1
|
van Houtum LAEM, Baaré WFC, Beckmann CF, Castro-Fornieles J, Cecil CAM, Dittrich J, Ebdrup BH, Fegert JM, Havdahl A, Hillegers MHJ, Kalisch R, Kushner SA, Mansuy IM, Mežinska S, Moreno C, Muetzel RL, Neumann A, Nordentoft M, Pingault JB, Preisig M, Raballo A, Saunders J, Sprooten E, Sugranyes G, Tiemeier H, van Woerden GM, Vandeleur CL, van Haren NEM. Running in the FAMILY: understanding and predicting the intergenerational transmission of mental illness. Eur Child Adolesc Psychiatry 2024; 33:3885-3898. [PMID: 38613677 PMCID: PMC11588957 DOI: 10.1007/s00787-024-02423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
Over 50% of children with a parent with severe mental illness will develop mental illness by early adulthood. However, intergenerational transmission of risk for mental illness in one's children is insufficiently considered in clinical practice, nor is it sufficiently utilised into diagnostics and care for children of ill parents. This leads to delays in diagnosing young offspring and missed opportunities for protective actions and resilience strengthening. Prior twin, family, and adoption studies suggest that the aetiology of mental illness is governed by a complex interplay of genetic and environmental factors, potentially mediated by changes in epigenetic programming and brain development. However, how these factors ultimately materialise into mental disorders remains unclear. Here, we present the FAMILY consortium, an interdisciplinary, multimodal (e.g., (epi)genetics, neuroimaging, environment, behaviour), multilevel (e.g., individual-level, family-level), and multisite study funded by a European Union Horizon-Staying-Healthy-2021 grant. FAMILY focuses on understanding and prediction of intergenerational transmission of mental illness, using genetically informed causal inference, multimodal normative prediction, and animal modelling. Moreover, FAMILY applies methods from social sciences to map social and ethical consequences of risk prediction to prepare clinical practice for future implementation. FAMILY aims to deliver: (i) new discoveries clarifying the aetiology of mental illness and the process of resilience, thereby providing new targets for prevention and intervention studies; (ii) a risk prediction model within a normative modelling framework to predict who is at risk for developing mental illness; and (iii) insight into social and ethical issues related to risk prediction to inform clinical guidelines.
Collapse
Affiliation(s)
- Lisanne A E M van Houtum
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre-Sophia, Rotterdam, The Netherlands
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Christian F Beckmann
- Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, FCRB-IDIBAPS, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre-Sophia, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | | | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jörg M Fegert
- President European Society for Child and Adolescent Psychiatry (ESCAP), Brussels, Belgium
- Department of Child and Adolescent Psychiatry/Psychotherapy, University Hospital Ulm, Ulm, Germany
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Centre, Department of Psychology, University of Oslo, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre-Sophia, Rotterdam, The Netherlands
| | - Raffael Kalisch
- Leibniz Institute for Resilience Research, Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Medical Faculty, Brain Research Institute, Department of Health Science and Technology of ETH, University of Zurich and Institute for Neuroscience, Zurich, Switzerland
- Zurich Neuroscience Centre, ETH and University of Zurich, Zurich, Switzerland
| | - Signe Mežinska
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre-Sophia, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre-Sophia, Rotterdam, The Netherlands
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jean-Baptiste Pingault
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre-Sophia, Rotterdam, The Netherlands
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Martin Preisig
- Psychiatric Epidemiology and Psychopathology Research Centre, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrea Raballo
- Public Health Division, Department of Health and Social Care, Cantonal Socio-Psychiatric Organization, Repubblica e Cantone Ticino, Mendrisio, Switzerland
- Chair of Psychiatry, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - John Saunders
- Executive Director European Federation of Associations of Families of People with Mental Illness (EUFAMI), Louvain, Belgium
| | - Emma Sprooten
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, FCRB-IDIBAPS, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre-Sophia, Rotterdam, The Netherlands
- Department of Social and Behavioural Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Caroline L Vandeleur
- Psychiatric Epidemiology and Psychopathology Research Centre, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Neeltje E M van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre-Sophia, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Alexander L, Anderson D, Baxter L, Claydon M, Rucker J, Robinson ESJ. Preclinical models for evaluating psychedelics in the treatment of major depressive disorder. Br J Pharmacol 2024. [PMID: 39467003 DOI: 10.1111/bph.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Psychedelic drugs have seen a resurgence in interest as a next generation of psychiatric medicines with potential as rapid-acting antidepressants (RAADs). Despite promising early clinical trials, the mechanisms which underlie the effects of psychedelics are poorly understood. For example, key questions such as whether antidepressant and psychedelic effects involve related or independent mechanisms are unresolved. Preclinical studies in relevant animal models are key to understanding the pharmacology of psychedelics and translating these findings to explain efficacy and safety in patients. Understanding the mechanisms of action associated with the behavioural effects of psychedelic drugs can also support the identification of novel drug targets and more effective treatments. Here we review the behavioural approaches currently used to quantify the psychedelic and antidepressant effects of psychedelic drugs. We discuss conceptual and methodological issues, the importance of using clinically relevant doses and the need to consider possible sex differences in preclinical psychedelic studies.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Dasha Anderson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Luke Baxter
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Matthew Claydon
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - James Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and the Maudsley NHS Foundation Trust, London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Li Y, Shi DD, Wang Z. Adolescent nonpharmacological interventions for early-life stress and their mechanisms. Behav Brain Res 2023; 452:114580. [PMID: 37453516 DOI: 10.1016/j.bbr.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Those with a negative experience of psychosocial stress during the early stage of life not only have a high susceptibility of the psychiatric disorder in all phases of their life span, but they also demonstrate more severe symptoms and poorer response to treatment compared to those without a history of early-life stress. The interventions targeted to early-life stress may improve the effectiveness of treating and preventing psychiatric disorders. Brain regions associated with mood and cognition develop rapidly and own heightened plasticity during adolescence. So, manipulating nonpharmacological interventions in fewer side effects and higher acceptance during adolescence, which is a probable window of opportunity, may ameliorate or even reverse the constantly deteriorating impact of early-life stress. The present article reviews animal and people studies about adolescent nonpharmacological interventions for early-life stress. We aim to discuss whether those adolescent nonpharmacological interventions can promote individuals' psychological health who expose to early-life stress.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
5
|
de Carvalho G, Khoja S, Haile MT, Chen LY. Early life adversity impaired dorsal striatal synaptic transmission and behavioral adaptability to appropriate action selection in a sex-dependent manner. Front Synaptic Neurosci 2023; 15:1128640. [PMID: 37091877 PMCID: PMC10116150 DOI: 10.3389/fnsyn.2023.1128640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 04/25/2023] Open
Abstract
Early life adversity (ELA) is a major health burden in the United States, with 62% of adults reporting at least one adverse childhood experience. These experiences during critical stages of brain development can perturb the development of neural circuits that mediate sensory cue processing and behavioral regulation. Recent studies have reported that ELA impaired the maturation of dendritic spines on neurons in the dorsolateral striatum (DLS) but not in the dorsomedial striatum (DMS). The DMS and DLS are part of two distinct corticostriatal circuits that have been extensively implicated in behavioral flexibility by regulating and integrating action selection with the reward value of those actions. To date, no studies have investigated the multifaceted effects of ELA on aspects of behavioral flexibility that require alternating between different action selection strategies or higher-order cognitive processes, and the underlying synaptic transmission in corticostriatal circuitries. To address this, we employed whole-cell patch-clamp electrophysiology to assess the effects of ELA on synaptic transmission in the DMS and DLS. We also investigated the effects of ELA on the ability to update action control in response to outcome devaluation in an instrumental learning paradigm and reversal of action-outcome contingency in a water T-maze paradigm. At the circuit level, ELA decreased corticostriatal glutamate transmission in male but not in female mice. Interestingly, in DMS, glutamate transmission is decreased in male ELA mice, but increased in female ELA mice. ELA impaired the ability to update action control in response to reward devaluation in a context that promotes goal-directedness in male mice and induced deficits in reversal learning. Overall, our findings demonstrate the sex- and region-dependent effects of ELA on behavioral flexibility and underlying corticostriatal glutamate transmission. By establishing a link between ELA and circuit mechanisms underlying behavioral flexibility, our findings will begin to identify novel molecular mechanisms that can represent strategies for treating behavioral inflexibility in individuals who experienced early life traumatic incidents.
Collapse
Affiliation(s)
- Gregory de Carvalho
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Sheraz Khoja
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Mulatwa T Haile
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lulu Y Chen
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- UCI-Conte Center, UCI-NIMH, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Lin WC, Liu C, Kosillo P, Tai LH, Galarce E, Bateup HS, Lammel S, Wilbrecht L. Transient food insecurity during the juvenile-adolescent period affects adult weight, cognitive flexibility, and dopamine neurobiology. Curr Biol 2022; 32:3690-3703.e5. [PMID: 35863352 PMCID: PMC10519557 DOI: 10.1016/j.cub.2022.06.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
A major challenge for neuroscience, public health, and evolutionary biology is to understand the effects of scarcity and uncertainty on the developing brain. Currently, a significant fraction of children and adolescents worldwide experience insecure access to food. The goal of our work was to test in mice whether the transient experience of insecure versus secure access to food during the juvenile-adolescent period produced lasting differences in learning, decision-making, and the dopamine system in adulthood. We manipulated feeding schedules in mice from postnatal day (P)21 to P40 as food insecure or ad libitum and found that when tested in adulthood (after P60), males with different developmental feeding history showed significant differences in multiple metrics of cognitive flexibility in learning and decision-making. Adult females with different developmental feeding history showed no differences in cognitive flexibility but did show significant differences in adult weight. We next applied reinforcement learning models to these behavioral data. The best fit models suggested that in males, developmental feeding history altered how mice updated their behavior after negative outcomes. This effect was sensitive to task context and reward contingencies. Consistent with these results, in males, we found that the two feeding history groups showed significant differences in the AMPAR/NMDAR ratio of excitatory synapses on nucleus-accumbens-projecting midbrain dopamine neurons and evoked dopamine release in dorsal striatal targets. Together, these data show in a rodent model that transient differences in feeding history in the juvenile-adolescent period can have significant impacts on adult weight, learning, decision-making, and dopamine neurobiology.
Collapse
Affiliation(s)
- Wan Chen Lin
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Christine Liu
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Polina Kosillo
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Lung-Hao Tai
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ezequiel Galarce
- Robert Wood Johnson Foundation Health and Society Scholar, University of California Berkeley, Berkeley, CA 94720, USA
| | - Helen S Bateup
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Stephan Lammel
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Department of Psychology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Ou-Yang B, Hu Y, Fei XY, Cheng ST, Hang Y, Yang C, Cheng L. A meta-analytic study of the effects of early maternal separation on cognitive flexibility in rodent offspring. Dev Cogn Neurosci 2022; 56:101126. [PMID: 35751993 PMCID: PMC9243050 DOI: 10.1016/j.dcn.2022.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/27/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022] Open
Abstract
Adverse early life experiences, such as maternal separation, are associated with an increased risk for several mental health problems. Symptoms induced by maternal separation that mirror clinically relevant aspects of mental problems, such as cognitive inflexibility, open the possibility of testing putative therapeutics prior to clinical development. Although several animal (e.g., rodent) studies have evaluated the effects of early maternal separation on cognitive flexibility, no consistent conclusions have been drawn. To clarify this issue, in this study, a meta-analysis method was used to systematically explore the relationship between early maternal separation and cognitive flexibility in rodent offspring. Results indicate that early maternal separation could significantly impair cognitive flexibility in rodent offspring. Moderator analyses further showed that the relationship between early maternal separation and cognitive flexibility was not consistent in any case, but was moderated by variations in the experimental procedures, such as the deprivation levels, task characteristics, and rodent strains. These clarify the inconsistent effects of maternal separation on cognitive flexibility in rodents and help us better understand the association between early life adversity and cognitive development. Meta-analysis method was used to discuss the inconsistent effects of maternal separation on cognitive flexibility in rodent. Maternal separation was found to necessarily impair the cognitive flexibility in rodent. Variations in the experimental procedures moderated the relationship between maternal separation and cognitive flexibility. Further studies on environment-cognition associations in rodents should take experimental procedural factors into account.
Collapse
Affiliation(s)
- Bo Ou-Yang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Yue Hu
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Xin-Yuan Fei
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Sha-Te Cheng
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Ying Hang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Chen Yang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Liang Cheng
- School of Psychology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
9
|
Effects of early life adversities upon memory processes and cognition in rodent models. Neuroscience 2022; 497:282-307. [PMID: 35525496 DOI: 10.1016/j.neuroscience.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Exposure to stressors in early postnatal life induces long-lasting modifications in brainfunction.Thisplasticity,an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on thehypothalamic-pituitary-adrenal axisresponse to stressors, and has been reported to lead toneuroinflammation,altered levelsof neurotrophic factors, modifications inneurogenesis andsynaptic plasticity,with changes in neurotransmitter systems and network functioning. In this review, we focus on early postnatal stress in animal models and their effects on learning and memory.Many studies have reported ELS-induced impairments in different types of memories, including spatial memory, fear memory, recognition (both for objects and social) memory, working memory and reversal learning. Studies are not always in agreement, however, no effects, or sometimes facilitation, being reported, depending on the nature and intensity of the early intervention, as well as the age when the outcome was evaluated and the sex of the animals. When considering processes occurring after consolidation, related with memory maintenance or modification, there are a very reduced number of reports. Future studies addressing the mechanisms underlying memory changes for ELS should shed some light on the understanding of the different effects induced by stressors of different types and intensities on cognitive functions.
Collapse
|
10
|
Egerton S, Donoso F, Fitzgerald P, Gite S, Fouhy F, Whooley J, Dinan TG, Cryan JF, Culloty SC, Ross RP, Stanton C. Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutr Neurosci 2022; 25:356-378. [PMID: 32734823 DOI: 10.1080/1028415x.2020.1753322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Early life stress is a key predisposing factor for depression and anxiety disorders. Selective serotonin re-uptake inhibitors (SSRI) are frequently used as the first line of pharmacology treatment for depression but have several negative qualities, i.e. a delay or absence of effectiveness and negative side-effects. Therefore, there is a growing need for new nutraceutical-based strategies to blunt the effects of adverse-life events.Objectives: This study aimed to use the maternal separation model in rats to test the efficacy of fish oil dietary supplementation, on its own and in conjunction with the SSRI anti-depressant fluoxetine, as a treatment for depressive and anxiety-like symptoms associated with early life stress.Methods: Behavioural tests (open field test, elevated plus maze test and forced swim test) and biochemical markers (corticosterone, BDNF, brain fatty acids and short chain fatty acids) were used to analyse the effects of the dietary treatments. Gut microbial communities and relating metabolites (SCFA) were analysed to investigate possible changes in the microbiota-gut-brain axis.Results: Maternally separated rats showed depressive-like behaviours in the forced swim and open field tests. These behaviours were prevented significantly by fluoxetine administration and in part by fish oil supplementation. Associated biochemical changes reported include altered brain fatty acids, significantly lower plasma corticosterone levels (AUC) and reduced brain stem serotonin turnover, compared to untreated, maternally separated (MS) rats. Untreated MS animals had significantly lower ratios of SCFA producers such as Caldicoprobacteraceae, Streptococcaceae, Rothia, Lachnospiraceae_NC2004_group, and Ruminococcus_2, along with significantly reduced levels of total SCFA compared to non-separated animals. Compared to untreated MS animals, animals fed fish oil had significantly higher Bacteroidetes and Prevotellaceae and reduced levels of butyrate, while fluoxetine treatment resulted in significantly higher levels of Neochlamydia, Lachnoclostridium, Acetitomaculum and Stenotrophomonas and, acetate and propionate.Conclusion: Despite the limitations in extrapolating from animal behavioural data and the notable differences in pharmacokinetics between rodents and humans, the results of this study provide a further advancement into the understanding of some of the complex systems within which nutraceuticals and pharmaceuticals effect the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Sian Egerton
- School of Microbiology, University College Cork, Cork, Ireland
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Francisco Donoso
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | | | - Snehal Gite
- APC Microbiome Ireland, Cork, Ireland
- Biomarine Ingredients Ireland Ltd., Monaghan, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Jason Whooley
- Biomarine Ingredients Ireland Ltd., Monaghan, Ireland
| | - Ted G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
11
|
Parker KN, Donovan MH, Smith K, Noble-Haeusslein LJ. Traumatic Injury to the Developing Brain: Emerging Relationship to Early Life Stress. Front Neurol 2021; 12:708800. [PMID: 34484104 PMCID: PMC8416304 DOI: 10.3389/fneur.2021.708800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the high incidence of brain injuries in children, we have yet to fully understand the unique vulnerability of a young brain to an injury and key determinants of long-term recovery. Here we consider how early life stress may influence recovery after an early age brain injury. Studies of early life stress alone reveal persistent structural and functional impairments at adulthood. We consider the interacting pathologies imposed by early life stress and subsequent brain injuries during early brain development as well as at adulthood. This review outlines how early life stress primes the immune cells of the brain and periphery to elicit a heightened response to injury. While the focus of this review is on early age traumatic brain injuries, there is also a consideration of preclinical models of neonatal hypoxia and stroke, as each further speaks to the vulnerability of the brain and reinforces those characteristics that are common across each of these injuries. Lastly, we identify a common mechanistic trend; namely, early life stress worsens outcomes independent of its temporal proximity to a brain injury.
Collapse
Affiliation(s)
- Kaila N. Parker
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Michael H. Donovan
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Kylee Smith
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| | - Linda J. Noble-Haeusslein
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Department of Psychology, Behavioral Neuroscience, College of Liberal Arts, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
12
|
Deficits in hippocampal-dependent memory across different rodent models of early life stress: systematic review and meta-analysis. Transl Psychiatry 2021; 11:231. [PMID: 33879774 PMCID: PMC8058062 DOI: 10.1038/s41398-021-01352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to early life stress (ELS) causes abnormal hippocampal development and functional deficits in rodents and humans, but no meta-analysis has been used yet to quantify the effects of different rodent models of ELS on hippocampal-dependent memory. We searched PubMed and Web of Science for publications that assessed the effects of handling, maternal separation (MS), and limited bedding and nesting (LBN) on performance in the Morris water maze (MWM), novel object recognition (NOR), and contextual fear conditioning (CFC). Forty-five studies met inclusion criteria (n = 451-763 rodents per test) and were used to calculate standardized mean differences (Hedge's g) and to assess heterogeneity, publication bias, and the moderating effects of sex and species (rats vs. mice). We found significantly lower heterogeneity in LBN compared to handling and MS with no consistent effects of sex or species across the three paradigms. LBN and MS caused similar cognitive deficits in tasks that rely heavily on the dorsal hippocampus, such as MWM and NOR, and were significantly different compared to the improved performance seen in rodents exposed to handling. In the CFC task, which relies more on the ventral hippocampus, all three paradigms showed reduced freezing with moderate effect sizes that were not statistically different. These findings demonstrate the utility of using meta-analysis to quantify outcomes in a large number of inconsistent preclinical studies and highlight the need to further investigate the possibility that handling causes different alterations in the dorsal hippocampus but similar outcomes in the ventral hippocampus when compared to MS and LBN.
Collapse
|
13
|
Tiwari P, Fanibunda SE, Kapri D, Vasaya S, Pati S, Vaidya VA. GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS J 2021; 288:2602-2621. [DOI: 10.1111/febs.15738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Praachi Tiwari
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
- Medical Research Centre Kasturba Health Society Mumbai India
| | - Darshana Kapri
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Shweta Vasaya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sthitapranjya Pati
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|
14
|
Guan J, Ding Y, Rong Y, Geng Y, Lai L, Qi D, Tang Y, Yang L, Li J, Zhou T, Wu E, Wu R. Early Life Stress Increases Brain Glutamate and Induces Neurobehavioral Manifestations in Rats. ACS Chem Neurosci 2020; 11:4169-4178. [PMID: 33179901 DOI: 10.1021/acschemneuro.0c00454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early life stress (ELS) is associated with an increased risk of developing depression and anxiety disorders. Disturbances of the neurobiological glutamatergic system are implicated in depression; however, the long-term effects of ELS on glutamate (Glu) metabolites remain unclear. Our study used 7T proton magnetic resonance spectroscopy (7T 1H MRS) to detect metabolic Glu in a rat model to investigate maternal deprivation (MD)-induced ELS. MD was established in Sprague-Dawley rats by periodic separation from mothers and peers. Changes in the hippocampal volume and Glu metabolism were detected by 7T 1H MRS after testing for depression-like behavior via open field, sucrose preference, and Morris water maze tests. Adult MD offspring exhibited depression-like behavior. Compared to the control, the MD group exhibited reduced ratio of central activity time to total time and decreased sucrose consumption (p < 0.05). MD rats spent less time in the fourth quadrant, where the platform was originally placed, in the Morris water maze test. According to 7T 1H MRS, hippocampus of MD rats had elevated Glu and glutamate + glutamine (Glu+Gln) levels compared with the control group hippocampi, but Gln, γ-aminobutyric acid (GABA), and glutamate + glutamine (Glu+Gln) in the prefrontal cortex of MD rats showed a downward trend. Depression-like behavior and cognition deficits related to ELS may induce region-specific changes in Glu metabolism in the prefrontal cortex and hippocampus. The novel, noninvasive 7T 1H MRS-identified associations between Glu levels and ELS may guide future clinical studies.
Collapse
Affiliation(s)
- Jitian Guan
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
| | - Yan Ding
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Yunjie Rong
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yiqun Geng
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou 515031, China
| | - Lingfeng Lai
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
| | - Yanyan Tang
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lin Yang
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Juntao Li
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
- Department of Surgery, Texas A & M University Health Science Center College of Medicine, Temple 76508, Texas United States
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University Health Science Center, College Station, Texas 77843, United States
- LIVESTRONG Cancer Institutes, Dell Medical School, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
15
|
Forss S, Motes-Rodrigo A, Hrubesch C, Tennie C. Chimpanzees' ( Pan troglodytes) problem-solving skills are influenced by housing facility and captive care duration. PeerJ 2020; 8:e10263. [PMID: 33304648 PMCID: PMC7698692 DOI: 10.7717/peerj.10263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Although a large body of primate cognition research is done in captive institutions, little is known about how much individuals from different facilities vary in their experiences and cognitive skills. Here we present the results of an experimental study investigating how physical cognitive skills vary between chimpanzees in relation to captive settings and their time in captivity. We tested 59 chimpanzees housed at two different captive facilities (a rehabilitation center (sanctuary) and a zoo) in three problem-solving tasks. Our results showed that chimpanzees at the two housing facilities significantly differed in overall task performance. On average, the sanctuary chimpanzees outperformed the chimpanzees housed at the zoo in the detour reaching task and the honey trap task. However, the zoo chimpanzees performed slightly better on average in the learning task. We propose that, for this particular sample, the documented differences result from a combination of factors, such as prior experience with cognitive testing, motivation levels and varying degrees of human exposure. Within the sanctuary sample, we found that chimpanzees who arrived at an earlier age at the sanctuary and had therefore spent a larger percentage of their lives in a captive environment, were better problem-solvers than those that arrived at a later age to the sanctuary. Thus, rehabilitation and time in captivity contributed to improved physical cognitive skills in sanctuary chimpanzees. Our results highlight the importance of studying intraspecific variation and the effect that previous experience and living conditions might have on physical cognitive skills in non-human apes. Accordingly, we should be cautious when extrapolating findings of cognitive studies from one population to the species as a whole.
Collapse
Affiliation(s)
- Sofia Forss
- Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Alba Motes-Rodrigo
- Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Christine Hrubesch
- Department of Anthropology, University of Zürich, Leintalzoo, Schwaigern, Germany
| | - Claudio Tennie
- Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Cordier JM, Aguggia JP, Danelon V, Mir FR, Rivarola MA, Mascó D. Postweaning Enriched Environment Enhances Cognitive Function and Brain-Derived Neurotrophic Factor Signaling in the Hippocampus in Maternally Separated Rats. Neuroscience 2020; 453:138-147. [PMID: 33039520 DOI: 10.1016/j.neuroscience.2020.09.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Adverse environments during early life may lead to different neurophysiological and behavioral consequences, including depression and learning and memory deficits that persist into adulthood. Previously, we demonstrated that exposure to an enriched environment during adolescence mitigates the cognitive impairment observed after maternal separation in a task-specific manner. However, underlying neural mechanisms are still not fully understood. The current study examines the effects of neonatal maternal separation (MS) and postweaning environmental enrichment (EE) on spatial learning and memory performance in a short version of the Barnes Maze, active and passive behaviors in the forced swim test, and on TrkB/BDNF receptor expression in the hippocampus. Our results revealed that MS impaired acquisition learning and that enriched rats performed better than non-enriched rats in acquisition trials, regardless of early conditions. During the probe, enriched-housed rats demonstrated better performance than those reared in standard conditions. No significant differences between groups were found in the forced swim test. Both MS and EE increase full-length TrkB expression, and the combination of MS and EE treatment caused the highest levels of this protein expression. Similarly, truncated TrkB expression was higher in the MS/EE group. Animal facility rearing (AFR) non-enriched groups present the lowest activation of phosphorylated Erk, a canonical downstream kinase of TrkB signaling. Taken together, our results demonstrate the importance of enriched environment as an intervention to ameliorate the effects of maternal separation on spatial learning and memory. TrkB/BDNF signaling could mediate neuroplastic changes related to learning and memory during exposure to enriched environment.
Collapse
Affiliation(s)
- Javier Maximiliano Cordier
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba -Córdoba, Argentina
| | - Julieta Paola Aguggia
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo. Ciudad Universitaria, CP: 5016, Córdoba, Argentina
| | - Víctor Danelon
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP: 5016, Córdoba, Argentina
| | - Franco Rafael Mir
- Cátedra de Fisiología Animal, Departamento de Ciencias Exactas Físicas y Naturales, Universidad Nacional de La Rioja, Av. Luis M. de la Fuente S/N, Ciudad Universitaria de la Ciencia y de la Técnica, F5300 La Rioja, Argentina; Cátedra de Fisiología Animal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299 X5000JJC- Córdoba, Argentina
| | - María Angélica Rivarola
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Enrique Barros esq. Enfermera Gordillo. Ciudad Universitaria, CP: 5016, Córdoba, Argentina; Cátedra de Fisiología Animal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299 X5000JJC- Córdoba, Argentina.
| | - Daniel Mascó
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP: 5016, Córdoba, Argentina
| |
Collapse
|
17
|
Malcon LMC, Wearick-Silva LE, Zaparte A, Orso R, Luft C, Tractenberg SG, Donadio MVF, de Oliveira JR, Grassi-Oliveira R. Maternal separation induces long-term oxidative stress alterations and increases anxiety-like behavior of male Balb/cJ mice. Exp Brain Res 2020; 238:2097-2107. [PMID: 32656651 DOI: 10.1007/s00221-020-05859-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/20/2020] [Indexed: 01/23/2023]
Abstract
Early life stress (ELS) exposure is a well-known risk factor for the development of psychiatric conditions, including anxiety disorder. Preclinical studies show that maternal separation (MS), a classical model of ELS, causes hypothalamic-pituitary-adrenal (HPA) axis alterations, a key contributor to the stress response modulation. Given that HPA axis activation has been shown to induce oxidative stress, it is possible to hypothesize that oxidative stress mediates the relationship between chronic ELS exposure and the development of several disorders. Here, we investigate the effects of MS in the oxidative status [plasma and brain reduced glutathione, catalase and thiobarbituric acid reactive substances (TBARS)], metabolism (glucose, triglycerides and cholesterol) and anxiety-like behaviors in adult Balb/cJ mice. In short, we found that MS increased anxiety-like behaviors in the open field, light/dark test but not in the elevated-plus maze. Animals also presented increased circulating cholesterol, increased TBARS in the plasma and decreased catalase in the hippocampus. Our findings suggest that MS induces long-term alterations in oxidative stress and increased anxiety-like behaviors.
Collapse
Affiliation(s)
- Luiza Martins Costa Malcon
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carolina Luft
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Márcio Vinicius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Avenida Ipiranga, 6681, prédio 11, sala 936-Partenon, Porto Alegre, RS, 90619-900, Brazil. .,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Stroobants S, Creemers J, Bosmans G, D’Hooge R. Post-weaning infant-to-mother bonding in nutritionally independent female mice. PLoS One 2020; 15:e0227034. [PMID: 31940385 PMCID: PMC6961874 DOI: 10.1371/journal.pone.0227034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/11/2019] [Indexed: 01/22/2023] Open
Abstract
Infant-parent attachment is highly selective and continues beyond essential care in primates, most prominently in humans, and the quality of this attachment crucially determines cognitive and emotional development of the infant. Altricial rodent species such as mice (Mus musculus) display mutual recognition and communal nursing in wild and laboratory environments, but parental bonding beyond the nursing period has not been reported. We presently demonstrated that socially and nutritionally independent mice still prefer to interact selectively with their mother dam. Furthermore, we observed gender differences in the mother-infant relationship, and showed disruption of this relationship in haploinsufficient Nbea+/- mice, a putative autism model with neuroendocrine dysregulation. To our knowledge, this is the first observation of murine infant-to-mother bonding beyond the nursing period.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- mINT Behavioral Phenotyping Facility, KU Leuven, Leuven, Belgium
| | - John Creemers
- Laboratory of Biochemical Neuroendocrinology, KU Leuven, Leuven, Belgium
| | - Guy Bosmans
- Parenting and Special Education Research Unit, KU Leuven, Leuven, Belgium
| | - Rudi D’Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- mINT Behavioral Phenotyping Facility, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Tractenberg SG, Orso R, Creutzberg KC, Malcon LMC, Lumertz FS, Wearick-Silva LE, Viola TW, Riva MA, Grassi-Oliveira R. Vulnerable and resilient cognitive performance related to early life stress: The potential mediating role of dopaminergic receptors in the medial prefrontal cortex of adult mice. Int J Dev Neurosci 2020; 80:13-27. [PMID: 31907967 DOI: 10.1002/jdn.10004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Exposure to early life stress (ELS) is known to have pronounced effects on the prefrontal cortex (PFC). However, not all individuals exposed to ELS manifest the same neurobiological and cognitive phenotypes when adults. Dopamine signaling could be a key factor in understanding the effects of stress on PFC-related cognitive function. OBJECTIVES We aimed to investigate the differential effects of ELS on cognitive performance of adult mice and the dopaminergic receptors expression in the PFC. METHODS BALB/c males were exposed to the maternal separation (MS) procedure and their cognitive performance on the eight-arm radial maze (8-RAM) were assessed during adulthood. For molecular-level assessments, we performed mRNA expression analyses for dopamine receptors-DRD1, DRD2, DRD3-and Hers1 expression in the medial PFC. RESULTS While MS produced an overall impairment on 8-RAM, the stressed animals could be divided in two groups based on their performance: those with impaired cognitive performance (vulnerable to maternal separation, V-MS) and those without any impairment (resilient to maternal separation, R-MS). V-MS animals showed increased DRD1 and DRD2 expression in comparison with other groups. Errors on 8-RAM were also positively correlated with DRD1 and DRD2 mRNA expression. CONCLUSIONS Our findings suggest a potential role of the dopaminergic system in the programming mechanisms of cognitive vulnerability and resilience related to ELS.
Collapse
Affiliation(s)
- Saulo G Tractenberg
- Graduate Program in Psychology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Kerstin C Creutzberg
- Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luiza M C Malcon
- Graduate Program in Psychology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Francisco S Lumertz
- Graduate Program in Psychology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thiago W Viola
- Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rodrigo Grassi-Oliveira
- Graduate Program in Psychology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Developmental Cognitive Neuroscience Lab, Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
20
|
Agarwal P, Palin N, Walker SL, Glasper ER. Sex-dependent effects of paternal deprivation and chronic variable stress on novel object recognition in adult California mice (Peromyscus californicus). Horm Behav 2020; 117:104610. [PMID: 31669457 DOI: 10.1016/j.yhbeh.2019.104610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Early-life stress exposure can confer vulnerability for development of psychiatric illnesses and impaired cognition in adulthood. It is well-known that early-life stress can dysregulate the hypothalamic-pituitary-adrenal (HPA) axis in a sex-dependent manner. Specifically, uniparental rodent models of prolonged disrupted mother-offspring relationships (e.g., maternal separation) have demonstrated greater alterations in stress responsivity in adult males, compared to females. Also, chronic early-life stressors (e.g., limited bedding model) impair cognitive function in males more than females. However, the sex-dependent effects of early-life stress and later-life chronic HPA axis activation on cognition have not been well-characterized. Here, we utilized the biparental California mouse (Peromyscus californicus) to model the early-life adversity of paternal deprivation (PD). Fathers either remained in the nest (biparental care) or were permanently removed (PD) on postnatal day (PND) 1. Adult offspring were exposed to daily handling (control) or chronic variable stress (CVS; three stressors for seven days). Twenty-four hours after the final stressor, the novel object recognition (NOR) task commenced, followed by serum collection for corticosterone (CORT) analysis. Independent of sex or rearing, CVS increased CORT. Exploration during acquisition for the NOR task was increased as a result of CVS and PD. During NOR testing, non-stressed females exhibited greater difference scores (i.e., increased recognition memory), compared to non-stressed males. However, the addition of CVS diminished difference scores in females - an effect not observed in CVS-exposed males. Overall, these data suggest that neonatal paternal experience, sex, and chronic stress contribute to exploratory behavior, cognition, and stress hormone concentrations in a biparental species.
Collapse
Affiliation(s)
- P Agarwal
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - N Palin
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - S L Walker
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - E R Glasper
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Gulinello M, Mitchell HA, Chang Q, Timothy O'Brien W, Zhou Z, Abel T, Wang L, Corbin JG, Veeraragavan S, Samaco RC, Andrews NA, Fagiolini M, Cole TB, Burbacher TM, Crawley JN. Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem 2019; 165:106780. [PMID: 29307548 PMCID: PMC6034984 DOI: 10.1016/j.nlm.2018.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
Behavioral neuroscience research incorporates the identical high level of meticulous methodologies and exacting attention to detail as all other scientific disciplines. To achieve maximal rigor and reproducibility of findings, well-trained investigators employ a variety of established best practices. Here we explicate some of the requirements for rigorous experimental design and accurate data analysis in conducting mouse and rat behavioral tests. Novel object recognition is used as an example of a cognitive assay which has been conducted successfully with a range of methods, all based on common principles of appropriate procedures, controls, and statistics. Directors of Rodent Core facilities within Intellectual and Developmental Disabilities Research Centers contribute key aspects of their own novel object recognition protocols, offering insights into essential similarities and less-critical differences. Literature cited in this review article will lead the interested reader to source papers that provide step-by-step protocols which illustrate optimized methods for many standard rodent behavioral assays. Adhering to best practices in behavioral neuroscience will enhance the value of animal models for the multiple goals of understanding biological mechanisms, evaluating consequences of genetic mutations, and discovering efficacious therapeutics.
Collapse
Affiliation(s)
- Maria Gulinello
- IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Heather A Mitchell
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Qiang Chang
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - W Timothy O'Brien
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhaolan Zhou
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ted Abel
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Current affiliation: Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Li Wang
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Joshua G Corbin
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Surabi Veeraragavan
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodney C Samaco
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nick A Andrews
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michela Fagiolini
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Toby B Cole
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Burbacher
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline N Crawley
- IDDRC Rodent Behavior Core, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
22
|
Testoni I, Branciforti G, Zamperini A, Zuliani L, Nava FA. Prisoners' ambivalent sexism and domestic violence: a narrative study. Int J Prison Health 2019; 15:332-348. [PMID: 31532343 DOI: 10.1108/ijph-09-2018-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Gender inequality and sexism are often at the root of domestic violence against women and children, with both serving to justify male domination. This runs in parallel with mother-blaming bias, which constitutes a pervasive common sense and scientific error derived from the myth of the good and the bad mother, characterising a large part of studies on deviance. The purpose of this paper is to consider the possible role of sexism in prisoners' deviant biographies; for this, the authors considered the role of the mother in the biographies of prisoners, and the results lend support to the idea that mother-blaming is a serious fallacy. Starting from a critical psychology point of view and following the retrospective methodology, the authors interviewed 22 drug-addicted prisoners through Interpretative Phenomenological Analysis (IPA) regarding their biographies and their relationships with parents and partners. DESIGN/METHODOLOGY/APPROACH In the survey, the authors followed the same intention, and the results lend support to the idea that mother-blaming is a serious fallacy. The authors interviewed 22 drug-addicted prisoners through IPA concerning their biographies and their relationships with parents and partners. FINDINGS The main result of this qualitative study was the recognition of a fundamental sexism assumed by participants, characterised by a paradox between the representation of the mother and the representation of the ideal woman. Despite the mother being their positive affective referent, and battered by her husband/partner, the same participants had been witnesses of domestic violence, and sometimes victims, they interiorised from their father an ambivalent sexism: benevolent sexism with regard to their mother and exhibited hostile sexism with their partner. On the one hand, it emerged that female empowerment was desirable with respect to the mothers. On the other hand, the ideal woman was exactly as their mother was, that is, being absolutely subordinated to men (a patient, caring, submissive housewife, totally dedicated to her children and her husband). RESEARCH LIMITATIONS/IMPLICATIONS From a mainstream psychological perspective, the limits of the research are linked to the utilisation of the narrative method. Also, this methodology does not verify any hypotheses, so quotations from the participants are used to illustrate themes, and thus, it is difficult to report the informational complexities arising from the dialogues. However, the literature has emphasised that these limitations do not invalidate qualitative research findings, despite the difficulties in generalising the results of the qualitative studies. Thereafter, the critical analysis moved within the intersection of experience-centred approaches and the culturally oriented treatment of narratives, so that the focus on the stories of the prisoners makes meaning because it applies structure to experience, albeit, with the form and content of the texts. This research did not permit us to measure and evaluate post-hoc any post-traumatic hypotheses, which, in turn, would give room for further research. Another limitation of the research was that the relationship between culture of origin and gender biases, especially with participants from non-European countries, was not analysed. This topic would require an important in-depth study, which encompasses how women are treated in different countries and its effects on social maladjustment for immigrants in Italy. PRACTICAL IMPLICATIONS The outcome of this study suggests that within similar structures in the Institute of Mitigated Custody, the theme of sexism should be considered in more depth. Since sexism justifies violence against women, and is therefore a factor that can cause recidivism in the antisocial behaviour of prisoners once they have served their sentences. It is important to allow them to analyse the relationship between their sexist attitudes, witnessing violence in childhood and the possibility of changing moral values of reference in favour of equality. This type of psychological intervention must necessarily be based not only on the elaboration of traumas suffered during childhood with an abusive father, but also on issues related to gender equality and the theme of social inclusion. SOCIAL IMPLICATIONS The study suggests the idea that male sexism can be a factor responsible for suffering and maladjustment for men and that therefore an education that promotes equality of gender differences can also help prevent the social distress associated with drug addiction and deviance. ORIGINALITY/VALUE The paper considers some cogent issues inherent to ambivalent sexism that pervades prisoners' aspirations for their future.
Collapse
Affiliation(s)
- Ines Testoni
- Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata (FISPPA), Università degli Studi di Padova Scuola di Psicologia , Padova, Italy
| | - Giulia Branciforti
- Penitentiary Medicine and Drug Abuse Unit Public Health Service of Padova, Padua, Italy
| | - Adriano Zamperini
- Dipartimento di Filosofia, Sociologia, Pedagogia e Psicologia Applicata (FISPPA), Università degli Studi di Padova , Padua, Italy
| | | | | |
Collapse
|
23
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
24
|
Reshetnikov VV, Kovner AV, Lepeshko AA, Pavlov KS, Grinkevich LN, Bondar NP. Stress early in life leads to cognitive impairments, reduced numbers of CA3 neurons and altered maternal behavior in adult female mice. GENES BRAIN AND BEHAVIOR 2018; 19:e12541. [DOI: 10.1111/gbb.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Vasiliy V. Reshetnikov
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
| | - Anna V. Kovner
- Laboratory of Molecular Mechanisms of Pathological ProcessesInstitute of Cytology and Genetics, SB RAS Novosibirsk Russia
| | - Arina A. Lepeshko
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk National Research State University Novosibirsk Russia
| | - Konstantin S. Pavlov
- Laboratory of Experimental Models of Emotional PathologiesInstitute of Physiology and Basic Medicine Novosibirsk Russia
| | - Larisa N. Grinkevich
- Laboratory of Regulation of Functions of Brain NeuronsPavlov Institute of Physiology, RAS St. Petersburg Russia
| | - Natalya P. Bondar
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk National Research State University Novosibirsk Russia
| |
Collapse
|
25
|
Fuentes S, Daviu N, Gagliano H, Belda X, Armario A, Nadal R. Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning. Horm Behav 2018; 103:7-18. [PMID: 29802874 DOI: 10.1016/j.yhbeh.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023]
Abstract
Exposure to electric foot-shocks can induce in rodents contextual fear conditioning, generalization of fear to other contexts and sensitization of the hypothalamic-pituitary-adrenal (HPA) axis to further stressors. All these aspects are relevant for the study of post-traumatic stress disorder. In the present work we evaluated in rats the sex differences and the role of early life stress (ELS) in fear memories, generalization and sensitization. During the first postnatal days subjects were exposed to restriction of nesting material along with exposure to a "substitute" mother. In the adulthood they were exposed to (i) a contextual fear conditioning to evaluate long-term memory and extinction and (ii) to a novel environment to study cognitive fear generalization and HPA axis heterotypic sensitization. ELS did not alter acquisition, expression or extinction of context fear conditioned behavior (freezing) in either sex, but reduced activity in novel environments only in males. Fear conditioning associated hypoactivity in novel environments (cognitive generalization) was greater in males than females but was not specifically affected by ELS. Although overall females showed greater basal and stress-induced levels of ACTH and corticosterone, an interaction between ELS, shock exposure and sex was found regarding HPA hormones. In males, ELS did not affect ACTH response in any situation, whereas in females, ELS reduced both shock-induced sensitization of ACTH and its conditioned response to the shock context. Also, shock-induced sensitization of corticosterone was only observed in males and ELS specifically reduced corticosterone response to stressors in males but not females. In conclusion, ELS seems to have only a minor impact on shock-induced behavioral conditioning, while affecting the unconditioned and conditioned responses of HPA hormones in a sex-dependent manner.
Collapse
Affiliation(s)
- Sílvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Núria Daviu
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
26
|
Murphy MO, Herald JB, Leachman J, Villasante Tezanos A, Cohn DM, Loria AS. A model of neglect during postnatal life heightens obesity-induced hypertension and is linked to a greater metabolic compromise in female mice. Int J Obes (Lond) 2018; 42:1354-1365. [PMID: 29535450 PMCID: PMC6054818 DOI: 10.1038/s41366-018-0035-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
.: Exposure to early life stress (ELS) is associated with behavioral-related alterations, increases in body mass index and higher systolic blood pressure in humans. Postnatal maternal separation and early weaning (MSEW) is a mouse model of neglect characterized by a long-term dysregulation of the neuroendocrine system. OBJECTIVES Given the contribution of adrenal-derived hormones to the development of obesity, we hypothesized that exposure to MSEW could contribute to the worsening of cardiometabolic function in response to chronic high-fat diet (HF) feeding by promoting adipose tissue expansion and insulin resistance. SUBJECTS MSEW was performed in C57BL/6 mice from postnatal days 2-16 and weaned at postnatal day 17. Undisturbed litters weaned at postnatal day 21 served as the control (C) group. At the weaning day, mice were placed on a low-fat diet (LF) or HF for 16 weeks. RESULTS When fed a LF, male and female mice exposed to MSEW display similar body weight but increased fat mass compared to controls. However, when fed a HF, only female MSEW mice display increased body weight, fat mass, and adipocyte hypertrophy compared with controls. Also, female MSEW mice display evidence of an early onset of cardiometabolic risk factors, including hyperinsulinemia, glucose intolerance, and hypercholesterolemia. Yet, both male and female MSEW mice fed a HF show increased blood pressure compared with controls. CONCLUSIONS This study shows that MSEW promotes a sex-specific dysregulation of the adipose tissue expansion and glucose homeostasis that precedes the development of obesity-induced hypertension.
Collapse
Affiliation(s)
- Margaret O Murphy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Joseph B Herald
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Jacqueline Leachman
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Dianne M Cohn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
27
|
Reshetnikov VV, Lepeshko AA, Ryabushkina YA, Studenikina AA, Merkulova TI, Bondar NP. The Long-Term Effects of Early Postnatal Stress on Cognitive Abilities and Expression of Genes of the Glutamatergic System in Mice. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Orso R, Wearick-Silva LE, Creutzberg KC, Centeno-Silva A, Glusman Roithmann L, Pazzin R, Tractenberg SG, Benetti F, Grassi-Oliveira R. Maternal behavior of the mouse dam toward pups: implications for maternal separation model of early life stress. Stress 2018; 21:19-27. [PMID: 29041860 DOI: 10.1080/10253890.2017.1389883] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Maternal care is essential for an adequate pup development, as well as for the health of the dam. Exposure to stress in early stages of life can disrupt this dam-pup relationship promoting altered neurobiological and behavioral phenotypes. However, there is a lack of consensus regarding the effects of daily maternal separation (MS) on the pattern of maternal behavior. The aim of this study is to compare the patterns of maternal behavior between mice exposed to MS and controls. BALB/c mice were subjected to MS for a period of 180 min/day from postnatal day 2-7 (n = 17) or designated to be standard animal facility reared (AFR) controls (n = 19). Maternal behaviors were computed as frequency of nursing, licking pups and contact with pups, and nonmaternal behaviors were computed as frequency of actions without interaction with pups and eating/drinking. A total of 18 daily observations of maternal behavior were conducted during these six days, and considering the proportion of maternal and nonmaternal behaviors, an index was calculated. There was no difference when comparing the global index of maternal behavior between the AFR and MS animals by the end of the observed period. However, the pattern of maternal behavior between groups was significantly different. While MS dams presented low frequency of maternal behavior within the first couple days of the stress protocol, but increasing over time, AFR dams showed higher maternal behavior at the beginning, reducing over time. Together, our results indicate that MS alters the maternal behavior of the dams toward pups throughout the first week of the stress protocol and provoked some anxiety-related traits in the dams. The inversion of maternal behavior pattern could possibly be an attempt to compensate the low levels of maternal care observed in the first days of MS.
Collapse
Affiliation(s)
- Rodrigo Orso
- a Developmental Cognitive Neuroscience Laboratory (DCNL), Brain Institute (InsCer) , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Luis Eduardo Wearick-Silva
- a Developmental Cognitive Neuroscience Laboratory (DCNL), Brain Institute (InsCer) , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
- b Graduate Program in Pediatrics and Child Health, School of Medicine , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Kerstin Camile Creutzberg
- a Developmental Cognitive Neuroscience Laboratory (DCNL), Brain Institute (InsCer) , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Anderson Centeno-Silva
- a Developmental Cognitive Neuroscience Laboratory (DCNL), Brain Institute (InsCer) , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Laura Glusman Roithmann
- a Developmental Cognitive Neuroscience Laboratory (DCNL), Brain Institute (InsCer) , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Rafaelly Pazzin
- a Developmental Cognitive Neuroscience Laboratory (DCNL), Brain Institute (InsCer) , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Saulo Gantes Tractenberg
- a Developmental Cognitive Neuroscience Laboratory (DCNL), Brain Institute (InsCer) , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
- c Graduate Program in Psychology, School of Health , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Fernando Benetti
- d Laboratório de Neurofisiologia Cognitiva e do Desenvolvimento, Department of Physiology , ICBS, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Rodrigo Grassi-Oliveira
- a Developmental Cognitive Neuroscience Laboratory (DCNL), Brain Institute (InsCer) , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
- b Graduate Program in Pediatrics and Child Health, School of Medicine , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
- c Graduate Program in Psychology, School of Health , Pontifical Catholic University of Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| |
Collapse
|
29
|
Heun-Johnson H, Levitt P. Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice. Neurobiol Stress 2017; 8:10-20. [PMID: 29255778 PMCID: PMC5723381 DOI: 10.1016/j.ynstr.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 01/01/2023] Open
Abstract
Early adversity in childhood increases the risk of anxiety, mood, and post-traumatic stress disorders in adulthood, and specific gene-by-environment interactions may increase risk further. A common functional variant in the promoter region of the gene encoding the human MET receptor tyrosine kinase (rs1858830 ‘C’ allele) reduces expression of MET and is associated with altered cortical circuit function and structural connectivity. Mice with reduced Met expression exhibit changes in anxiety-like and conditioned fear behavior, precocious synaptic maturation in the hippocampus, and reduced neuronal arbor complexity and synaptogenesis. These phenotypes also can be produced independently by early adversity in wild-type mice. The present study addresses the outcome of combining early-life stress and genetic influences that alter timing of maturation on enduring functional and structural phenotypes. Using a model of reduced Met expression (Met+/−) and early-life stress from postnatal day 2–9, social, anxiety-like, and contextual fear behaviors in later life were measured. Mice that experienced early-life stress exhibited impairments in social interaction, whereas alterations in anxiety-like behavior and fear learning were driven by Met haploinsufficiency, independent of rearing condition. Early-life stress or reduced Met expression decreased arbor complexity of ventral hippocampal CA1 pyramidal neurons projecting to basolateral amygdala. Paradoxically, arbor complexity in Met+/− mice was increased following early-life stress, and thus not different from arbors in wild-type mice raised in control conditions. The changes in dendritic morphology are consistent with the hypothesis that the physiological state of maturation of CA1 neurons in Met+/− mice influences their responsiveness to early-life stress. The dissociation of behavioral and structural changes suggests that there may be phenotype-specific sensitivities to early-life stress.
Collapse
Affiliation(s)
- Hanke Heun-Johnson
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Yoshizaki K, Koike K, Kimura R, Osumi N. Early postnatal vocalizations predict sociability and spatial memory in C57BL/6J mice: Individual differences in behavioral traits emerge early in development. PLoS One 2017; 12:e0186798. [PMID: 29091920 PMCID: PMC5665508 DOI: 10.1371/journal.pone.0186798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/06/2017] [Indexed: 12/30/2022] Open
Abstract
The understanding of individual diversity and its link to brain functions is a fundamental issue in neurobiology. Studies in mice have mainly focused on the investigation of behavior traits in adulthood, whereas longitudinal analyses are largely uninvestigated. Here we have conducted systematic behavior tests in individual mice (C57BL6/J, male), comparing phenotypes at early postnatal stages and in adulthood. Each animal showed different scores in individual behavior tests. However, we observed an inverse correlation between repetitive behavior in the Morris water maze test and sociability in the 3-chamber social interaction test; an increase in repetitive behaviors was associated with poor sociability. In longitudinal analyses, the emission of ultrasonic vocalization during maternal separation at postnatal day 6 in pups was correlated positively with sociability and negatively with spatial memory. Our results show a possibility that individual differences in communication between pups and their mother in infancy is a predictive indicator for sociability and cognitive performance as an adult.
Collapse
Affiliation(s)
- Kaichi Yoshizaki
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Aichi, Japan
| | - Kohei Koike
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
31
|
Wang Q, Dong X, Wang Y, Liu M, Sun A, Li N, lin Y, Geng Z, Jin Y, Li X. Adolescent escitalopram prevents the effects of maternal separation on depression‐ and anxiety‐like behaviours and regulates the levels of inflammatory cytokines in adult male mice. Int J Dev Neurosci 2017; 62:37-45. [PMID: 28778811 DOI: 10.1016/j.ijdevneu.2017.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Qi Wang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaomei Dong
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Yan Wang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Mengxi Liu
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Anji Sun
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Nannan Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Yiwei lin
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Zhongli Geng
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Ye Jin
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaobai Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
32
|
Optimized animal model to mimic the reality of stress-induced depression in the clinic. BMC Psychiatry 2017; 17:171. [PMID: 28477622 PMCID: PMC5420406 DOI: 10.1186/s12888-017-1335-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animal models are useful tools for verifying the relationship between stress and depression; however, an operational criterion for excluding the resilient animals from the analysis has not been established yet, which hinders the model's ability to more accurately mimic the scenario in humans. METHODS To induce depression-like symptoms, rats received maternal deprivation (MD) during PND1-14, and/or chronic unpredictable stress (CUS) exposure. The latent profile analysis (LPA) was used to determine latent subgroups in treatment naive adult rats. The percentile method was used to distinguish sensitive and non-sensitive behaviors in rats. RESULTS The sucrose preference rate of treatment naive adult rats was fit using a Beta distribution, while immobility time was fit using a Gamma distribution. Indexes of behavioral tests revealed the 4-class model as the best fit for treatment naive adult rats. The incidence of stress-resilience in MD rats was significantly higher than that in CUS rats and MD + CUS rats. There was a significantly higher incidence of stress-resilience in CUS rats compared with MD + CUS rats. Recovery rate of anhedonia-like and sub anhedonia-like behaviors in CUS rats was significantly higher than that in MD and MD + CUS rats. There was a significantly higher recovery rate of anhedonia-like behaviors in MD rats compared to MD + CUS rats. CONCLUSIONS The percentile method is suitable for setting up an operational cutoff to classify depression-like, sub depression-like, and resilient behaviors in rats exposed to MD and CUS.
Collapse
|
33
|
Maternal separation induces hippocampal changes in cadherin-1 ( CDH-1 ) mRNA and recognition memory impairment in adolescent mice. Neurobiol Learn Mem 2017; 141:157-167. [DOI: 10.1016/j.nlm.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
|
34
|
Bath KG, Nitenson AS, Lichtman E, Lopez C, Chen W, Gallo M, Goodwill H, Manzano-Nieves G. Early life stress leads to developmental and sex selective effects on performance in a novel object placement task. Neurobiol Stress 2017; 7:57-67. [PMID: 28462362 PMCID: PMC5408156 DOI: 10.1016/j.ynstr.2017.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Disruptions in early life care, including neglect, extreme poverty, and trauma, influence neural development and increase the risk for and severity of pathology. Significant sex disparities have been identified for affective pathology, with females having an increased risk of developing anxiety and depressive disorder. However, the effects of early life stress (ELS) on cognitive development have not been as well characterized, especially in reference to sex specific impacts of ELS on cognitive abilities over development. In mice, fragmented maternal care resulting from maternal bedding restriction, was used to induce ELS. The development of spatial abilities were tracked using a novel object placement (NOP) task at several different ages across early development (P21, P28, P38, P50, and P75). Male mice exposed to ELS showed significant impairments in the NOP task compared with control reared mice at all ages tested. In female mice, ELS led to impaired NOP performance immediately following weaning (P21) and during peri-adolescence (P38), but these effects did not persist into early adulthood. Prior work has implicated impaired hippocampus neurogenesis as a possible mediator of negative outcomes in ELS males. In the hippocampus of behaviorally naïve animals there was a significant decrease in expression of Ki-67 (proliferative marker) and doublecortin (DCX-immature cell marker) as mice aged, and a more rapid developmental decline in these markers in ELS reared mice. However, the effect of ELS dissipated by P28 and no main effect of sex were observed. Together these results indicate that ELS impacts the development of spatial abilities in both male and female mice and that these effects are more profound and lasting in males. ELS leads to sex differences in spatial memory abilities in mice. Female mice show impaired performance that resolve prior to adolescence. Male mice show persistent impairments across early life. Effects are restricted to spatial abilities and not other task dimensions. Effects are not related to markers of proliferation and differentiation in hippocampus.
Collapse
Affiliation(s)
- Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | | | - Ezra Lichtman
- Yale School of Medicine, New Haven, CT 06510, United States
| | - Chelsea Lopez
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Whitney Chen
- Department of Neuroscience, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Meghan Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Haley Goodwill
- Department of Neuroscience, Brown University, Providence, RI 02912, United States
| | | |
Collapse
|
35
|
Hueston CM, Cryan JF, Nolan YM. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Transl Psychiatry 2017; 7:e1081. [PMID: 28375209 PMCID: PMC5416690 DOI: 10.1038/tp.2017.48] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect on cognition may provide insight into why adolescence may be a vital period for correct conditioning of future hippocampal function.
Collapse
Affiliation(s)
- C M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
36
|
Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience 2017; 342:101-119. [DOI: 10.1016/j.neuroscience.2015.08.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
|
37
|
Wang L, Wang A, Supplee WW, Koffler K, Cheng Y, Quezado ZMN, Levy RJ. Carbon monoxide incompletely prevents isoflurane-induced defects in murine neurodevelopment. Neurotoxicol Teratol 2017; 61:92-103. [PMID: 28131877 DOI: 10.1016/j.ntt.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Commonly used anesthetics have been shown to disrupt neurodevelopment in preclinical models. It has been proposed that such anesthesia-induced neurotoxicity is mediated by apoptotic neurodegeneration in the immature brain. Low dose carbon monoxide (CO) exerts cytoprotective properties and we have previously demonstrated that CO inhibits isoflurane-induced apoptosis in the developing murine brain. Here we utilized anti-apoptotic concentrations of CO to delineate the role of apoptotic neurodegeneration in anesthesia-induced neurotoxicity by assessing the effect of CO on isoflurane-induced defects in neurodevelopment. METHODS C57Bl/6 mouse pups underwent 1-hour exposure to 0ppm (air), 5ppm, or 100ppm CO in air with or without isoflurane on postnatal day 7. Cohorts were evaluated 5-7weeks post exposure with T-maze cognitive testing followed by social behavior assessment. Brain size, whole brain cellular content, and neuronal density in primary somatosensory cortex and hippocampal CA3 region were measured as secondary outcomes 1-week or 5-7weeks post exposure along with 7-day old, unexposed controls. RESULTS Isoflurane impaired memory acquisition and resulted in abnormal social behavior. Low concentration CO abrogated anesthetic-induced defects in memory acquisition, however, it also resulted in impaired spatial reference memory and social behavior abnormalities. Changes in brain size, cellular content, and neuronal density over time related to the age of the animal and were unaffected by either isoflurane or CO. CONCLUSIONS Anti-apoptotic concentrations of CO incompletely prevented isoflurane-induced defects in neurodevelopment, lacked concentration-dependent effects, and only provided protection in certain domains suggesting that anesthesia-related neurotoxicity is not solely mediated by activation of the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Health System, Children's Research Institute, The George Washington University School of Medicine and Health Sciences, United States
| | - Aili Wang
- Department of Anesthesiology, Columbia University Medical Center, United States
| | | | - Kayla Koffler
- Department of Anesthesiology, Columbia University Medical Center, United States
| | - Ying Cheng
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, The George Washington University School of Medicine and Health Sciences, United States
| | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Health System, Children's Research Institute, The George Washington University School of Medicine and Health Sciences, United States
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, United States.
| |
Collapse
|
38
|
Wearick-Silva LE, Marshall P, Viola TW, Centeno-Silva A, de Azeredo LA, Orso R, Li X, Donadio MV, Bredy TW, Grassi-Oliveira R. Running during adolescence rescues a maternal separation-induced memory impairment in female mice: Potential role of differential exon-specific BDNF expression. Dev Psychobiol 2016; 59:268-274. [PMID: 27807856 DOI: 10.1002/dev.21487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022]
Abstract
Exposure to early life stress has been associated with memory impairments related to changes in brain-derived neurotrophic factor (BDNF) signaling. However, the potential impact of physical exercise to reverse these effects of maternal separation has been under investigated. Mice were subjected to maternal separation during the first 2 weeks of life and then exposed to a 3-week running protocol during adolescence. The spontaneous object recognition task was performed during adolescence followed by analysis of hippocampal expression of exons I, IV, and IX of the BDNF gene. As expected, maternal separation impaired recognition memory and this effect was reversed by exercise. In addition, running increased BDNF exon I expression, but decreased expression of BDNF exon IV in all groups, while exon IX expression increased only in MS animals exposed to exercise. Our data suggest that memory deficits can be attenuated by exercise and specific transcripts of the BDNF gene are dynamically regulated following both MS and exercise.
Collapse
Affiliation(s)
- Luis Eduardo Wearick-Silva
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Paul Marshall
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Thiago Wendt Viola
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Anderson Centeno-Silva
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Araújo de Azeredo
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Orso
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Xiang Li
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Márcio V Donadio
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Timothy W Bredy
- Department of Neurobiology and Behavior, University of California - Irvine, Irvine, California
| | - Rodrigo Grassi-Oliveira
- Graduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.,Developmental Cognitive Neuroscience Laboratory (DCNL) Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
39
|
Viola TW, Wearick-Silva LE, De Azeredo LA, Centeno-Silva A, Murphy C, Marshall P, Li X, Singewald N, Garcia F, Bredy TW, Grassi-Oliveira R. Increased cocaine-induced conditioned place preference during periadolescence in maternally separated male BALB/c mice: the role of cortical BDNF, microRNA-212, and MeCP2. Psychopharmacology (Berl) 2016; 233:3279-88. [PMID: 27392631 DOI: 10.1007/s00213-016-4373-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/18/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE Early life stress is a major risk factor for cocaine addiction; however, the underlying molecular mechanisms remain relatively unexplored. MicroRNA-212 (miR-212) and methyl CpG binding protein 2 (MeCP2) have recently emerged as key regulators of brain-derived neurotrophic factor (BDNF) signaling during the acquisition and maintenance of cocaine-seeking behaviors. OBJECTIVES We therefore investigated the effect of maternal separation (MS) on cocaine-induced conditioned place preference (CPP) during periadolescence and how this influences miR-212, Mecp2, and Bdnf expressions in the prefrontal cortex. METHODS Male BALB/c mice subjected to MS (3 h/day) from postnatal day 2 to 15 or normal animal facility rearing (AFR) were tested for CPP at postnatal day 45, or not exposed to experimental manipulations (drug-naïve animals). Cultured primary cortical neurons were used to determine miR-212 expression changes following depolarization by KCL treatment. RESULTS MS increased cocaine-induced CPP and decreased Bdnf exon IV expression, which correlated with higher CPP scores in such animals. An experience-dependent decrease in miR-212 expression was observed following CPP test. This effect was mimicked in primary cortical neurons in vitro, under activity-dependent conditions. In contrast, increased Mecp2 expression was found after CPP test, suggesting an opposing relationship between miR-212 and Mecp2 expression following cocaine place preference acquisition. However, these effects were not present in mice exposed to MS. CONCLUSIONS Together, our results suggest that early life stress can enhance the motivational salience for cocaine-paired cues during periadolescence, and that altered expression of miR-212, Mecp2, and Bdnf in the prefrontal cortex is involved in this process.
Collapse
Affiliation(s)
- Thiago Wendt Viola
- Postgraduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil
| | - Luis Eduardo Wearick-Silva
- Postgraduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil
| | - Lucas Araújo De Azeredo
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil.,Postgraduate Program in Medicine and Health Sciences, PUCRS, Porto Alegre, RS, Brazil
| | - Anderson Centeno-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil
| | - Conor Murphy
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Paul Marshall
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, 92697, CA, USA
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, 92697, CA, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Frederico Garcia
- Department of Psychiatry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Timothy W Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, 92697, CA, USA.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rodrigo Grassi-Oliveira
- Postgraduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. .,Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre, 90619-900, RS, Brazil.
| |
Collapse
|
40
|
Darcet F, Gardier AM, Gaillard R, David DJ, Guilloux JP. Cognitive Dysfunction in Major Depressive Disorder. A Translational Review in Animal Models of the Disease. Pharmaceuticals (Basel) 2016; 9:ph9010009. [PMID: 26901205 PMCID: PMC4812373 DOI: 10.3390/ph9010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed.
Collapse
Affiliation(s)
- Flavie Darcet
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Alain M Gardier
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Raphael Gaillard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris 75015, France.
| | - Denis J David
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, University Paris-Sud, Faculté de Pharmacie, CESP, INSERM UMRS1178, Chatenay-Malabry 92296, France.
| |
Collapse
|
41
|
Maternal separation facilitates extinction of social fear in adult male mice. Behav Brain Res 2016; 297:323-8. [DOI: 10.1016/j.bbr.2015.10.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 01/27/2023]
|
42
|
Thomas AW, Caporale N, Wu C, Wilbrecht L. Early maternal separation impacts cognitive flexibility at the age of first independence in mice. Dev Cogn Neurosci 2015; 18:49-56. [PMID: 26531108 PMCID: PMC4834230 DOI: 10.1016/j.dcn.2015.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023] Open
Abstract
MS mice tested in 4-choice task as juveniles are less flexible than littermates. MS mice tested in adulthood in 4-choice paradigm do not differ from littermates. MS mice showed greater ethanol consumption compared to littermates in adulthood.
Early life adversity is associated with increased risk for mental and physical health problems, including substance abuse. Changes in neural development caused by early life insults could cause or complicate these conditions. Maternal separation (MS) is a model of early adversity for rodents. Clear effects of MS have been shown on behavioral flexibility in rats, but studies of effects of MS on cognition in mice have been mixed. We hypothesized that previous studies focused on adult mice may have overlooked a developmental transition point when juvenile mice exhibit greater flexibility in reversal learning. Here, using a 4-choice reversal learning task we find that early MS leads to decreased flexibility in post-weaning juvenile mice, but no significant effects in adults. In a further study of voluntary ethanol consumption, we found that adult mice that had experienced MS showed greater cumulative 20% ethanol consumption in an intermittent access paradigm compared to controls. Our data confirm that the MS paradigm can reduce cognitive flexibility in mice and may enhance risk for substance abuse. We discuss possible interpretations of these data as stress-related impairment or adaptive earlier maturation in response to an adverse environment.
Collapse
Affiliation(s)
| | - Natalia Caporale
- University of California Berkeley, Psychology Department; Helen Wills Neuroscience Institute
| | - Claudia Wu
- University of California Irvine, Neurobiology and Behavior Graduate Program
| | - Linda Wilbrecht
- University of California Berkeley, Psychology Department; Helen Wills Neuroscience Institute.
| |
Collapse
|
43
|
Wang L, Almeida LEF, de Souza Batista CM, Khaibullina A, Xu N, Albani S, Guth KA, Seo JS, Quezado M, Quezado ZMN. Cognitive and behavior deficits in sickle cell mice are associated with profound neuropathologic changes in hippocampus and cerebellum. Neurobiol Dis 2015; 85:60-72. [PMID: 26462816 DOI: 10.1016/j.nbd.2015.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/31/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023] Open
Abstract
Strokes are perhaps the most serious complications of sickle cell disease (SCD) and by the fifth decade occur in approximately 25% of patients. While most patients do not develop strokes, mounting evidence indicates that even without brain abnormalities on imaging studies, SCD patients can present profound neurocognitive dysfunction. We sought to evaluate the neurocognitive behavior profile of humanized SCD mice (Townes, BERK) and to identify hematologic and neuropathologic abnormalities associated with the behavioral alterations observed in these mice. Heterozygous and homozygous Townes mice displayed severe cognitive deficits shown by significant delays in spatial learning compared to controls. Homozygous Townes also had increased depression- and anxiety-like behaviors as well as reduced performance on voluntary wheel running compared to controls. Behavior deficits observed in Townes were also seen in BERKs. Interestingly, most deficits in homozygotes were observed in older mice and were associated with worsening anemia. Further, neuropathologic abnormalities including the presence of large bands of dark/pyknotic (shrunken) neurons in CA1 and CA3 fields of hippocampus and evidence of neuronal dropout in cerebellum were present in homozygotes but not control Townes. These observations suggest that cognitive and behavioral deficits in SCD mice mirror those described in SCD patients and that aging, anemia, and profound neuropathologic changes in hippocampus and cerebellum are possible biologic correlates of those deficits. These findings support using SCD mice for studies of cognitive deficits in SCD and point to vulnerable brain areas with susceptibility to neuronal injury in SCD and to mechanisms that potentially underlie those deficits.
Collapse
Affiliation(s)
- Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | | | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Nuo Xu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Sarah Albani
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Kira A Guth
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Ji Sung Seo
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States; Divisions of Anesthesiology and Pain Medicine, Children's National Health System, United States; Center for Neuroscience Research, Children's Research Institute, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, United States.
| |
Collapse
|
44
|
Kasten CR, Boehm SL. Identifying the role of pre-and postsynaptic GABA(B) receptors in behavior. Neurosci Biobehav Rev 2015; 57:70-87. [PMID: 26283074 DOI: 10.1016/j.neubiorev.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022]
Abstract
Although many reviews exist characterizing the molecular differences of GABAB receptor isoforms, there is no current review of the in vivo effects of these isoforms. The current review focuses on whether the GABAB1a and GABAB1b isoforms contribute differentially to behaviors in isoform knockout mice. The roles of these receptors have primarily been characterized in cognitive, anxiety, and depressive phenotypes. Currently, the field supports a role of GABAB1a in memory maintenance and protection against an anhedonic phenotype, whereas GABAB1b appears to be involved in memory formation and a susceptibility to developing an anhedonic phenotype. Although GABAB receptors have been strongly implicated in drug abuse phenotypes, no isoform-specific work has been done in this field. Future directions include developing site-specific isoform knockdown to identify the role of different brain regions in behavior, as well as identifying how these isoforms are involved in development of behavioral phenotypes.
Collapse
Affiliation(s)
- Chelsea R Kasten
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States.
| | - Stephen L Boehm
- Department of Psychology, Indianapolis University Purdue University-Indianapolis, 402N Blackford St LD 124, Indianapolis, IN 46202, United States; Indiana Alcohol Research Center, 545 Barnhill Drive EH 317, Indianapolis, IN, United States.
| |
Collapse
|
45
|
Diet-Induced Cognitive Deficits: The Role of Fat and Sugar, Potential Mechanisms and Nutritional Interventions. Nutrients 2015; 7:6719-38. [PMID: 26274972 PMCID: PMC4555146 DOI: 10.3390/nu7085307] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022] Open
Abstract
It is of vital importance to understand how the foods which are making us fat also act to impair cognition. In this review, we compare the effects of acute and chronic exposure to high-energy diets on cognition and examine the relative contributions of fat (saturated and polyunsaturated) and sugar to these deficits. Hippocampal-dependent memory appears to be particularly vulnerable to the effects of high-energy diets and these deficits can occur rapidly and prior to weight gain. More chronic diet exposure seems necessary however to impair other sorts of memory. Many potential mechanisms have been proposed to underlie diet-induced cognitive decline and we will focus on inflammation and the neurotrophic factor, brain-derived neurotrophic factor (BDNF). Finally, given supplementation of diets with omega-3 and curcumin has been shown to have positive effects on cognitive function in healthy ageing humans and in disease states, we will discuss how these nutritional interventions may attenuate diet-induced cognitive decline. We hope this approach will provide important insights into the causes of diet-induced cognitive deficits, and inform the development of novel therapeutics to prevent or ameliorate such memory impairments.
Collapse
|
46
|
Tata DA, Markostamou I, Ioannidis A, Gkioka M, Simeonidou C, Anogianakis G, Spandou E. Effects of maternal separation on behavior and brain damage in adult rats exposed to neonatal hypoxia-ischemia. Behav Brain Res 2014; 280:51-61. [PMID: 25433094 DOI: 10.1016/j.bbr.2014.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/15/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
Animal studies suggest that maternal separation, a widely used paradigm to study the effects of early life adversity, exerts a profound and life-long impact on both brain and behavior. The aim of the current study was to investigate whether adverse early life experiences interact with neonatal hypoxia-ischemia, affecting the outcome of this neurological insult at both functional and structural levels during adulthood. Rat pups were separated from their mothers during postnatal days 1-6, for either a short (15 min) or prolonged (180 min) period, while another group was left undisturbed. On postnatal day 7, a subgroup from each of the three postnatal manipulations was exposed to a hypoxic-ischemic episode. Behavioral examination took place approximately at three months of age and included tests of learning and memory (Morris water maze, novel object and novel place recognition), as well as motor coordination (rota-rod). We found that both prolonged maternal separation and neonatal hypoxia-ischemia impaired the animals' spatial learning and reference memory. Deficits in spatial but not visual recognition memory were detected only in hypoxic-ischemic rats. Interestingly, prolonged maternal separation prior to neonatal hypoxia-ischemia augmented the reference memory impairments. Histological analysis of infarct size, hippocampal area and thickness of corpus callosum did not reveal any exacerbation of damage in hypoxic-ischemic rats that were maternally separated for a prolonged period. These are the first data suggesting that an adverse postnatal environmental manipulation of just 6 days causes long-term effects on spatial learning and memory and may render the organism more vulnerable to a subsequent insult.
Collapse
Affiliation(s)
- Despina A Tata
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioanna Markostamou
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anestis Ioannidis
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mara Gkioka
- School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Anogianakis
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
47
|
Akman O, Moshé SL, Galanopoulou AS. Early life status epilepticus and stress have distinct and sex-specific effects on learning, subsequent seizure outcomes, including anticonvulsant response to phenobarbital. CNS Neurosci Ther 2014; 21:181-92. [PMID: 25311088 DOI: 10.1111/cns.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
AIMS Neonatal status epilepticus (SE) is often associated with adverse cognitive and epilepsy outcomes. We investigate the effects of three episodes of kainic acid-induced SE (3KA-SE) and maternal separation in immature rats on subsequent learning, seizure susceptibility, and consequences, and the anticonvulsant effects of phenobarbital, according to sex, type, and age at early life (EL) event. METHODS 3KA-SE or maternal separation was induced on postnatal days (PN) 4-6 or 14-16. Rats were tested on Barnes maze (PN16-19), or lithium-pilocarpine SE (PN19) or flurothyl seizures (PN32). The anticonvulsant effects of phenobarbital (20 or 40 mg/kg/rat, intraperitoneally) pretreatment were tested on flurothyl seizures. FluoroJadeB staining assessed hippocampal injury. RESULTS 3KA-SE or separation on PN4-6 caused more transient learning delays in males and did not alter lithium-pilocarpine SE latencies, but aggravated its outcomes in females. Anticonvulsant effects of phenobarbital were preserved and potentiated in specific groups depending on sex, type, and age at EL event. CONCLUSIONS Early life 3KA-SE and maternal separation cause more but transient cognitive deficits in males but aggravate the consequences of subsequent lithium-pilocarpine SE in females. In contrast, on flurothyl seizures, EL events showed either beneficial or no effect, depending on gender, type, and age at EL events.
Collapse
Affiliation(s)
- Ozlem Akman
- Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | | | | |
Collapse
|
48
|
Chocyk A, Majcher-Maślanka I, Dudys D, Przyborowska A, Wędzony K. Impact of early-life stress on the medial prefrontal cortex functions - a search for the pathomechanisms of anxiety and mood disorders. Pharmacol Rep 2014; 65:1462-70. [PMID: 24552993 DOI: 10.1016/s1734-1140(13)71506-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/03/2013] [Indexed: 01/21/2023]
Abstract
Although anxiety and mood disorders (MDs) are the most common mental diseases, the etiologies and mechanisms of these psychopathologies are still a matter of debate. The medial prefrontal cortex (mPFC) is a brain structure that is strongly implicated in the pathophysiology of these disorders. A growing number of epidemiological and clinical studies show that early-life stress (ELS) during the critical period of brain development may increase the risk for anxiety and MDs. Neuroimaging analyses in humans and numerous reports from animal models clearly demonstrate that ELS affects behaviors that are dependent on the mPFC, as well as neuronal activity and synaptic plasticity within the mPFC. The mechanisms engaged in ELS-induced changes in mPFC function involve alterations in the developmental trajectory of the mPFC and may be responsible for the emergence of both early-onset (during childhood and adolescence) and adulthood-onset anxiety and MDs. ELS-evoked changes in mPFC synaptic plasticity may constitute an example of metaplasticity. ELS may program brain functions by affecting glucocorticoid levels. On the molecular level, ELS-induced programming is registered by epigenetic mechanisms, such as changes in DNA methylation pattern, histone acetylation and microRNA expression. Vulnerability and resilience to ELS-related anxiety and MDs depend on the interaction between individual genetic predispositions, early-life experiences and later-life environment. In conclusion, ELS may constitute a significant etiological factor for anxiety and MDs, whereas animal models of ELS are helpful tools for understanding the pathomechanisms of these disorders.
Collapse
Affiliation(s)
- Agnieszka Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
49
|
Distrutti E, O’Reilly JA, McDonald C, Cipriani S, Renga B, Lynch MA, Fiorucci S. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One 2014; 9:e106503. [PMID: 25202975 PMCID: PMC4159266 DOI: 10.1371/journal.pone.0106503] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/17/2022] Open
Abstract
The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut–brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function.
Collapse
Affiliation(s)
- Eleonora Distrutti
- S.C. di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
- * E-mail:
| | - Julie-Ann O’Reilly
- Trinity College Institute for Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland
| | - Claire McDonald
- Trinity College Institute for Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland
| | - Sabrina Cipriani
- Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Barbara Renga
- Dipartimento di Scienze Chirurgiche e Biomediche, Università degli Studi di Perugia, Perugia, Italy
| | - Marina A. Lynch
- Trinity College Institute for Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland
| | - Stefano Fiorucci
- Dipartimento di Scienze Chirurgiche e Biomediche, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
50
|
Sittig LJ, Jeong C, Tixier E, Davis J, Barrios-Camacho CM, Palmer AA. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ. Mamm Genome 2014; 25:564-72. [PMID: 24997021 DOI: 10.1007/s00335-014-9531-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/11/2014] [Indexed: 12/29/2022]
Abstract
Closely related substrains of inbred mice often show phenotypic differences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole-genome sequence data for both inbred strains (~3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies.
Collapse
Affiliation(s)
- Laura J Sittig
- Department of Human Genetics, University of Chicago, 920 E 58th St. CLSC-501, Chicago, IL, 60637, USA,
| | | | | | | | | | | |
Collapse
|