to logical fallacies and a higher risk of Type 1 errors. We discuss measures to reduce bias and risk of making logical fallacies in animal research, and provide a guideline that researchers can follow to increase the rigour of their experiments.
Collapse
Affiliation(s)
- Espen A Sjoberg
- Department of Behavioral Sciences, Oslo and Akershus University College of Applied Sciences, St. Olavs Plass, P.O. Box 4, 0130, Oslo, Norway.
| |
Collapse
|
34
|
Amodeo LR, Jacobs-Brichford E, McMurray MS, Roitman JD. Acute and long-term effects of adolescent methylphenidate on decision-making and dopamine receptor mRNA expression in the orbitofrontal cortex. Behav Brain Res 2017; 324:100-108. [PMID: 28212944 DOI: 10.1016/j.bbr.2017.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 01/09/2023]
Abstract
Though commonly used as a treatment for ADHD, the psychostimulant methylphenidate (MPH) is also misused and abused in adolescence in both clinical and general populations. Although MPH acts via pathways activated by other drugs of abuse, the short- and long-term effects of MPH on reward processing in learning and decision-making are not clearly understood. We examined the effect of adolescent MPH treatment on a battery of reward-directed behaviors both in adolescence during its administration and in adulthood after its discontinuation. We further measured whether MPH had lasting effects on dopamine receptor mRNA expression in orbitofrontal cortex (OFC) that may correspond with behavior. Long-Evans rats were injected with MPH (0, 1, 2.5, or 5mg/kg IP) twice daily from middle to late adolescence (PD38-57). During adolescence, the high dose of MPH reduced preference for large rewards in a Reward Magnitude Discrimination task, but did not affect preference for smaller-sooner rewards in a Delay Discounting task. In adulthood, after discontinuation of MPH, animals previously treated with the moderate dose of MPH showed improved acquisition, but not reversal, in a Reversal Learning task. MPH exposure did not increase preference for large-risky rewards in a Risk task in adulthood. We then quantified mRNA expression of D1, D2, and D3 receptors in the OFC using qPCR. MPH increased mRNA expression of dopamine D3 receptor subtype, but not D1 or D2. Overall, these results indicate that MPH has both immediate and lasting effects on reward-dependent learning and decisions, as well as dopaminergic function in rodents.
Collapse
Affiliation(s)
- Leslie R Amodeo
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| | - Eliza Jacobs-Brichford
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| | - Matthew S McMurray
- Department of Psychology, Miami University, 90 N Patterson Ave, Oxford, OH 45056, USA
| | - Jamie D Roitman
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA; Laboratory of Integrative Neuroscience, University of Illinois at Chicago,1007 West Harrison Street, Chicago, IL 60607, USA.
| |
Collapse
|
35
|
Muñoz-Villegas P, Rodríguez VM, Giordano M, Juárez J. Risk-taking, locomotor activity and dopamine levels in the nucleus accumbens and medial prefrontal cortex in male rats treated prenatally with alcohol. Pharmacol Biochem Behav 2017; 153:88-96. [DOI: 10.1016/j.pbb.2016.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
36
|
Fox AE, Caramia SR, Haskell MM, Ramey AL, Singha D. Stimulus control in two rodent models of attention-deficit/hyperactivity disorder. Behav Processes 2017; 135:16-24. [DOI: 10.1016/j.beproc.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
|
37
|
Peres FF, Levin R, Almeida V, Zuardi AW, Hallak JE, Crippa JA, Abilio VC. Cannabidiol, among Other Cannabinoid Drugs, Modulates Prepulse Inhibition of Startle in the SHR Animal Model: Implications for Schizophrenia Pharmacotherapy. Front Pharmacol 2016; 7:303. [PMID: 27667973 PMCID: PMC5016523 DOI: 10.3389/fphar.2016.00303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder that involves positive, negative and cognitive symptoms. Prepulse inhibition of startle reflex (PPI) is a paradigm that assesses the sensorimotor gating functioning and is impaired in schizophrenia patients as well as in animal models of this disorder. Recent data point to the participation of the endocannabinoid system in the pathophysiology and pharmacotherapy of schizophrenia. Here, we focus on the effects of cannabinoid drugs on the PPI deficit of animal models of schizophrenia, with greater focus on the SHR (Spontaneously Hypertensive Rats) strain, and on the future prospects resulting from these findings.
Collapse
Affiliation(s)
- Fernanda F Peres
- Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Escola Paulista De Medicina, Federal University of São PauloSão Paulo, Brazil; Department of Pharmacology, Escola Paulista De Medicina, Federal University of São PauloSão Paulo, Brazil
| | - Raquel Levin
- Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Escola Paulista De Medicina, Federal University of São PauloSão Paulo, Brazil; Department of Pharmacology, Escola Paulista De Medicina, Federal University of São PauloSão Paulo, Brazil
| | - Valéria Almeida
- Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Escola Paulista De Medicina, Federal University of São PauloSão Paulo, Brazil; Department of Pharmacology, Escola Paulista De Medicina, Federal University of São PauloSão Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, University of São PauloRibeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq)Ribeirão Preto, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavior, University of São PauloRibeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq)Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, University of São PauloRibeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq)Ribeirão Preto, Brazil
| | - Vanessa C Abilio
- Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, Escola Paulista De Medicina, Federal University of São PauloSão Paulo, Brazil; Department of Pharmacology, Escola Paulista De Medicina, Federal University of São PauloSão Paulo, Brazil
| |
Collapse
|
38
|
Effects of high‐frequency repetitive transcranial magnetic stimulation (rTMS) on spontaneously hypertensive rats, an animal model of attention‐deficit/hyperactivity disorder. Int J Dev Neurosci 2016; 53:83-89. [DOI: 10.1016/j.ijdevneu.2016.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/23/2016] [Accepted: 07/23/2016] [Indexed: 11/20/2022] Open
|
39
|
Tamminga HGH, Reneman L, Huizenga HM, Geurts HM. Effects of methylphenidate on executive functioning in attention-deficit/hyperactivity disorder across the lifespan: a meta-regression analysis. Psychol Med 2016; 46:1791-1807. [PMID: 27019103 DOI: 10.1017/s0033291716000350] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) in childhood and adulthood is often treated with the psychostimulant methylphenidate (MPH). However, it is unknown whether cognitive effects of MPH depend on age in individuals with ADHD, while animal studies have suggested age-related effects. In this meta-analysis, we first determined the effects of MPH on response inhibition, working memory and sustained attention, but our main goal was to examine whether these effects are moderated by age. A systematic literature search using PubMed, PsycINFO, Web of Science and MEDLINE for double-blind, placebo-controlled studies with MPH resulted in 25 studies on response inhibition (n = 775), 13 studies on working memory (n = 559) and 29 studies on sustained attention (n = 956) (mean age range 4.8-50.1 years). The effects of MPH on response inhibition [effect size (ES) = 0.40, p < 0.0001, 95% confidence interval (CI) 0.22-0.58], working memory (ES = 0.24, p = 0.053, 95% CI 0.00-0.48) and sustained attention (ES = 0.42, p < 0.0001, 95% CI 26-0.59) were small to moderate. No linear or quadratic age-dependencies were observed, indicating that effects of MPH on executive functions are independent of age in children and adults with ADHD. However, adolescent studies are lacking and needed to conclude a lack of an age-dependency across the lifespan.
Collapse
Affiliation(s)
- H G H Tamminga
- Department of Radiology,Academic Medical Center Amsterdam,Amsterdam,The Netherlands
| | - L Reneman
- Department of Radiology,Academic Medical Center Amsterdam,Amsterdam,The Netherlands
| | - H M Huizenga
- Department of Psychology,University of Amsterdam,Amsterdam,The Netherlands
| | - H M Geurts
- Department of Psychology,University of Amsterdam,Amsterdam,The Netherlands
| |
Collapse
|
40
|
Gallo EF, Posner J. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry 2016; 3:555-67. [PMID: 27183902 PMCID: PMC4893880 DOI: 10.1016/s2215-0366(16)00096-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by developmentally inappropriate levels of inattention and hyperactivity or impulsivity. The heterogeneity of its clinical manifestations and the differential responses to treatment and varied prognoses have long suggested myriad underlying causes. Over the past decade, clinical and basic research efforts have uncovered many behavioural and neurobiological alterations associated with ADHD, from genes to higher order neural networks. Here, we review the neurobiology of ADHD by focusing on neural circuits implicated in the disorder and discuss how abnormalities in circuitry relate to symptom presentation and treatment. We summarise the literature on genetic variants that are potentially related to the development of ADHD, and how these, in turn, might affect circuit function and relevant behaviours. Whether these underlying neurobiological factors are causally related to symptom presentation remains unresolved. Therefore, we assess efforts aimed at disentangling issues of causality, and showcase the shifting research landscape towards endophenotype refinement in clinical and preclinical settings. Furthermore, we review approaches being developed to understand the neurobiological underpinnings of this complex disorder, including the use of animal models, neuromodulation, and pharmacoimaging studies.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Columbia University and New York State Psychiatric Institute, New York, NY, USA.
| | - Jonathan Posner
- Columbia University and New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
41
|
Foerde K, Figner B, Doll BB, Woyke IC, Braun EK, Weber EU, Shohamy D. Dopamine Modulation of Intertemporal Decision-making: Evidence from Parkinson Disease. J Cogn Neurosci 2016; 28:657-67. [PMID: 26836514 DOI: 10.1162/jocn_a_00929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Choosing between smaller prompt rewards and larger later rewards is a common choice problem, and studies widely agree that frontostriatal circuits heavily innervated by dopamine are centrally involved. Understanding how dopamine modulates intertemporal choice has important implications for neurobiological models and for understanding the mechanisms underlying maladaptive decision-making. However, the specific role of dopamine in intertemporal decisions is not well understood. Dopamine may play a role in multiple aspects of intertemporal choices--the valuation of choice outcomes and sensitivity to reward delays. To assess the role of dopamine in intertemporal decisions, we tested Parkinson disease patients who suffer from dopamine depletion in the striatum, in either high (on medication, PDON) or low (off medication, PDOFF) dopaminergic states. Compared with both PDOFF and healthy controls, PDON made more farsighted choices and reduced their valuations less as a function of increasing time to reward. Furthermore, reduced discounting in the high dopaminergic state was robust across multiple measures, providing new evidence for dopamine's role in making decisions about the future.
Collapse
|
42
|
Hernandez G, Cheer JF. To Act or Not to Act: Endocannabinoid/Dopamine Interactions in Decision-Making. Front Behav Neurosci 2015; 9:336. [PMID: 26733830 PMCID: PMC4681836 DOI: 10.3389/fnbeh.2015.00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
Decision-making is an ethologically adaptive construct that is impaired in multiple psychiatric disorders. Activity within the mesocorticolimbic dopamine system has been traditionally associated with decision-making. The endocannabinoid system through its actions on inhibitory and excitatory synapses modulates dopamine activity and decision-making. The aim of this brief review is to present a synopsis of available data obtained when the endocannabinoid system is manipulated and dopamine activity recorded. To this end, we review research using different behavioral paradigms to provide further insight into how this ubiquitous signaling system biases dopamine-related behaviors to regulate decision-making.
Collapse
Affiliation(s)
- Giovanni Hernandez
- Faculté de Pharmacie, Université de Montréal Montréal, Quebec, QC, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimore, Maryland, MD, USA; Department of Psychiatry, University of Maryland School of MedicineBaltimore, Maryland, MD, USA
| |
Collapse
|
43
|
Brace LR, Kraev I, Rostron CL, Stewart MG, Overton PG, Dommett EJ. Auditory responses in a rodent model of Attention Deficit Hyperactivity Disorder. Brain Res 2015; 1629:10-25. [PMID: 26453290 DOI: 10.1016/j.brainres.2015.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/30/2023]
Abstract
A central component of Attention Deficit Hyperactivity Disorder (ADHD) is increased distractibility in response to visual and auditory stimuli, which is linked to the superior colliculus (SC). Furthermore, there is now mounting evidence of altered collicular functioning in ADHD and it is proposed that a hyper-responsive SC could mediate symptoms of ADHD, including distractibility. In the present study we conducted a systematic characterisation of the intermediate and deep layers of the SC in the most commonly used and well-validated model of ADHD, the spontaneously hypertensive rat (SHR), building on prior work showing increased distractible behaviour in this strain using visual distractors. We examined collicular-dependent orienting behaviour, local field potential (LFP) and multiunit activity (MUA) in response to auditory stimuli in the anaesthetised rat, and morphological measures, in the SHR in comparison to the Wistar Kyoto (WKY) and Wistar (WIS). We found no evidence of increased distractibility in the behavioural data but suggest that this may arise due to cochlear hearing loss in the SHR. Furthermore, the electrophysiology data indicate that the SC in the SHR may still be hyper-responsive, normalising the amplitude of auditory responses that would otherwise be reduced due to the hearing impairment. The morphological measures of collicular volume, cell density and ratios did not indicate this potential hyper-responsiveness had a basis at the structural level examined. These findings have implications for future use of the SHR in auditory processing studies and may represent a limitation to the validity of this animal model.
Collapse
Affiliation(s)
- Louise R Brace
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Igor Kraev
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Claire L Rostron
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Michael G Stewart
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Eleanor J Dommett
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, London SE1 3QD, UK.
| |
Collapse
|
44
|
Lazzaretti C, Kincheski GC, Pandolfo P, Krolow R, Toniazzo AP, Arcego DM, Couto-Pereira NDS, Zeidán-Chuliá F, Galvalisi M, Costa G, Scorza C, Souza TME, Dalmaz C. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats. J Integr Neurosci 2015; 15:81-95. [PMID: 26620193 DOI: 10.1142/s0219635216500047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood.
Collapse
Affiliation(s)
- Camilla Lazzaretti
- * Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Pablo Pandolfo
- ‡ Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ, Brazil
| | - Rachel Krolow
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,¶ Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Ana Paula Toniazzo
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Danusa Mar Arcego
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fares Zeidán-Chuliá
- § Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Martin Galvalisi
- ∥ Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gustavo Costa
- ** Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Scorza
- ∥ Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Tadeu Mello E Souza
- * Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,§ Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- * Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,§ Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Diana MC, Santoro ML, Xavier G, Santos CM, Spindola LN, Moretti PN, Ota VK, Bressan RA, Abilio VC, Belangero SI. Low expression of Gria1 and Grin1 glutamate receptors in the nucleus accumbens of Spontaneously Hypertensive Rats (SHR). Psychiatry Res 2015; 229:690-4. [PMID: 26296755 DOI: 10.1016/j.psychres.2015.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/03/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
The Spontaneously Hypertensive Rat (SHR) strain is a classical animal model for the study of essential hypertension. Recently, our group suggested that this strain could be a useful animal model for schizophrenia, which is a severe mental illness with involvement of glutamatergic system. The aim of this study is to investigate glutamatergic receptors (Gria1 and Grin1) and glycine transporter (Glyt1) gene expression in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) of SHR animals. The effects in gene expression of a chronic treatment with antipsychotic drugs (risperidone, haloperidol and clozapine) were also analyzed. Animals were treated daily for 30 days, and euthanized for brain tissue collection. The expression pattern was evaluated by Real Time Reverse-Transcriptase (RT) PCR technique. In comparison to control rats, SHR animals present a lower expression of both NMDA (Grin1) and AMPA (Gria1) gene receptors in the NAcc. Antipsychotic treatments were not able to change gene expressions in any of the regions evaluated. These findings provide evidence for the role of glutamatergic changes in schizophrenia-like phenotype of the SHR strain.
Collapse
Affiliation(s)
- Mariana C Diana
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil; Department of Pharmacology, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo 669, 5th floor, CEP 04039032, Brazil
| | - Marcos L Santoro
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Gabriela Xavier
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil
| | - Camila Mauricio Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil; Department of Pharmacology, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo 669, 5th floor, CEP 04039032, Brazil
| | - Leticia N Spindola
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Patrícia N Moretti
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Vanessa K Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Rodrigo A Bressan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil
| | - Vanessa C Abilio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil; Department of Pharmacology, Universidade Federal de Sao Paulo (UNIFESP), Rua Pedro de Toledo 669, 5th floor, CEP 04039032, Brazil
| | - Sintia I Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil.
| |
Collapse
|
46
|
Lukkes JL, Thompson BS, Freund N, Andersen SL. The developmental inter-relationships between activity, novelty preferences, and delay discounting in male and female rats. Dev Psychobiol 2015; 58:231-42. [PMID: 26419783 DOI: 10.1002/dev.21368] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/18/2015] [Indexed: 02/02/2023]
Abstract
Increased locomotion, novelty-seeking, and impulsivity are risk factors associated with substance use. In this study, the inter-relationships between activity, novelty preferences, and delay discounting, a measure of impulsivity, were examined across three stages: juvenile/early adolescence (postnatal Day [P] 15, 19, and 42 for activity, novelty, and impulsivity, respectively), adolescent/late adolescent (P28, 32, 73), and adult (P90, 94, 137) in male and female rats. Our estimates of impulsive choice, where animals were trained to criterion, revealed an age × sex interaction where early adolescent females had the lowest levels of impulsivity. The relationships of activity and novelty to impulsivity significantly changed across age within each sex. Early adolescent males with high activity, but low novelty preferences, were more impulsive; however, low activity and high novelty preferences were related to high impulsivity in adult males. Female activity gradually increased across age, but did not show a strong relationship with impulsivity. Novelty preferences are moderately related to impulsivity into adulthood in females. These data show that males and females have different developmental trajectories for these behaviors. Males show greater sensation-seeking (e.g., activity) and risky behavior (e.g., novelty preferences) earlier in life, whereas these behaviors emerge during adolescence in females.
Collapse
Affiliation(s)
- Jodi L Lukkes
- Laboratory of Developmental Neuropharmacology, Belmont, MA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478
| | | | - Nadja Freund
- Laboratory of Developmental Neuropharmacology, Belmont, MA.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Susan L Andersen
- Laboratory of Developmental Neuropharmacology, Belmont, MA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478
| |
Collapse
|
47
|
Thompson JL, Yang J, Lau B, Liu S, Baimel C, Kerr LE, Liu F, Borgland SL. Age-Dependent D1-D2 Receptor Coactivation in the Lateral Orbitofrontal Cortex Potentiates NMDA Receptors and Facilitates Cognitive Flexibility. Cereb Cortex 2015; 26:4524-4539. [PMID: 26405054 DOI: 10.1093/cercor/bhv222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The orbitofrontal cortex (OFC) integrates information about the environment to guide decision-making. Glutamatergic synaptic transmission mediated through N-methyl-d-aspartate receptors is required for optimal functioning of the OFC. Additionally, abnormal dopamine signaling in this region has been implicated in impulsive behavior and poor cognitive flexibility. Yet, despite the high prevalence of psychostimulants prescribed for attention deficit/hyperactivity disorder, there is little information on how dopamine modulates synaptic transmission in the juvenile or the adult OFC. Using whole-cell patch-clamp recordings in OFC pyramidal neurons, we demonstrated that while dopamine or selective D2-like receptor (D2R) agonists suppress excitatory synaptic transmission of juvenile or adult lateral OFC neurons; in juvenile lateral OFC neurons, higher concentrations of dopamine can target dopamine receptors that couple to a phospholipase C (PLC) signaling pathway to enhance excitatory synaptic transmission. Interfering with the formation of a putative D1R-D2R interaction blocked the potentiation of excitatory synaptic transmission. Furthermore, targeting the putative D1R-D2R complex with a biased agonist, SKF83959, not only enhanced excitatory synaptic transmission in a PLC-dependent manner, but also improved the performance of juvenile rats on a reversal-learning task. Our results demonstrate that dopamine signaling in the lateral OFC differs between juveniles and adults, through potential crosstalk between dopamine receptor subtypes.
Collapse
Affiliation(s)
- Jennifer L Thompson
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jinhui Yang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Benjamin Lau
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Shuai Liu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Lauren E Kerr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|
48
|
D-amphetamine improves attention performance in adolescent Wistar, but not in SHR rats, in a two-choice visual discrimination task. Psychopharmacology (Berl) 2015; 232:3269-86. [PMID: 26037943 DOI: 10.1007/s00213-015-3974-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/24/2015] [Indexed: 01/30/2023]
Abstract
The validity of spontaneous hypertensive rat (SHR) as a model of attention deficit hyperactivity disorder (ADHD) has been explored by comparing SHR with Wistar rats in a test of attention, the two-choice visual discrimination task (2-CVDT). Animals were 4-5 weeks old during the training phase of the experiment and 6-7 weeks old during the testing phase in which they were tested with D-amphetamine, a stimulant drug used for the treatment of ADHD. As compared to Wistar, SHR showed a slightly better attention performance, a slightly lower impulsivity level, and a lower general activity during the training phase, but these differences disappeared or lessened thereafter, during the testing phase. D-amphetamine (0.5, 1 mg/kg) improved attention performance in Wistar, but not in SHR, and did not modify impulsivity and activity in the two strains. In conclusion, the present study did not demonstrate that SHR represents a valid model of ADHD, since it did not show face validity regarding the behavioral symptoms of ADHD and predictive validity regarding the effect of a compound used for the treatment of ADHD. On the other hand, this study showed that the 2-CVDT may represent a suitable tool for evaluating in adolescent Wistar rats the effect on attention of compounds intended for the treatment of ADHD.
Collapse
|
49
|
Cunningham PJ, Kuhn R, Reilly MP. A within-subject between-apparatus comparison of impulsive choice: T-maze and two-lever chamber. J Exp Anal Behav 2015; 104:20-9. [PMID: 26080901 DOI: 10.1002/jeab.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/14/2015] [Indexed: 11/10/2022]
Abstract
Whereas intertemporal choice procedures are a common method for examining impulsive choice in nonhuman subjects, the apparatus used to implement this procedure varies across studies. The purpose of the present study was to compare impulsive choice between a two-lever chamber and a T-maze. In Experiment 1, rats chose between a smaller, immediate reinforcer and a larger, delayed reinforcer, first in a two-lever chamber and then in a T-maze. Delay to the larger reinforcer changed in an ascending and descending order (0-32 s) across sessions. Experiment 2 examined the same between-apparatus comparison but under steady-state conditions with the delay fixed at 32 s. In Experiment 1, choice for the larger, delayed reinforcer was generally higher in the T-maze than in the two-lever chamber. Similarly in Experiment 2, steady-state choice for the larger, delayed reinforcer was higher in the T-maze. Choice for the 32-s delayed reinforcer was also greater in Experiment 2 than in Experiment 1, suggesting that extended exposure to the delay is required for the T-maze to yield reliable impulsive choice data. While the reasons for the between-apparatus discrepancies are at present unknown, results from both experiments clearly demonstrate that the apparatus matters when assessing overall level and reliability of impulsive choice data.
Collapse
|
50
|
Effects of sarizotan in animal models of ADHD: challenging pharmacokinetic–pharmacodynamic relationships. J Neural Transm (Vienna) 2015; 122:1221-38. [DOI: 10.1007/s00702-015-1392-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/07/2015] [Indexed: 11/25/2022]
|