1
|
Steiner AM, Roscoe RF, Booze RM, Mactutus CF. Motivational dysregulation with melanocortin 4 receptor haploinsufficiency. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:237-250. [PMID: 39741559 PMCID: PMC11683877 DOI: 10.1515/nipt-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025]
Abstract
Obesity, by any standard, is a global health crisis. Both genetic and dietary contributions to the development and maintenance of obesity were integral factors of our experimental design. As mutations of the melanocortin 4 receptors (MC4R) are the leading monogenetic cause of obesity, MC4R haploinsufficient rats were fed a range of dietary fat (0-12 %) in a longitudinal design. Physiological and motivational assessments were performed using a locomotor task, a 5-choice sucrose preference task, an operant task with fixed and progressive ratios, as well as a distraction operant task. Dendritic spine morphology of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), cells with ample D1 and D2 receptors, was also assessed. The percentage of lipid deposits in the liver of each rat was also analyzed using the Area Fraction Fractionator probe for stereological measurements. MC4R haploinsufficiency resulted in a phenotypic resemblance for adult-onset obesity that was exacerbated by the consumption of a high-fat diet. Results from the operant tasks indicate that motivational deficits due to MC4R haploinsufficiency were apparent prior to the onset of obesity and exacerbated by dietary fat consumption after obesity was well established. Moreover, MSN morphology shifted to longer spines with smaller head diameters for the MC4R+/- animals under the high-fat diet, suggesting a potential mechanism for the dysregulation of motivation to work for food. Increasing our knowledge of the neural circuitry/mechanisms responsible for the rewarding properties of food has significant implications for understanding energy balance and the development of obesity.
Collapse
Affiliation(s)
- Alex M. Steiner
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Robert F. Roscoe
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Rosemarie M. Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Charles F. Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
2
|
Brown RM, James MH. Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110717. [PMID: 36623582 PMCID: PMC10162020 DOI: 10.1016/j.pnpbp.2023.110717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Overeating ranges in severity from casual overindulgence to an overwhelming drive to consume certain foods. At its most extreme, overeating can manifest as clinical diagnoses such as binge eating disorder or bulimia nervosa, yet subclinical forms of overeating such as emotional eating or uncontrolled eating can still have a profoundly negative impact on health and wellbeing. Although rodent models cannot possibly capture the full spectrum of disordered overeating, studies in laboratory rodents have substantially progressed our understanding of the neurobiology of overconsumption. These experimental approaches range from simple food-exposure protocols that promote binge-like eating and the development of obesity, to more complex operant procedures designed to examine distinct 'addiction-like' endophenotypes for food. This review provides an overview of these experimental approaches, with the view to providing a comprehensive resource for preclinical investigators seeking to utilize behavioural models for studying the neural systems involved in food overconsumption.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, NJ, USA; Brain Health Institute, Rutgers University, NJ, USA.
| |
Collapse
|
3
|
Effects of Nutritionally Induced Obesity on Metabolic Pathways of Zebrafish. Int J Mol Sci 2023; 24:ijms24031850. [PMID: 36768175 PMCID: PMC9914946 DOI: 10.3390/ijms24031850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Human obesity has become a global epidemic that can lead to many metabolic diseases, including insulin resistance, type 2 diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver. The development of obesity is closely associated with excess food intake and energy imbalance, family history, lifestyle, psychology and other factors, but molecular mechanisms underlying the induction and development of obesity remain to be intensively studied under a variety of internal and external pathogenesis conditions. In this study, we generated two obesity models of zebrafish that were treated with a high-fat diet (HFD) or an overfeeding diet (DIO). Both HFD and DIO zebrafish exhibited higher levels of lipid accumulation, fat distribution, microvascular steatosis and ectopic accumulation of lipid droplets in liver and muscle than normal diet (NOD) fish. The comparison of transcriptome sequencing data for the livers of HFD, DIO and NOD groups identified common and specific genes and signaling pathways that are potentially associated with zebrafish obesity induced by HFD and/or DIO. These findings provide clues for further understanding the mechanisms of obesity development and preventing nutritionally induced obesity through targeting the common signaling pathways and biological processes.
Collapse
|
4
|
Redish AD, Kepecs A, Anderson LM, Calvin OL, Grissom NM, Haynos AF, Heilbronner SR, Herman AB, Jacob S, Ma S, Vilares I, Vinogradov S, Walters CJ, Widge AS, Zick JL, Zilverstand A. Computational validity: using computation to translate behaviours across species. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200525. [PMID: 34957854 PMCID: PMC8710889 DOI: 10.1098/rstb.2020.0525] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
We propose a new conceptual framework (computational validity) for translation across species and populations based on the computational similarity between the information processing underlying parallel tasks. Translating between species depends not on the superficial similarity of the tasks presented, but rather on the computational similarity of the strategies and mechanisms that underlie those behaviours. Computational validity goes beyond construct validity by directly addressing questions of information processing. Computational validity interacts with circuit validity as computation depends on circuits, but similar computations could be accomplished by different circuits. Because different individuals may use different computations to accomplish a given task, computational validity suggests that behaviour should be understood through the subject's point of view; thus, behaviour should be characterized on an individual level rather than a task level. Tasks can constrain the computational algorithms available to a subject and the observed subtleties of that behaviour can provide information about the computations used by each individual. Computational validity has especially high relevance for the study of psychiatric disorders, given the new views of psychiatry as identifying and mediating information processing dysfunctions that may show high inter-individual variability, as well as for animal models investigating aspects of human psychiatric disorders. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam Kepecs
- Department of Neuroscience, Washington University in St. Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Lisa M. Anderson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicola M. Grissom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann F. Haynos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alexander B. Herman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sisi Ma
- Department of Medicine - Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iris Vilares
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody J. Walters
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L. Zick
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Subias-Gusils A, Álvarez-Monell A, Boqué N, Caimari A, Del Bas JM, Mariné-Casadó R, Solanas M, Escorihuela RM. Behavioral and Metabolic Effects of a Calorie-Restricted Cafeteria Diet and Oleuropein Supplementation in Obese Male Rats. Nutrients 2021; 13:nu13124474. [PMID: 34960026 PMCID: PMC8704884 DOI: 10.3390/nu13124474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023] Open
Abstract
Diet-induced obesity models are widely used to investigate dietary interventions for treating obesity. This study was aimed to test whether a dietary intervention based on a calorie-restricted cafeteria diet (CAF-R) and a polyphenolic compound (Oleuropein, OLE) supplementation modified sucrose intake, preference, and taste reactivity in cafeteria diet (CAF)-induced obese rats. CAF diet consists of high-energy, highly palatable human foods. Male rats fed standard chow (STD) or CAF diet were compared with obese rats fed CAF-R diet, alone or supplemented with an olive tree leaves extract (25 mg/kg*day) containing a 20.1% of OLE (CAF-RO). Biometric, food consumption, and serum parameters were measured. CAF diet increased body weight, food and energy consumption and obesity-associated metabolic parameters. CAF-R and CAF-RO diets significantly attenuated body weight gain and BMI, diminished food and energy intake and improved biochemical parameters such as triacylglycerides and insulin resistance which did not differ between CAF-RO and STD groups. The three cafeteria groups diminished sucrose intake and preference compared to STD group. CAF-RO also diminished the hedonic responses for the high sucrose concentrations compared with the other groups. These results indicate that CAF-R diet may be an efficient strategy to restore obesity-associated alterations, whilst OLE supplementation seems to have an additional beneficial effect on sweet taste function.
Collapse
Affiliation(s)
- Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adam Álvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Josep M. Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| | - Rosa M. Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| |
Collapse
|
6
|
Natterson-Horowitz B, Cho JH. Stress, Subordination, and Anomalies of Feeding Across the Tree of Life: Implications for Interpreting Human Eating Disorders. Front Psychol 2021; 12:727554. [PMID: 34675841 PMCID: PMC8525799 DOI: 10.3389/fpsyg.2021.727554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eating behaviors of animals living in naturalistic environments offer unique insights into several dysregulated eating patterns observed in humans. Social subordination is a known precipitant of hyperphagia and hypophagia in human beings, and examples of similar responses have been identified in a phylogenetically widespread range of vertebral species. This points to potentially conserved, patterned responses to animals navigating lives within social hierarchies. Self-imposed food restriction in subordinate fish and hyperphagic responses in socially subordinated bird and primate individuals may represent evolved adaptations to the stress of social subordination. As such, hyperphagic and hypophagic responses to social subordination in these species may model the natural history, neurobiology, and behavioral ecology of human dieting and bingeing more accurately than some current animal models. Phylogenetically widespread similarities in eating patterns under the stress of social subordination point to potentially shared biological benefits of these behaviors across species and the role of evolutionary trade-offs, adaptations, and other processes in shaping them. The application of a broadly comparative lens to disordered eating behaviors in other species exposes important similarities and differences between neurophysiology of eating across species. In doing so, it highlights the value of phylogenetic analyses and macroevolution as tools for identifying novel, naturally occurring models for understanding disordered human eating. Moreover, this approach introduces the intriguing possibility that human cultural influences on disordered eating may have far more ancient origins than previously considered.
Collapse
Affiliation(s)
- B Natterson-Horowitz
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Human Evolutionary Biology, Harvard University, Boston, MA, United States
| | - Julia H Cho
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Dopamine D2 receptor overexpression in the nucleus accumbens core induces robust weight loss during scheduled fasting selectively in female mice. Mol Psychiatry 2021; 26:3765-3777. [PMID: 31863019 PMCID: PMC7305037 DOI: 10.1038/s41380-019-0633-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023]
Abstract
Anorexia nervosa (AN) is an eating disorder observed predominantly in women and girls that is characterized by a low body-mass index, hypophagia, and hyperactivity. Activity-based anorexia (ABA), which refers to the weight loss, hypophagia, and hyperactivity exhibited by rodents exposed to both running wheels and scheduled fasting, provides a model for aspects of AN. Increased dopamine D2/D3 receptor binding in the anteroventral striatum has been reported in AN patients. We virally overexpressed D2Rs on nucleus accumbens core (D2R-OENAc) neurons that endogenously express D2Rs, and tested mice of both sexes in the open field test, ABA paradigm, and intraperitoneal glucose tolerance test (IGTT). D2R-OENAc did not alter baseline body weight, but increased locomotor activity in the open field across both sexes. During constant access to food and running wheels, D2R-OENAc mice of both sexes increased food intake and ran more than controls. However, when food was available only 7 h a day, only female D2R-OENAc mice rapidly lost 25% of their initial body weight, reduced food intake, and substantially increased wheel running. Surprisingly, female D2R-OENAc mice also rapidly lost 25% of their initial body weight during scheduled fasting without wheel access and showed no changes in food intake. In contrast, male D2R-OENAc mice maintained body weight during scheduled fasting. D2R-OENAc mice of both sexes also showed glucose intolerance in the IGTT. In conclusion, D2R-OENAc alters glucose metabolism in both sexes but drives robust weight loss only in females during scheduled fasting, implicating metabolic mechanisms in this sexually dimorphic effect.
Collapse
|
8
|
Bilash OM, Actor-Engel HS, Sherpa AD, Chen YW, Aoki C. Suppression of food restriction-evoked hyperactivity in activity-based anorexia animal model through glutamate transporters GLT-1 at excitatory synapses in the hippocampus. Synapse 2021; 75:e22197. [PMID: 33619810 DOI: 10.1002/syn.22197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Severe voluntary food restriction is the defining symptom of anorexia nervosa (AN), but anxiety and excessive exercise are maladaptive symptoms that contribute significantly to the severity of AN and which individuals with AN have difficulty suppressing. We hypothesized that the excitability of hippocampal pyramidal neurons, known to contribute to anxiety, leads to the maladaptive behavior of excessive exercise. Conversely, since glutamate transporter GLT-1 dampens the excitability of hippocampal pyramidal neurons through the uptake of ambient glutamate and suppression of the GluN2B-subunit containing NMDA receptors (GluN2B-NMDARs), GLT-1 may contribute toward dampening excessive exercise. This hypothesis was tested using the mouse model of AN, called activity-based anorexia (ABA), whereby food restriction evokes the maladaptive behavior of excessive wheel running (food restriction-evoked running, FRER). We tested whether individual differences in ABA vulnerability of mice, quantified based on FRER, correlated with individual differences in the levels of GLT-1 at excitatory synapses of the hippocampus. Electron microscopic immunocytochemistry (EM-ICC) was used to quantify GLT-1 levels at the excitatory synapses of the hippocampus. The FRER seen in individual mice varied more than 10-fold, and Pearson correlation analyses revealed a strong negative correlation (p = .02) between FRER and GLT-1 levels at the axon terminals of excitatory synapses and at the surrounding astrocytic plasma membranes. Moreover, synaptic levels of GluN2B-NMDARs correlated strongly with GLT-1 levels at perisynaptic astrocytic plasma membranes. There is at present no accepted pharmacotherapy for AN, and little is known about the etiology of this deadly illness. Current findings suggest that drugs increasing GLT-1 expression may reduce AN severity through the reduction of GluN2B-NMDAR activity.
Collapse
Affiliation(s)
- Olesia M Bilash
- The Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| | | | - Ang D Sherpa
- Center for Neural Science, New York University, New York, NY, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York, NY, USA
| | - Chiye Aoki
- The Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
9
|
Butler MJ, Perrini AA, Eckel LA. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients 2021; 13:nu13020500. [PMID: 33546416 PMCID: PMC7913528 DOI: 10.3390/nu13020500] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroinflammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing novel, highly effective treatments for these often intractable and unremitting eating disorders.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Alexis A. Perrini
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| | - Lisa A. Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-3480
| |
Collapse
|
10
|
Chowdhury TG, Fenton AA, Aoki C. Effects of adolescent experience of food restriction and exercise on spatial learning and open field exploration of female rats. Hippocampus 2020; 31:170-188. [PMID: 33146453 DOI: 10.1002/hipo.23275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/29/2020] [Accepted: 10/11/2020] [Indexed: 11/08/2022]
Abstract
The hippocampus carries out multiple functions: spatial cognition dorsally (DH) and regulation of emotionality-driven behavior ventrally (VH). Previously, we showed that dendrites of DH and VH pyramidal neurons of female rats are still developing robustly during adolescence and are altered by the experience of food restriction and voluntary exercise on a wheel. We tested whether such anatomical changes during adolescence impact anxiety-like behavior and spatial cognition. Four groups of female rats were evaluated for these behaviors: those with wheel access in its cage from postnatal day (P) 36-44 (EX); those with food access restricted to 1 hr per day, from P40 to 44 (FR); those with EX from P36 to 44, combined with FR from P40 to 44, which we will refer to as EX + FR; and controls, CON (no EX, no FR). Open field test for anxiety-like behavior and active place avoidance test for spatial cognition were conducted at P47-49, the age when food restricted animals have restored body weight, or at P54-56, to identify more enduring effects. Anxiety-like behavior was elevated for the EX and FR groups at P47-49 but not for the EX + FR group. By P54-56, the EX + FR and EX groups exhibited less anxiety-like behavior, indicating a beneficial delayed main effect of exercise. There was a beneficial main effect of food restriction upon cognition, as the FR group showed cognition superior to CONs' at P44-46 and P54-56, while the EX + FR animals also showed enhanced spatial learning at P54-56. EX + FR animals with best adaptation to the feeding schedule showed the best spatial learning performance but with a delay. The EX group exhibited only a transient improvement. These findings indicate that FR, EX, and EX + FR in mid-adolescence are all beneficial in reducing anxiety-like behavior and improving spatial cognition but with subtle differences in the timing of their manifestation, possibly reflecting the protracted maturation of the hippocampus.
Collapse
Affiliation(s)
- Tara G Chowdhury
- Center for Neural Science, New York University, New York, New York, USA
| | - André A Fenton
- Center for Neural Science, New York University, New York, New York, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York, USA
| |
Collapse
|
11
|
Roura I, Fraga Á, Gutiérrez E. Differential effects of heat in the phases of the light-dark cycle in the activity-based anorexia model. Int J Eat Disord 2020; 53:1826-1835. [PMID: 32827352 DOI: 10.1002/eat.23363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND This research builds on the studies on ambient temperature as a key influence in the recovery of rodents exposed to the activity-based anorexia (ABA) model. The ABA model is an experimental paradigm in which rodents under a restricted feeding schedule and with free access to an activity wheel show signs that parallel those of anorexia nervosa in humans. OBJECTIVE The present study focuses on the effects of applying heat during the different phases of the dark-light cycle in the activity levels, body weight, food intake, body temperature, and recovery rates of 30 male rats submitted to ABA. METHOD After reaching a 20% weight loss criterion, animals were randomly assigned to three experimental conditions: (a) continuous warming, (b) warming exclusively during the light phase, or (c) warming exclusively during the dark phase. RESULTS Differential effects were found depending on the modalities of warming: in comparison with either light or dark warming, continuous warming significatively decreased activity, facilitated weight gain, and maintained body temperature. Transient effects of warming were found both in the groups warmed either during light or dark periods exclusively. DISCUSSION The results suggest that both light and dark warming did not promote recovery in animals exposed to ABA. Evidence about the beneficial effects of continuous warming are in line with previous research and reinforces adding external heat as a useful tool in the treatment of anorexia nervosa.
Collapse
Affiliation(s)
- Ignacio Roura
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángela Fraga
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Emilio Gutiérrez
- Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Unidad Venres Clínicos, Facultade de Psicoloxía, Universidade de Santiago, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Immunohistochemical Analysis of Intestinal and Central Nervous System Morphology in an Obese Animal Model ( Danio rerio) Treated with 3,5-T2: A Possible Farm Management Practice? Animals (Basel) 2020; 10:ani10071131. [PMID: 32635261 PMCID: PMC7401507 DOI: 10.3390/ani10071131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The obesity induced by overconsumption of nutrients leads to systemic inflammation and alters metabolic homeostasis by acting on central nervous system and peripheral tissues such as intestine. The 3,5-diiodo-L-thyronine (3,5-T2) is well-known for its positive role on fat mass and lipid metabolism, and at date, it is widely used as a drug for the treatment of obesity. However, the safe and effective dose as well as the possible adverse effects of this molecule have not been sufficiently explored. In this study, we analyzed the role of 3,5-T2 in regulating central and peripheral inflammation in diet-induced obese (D.I.O.) model of zebrafish. We found that 3,5-T2 sustained the intestinal alteration caused by D.I.O., as indicated by the high levels of pro-inflammatory cytokines, accompanied by a significant effect of 3,5-T2 on body weight and central inflammation in D.I.O. zebrafish. Therefore, the suggested potential use of 3,5-T2 to contrast obesity should be viewed with caution. We conclude that the zebrafish model can help to better understand the fundamental beneficial and side effects of 3,5-T2, which is of great importance to define the possible use of this metabolite of thyroid hormones as a drug in different diseases including obesity. Abstract The 3,5-diiodo-L-thyronine (3,5-T2) is an endogenous metabolite of thyroid hormones, whose administration to rodents fed high-fat diet (HFD) prevents body weight increase and reverts the expression pattern of pro-inflammatory factors associated to HFD. The diet-induced obese (D.I.O.) zebrafish (Danio rerio) has been recently used as an experimental model to investigate fundamental processes underlying central and peripheral obesity-driven inflammation. Herein, we aim to understand the role of 3,5-T2 in regulating central and peripheral inflammation in D.I.O. model of zebrafish. 3,5-T2 (10 nM and 100 nM) was administered with the obesity-inducing diet (D.I.O. with 3,5-T2) or after 4 weeks of obesity-inducing diet (D.I.O. flw 3,5-T2). 3,5-T2 significantly increased the body weight and serum triglyceride levels in D.I.O. zebrafish in both conditions. Moreover, 3,5-T2 sustained or increased inflammation in the anterior (AI) and mid (MI) intestine when administered with the obesity-inducing diet, as indicated by the immunoexpression of the inflammatory markers tumor-necrosis factor-α (TNFα), cyclooxygenase 2 (COX2), calnexin, caspase 3, and proliferating cell nuclear antigen (PCNA). On the contrary, when 3,5-T2 was administered after the obesity-inducing diet, partly reverted the intestinal alteration induced by D.I.O. In addition, brain inflammation, as indicated by the increase in the activation of microglia, was detected in D.I.O. zebrafish and D.I.O. treated with 3,5-T2. These findings reveal that the effects of 3,5-T2 on fish intestine and brain can deviate from those shown in obese mammals, opening new avenues to the investigation of the potential impact of this thyroid metabolite in different diseases including obesity.
Collapse
|
13
|
Macêdo APA, Cordeiro GS, Santos LS, Santo DAE, Perez GS, Couto RD, Machado MEPC, Medeiros JMB. Murinometric measurements and retroperitoneal adipose tissue in young rats exposed to the high-fat diet: Is there correlation? BRAZ J BIOL 2020; 81:246-250. [PMID: 32428096 DOI: 10.1590/1519-6984.221405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/16/2019] [Indexed: 11/22/2022] Open
Abstract
AIM This study aimed to verify the correlation between murine measurements and retroperitoneal adipose tissue in rats exposed to the high-fat diet. Material and methods: Wistar male adult rats, descendants of mothers who consumed a high-fat diet during pregnancy and lactation and fed the same diet after weaning were used. At 60 days of life, body weight, longitudinal axis and waist circumference (WC) were measured. The Body Mass Index (BMI) and the Lee Index were calculated for a posterior analysis of the correlation with the amount of retroperitoneal adipose tissue dissected on the same day. For analysis of the data, the Pearson correlation test was used, considering statistical significance for p <0.05. Results: Body weight had a weak correlation (r= 0.31; p= 0.38) with retroperitoneal adipose tissue. While the longitudinal correlated moderately and negative (r= -0.40; p= 0.25). Abdominal circumference (r= 0.62; p= 0.05), body mass index (r= 0.61; p= 0.03) and Lee (r= 0.69; p= 0.03) correlated moderately and positively with adipose tissue. Conclusion: Among the measured murine measurements, weight and longitudinal axis were not good indicators to represent accumulation of retroperitoneal adipose tissue in rats. However, Lee's index seems to be the best murine marker to diagnose the accumulation of retroperitoneal fat. BMI, CA and Lee index were murine parameters with higher correlation.
Collapse
Affiliation(s)
- A P A Macêdo
- Programa de Pós-Graduação em Ciências de Alimentos, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Código Postal , Salvador, BA, Brasil
| | - G S Cordeiro
- Programa de Pós-Graduação em Alimento, Nutrição e Saúde, Escola de Nutrição, Universidade Federal da Bahia, Avenida Araújo Pinho, 32, Canela, Código Postal , Salvador, BA, Brasil
| | - L S Santos
- Programa de Pós-Graduação em Alimento, Nutrição e Saúde, Escola de Nutrição, Universidade Federal da Bahia, Avenida Araújo Pinho, 32, Canela, Código Postal , Salvador, BA, Brasil
| | - D A E Santo
- Programa de Pós-Graduação em Alimento, Nutrição e Saúde, Escola de Nutrição, Universidade Federal da Bahia, Avenida Araújo Pinho, 32, Canela, Código Postal , Salvador, BA, Brasil
| | - G S Perez
- Programa de Pós-Graduação em Alimento, Nutrição e Saúde, Escola de Nutrição, Universidade Federal da Bahia, Avenida Araújo Pinho, 32, Canela, Código Postal , Salvador, BA, Brasil
| | - R D Couto
- Programa de Pós-Graduação em Ciências de Alimentos, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Código Postal , Salvador, BA, Brasil
| | - M E P C Machado
- Programa de Pós-Graduação em Alimento, Nutrição e Saúde, Departamento de Ciências da Nutrição, Escola de Nutrição, Escola de Nutrição, Universidade Federal da Bahia, Avenida Araújo Pinho, 32, Canela, Código Postal , Salvador, BA, Brasil
| | - J M Barreto Medeiros
- Programa de Pós-Graduação em Alimento, Nutrição e Saúde, Departamento de Ciências da Nutrição, Escola de Nutrição, Universidade Federal da Bahia, Avenida Araújo Pinho, 32, Canela, Código Postal , Salvador, BA, Brasil
| |
Collapse
|
14
|
D'Addario C, Zaplatic E, Giunti E, Pucci M, Micioni Di Bonaventura MV, Scherma M, Dainese E, Maccarrone M, Nilsson IA, Cifani C, Fadda P. Epigenetic regulation of the cannabinoid receptor CB1 in an activity-based rat model of anorexia nervosa. Int J Eat Disord 2020; 53:432-446. [PMID: 32275093 DOI: 10.1002/eat.23271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,Lipid Neurochemistry Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ida A Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
15
|
Jarmolowicz DP, Schneider TD, Carrillo A, Hudnall JL, Stancato SS. Blunted satiety in fatty Zucker rats. Behav Brain Res 2020; 383:112507. [PMID: 31987930 DOI: 10.1016/j.bbr.2020.112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 11/28/2022]
Abstract
Levels of weight gain have hit an epidemic level with rates of overweight and obesity diagnoses topping all-time highs. Elevated body weight has been linked to increased rates of cardiac problems, blood pressure issues, and risk of developing type 2 diabetes. Leptin, a hormone produced by the body that is involved in energy balance by inhibiting hunger has been implicated as an underlying mechanism that differentially contributes to food-seeking motivation. Using a scientifically validated animal model of obesity, the fatty Zucker rat, which has mutated leptin receptor genes, leptin's role in behavioral motivation can be assessed. Animals were on a 2 -h food access restriction with one-hour access to rewards in session and one hour of free-feeding access. Pre-session and post-session food access differences were evaluated in looking at motivation for food rewards during satiation while responding on differing levels of fixed-ratio schedules. The results showed robust differential behavior from satiation, demonstrating a basis for a biological mechanism involving leptin sensitivity that could underlie obesity. Although further experimentation is needed, understanding leptin could help bridge the gap in our understanding of satiation and non-satiation.
Collapse
Affiliation(s)
- David P Jarmolowicz
- University of Kansas, Department of Applied Behavioral Science, 4001 Dole Human Development Center, 1000 Sunnyside Ave., Lawrence, KS, 66045, United States; Cofrin Logan Center for Addiction Research and Treatment, 3061 Dole Human Development Center, 1000 Sunnyside Ave., Lawrence, KS, 66045, United States.
| | - Tadd D Schneider
- University of Kansas, Department of Applied Behavioral Science, 4001 Dole Human Development Center, 1000 Sunnyside Ave., Lawrence, KS, 66045, United States
| | - Ale Carrillo
- University of Kansas, Department of Applied Behavioral Science, 4001 Dole Human Development Center, 1000 Sunnyside Ave., Lawrence, KS, 66045, United States
| | - Jennifer L Hudnall
- University of Kansas, Department of Applied Behavioral Science, 4001 Dole Human Development Center, 1000 Sunnyside Ave., Lawrence, KS, 66045, United States
| | - Stefanie S Stancato
- University of Kansas, Department of Applied Behavioral Science, 4001 Dole Human Development Center, 1000 Sunnyside Ave., Lawrence, KS, 66045, United States
| |
Collapse
|
16
|
Dohmen J, Praktiknjo M, Rudeloff A, Uschner FE, Klein S, Plamper A, Matthaei H, Rheinwalt KP, Wehner S, Kalff JC, Trebicka J, Lingohr P. Impact of sleeve gastrectomy and dietary change on metabolic and hepatic function in an obesity rat model - Experimental research. Int J Surg 2020; 75:139-147. [PMID: 32014594 DOI: 10.1016/j.ijsu.2020.01.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Sleeve gastrectomy (SG) is an effective procedure to treat morbid obesity. SG induces remission of type 2 diabetes and metabolic syndrome and improves non-alcoholic fatty liver disease (NAFLD). However, it is imperative to clarify the extent to which these beneficial effects may be attributed to SG among other concomitant changes including postoperative diet. The current study addresses this question in a rodent model of obesity by subjecting it to SG, normal diet, or a combination of the two. METHODS Male Wistar-rats were fed with either high fat diet (HF, n = 32) or received chow diet (CD, n = 8). After 15 weeks, the HF-fed rats underwent either SG or sham operation, following which they were randomised to either continue HF or switched to CD for another 6 weeks. Body weight, fasting blood glucose level, blood pressure, and adipokine expression (leptin, adiponectin, MCP-1) in the adipose tissue along with triglycerides level in the blood serum were assessed to evaluate metabolic function. Hepatic function was assessed by histological evaluation of liver fibrosis (Hydroxyproline, Sirius Red) and reverse transcription polymerase chain reaction (RT-PCR) of the inflammation marker monocyte chemoattractant protein-1 (MCP-1). RESULTS Postoperative dietary change improved adipose tissue inflammation and arterial blood pressure regardless of the surgical intervention, while SG improved hyperglycaemia, blood triglyceride levels and, regardless of the postoperative diet, hepatic inflammation and fibrosis. However, combined administration of SG with post-operative normal diet was the most effective with regard to reducing the body weight. CONCLUSION HF for 15 weeks induced obesity with metabolic syndrome and NAFLD in rats. SG and dietary intervention improved metabolic state and NAFLD; however, their combination was significantly more effective.
Collapse
Affiliation(s)
- Jonas Dohmen
- Department of Surgery, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Michael Praktiknjo
- Department of Internal Medicine I, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Anna Rudeloff
- Department of Surgery, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Frank Erhard Uschner
- Department of Internal Medicine I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Sabine Klein
- Department of Internal Medicine I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Andreas Plamper
- Department of Bariatric, Metabolic and Plastic Surgery, St. Franziskus-Hospital, Schönsteinstr. 63, 50825, Cologne, Germany.
| | - Hanno Matthaei
- Department of Surgery, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Karl-Peter Rheinwalt
- Department of Bariatric, Metabolic and Plastic Surgery, St. Franziskus-Hospital, Schönsteinstr. 63, 50825, Cologne, Germany.
| | - Sven Wehner
- Department of Surgery, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Jörg C Kalff
- Department of Surgery, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany; European Foundation for the Study of Chronic Liver Failure - EF Clif, Travessera de Gràcia, 11, 08021, Barcelona, Spain.
| | - Philipp Lingohr
- Department of Surgery, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
17
|
Meijboom FLB, Kostrzewa E, Leenaars CHC. Joining forces: the need to combine science and ethics to address problems of validity and translation in neuropsychiatry research using animal models. Philos Ethics Humanit Med 2020; 15:1. [PMID: 31969164 PMCID: PMC6977256 DOI: 10.1186/s13010-019-0085-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/25/2019] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Current policies regulating the use of animals for scientific purposes are based on balancing between potential gain of knowledge and suffering of animals used in experimentation. The balancing process is complicated, on the one hand by plurality of views on our duties towards animals, and on the other hand by more recent discussions on uncertainty in the probability of reaching the final aim of the research and problems of translational failure. METHODS The study combines ethical analysis based on a literature review with neuropsychiatry-related preclinical research as a case study. RESULTS Based on the analysis and the case study we show that neuropsychiatry-related preclinical research is an especially interesting case from an ethical perspective. The 3R principles (Replacement, Reduction and Refinement) are used to minimize the negative consequences for the animals used in research. However, neuropsychiatric research is characterized by specific challenges in assessing the probability of success of reaching the final aim, due to our limited mechanistic knowledge of human neuropsychiatric illness. Consequently, the translational value of the currently used animal models may be difficult to prove, which undermines the validity of these models and complicated the ethical assessment. CONCLUSIONS We conclude that a combined approach that deals with both science and the ethical dimensions is necessary to address the problems of validity and translation in neuropsychiatry-related preclinical research. We suggest this approach to comprise first, improved experimental methods, e.g. by using systematic reviews, second, a more patients-based approach that leads to models that reflect interindividual variation better, and third, more interdisciplinary cooperation.
Collapse
Affiliation(s)
- Franck L B Meijboom
- Ethiek Instituut, Universiteit Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- Faculty of Veterinary Medicine, Universiteit Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
| | - Elzbieta Kostrzewa
- Ethiek Instituut, Universiteit Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Cathalijn H C Leenaars
- Faculty of Veterinary Medicine, Universiteit Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
- SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Collu R, Scherma M, Piscitelli F, Giunti E, Satta V, Castelli MP, Verde R, Fratta W, Bisogno T, Fadda P. Impaired brain endocannabinoid tone in the activity-based model of anorexia nervosa. Int J Eat Disord 2019; 52:1251-1262. [PMID: 31456239 DOI: 10.1002/eat.23157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Despite the growing knowledge on the functional relationship between an altered endocannabinoid (eCB) system and development of anorexia nervosa (AN), to date no studies have investigated the central eCB tone in the activity-based anorexia (ABA) model that reproduces key aspects of human AN. METHOD We measured levels of two major eCBs, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), those of two eCB-related lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and the cannabinoid type-1 receptor (CB1R) density in the brain of female ABA rats, focusing on areas involved in homeostatic and rewarding-related regulation of feeding behavior (i.e., prefrontal cortex, nucleus accumbens, caudato putamen, amygdala, hippocampus and hypothalamus). Analysis was carried out also at the end of recovery from the ABA condition. RESULTS At the end of the ABA induction phase, 2-AG was significantly decreased in ABA rats in different brain areas but not in the caudato putamen. No changes were detected in AEA levels in any region, whereas the levels of OEA and PEA were decreased exclusively in the hippocampus and hypothalamus. Furthermore, CB1R density was decreased in the dentate gyrus of hippocampus and in the lateral hypothalamus. After recovery, both 2-AG levels and CB1R density were partially normalized in some areas. In contrast, AEA levels became markedly reduced in all the analyzed areas. DISCUSSION These data demonstrate an altered brain eCB tone in ABA rats, further supporting the involvement of an impaired eCB system in AN pathophysiology that may contribute to the maintenance of some symptomatic aspects of the disease.
Collapse
Affiliation(s)
- Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Valentina Satta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.,Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Traslational Pharmacology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.,Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy.,CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari.,National Institute of Neuroscience (INN), Turin, Italy
| |
Collapse
|
19
|
Lamanna J, Sulpizio S, Ferro M, Martoni R, Abutalebi J, Malgaroli A. Behavioral assessment of activity-based-anorexia: how cognition can become the drive wheel. Physiol Behav 2019; 202:1-7. [DOI: 10.1016/j.physbeh.2019.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
|
20
|
Abstract
Eating disorders (EDs) include a range of chronic and disabling pathologies characterized by persistent maladaptive eating habits and/or behaviors aimed at controlling body shape and size, with important consequences on physical health. Different animal models of EDs have been developed to investigate pharmacological, environmental, and genetic determinants that contribute to the development and maintenance of these disorders as well as for the identification of potential therapeutic targets. In this chapter, we will provide an overview of the most useful animal models of EDs, focusing mainly on those used to study anorexia nervosa and binge eating disorder.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valentina Satta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
- Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy.
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy.
- National Neuroscience Institute, Cagliari, Italy.
| |
Collapse
|
21
|
Novelle MG, Diéguez C. Food Addiction and Binge Eating: Lessons Learned from Animal Models. Nutrients 2018; 10:E71. [PMID: 29324652 PMCID: PMC5793299 DOI: 10.3390/nu10010071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered "addictive" under normal circumstances, people can become "addicted" to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of "eating addiction" are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of "food addiction". This review aims to summarize the most relevant animal models of "eating addictive behaviour", emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 15786 Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Lee TJ, Kinzig KP. Reprint of "Repeated adolescent activity-based anorexia influences central estrogen signaling and adulthood anxiety-like behaviors in rats". Physiol Behav 2017; 178:179-186. [PMID: 28341321 DOI: 10.1016/j.physbeh.2017.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/28/2016] [Accepted: 12/17/2016] [Indexed: 11/18/2022]
Abstract
Anorexia nervosa (AN) typically presents in adolescence and is highly comorbid with anxiety and depression, which often persist after elimination of AN symptomology. The activity-based anorexia (ABA) paradigm allows for evaluation of behavioral and neuroendocrine consequences of AN-like behaviors, including voluntary anorexia, hyperactivity, and disruption of the hypothalamic-pituitary-gonadal (HPG) and the hypothalamic pituitary adrenal (HPA) axis. Because ABA in adolescent females results in increased anxiety-like behavior in adulthood and the estrogen signaling system has been shown to play a role in anxiety and food intake, we investigated the role of ovarian hormones in adolescent ABA-treated rats, and long-term effects of mid- and late adolescent ABA exposure on behavior and estrogen signaling. While previous research demonstrated that two bouts of ABA during adolescence resulted in decreased time in the open arm of the elevated plus maze (EPM) and increased activity of the HPA axis in response to a novel stressor, here we show that one bout of ABA in mid-or late-adolescence did not result in the same behavioral outcome. Two exposures to ABA during adolescence were necessary to produce long-term anxiety-like behavior on the EPM. Finally, removal of ovarian hormones by ovariectomy (OVX) prior to puberty did not attenuate long-term behavioral consequences of ABA in adolescence, and estrogen receptor β (ERβ) expression level in the amygdala of ABA rats was significantly lower than control subjects. Taken together, these studies identify enduring effects of ABA in adolescent females that may be mediated by ABA-induced changes to CNS ERβ signaling that increase anxiety-like behaviors.
Collapse
Affiliation(s)
- Tien-Jui Lee
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| | - Kimberly P Kinzig
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
23
|
Scherma M, Satta V, Collu R, Boi MF, Usai P, Fratta W, Fadda P. Cannabinoid CB 1 /CB 2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity-based anorexia. Br J Pharmacol 2017; 174:2682-2695. [PMID: 28561272 DOI: 10.1111/bph.13892] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Anorexia nervosa (AN) is a serious psychiatric condition characterized by excessive body weight loss and disturbed perceptions of body shape and size, often associated with excessive physical activity. There is currently no effective drug-related therapy of this disease and this leads to high relapse rate. Clinical data suggest that a promising therapy to treat and reduce reoccurrence of AN may be based on the use of drugs that target the endocannabinoid (EC) system, which appears dysregulated in AN patients. EXPERIMENTAL APPROACH The activity-based anorexia (ABA) rodent model mimics the severe body weight loss and increased physical activity, as well as the neuroendocrine disturbances (i.e. hypoleptinaemia and hypercortisolaemia) in AN. This study investigated whether cannabinoid agonists can effectively modify anorexic-like behaviours and neuroendocrine changes in rats subjected to a repeated ABA regime that mimics the human condition in which patients repeatedly undergo a recovery and illness cycle. KEY RESULTS Our data show that subchronic treatment with both the natural CB1 /CB2 receptor agonist Δ9 -tetrahydrocannabinol and the synthetic CB1 /CB2 receptor agonist CP-55,940 significantly reduced body weight loss and running wheel activity in ABA rats. These behavioural effects were accompanied by an increase in leptin signalling and a decrease in plasma levels of corticosterone. CONCLUSION AND IMPLICATIONS Taken together, our results further demonstrate the involvement of the EC system in AN pathophysiology and that strategies which modulate EC signalling are useful to treat this disorder, specifically in patients where physical hyperactivity plays a central role in its progression and maintenance.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valentina Satta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Paolo Usai
- Department of Internal Medicine, University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| |
Collapse
|
24
|
Ran G, Ying L, Li L, Yan Q, Yi W, Ying C, Wu H, Ye X. Resveratrol ameliorates diet-induced dysregulation of lipid metabolism in zebrafish (Danio rerio). PLoS One 2017; 12:e0180865. [PMID: 28686680 PMCID: PMC5501612 DOI: 10.1371/journal.pone.0180865] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/22/2017] [Indexed: 11/23/2022] Open
Abstract
Defective lipid metabolism is associated with increased risk of various chronic diseases, such as obesity, cardiovascular diseases, and diabetes. Resveratrol (RSV), a natural polyphenol, has been shown the potential of ameliorating disregulations of lipid metabolism. The objective of this study was to investigate the effects of feed intake and RSV on lipid metabolism in zebrafish (Danio rerio). The adult males were randomly allocated to 6 groups: control (Con, 8 mg cysts/fish/day), control with 20 μmol/L RSV (Con+RSV), calorie restriction (CR, 5 mg cysts/fish/day), calorie restriction with RSV (CR+RSV), overfeed (OF, 60 mg cysts/fish/day), and overfeed with RSV (OF+RSV) groups. The treatment period was 8 weeks. Results showed that CR reduced body length, body weight, and condition factor of zebrafish. CR reduced levels of plasma triglyceride (TG) and induced protein expression of phosphorylated AMP-activated protein kinase-α (pAMPKα), silent information regulator 2 homolog 1 (Sirt1), and peroxisome proliferator activated receptor gamma coactivator-1α (PGC1α). RSV attenuated CR-induced pAMPKα/AMPKαincreases. RSV increased levels of Sirt1 protein in the OF zebrafish, and decreased OF-induced increase in peroxisome proliferator-activated receptor-γ (PPARγ) protein level. Additionally, RSV down-regulated caveolin-1 and up-regulated microtubule-associated protein 1 light chain 3 -II (LC3-II) protein levels in OF zebrafish. In conclusion, these results suggest that 1) CR reduces plasma TG level through activation of the AMPKα-Sirt1- PGC1α pathway; 2) under different dietary stress conditions RSV might regulate AMPK phosphorylation bi-directionally; 3) RSV might regulate lipid metabolism through the AMPKα-Sirt1-PPARγ pathway in OF zebrafish.
Collapse
Affiliation(s)
- Gai Ran
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Li Ying
- School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lin Li
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qiaoqiao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Weijie Yi
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Wu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- * E-mail: (XY); (HW)
| | - Xiaolei Ye
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- * E-mail: (XY); (HW)
| |
Collapse
|
25
|
Chen YW, Actor-Engel H, Sherpa AD, Klingensmith L, Chowdhury TG, Aoki C. NR2A- and NR2B-NMDA receptors and drebrin within postsynaptic spines of the hippocampus correlate with hunger-evoked exercise. Brain Struct Funct 2017; 222:2271-2294. [PMID: 27915379 PMCID: PMC5764086 DOI: 10.1007/s00429-016-1341-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/16/2016] [Indexed: 01/22/2023]
Abstract
Hunger evokes foraging. This innate response can be quantified as voluntary wheel running following food restriction (FR). Paradoxically, imposing severe FR evokes voluntary FR, as some animals choose to run rather than eat, even during limited periods of food availability. This phenomenon, called activity-based anorexia (ABA), has been used to identify brain changes associated with FR and excessive exercise (EX), two core symptoms of anorexia nervosa (AN), and to explore neurobiological bases of AN vulnerability. Previously, we showed a strong positive correlation between suppression of FR-evoked hyperactivity, i.e., ABA resilience, and levels of extra-synaptic GABA receptors in stratum radiatum (SR) of hippocampal CA1. Here, we tested for the converse: whether animals with enhanced expression of NMDA receptors (NMDARs) exhibit greater levels of FR-evoked hyperactivity, i.e., ABA vulnerability. Four groups of animals were assessed for NMDAR levels at CA1 spines: (1) ABA, in which 4 days of FR was combined with wheel access to allow voluntary EX; (2) FR only; (3) EX only; and (4) control (CON) that experienced neither EX nor FR. Electron microscopy revealed that synaptic NR2A-NMDARs and NR2B-NMDARs levels are significantly elevated, relative to CONs'. Individuals' ABA severity, based on weight loss, correlated with synaptic NR2B-NMDAR levels. ABA resilience, quantified as suppression of hyperactivity, correlated strongly with reserve pools of NR2A-NMDARs in spine cytoplasm. NR2A- and NR2B-NMDAR measurements correlated with spinous prevalence of an F-actin binding protein, drebrin, suggesting that drebrin enables insertion of NR2B-NMDAR to and retention of NR2A-NMDARs away from synaptic membranes, together influencing ABA vulnerability.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Hannah Actor-Engel
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Ang Doma Sherpa
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Lauren Klingensmith
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Tara G Chowdhury
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The objective of this paper is to review the role that hedonic factors, emotions and self-regulation systems have over eating behaviours from animal models to humans. RECENT FINDINGS Evidence has been found to suggest that for some high-risk individuals, obesity/binge eating may develop as an impulsive reaction to negative emotions that over time becomes a compulsive habit. Animal models highlight the neural mechanisms that might underlie this process and suggest similarities with substance use disorders. Emotional difficulties and neurobiological factors have a role in the aetiology of eating and weight disorders. Precise treatments targeted at these mechanisms may be of help for people who have difficulties with compulsive overeating.
Collapse
Affiliation(s)
- Robert Turton
- Department of Psychological Medicine, Section of Eating Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 103 Denmark Hill, London, SE5 8AZ, UK.
| | - Rayane Chami
- Department of Psychological Medicine, Section of Eating Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 103 Denmark Hill, London, SE5 8AZ, UK
| | - Janet Treasure
- Department of Psychological Medicine, Section of Eating Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 103 Denmark Hill, London, SE5 8AZ, UK
| |
Collapse
|
27
|
Yehuda S, Rabinovitz S. The Role of Essential Fatty Acids in Anorexia Nervosa and Obesity. Crit Rev Food Sci Nutr 2017; 56:2021-35. [PMID: 26068122 DOI: 10.1080/10408398.2013.809690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The two basic questions in food intake study are what we eat, and how much do we eat. Most research is directed toward the control of how much is eaten. This is likely the result of the increased number of individuals with eating disorders in the Western world. Feeding behavior is highly complex, and is controlled by many psychological, physiological, biochemical, and immunological factors. The aim of this review is to clarify the involvement of fatty acids in eating disorders such as anorexia and binge eating disorder. The review will describe the modified fatty acid profile observed in individuals with anorexia or binge eating disorder, and discuss on what factors fatty acids can exert beneficial effects. In addition, the differences and similarities between anorexia and binge eating disorder will be discussed. We suggest that beneficial effects of essential fatty acids on both anorexia and binge eating disorder can be explained by the stabilizing effect of those fatty acids on the neuronal membrane fluidity index.
Collapse
Affiliation(s)
- Shlomo Yehuda
- a Psychopharmacology Lab , Department of Psychology, Bar Ilan University , Ramat Gan , Israel
| | - Sharon Rabinovitz
- a Psychopharmacology Lab , Department of Psychology, Bar Ilan University , Ramat Gan , Israel.,b School of Criminology, University of Haifa , Mount Carmel , Israel
| |
Collapse
|
28
|
Fernandez-Garcia JC, Alcaide J, Santiago-Fernandez C, Roca-Rodriguez MM, Aguera Z, Baños R, Botella C, de la Torre R, Fernandez-Real JM, Fruhbeck G, Gomez-Ambrosi J, Jimenez-Murcia S, Menchon JM, Casanueva FF, Fernandez-Aranda F, Tinahones FJ, Garrido-Sanchez L. An increase in visceral fat is associated with a decrease in the taste and olfactory capacity. PLoS One 2017; 12:e0171204. [PMID: 28158237 PMCID: PMC5291407 DOI: 10.1371/journal.pone.0171204] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022] Open
Abstract
Introduction Sensory factors may play an important role in the determination of appetite and food choices. Also, some adipokines may alter or predict the perception and pleasantness of specific odors. We aimed to analyze differences in smell–taste capacity between females with different weights and relate them with fat and fat-free mass, visceral fat, and several adipokines. Materials and methods 179 females with different weights (from low weight to morbid obesity) were studied. We analyzed the relation between fat, fat-free mass, visceral fat (indirectly estimated by bioelectrical impedance analysis with visceral fat rating (VFR)), leptin, adiponectin and visfatin. The smell and taste assessments were performed through the "Sniffin’ Sticks" and "Taste Strips" respectively. Results We found a lower score in the measurement of smell (TDI-score (Threshold, Discrimination and Identification)) in obese subjects. All the olfactory functions measured, such as threshold, discrimination, identification and the TDI-score, correlated negatively with age, body mass index (BMI), leptin, fat mass, fat-free mass and VFR. In a multiple linear regression model, VFR mainly predicted the TDI-score. With regard to the taste function measurements, the normal weight subjects showed a higher score of taste functions. However a tendency to decrease was observed in the groups with greater or lesser BMI. In a multiple linear regression model VFR and age mainly predicted the total taste scores. Discussion We show for the first time that a reverse relationship exists between visceral fat and sensory signals, such as smell and taste, across a population with different body weight conditions.
Collapse
Affiliation(s)
- Jose Carlos Fernandez-Garcia
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - Juan Alcaide
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - Concepcion Santiago-Fernandez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - M M Roca-Rodriguez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - Zaida Aguera
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Rosa Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Department of Psychological, Personality, Evaluation and Treatment of the University of Valencia, Valencia, Spain
| | - Cristina Botella
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Jose M Fernandez-Real
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Department of Diabetes, Endocrinology and Nutrition, Institutd'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Gema Fruhbeck
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra-IdiSNA, Pamplona, Spain
| | - Javier Gomez-Ambrosi
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra-IdiSNA, Pamplona, Spain
| | - Susana Jimenez-Murcia
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jose M Menchon
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain.,CIBER Salud Mental (CIBERSAM), Instituto Salud Carlos III, Barcelona, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Endocrine Division, Complejo Hospitalario U. de Santiago, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Fernando Fernandez-Aranda
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - Lourdes Garrido-Sanchez
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.,Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
29
|
Lee TJ, Kinzig KP. Repeated adolescent activity-based anorexia influences central estrogen signaling and adulthood anxiety-like behaviors in rats. Physiol Behav 2017; 171:199-206. [PMID: 28069464 DOI: 10.1016/j.physbeh.2016.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/28/2016] [Accepted: 12/17/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Tien-Jui Lee
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| | - Kimberly P Kinzig
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
30
|
Aoki C, Chowdhury TG, Wable GS, Chen YW. Synaptic changes in the hippocampus of adolescent female rodents associated with resilience to anxiety and suppression of food restriction-evoked hyperactivity in an animal model for anorexia nervosa. Brain Res 2017; 1654:102-115. [PMID: 26779892 PMCID: PMC4947030 DOI: 10.1016/j.brainres.2016.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 12/30/2022]
Abstract
Anorexia nervosa is a mental illness that emerges primarily during early adolescence, with mortality rate that is 200 times higher than that of suicide. The illness is characterized by intense fear of gaining weight, heightened anxiety, obstinate food restriction, often accompanied by excessive exercise, in spite of mounting hunger. The illness affects females nine times more often than males, suggesting an endocrine role in its etiology. Its relapse rate exceeds 25%, yet there are no accepted pharmacological treatments to prevent this. Here, we summarize studies from this laboratory that have used adolescent female rodents in activity-based anorexia (ABA), an animal model of anorexia nervosa, with the goal of identifying neurobiological underpinnings of this disease. We put forth a hypothesis that a GABAergic mechanism within the hippocampus is central to regulating an individual׳s anxiety which, in turn, strongly influences the individual׳s resilience/vulnerability to ABA. In particular, we propose that ionotropic GABAA receptors containing the subunits alpha4 and delta, are at play for exerting shunting inhibition upon hippocampal pyramidal neurons that become more excitable during ABA. Since these receptors confer insensitivity to benzodiazepines, this pharmacological profile of ABA fits with lack of report indicating efficacy of benzodiazepines in reducing the anxiety experienced by individuals with anorexia nervosa. The idea that the GABAergic system of the hippocampus regulates resilience/vulnerability to anorexia nervosa complements current opinions about the important roles of the prefrontal cortex, amygdala, striatum, gustatory pathways and feeding centers of the hypothalamus and of the neuromodulators, serotonin and dopamine, in the etiology of the disease. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- Chiye Aoki
- Center for Neural Science, 4 Washington Place, Room 809, New York, NY 10003, United States.
| | - Tara G Chowdhury
- Center for Neural Science, 4 Washington Place, Room 809, New York, NY 10003, United States
| | - Gauri S Wable
- Center for Neural Science, 4 Washington Place, Room 809, New York, NY 10003, United States
| | - Yi-Wen Chen
- Center for Neural Science, 4 Washington Place, Room 809, New York, NY 10003, United States
| |
Collapse
|
31
|
Scharner S, Prinz P, Goebel-Stengel M, Kobelt P, Hofmann T, Rose M, Stengel A. Activity-Based Anorexia Reduces Body Weight without Inducing a Separate Food Intake Microstructure or Activity Phenotype in Female Rats-Mediation via an Activation of Distinct Brain Nuclei. Front Neurosci 2016; 10:475. [PMID: 27826222 PMCID: PMC5078320 DOI: 10.3389/fnins.2016.00475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
Anorexia nervosa (AN) is accompanied by severe somatic and psychosocial complications. However, the underlying pathogenesis is poorly understood, treatment is challenging and often hampered by high relapse. Therefore, more basic research is needed to better understand the disease. Since hyperactivity often plays a role in AN, we characterized an animal model to mimic AN using restricted feeding and hyperactivity. Female Sprague-Dawley rats were divided into four groups: no activity/ad libitum feeding (ad libitum, AL, n = 9), activity/ad libitum feeding (activity, AC, n = 9), no activity/restricted feeding (RF, n = 12) and activity/restricted feeding (activity-based anorexia, ABA, n = 11). During the first week all rats were fed ad libitum, ABA and AC had access to a running wheel for 24 h/day. From week two ABA and RF only had access to food from 9:00 to 10:30 a.m. Body weight was assessed daily, activity and food intake monitored electronically, brain activation assessed using Fos immunohistochemistry at the end of the experiment. While during the first week no body weight differences were observed (p > 0.05), after food restriction RF rats showed a body weight decrease: −13% vs. day eight (p < 0.001) and vs. AC (−22%, p < 0.001) and AL (−26%, p < 0.001) that gained body weight (+10% and +13%, respectively; p < 0.001). ABA showed an additional body weight loss (−9%) compared to RF (p < 0.001) reaching a body weight loss of −22% during the 2-week restricted feeding period (p < 0.001). Food intake was greatly reduced in RF (−38%) and ABA (−41%) compared to AL (p < 0.001). Interestingly, no difference in 1.5-h food intake microstructure was observed between RF and ABA (p > 0.05). Similarly, the daily physical activity was not different between AC and ABA (p > 0.05). The investigation of Fos expression in the brain showed neuronal activation in several brain nuclei such as the supraoptic nucleus, arcuate nucleus, locus coeruleus and nucleus of the solitary tract of ABA compared to AL rats. In conclusion, ABA combining physical activity and restricted feeding likely represents a suited animal model for AN to study pathophysiological alterations and pharmacological treatment options. Nonetheless, cautious interpretation of the data is necessary since rats do not voluntarily reduce their body weight as observed in human AN.
Collapse
Affiliation(s)
- Sophie Scharner
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Philip Prinz
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Miriam Goebel-Stengel
- Department of Internal Medicine and Institute of Neurogastroenterology, Martin-Luther-Krankenhaus Berlin Berlin, Germany
| | - Peter Kobelt
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Tobias Hofmann
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Matthias Rose
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Andreas Stengel
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
32
|
Nedelescu H, Chowdhury TG, Wable GS, Arbuthnott G, Aoki C. Cerebellar sub-divisions differ in exercise-induced plasticity of noradrenergic axons and in their association with resilience to activity-based anorexia. Brain Struct Funct 2016; 222:317-339. [PMID: 27056728 PMCID: PMC5215061 DOI: 10.1007/s00429-016-1220-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 11/01/2022]
Abstract
The vermis or "spinocerebellum" receives input from the spinal cord and motor cortex for controlling balance and locomotion, while the longitudinal hemisphere region or "cerebro-cerebellum" is interconnected with non-motor cortical regions, including the prefrontal cortex that underlies decision-making. Noradrenaline release in the cerebellum is known to be important for motor plasticity but less is known about plasticity of the cerebellar noradrenergic (NA) system, itself. We characterized plasticity of dopamine β-hydroxylase-immunoreactive NA fibers in the cerebellum of adolescent female rats that are evoked by voluntary wheel running, food restriction (FR) or by both, in combination. When 8 days of wheel access was combined with FR during the last 4 days, some responded with excessive exercise, choosing to run even during the hours of food access: this exacerbated weight loss beyond that due to FR alone. In the vermis, exercise, with or without FR, shortened the inter-varicosity intervals and increased varicosity density along NA fibers, while excessive exercise, due to FR, also shortened NA fibers. In contrast, the hemisphere required the FR-evoked excessive exercise to evoke shortened inter-varicosity intervals along NA fibers and this change was exhibited more strongly by rats that suppressed the FR-evoked excessive exercise, a behavior that minimized weight loss. Presuming that shortened inter-varicosity intervals translate to enhanced NA release and synthesis of norepinephrine, this enhancement in the cerebellar hemisphere may contribute towards protection of individuals from the life-threatening activity-based anorexia via relays with higher-order cortical areas that mediate the animal's decision to suppress the innate FR-evoked hyperactivity.
Collapse
Affiliation(s)
- Hermina Nedelescu
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Center for Neural Science, New York University, New York, NY, 10003, USA. .,Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
| | - Tara G Chowdhury
- Center for Neural Science, New York University, New York, NY, 10003, USA.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gauri S Wable
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Gordon Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
33
|
Madra M, Zeltser LM. BDNF-Val66Met variant and adolescent stress interact to promote susceptibility to anorexic behavior in mice. Transl Psychiatry 2016; 6:e776. [PMID: 27045846 PMCID: PMC4872394 DOI: 10.1038/tp.2016.35] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022] Open
Abstract
There is an urgent need to identify therapeutic targets for anorexia nervosa (AN) because current medications do not impact eating behaviors that drive AN's high mortality rate. A major obstacle to developing new treatments is the lack of animal models that recapitulate the pattern of disease onset typically observed in human populations. Here we describe a translational mouse model to study interactions between genetic, psychological and biological risk factors that promote anorexic behavior. We combined several factors that are consistently associated with increased risk of AN-adolescent females, genetic predisposition to anxiety imposed by the BDNF-Val66Met gene variant, social isolation stress and caloric restriction (CR). Approximately 40% of the mice with all of these risk factors will exhibit severe self-imposed dietary restriction, sometimes to the point of death. We systematically varied the risk factors outlined above to explore how they interact to influence anorexic behavior. We found that the Val66Met genotype markedly increases the likelihood and severity of abnormal feeding behavior triggered by CR, but only when CR is imposed in the peri-pubertal period. Incidence of anorexic behavior in our model is dependent on juvenile exposure to social stress and can be extinguished by adolescent handling, but is discordant from anxiety-like behavior. Thus, this study characterized gene × environment interactions during adolescence that could be the underlying driver of abnormal eating behavior in certain AN patients, and represents a promising system to identify possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- M Madra
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - L M Zeltser
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University, 1150 Saint Nicholas Avenue, New York, NY 10032, USA. E-mail:
| |
Collapse
|
34
|
Giles ED, Hagman J, Pan Z, MacLean PS, Higgins JA. Weight restoration on a high carbohydrate refeeding diet promotes rapid weight regain and hepatic lipid accumulation in female anorexic rats. Nutr Metab (Lond) 2016; 13:18. [PMID: 26937246 PMCID: PMC4773993 DOI: 10.1186/s12986-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background There is currently no standard clinical refeeding diet for the treatment of anorexia nervosa (AN). To provide the most efficacious AN clinical care, it is necessary to define the metabolic effects of current refeeding diets. Methods An activity-based model of anorexia nervosa (AN) was used in female rats. AN was induced over 7d by timed access to low fat (LF) diet with free access to a running wheel. Plasma hormones/metabolites and body composition were assessed at baseline, AN diagnosis (day 0), and following 28d of refeeding on LF diet. Energy balance and expenditure were measured via continuous indirect calorimetry on days −3 to +3. Results AN induction caused stress as indicated by higher levels of corticosterone versus controls (p < 0.0001). The rate of weight gain during refeeding was higher in AN rats than controls (p = 0.0188), despite lower overall energy intake (p < 0.0001). This was possible due to lower total energy expenditure (TEE) at the time of AN diagnosis which remained significantly lower during the entire refeeding period, driven by markedly lower resting energy expenditure (REE). AN rats exhibited lower lipid accumulation in visceral adipose tissues (VAT) but much higher liver accumulation (62 % higher in AN than control; p < 0.05) while maintaining the same total body weight as controls. It is possible that liver lipid accumulation was caused by overfeeding of carbohydrate suggesting that a lower carbohydrate, higher fat diet may be beneficial during AN treatment. To test whether such a diet would be accepted clinically, we conducted a study in adolescent female AN patients which showed equivalent palatability and acceptability for LF and moderate fat diets. In addition, this diet was feasible to provide clinically during inpatient treatment in this population. Conclusion Refeeding a LF diet to restore body weight in female AN rats caused depressed TEE and REE which facilitated rapid regain. However, this weight gain was metabolically unhealthy as it resulted in elevated lipid accumulation in the liver. It is necessary to investigate the use of other diets, such as lower carbohydrate, moderate fat diets, in pre-clinical models to develop the optimal clinical refeeding diets for AN.
Collapse
Affiliation(s)
- Erin D Giles
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO USA ; Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Jennifer Hagman
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Zhaoxing Pan
- Biostatistics Core, Children's Hospital Colorado Research Institute, Aurora, CO USA
| | - Paul S MacLean
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO USA ; Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Janine A Higgins
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO USA ; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
35
|
Lutter M, Croghan AE, Cui H. Escaping the Golden Cage: Animal Models of Eating Disorders in the Post-Diagnostic and Statistical Manual Era. Biol Psychiatry 2016; 79:17-24. [PMID: 25777657 DOI: 10.1016/j.biopsych.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/21/2015] [Accepted: 02/07/2015] [Indexed: 12/13/2022]
Abstract
Eating disorders (EDs) are severe, life-threatening mental illnesses characterized by marked disturbances in body image and eating patterns. Attempts to understand the neurobiological basis of EDs have been hindered by the perception that EDs are primarily socially reinforced behaviors and not the result of a pathophysiologic process. This view is reflected by the diagnostic criteria of anorexia nervosa and bulimia nervosa, which emphasize intrapsychic conflicts such as "inability to maintain body weight," "undue influence of body weight or shape on self-evaluation," and "denial of the seriousness of low body weight" over neuropsychological measures. The neuropsychological constructs introduced within the research domain criteria (RDoC) matrix offer new hope for determining the neural substrate underlying the biological predisposition to EDs. We present selected studies demonstrating deficits in patients with EDs within each domain of the RDoC and propose a set of behavioral tasks in model systems that reflect aspects of that deficit. Finally, we propose a battery of tasks to examine comprehensively the function of neural circuits relevant to the development of EDs.
Collapse
Affiliation(s)
- Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa..
| | - Anna E Croghan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa
| | - Huxing Cui
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
36
|
Chowdhury TG, Chen YW, Aoki C. Using the Activity-based Anorexia Rodent Model to Study the Neurobiological Basis of Anorexia Nervosa. J Vis Exp 2015:e52927. [PMID: 26555618 PMCID: PMC4692666 DOI: 10.3791/52927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive - running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals' wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.
Collapse
Affiliation(s)
| | - Yi-Wen Chen
- Center for Neural Science, New York University
| | - Chiye Aoki
- Center for Neural Science, New York University
| |
Collapse
|
37
|
Abstract
OBJECTIVE Obesity is one of the leading causes of preventable morbidity and mortality, and young people are increasingly affected. The aim of this study was to examine relationships between obesity and dissociable forms of impulsivity in young adults. METHODS A group of young adults (511) was recruited from city areas in the United States using media advertisements. These young adults were administered careful and extensive clinical and neurocognitive assessment in order to quantify different aspects of impulsivity (behavioral/phenomenological-, cognitive-, and personality-related measures). Associations between obesity and impulsivity were explored using multivariate analysis of variance and discriminant function analysis. RESULTS 10.8% of the sample was obese, and 21.5% was overweight. Compared to controls, subjects with obesity showed significantly elevated rates of maladaptive gambling behaviors, monetary amounts lost to gambling, nicotine consumption, impulsive action (prolonged stop-signal reaction times in the Stop-Signal Test), and impulsive decision-making (reduced modulation of behavior as a function of risk in the Cambridge Gamble Test). Even accounting for potential confounding variables, obesity was significantly predicted by female gender, older age, more maladaptive gambling behaviors, and worse inhibitory control (stop-signal reaction times). CONCLUSION Obesity is associated with several dissociable forms of impulsivity in young people, especially gambling and impulse dyscontrol. Family doctors should screen for gambling problems in obese young adults. Successful treatment of nicotine dependence in young obese people is likely to require intensive weight management support. Neuropsychological deficits relating to impulsivity occur in obese people in early adulthood, and may represent vulnerability markers rather than being due to chronic untoward metabolic effects on brain function.
Collapse
|
38
|
Sasaki T, Kinoshita Y, Matsui S, Kakuta S, Yokota-Hashimoto H, Kinoshita K, Iwasaki Y, Kinoshita T, Yada T, Amano N, Kitamura T. N-methyl-d-aspartate receptor coagonist d-serine suppresses intake of high-preference food. Am J Physiol Regul Integr Comp Physiol 2015; 309:R561-75. [PMID: 26157056 DOI: 10.1152/ajpregu.00083.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
d-Serine is abundant in the forebrain and physiologically important for modulating excitatory glutamatergic neurotransmission as a coagonist of synaptic N-methyl-d-aspartate (NMDA) receptor. NMDA signaling has been implicated in the control of food intake. However, the role of d-serine on appetite regulation is unknown. To clarify the effects of d-serine on appetite, we investigated the effect of oral d-serine ingestion on food intake in three different feeding paradigms (one-food access, two-food choice, and refeeding after 24-h fasting) using three different strains of male mice (C57Bl/6J, BKS, and ICR). The effect of d-serine was also tested in leptin signaling-deficient db/db mice and sensory-deafferented (capsaicin-treated) mice. The expression of orexigenic neuropeptides [neuropeptide Y (Npy) and agouti-related protein (Agrp)] in the hypothalamus was compared in fast/refed experiments. Conditioned taste aversion for high-fat diet (HFD) was tested in the d-serine-treated mice. Under the one-food-access paradigm, some of the d-serine-treated mice showed starvation, but not when fed normal chow. HFD feeding with d-serine ingestion did not cause aversion. Under the two-food-choice paradigm, d-serine suppressed the intake of high-preference food but not normal chow. d-Serine also effectively suppressed HFD intake but not normal chow in db/db mice and sensory-deafferented mice. In addition, d-serine suppressed normal chow intake after 24-h fasting despite higher orexigenic gene expression in the hypothalamus. d-Serine failed to suppress HFD intake in the presence of L-701,324, the selective and full antagonist at the glycine-binding site of the NMDA receptor. Therefore, d-serine suppresses the intake of high-preference food through coagonism toward NMDA receptors.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan;
| | - Yoshihiro Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Sho Matsui
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Shigeru Kakuta
- Research Center for Human and Environmental Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Hiromi Yokota-Hashimoto
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kuni Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Yusaku Iwasaki
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Toshio Kinoshita
- Department of Analytical Chemistry, School of Pharmacy, Kitasato University, Tokyo, Tokyo, Japan
| | - Toshihiko Yada
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Naoji Amano
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
39
|
O’Hara CB, Campbell IC, Schmidt U. A reward-centred model of anorexia nervosa: A focussed narrative review of the neurological and psychophysiological literature. Neurosci Biobehav Rev 2015; 52:131-52. [DOI: 10.1016/j.neubiorev.2015.02.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/09/2015] [Accepted: 02/22/2015] [Indexed: 12/13/2022]
|
40
|
Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction. PLoS One 2015; 10:e0120776. [PMID: 25799180 PMCID: PMC4370574 DOI: 10.1371/journal.pone.0120776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/29/2015] [Indexed: 12/19/2022] Open
Abstract
In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis mediating differential energy allocation.
Collapse
|
41
|
Patrono E, Di Segni M, Patella L, Andolina D, Valzania A, Latagliata EC, Felsani A, Pompili A, Gasbarri A, Puglisi-Allegra S, Ventura R. When chocolate seeking becomes compulsion: gene-environment interplay. PLoS One 2015; 10:e0120191. [PMID: 25781028 PMCID: PMC4363151 DOI: 10.1371/journal.pone.0120191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Eating disorders appear to be caused by a complex interaction between environmental and genetic factors, and compulsive eating in response to adverse circumstances characterizes many eating disorders. MATERIALS AND METHODS We compared compulsion-like eating in the form of conditioned suppression of palatable food-seeking in adverse situations in stressed C57BL/6J and DBA/2J mice, two well-characterized inbred strains, to determine the influence of gene-environment interplay on this behavioral phenotype. Moreover, we tested the hypothesis that low accumbal D2 receptor (R) availability is a genetic risk factor of food compulsion-like behavior and that environmental conditions that induce compulsive eating alter D2R expression in the striatum. To this end, we measured D1R and D2R expression in the striatum and D1R, D2R and α1R levels in the medial prefrontal cortex, respectively, by western blot. RESULTS Exposure to environmental conditions induces compulsion-like eating behavior, depending on genetic background. This behavioral pattern is linked to decreased availability of accumbal D2R. Moreover, exposure to certain environmental conditions upregulates D2R and downregulates α1R in the striatum and medial prefrontal cortex, respectively, of compulsive animals. These findings confirm the function of gene-environment interplay in the manifestation of compulsive eating and support the hypothesis that low accumbal D2R availability is a "constitutive" genetic risk factor for compulsion-like eating behavior. Finally, D2R upregulation and α1R downregulation in the striatum and medial prefrontal cortex, respectively, are potential neuroadaptive responses that parallel the shift from motivated to compulsive eating.
Collapse
Affiliation(s)
- Enrico Patrono
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Matteo Di Segni
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Loris Patella
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Diego Andolina
- Santa Lucia Foundation, Rome, Italy
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Alessandro Valzania
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Emanuele Claudio Latagliata
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Armando Felsani
- CNR, Institute of Cellular Biology and Neurobiology, Rome, Italy
| | - Assunta Pompili
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Antonella Gasbarri
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Coppito, Italy
| | - Stefano Puglisi-Allegra
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
| | - Rossella Ventura
- Santa Lucia Foundation, Rome, Italy
- Department of Psychology and Center “Daniel Bovet,” Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
42
|
Alguacil LF, González-Martín C. Target identification and validation in brain reward dysfunction. Drug Discov Today 2015; 20:347-52. [DOI: 10.1016/j.drudis.2014.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
|
43
|
Di Segni M, Patrono E, Patella L, Puglisi-Allegra S, Ventura R. Animal models of compulsive eating behavior. Nutrients 2014; 6:4591-609. [PMID: 25340369 PMCID: PMC4210935 DOI: 10.3390/nu6104591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 01/20/2023] Open
Abstract
Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating "comfort foods" in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, "food addiction" has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Matteo Di Segni
- Dipartimento di Psicologia and Centro "Daniel Bovet", Sapienza-Università di Roma, Piazzale Aldo Moro 5, 00181 Roma, Italy.
| | - Enrico Patrono
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L'Aquila, via Vetoio (Coppito 2) Coppito, 67010 L'Aquila, Italy.
| | - Loris Patella
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, University of L'Aquila, via Vetoio (Coppito 2) Coppito, 67010 L'Aquila, Italy.
| | - Stefano Puglisi-Allegra
- Dipartimento di Psicologia and Centro "Daniel Bovet", Sapienza-Università di Roma, Piazzale Aldo Moro 5, 00181 Roma, Italy.
| | - Rossella Ventura
- Dipartimento di Psicologia and Centro "Daniel Bovet", Sapienza-Università di Roma, Piazzale Aldo Moro 5, 00181 Roma, Italy.
| |
Collapse
|
44
|
van Gestel MA, Kostrzewa E, Adan RAH, Janhunen SK. Pharmacological manipulations in animal models of anorexia and binge eating in relation to humans. Br J Pharmacol 2014; 171:4767-84. [PMID: 24866852 PMCID: PMC4209941 DOI: 10.1111/bph.12789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 12/22/2022] Open
Abstract
Eating disorders, such as anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorders (BED), are described as abnormal eating habits that usually involve insufficient or excessive food intake. Animal models have been developed that provide insight into certain aspects of eating disorders. Several drugs have been found efficacious in these animal models and some of them have eventually proven useful in the treatment of eating disorders. This review will cover the role of monoaminergic neurotransmitters in eating disorders and their pharmacological manipulations in animal models and humans. Dopamine, 5-HT (serotonin) and noradrenaline in hypothalamic and striatal regions regulate food intake by affecting hunger and satiety and by affecting rewarding and motivational aspects of feeding. Reduced neurotransmission by dopamine, 5-HT and noradrenaline and compensatory changes, at least in dopamine D2 and 5-HT(2C/2A) receptors, have been related to the pathophysiology of AN in humans and animal models. Also, in disorders and animal models of BN and BED, monoaminergic neurotransmission is down-regulated but receptor level changes are different from those seen in AN. A hypofunctional dopamine system or overactive α2-adrenoceptors may contribute to an attenuated response to (palatable) food and result in hedonic binge eating. Evidence for the efficacy of monoaminergic treatments for AN is limited, while more support exists for the treatment of BN or BED with monoaminergic drugs.
Collapse
Affiliation(s)
- M A van Gestel
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - E Kostrzewa
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - R A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - S K Janhunen
- Orion Corporation Orion Pharma, Research and Development, CNS ResearchTurku, Finland
| |
Collapse
|
45
|
Perez-Leighton CE, Grace M, Billington CJ, Kotz CM. Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats. Physiol Behav 2014; 135:104-11. [PMID: 24912135 DOI: 10.1016/j.physbeh.2014.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/20/2014] [Accepted: 06/01/2014] [Indexed: 11/15/2022]
Abstract
Anorexia nervosa (AN) is a chronic eating disorder affecting females and males, defined by body weight loss, higher physical activity levels and restricted food intake. Currently, the commonalities and differences between genders in etiology of AN are not well understood. Animal models of AN, such as activity-based anorexia (ABA), can be helpful in identifying factors determining individual susceptibility to AN. In ABA, rodents are given an access to a running wheel while food restricted, resulting in paradoxical increased physical activity levels and weight loss. Recent studies suggest that different behavioral traits, including voluntary exercise, can predict individual weight loss in ABA. A higher inherent drive for movement may promote development and severity of AN, but this hypothesis remains untested. In rodents and humans, drive for movement is defined as spontaneous physical activity (SPA), which is time spent in low-intensity, non-volitional movements. In this paper, we show that a profile of body weight history and behavioral traits, including SPA, can predict individual weight loss caused by ABA in male and female rats with high accuracy. Analysis of the influence of SPA on ABA susceptibility in males and females rats suggests that either high or low levels of SPA increase the probability of high weight loss in ABA, but with larger effects in males compared to females. These results suggest that the same behavioral profile can identify individuals at-risk of AN for both male and female populations and that SPA has predictive value for susceptibility to AN.
Collapse
Affiliation(s)
- Claudio E Perez-Leighton
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile; Escuela de Nutricion, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.
| | - Martha Grace
- Minneapolis VA Health Care System, Minneapolis, MN USA
| | - Charles J Billington
- Minneapolis VA Health Care System, Minneapolis, MN USA; Minnesota Obesity Center, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Catherine M Kotz
- Minneapolis VA Health Care System, Minneapolis, MN USA; Minnesota Obesity Center, University of Minnesota, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
46
|
Hadad NA, Knackstedt LA. Addicted to palatable foods: comparing the neurobiology of Bulimia Nervosa to that of drug addiction. Psychopharmacology (Berl) 2014; 231:1897-912. [PMID: 24500676 PMCID: PMC4484591 DOI: 10.1007/s00213-014-3461-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
RATIONALE Bulimia nervosa (BN) is highly comorbid with substance abuse and shares common phenotypic and genetic predispositions with drug addiction. Although treatments for the two disorders are similar, controversy remains about whether BN should be classified as addiction. OBJECTIVES Here, we review the animal and human literature with the goal of assessing whether BN and drug addiction share a common neurobiology. RESULTS Similar neurobiological features are present following administration of drugs and bingeing on palatable food, especially sugar. Specifically, both disorders involve increases in extracellular dopamine (DA), D1 binding, D3 messenger RNA (mRNA), and ΔFosB in the nucleus accumbens (NAc). Animal models of BN reveal increases in ventral tegmental area (VTA) DA and enzymes involved in DA synthesis that resemble changes observed after exposure to addictive drugs. Additionally, alterations in the expression of glutamate receptors and prefrontal cortex activity present in human BN or following sugar bingeing in animals are comparable to the effects of addictive drugs. The two disorders differ in regards to alterations in NAc D2 binding, VTA DAT mRNA expression, and the efficacy of drugs targeting glutamate to treat these disorders. CONCLUSIONS Although additional empirical studies are necessary, the synthesis of the two bodies of research presented here suggests that BN shares many neurobiological features with drug addiction. While few Food and Drug Administration-approved options currently exist for the treatment of drug addiction, pharmacotherapies developed in the future, which target the glutamate, DA, and opioid systems, may be beneficial for the treatment of both BN and drug addiction.
Collapse
Affiliation(s)
- Natalie A Hadad
- Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL, 32611-2250, USA
| | | |
Collapse
|
47
|
Kalashikam RR, Battula KK, Kirlampalli V, Friedman JM, Nappanveettil G. Obese locus in WNIN/obese rat maps on chromosome 5 upstream of leptin receptor. PLoS One 2013; 8:e77679. [PMID: 24204914 PMCID: PMC3804619 DOI: 10.1371/journal.pone.0077679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
WNIN/Obese (WNIN/Ob) rat a new mutant model of metabolic syndrome was identified in 1996 from an inbred Wistar rat strain, WNIN. So far several papers are published on this model highlighting its physical, biochemical and metabolic traits. WNIN/Ob is leptin resistant with unaltered leptin or its receptor coding sequences - the two well-known candidate genes for obesity. Genotyping analysis of F2 progeny (raised from WNIN/Ob × Fisher - 344) in the present study localized the mutation to a recombinant region of 14.15cM on chromosome 5. This was further corroborated by QTL analysis for body weight, which narrowed this region to 4.43 cM with flanking markers D5Rat256 & D5Wox37. Interval mapping of body weight QTL shows that the LOD score peak maps upstream of leptin receptor and shows an additive effect suggesting this as a novel mutation and signifying the model as a valuable resource for studies on obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Rajender Rao Kalashikam
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Kiran Kumar Battula
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Veerababu Kirlampalli
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Jeffrey M. Friedman
- Molecular Genetics Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, United States of America
- * E-mail: (JMF); (GN)
| | - Giridharan Nappanveettil
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
- * E-mail: (JMF); (GN)
| |
Collapse
|
48
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
49
|
Zang L, Shimada Y, Nishimura Y, Tanaka T, Nishimura N. A novel, reliable method for repeated blood collection from aquarium fish. Zebrafish 2013; 10:425-32. [PMID: 23668933 DOI: 10.1089/zeb.2012.0862] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Collecting blood from laboratory animals is necessary for a wide variety of scientific studies, but the small size of the zebrafish makes this common procedure challenging. We developed a novel, minimally invasive method to collect repeated blood samples from adult zebrafish. This method minimizes trauma to the zebrafish and yields a low mortality rate of 2.3%. The maximum volume of blood that can be collected using this technique is approximately 2% of body weight. To avoid blood loss anemia and hemorrhagic death, we recommend that the total blood sample volume collected over repeat bleeds should be ≤0.4% of body weight per week, and ≤1% of body weight per 2 weeks. Additionally, we applied this method to the study of zebrafish glycolipid metabolism by measuring blood glucose and plasma triacylglyceride levels weekly over a 5-week period in both control and overfed zebrafish. The overfed fish developed significantly increased fasting blood glucose levels compared with normally fed fish. This new method of blood collection is essential for zebrafish or other small aquarium fish research requiring repeated blood samples, and increases the utility of the zebrafish as a model animal in hematological studies of human diseases.
Collapse
Affiliation(s)
- Liqing Zang
- Department of Translational Medical Science, Mie University, Tsu, Japan .
| | | | | | | | | |
Collapse
|
50
|
Gutierrez E. A rat in the labyrinth of anorexia nervosa: contributions of the activity-based anorexia rodent model to the understanding of anorexia nervosa. Int J Eat Disord 2013; 46:289-301. [PMID: 23354987 DOI: 10.1002/eat.22095] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 12/28/2022]
Abstract
Activity-based anorexia (ABA) is an analogous animal model of anorexia nervosa where food-restricted rats develop excessive running activity when given free access to a running wheel; their body weight sharply decreases, and finally self-starvation and death ensue unless animals are removed from the experimental conditions. The parallel of this animal model with major signs in the human disorder has been the focus of much attention from researchers and clinicians as a platform for translational research. The paper reviews the historical antecedents of ABA, research characterizing its occurrence, and its main limitations and strengths as a model of AN. As a symptomatic model of AN, the ABA model can provide clinicians with innovative and alternative routes for improving the treatment of AN.
Collapse
Affiliation(s)
- Emilio Gutierrez
- Departamento de Psicología Clínica y Psicobiología, Facultad de Psicología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|