1
|
Samanta S, Sengupta S, Barman S, Dey C, Dey A. Skeletal substituents and the distal environment determine the spin state of natural and synthetic iron porphyrins: role in the O 2 reduction reaction. Dalton Trans 2025; 54:6456-6471. [PMID: 40135442 DOI: 10.1039/d5dt00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The poprhyrin structure, along with its axial ligands and surrounding environment determine its electronic structure which results in a wide range of reduction potentials and different spin states of the iron center in heme enzymes in nature. Tuning these electronic structure attributes is crucial for heme proteins to be able to efficiently catalyze multiproton and multielectron reduction of small molecules such as O2, NO2- and SO2, which have very different reduction potentials, and this is important in designing small-molecule catalysts for these energy- and environment-related transformations. However, deconvoluting the effects of porphyrin modifications and protein environments on the electronic structures of active sites is often difficult. Site-isolated imidazole-bound heme b, diacetyl heme and their synthetic analogue active sites are created atop self-assembled monolayers of thiols on Au electrodes. In situ surface-enhanced resonance Raman spectroscopy indicates that imidazole-bound heme b prefers a low-spin active site in both its redox states in contrast to the protein active sites with a histidine-bound heme b cofactor, which are all high spin. The imidazole-bound diacetyl heme, with electron-withdrawing groups like that of heme a, however, prefers a high-spin ground state under the same conditions. Imidazole-bound synthetic iron porphyrins show that the ground state gradually changes from low spin, in iron tetraphenyl porphyrin, to high spin as electron-withdrawing groups are attached to the porphyrin ligand. When the solvent-exposed site of a low-spin iron porphyrin is hydrophobic, it switches to its high-spin state. The electron-withdrawing groups and the spin state can tune the reduction potential of imidazole-bound iron porphyrins by more than 300 mV. The high-spin ground state allows faster electrocatalytic O2 reduction at a lower overpotential, while the low-spin ground state stays inhibited due to product inhibition.
Collapse
Affiliation(s)
- Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Srijan Sengupta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sudip Barman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
2
|
Padva L, Gullick J, Coe LJ, Hansen MH, De Voss JJ, Crüsemann M, Cryle MJ. The Biarylitides: Understanding the Structure and Biosynthesis of a Fascinating Class of Cytochrome P450 Modified RiPP Natural Products. Chembiochem 2025; 26:e202400916. [PMID: 39714378 PMCID: PMC12002111 DOI: 10.1002/cbic.202400916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
The biarylitides are a recently discovered class of RiPP natural products that are fascinating both from the small size of the core peptides as well as the diversity of peptide crosslinking exhibited by the cytochrome P450 enzymes found in these systems. In this review, we address the discovery and biosynthetic diversity of these systems and discuss the methods and challenges of analysing the structures of these constrained cyclic peptides. We also discuss the structures of the P450 enzymes involved in these pathways and address the potential for alternate catalytic outcomes and activities as seen most recently with the inclusion of biarylitide related enzymes within rufomycin biosynthesis.
Collapse
Affiliation(s)
- Leo Padva
- Institute of Pharmaceutical BiologyUniversity of Bonn53115BonnGermany
| | - Jemma Gullick
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Laura J. Coe
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD 4072Australia
| | - Mathias H. Hansen
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - James J. De Voss
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD 4072Australia
| | - Max Crüsemann
- Institute of Pharmaceutical BiologyUniversity of Bonn53115BonnGermany
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
- Institute of Pharmaceutical BiologyGoethe University of Frankfurt60438FrankfurtGermany
| | - Max J. Cryle
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| |
Collapse
|
3
|
Hegde P, Rodriguez B, Bell A, Hall SD, Rougée LRA. Improvement in static and dynamic projections of drug-drug interactions caused by cytochrome P4503A time-dependent inhibitors through in vitro allosteric modulation by progesterone. Drug Metab Dispos 2025; 53:100030. [PMID: 40023571 DOI: 10.1016/j.dmd.2024.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/12/2024] [Indexed: 03/04/2025] Open
Abstract
Current drug discovery screens to assess the drug-drug interaction (DDI) risk caused by time-dependent inhibition (TDI) of cytochrome P450 (CYP) 3A4 are known to overpredict or produce false positives that do not translate in vivo. Recent work identified that inclusion of the allosteric modulator progesterone (PGS), at a concentration of 45 μM to human liver microsomal incubations, generated in vitro TDI values that replicated clinical DDI predictions for 2 well established mechanism-based inhibitors. Further application of this approach across a diverse set of compounds was undertaken in this study, with 56 molecules reported in literature as time-dependent inhibitors in vitro tested in the human liver microsomal TDI kinetic assay in the absence and presence of 45 μM PGS. No TDI signal was observed for 15 molecules under control conditions despite literature reports. For the remaining compounds observed to have a TDI signal under control conditions, presence of PGS modified the inactivation efficiency for 36 compounds and eliminated the TDI signal for 5 compounds that were false positives. In vitro kinetic values were incorporated into mechanistic static and dynamic physiologically based pharmacokinetic models to project DDIs. TDI parameters established in the presence of PGS decreased the magnitude of overprediction while maintaining a high sensitivity (96% and 100%) for the detection of TDI with improved specificity (69% and 89%) when using mechanistic static and dynamic models, respectively. Inclusion of PGS into in vitro TDI assays provides a simple, rapid, and cost-effective solution for identifying true CYP3A4 TDIs and improving TDI-related DDI predictions. SIGNIFICANCE STATEMENT: The impact of the previously determined optimal concentration of the allosteric modulator progesterone (45 μM) was evaluated across a set of 56 compounds reported to be time-dependent inhibitors in vitro. In vitro generated values were incorporated into mechanistic static and physiologically based pharmacokinetic models to predict extent of drug-drug interactions and compared to clinical reports. Inclusion of progesterone into the assay identified in vitro false positives and improved risk predictions.
Collapse
Affiliation(s)
- Pooja Hegde
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
| | - Brianna Rodriguez
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Alec Bell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Stephen D Hall
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Luc R A Rougée
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
4
|
Paudel P, Regmi KP, Kim KH, Lee JH, Oh TJ. Functional characterization and unraveling the structural determinants of novel steroid hydroxylase CYP154C7 from Streptomyces sp. PAMC26508. Heliyon 2024; 10:e39777. [PMID: 39524739 PMCID: PMC11544072 DOI: 10.1016/j.heliyon.2024.e39777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study characterized cytochrome P450 enzyme CYP154C7 from Streptomyces sp. PAMC26508, emphasizing its capability to hydroxylate steroids, especially at the 16α-position. The enzymatic assay of CYP154C7 demonstrated effective conversion across a pH range of 7.2-7.6, with optimal activity at 30 °C in the Pdx/PdR plus NADH system. Kinetic analysis on most converted steroids (androstenedione and adrenosterone) was performed which shows a greater affinity for androstenedione (K m , 11.06 ± 1.903 μM; V max, 0.0062 ± 0.0002 sec-1) compared to adrenosterone (K m , 34.50 ± 6.2 μM; V max, 0.0119 ± 0.0007 sec-1). A whole-cell system in Escherichia coli, overexpressing recombinant CYP154C7, achieved substantial conversion for steroids, indicating that CYP154C7 can also be used as a potential whole-cell biocatalyst. To gain structural insights, homology models of CYP154C7 and its homologs were constructed using CYP154C5 (PDB ID: 6TO2), refined, validated, and used for docking studies. Comparative docking analysis suggests that lysine (K236) in the active site and tyrosine (Y197) in the substrate access channel of CYP154C7 are crucial for substrate selectivity and catalytic efficiency. This study suggests that CYP154C7 could be a promising candidate for developing modified steroids, providing valuable insights for protein engineering to design commercially useful CYP steroid hydroxylases with diverse substrate specificities.
Collapse
Affiliation(s)
- Prakash Paudel
- Department of Life Science and Biochemical Engineering, Graduate School, Sunmoon University, Asan, 31460, Republic of Korea
| | - Kamal Prasad Regmi
- Department of Life Science and Biochemical Engineering, Graduate School, Sunmoon University, Asan, 31460, Republic of Korea
| | - Ki-Hwa Kim
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, Sunmoon University, Asan, 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan, 31460, Republic of Korea
| |
Collapse
|
5
|
Costanzo A, Fata F, Freda I, De Sciscio ML, Gugole E, Bulfaro G, Di Renzo M, Barbizzi L, Exertier C, Parisi G, D'Abramo M, Vallone B, Savino C, Montemiglio LC. Binding of steroid substrates reveals the key to the productive transition of the cytochrome P450 OleP. Structure 2024; 32:1465-1476.e3. [PMID: 38971159 DOI: 10.1016/j.str.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
OleP is a bacterial cytochrome P450 involved in oleandomycin biosynthesis as it catalyzes regioselective epoxidation on macrolide intermediates. OleP has recently been reported to convert lithocholic acid (LCA) into murideoxycholic acid through a highly regioselective reaction and to unspecifically hydroxylate testosterone (TES). Since LCA and TES mainly differ by the substituent group at the C17, here we used X-ray crystallography, equilibrium binding assays, and molecular dynamics simulations to investigate the molecular basis of the diverse reactivity observed with the two steroids. We found that the differences in the structure of TES and LCA affect the capability of these molecules to directly form hydrogen bonds with N-terminal residues of OleP internal helix I. The establishment of these contacts, by promoting the bending of helix I, fosters an efficient trigger of the open-to-closed structural transition that occurs upon substrate binding to OleP and contributes to the selectivity of the subsequent monooxygenation reaction.
Collapse
Affiliation(s)
- Antonella Costanzo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
| | - Francesca Fata
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Ida Freda
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Maria Laura De Sciscio
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Elena Gugole
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Giovanni Bulfaro
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
| | - Matteo Di Renzo
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Luca Barbizzi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Giacomo Parisi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza, University of Rome, Via Antonio Scarpa, 16, 00161 Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
6
|
Kandel SE, Tooker BC, Lampe JN. Drug metabolism of ciprofloxacin, ivacaftor, and raloxifene by Pseudomonas aeruginosa cytochrome P450 CYP107S1. J Biol Chem 2024; 300:107594. [PMID: 39032655 PMCID: PMC11382314 DOI: 10.1016/j.jbc.2024.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
Drug metabolism is one of the main processes governing the pharmacokinetics and toxicity of drugs via their chemical biotransformation and elimination. In humans, the liver, enriched with cytochrome P450 (CYP) enzymes, plays a major metabolic and detoxification role. The gut microbiome and its complex community of microorganisms can also contribute to some extent to drug metabolism. However, during an infection when pathogenic microorganisms invade the host, our knowledge of the impact on drug metabolism by this pathobiome remains limited. The intrinsic resistance mechanisms and rapid metabolic adaptation to new environments often allow the human bacterial pathogens to persist, despite the many antibiotic therapies available. Here, we demonstrate that a bacterial CYP enzyme, CYP107S1, from Pseudomonas aeruginosa, a predominant bacterial pathogen in cystic fibrosis patients, can metabolize multiple drugs from different classes. CYP107S1 demonstrated high substrate promiscuity and allosteric properties much like human hepatic CYP3A4. Our findings demonstrated binding and metabolism by the recombinant CYP107S1 of fluoroquinolone antibiotics (ciprofloxacin and fleroxacin), a cystic fibrosis transmembrane conductance regulator potentiator (ivacaftor), and a selective estrogen receptor modulator antimicrobial adjuvant (raloxifene). Our in vitro metabolism data were further corroborated by molecular docking of each drug to the heme active site using a CYP107S1 homology model. Our findings raise the potential for microbial pathogens modulating drug concentrations locally at the site of infection, if not systemically, via CYP-mediated biotransformation reactions. To our knowledge, this is the first report of a CYP enzyme from a known bacterial pathogen that is capable of metabolizing clinically utilized drugs.
Collapse
Affiliation(s)
- Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Brian C Tooker
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
7
|
Nguy AKL, Martinie RJ, Cai A, Seyedsayamdost MR. Detection of a Kinetically Competent Compound-I Intermediate in the Vancomycin Biosynthetic Enzyme OxyB. J Am Chem Soc 2024; 146:19629-19634. [PMID: 38989876 DOI: 10.1021/jacs.4c03102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cytochrome P450 enzymes are abundantly encoded in microbial genomes. Their reactions have two general outcomes, one involving oxygen insertion via a canonical "oxygen rebound" mechanism and a second that diverts from this pathway and leads to a wide array of products, notably intramolecular oxidative cross-links. The antibiotic of-last-resort, vancomycin, contains three such cross-links, which are crucial for biological activity and are installed by the P450 enzymes OxyB, OxyA, and OxyC. The mechanisms of these enzymes have remained elusive in part because of the difficulty in spectroscopically capturing transient intermediates. Using stopped-flow UV/visible absorption and rapid freeze-quench electron paramagnetic resonance spectroscopies, we show that OxyB generates the highly reactive compound-I intermediate, which can react with a model vancomycin peptide substrate in a kinetically competent fashion to generate product. Our results have implications for the mechanism of OxyB and are in line with the notion that oxygen rebound and oxidative cross-links share early steps in their catalytic cycles.
Collapse
Affiliation(s)
- Andy K L Nguy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryan J Martinie
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Amanda Cai
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
He J, Liu X, Li C. Engineering Electron Transfer Pathway of Cytochrome P450s. Molecules 2024; 29:2480. [PMID: 38893355 PMCID: PMC11173547 DOI: 10.3390/molecules29112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cytochrome P450s (P450s), a superfamily of heme-containing enzymes, existed in animals, plants, and microorganisms. P450s can catalyze various regional and stereoselective oxidation reactions, which are widely used in natural product biosynthesis, drug metabolism, and biotechnology. In a typical catalytic cycle, P450s use redox proteins or domains to mediate electron transfer from NAD(P)H to heme iron. Therefore, the main factors determining the catalytic efficiency of P450s include not only the P450s themselves but also their redox-partners and electron transfer pathways. In this review, the electron transfer pathway engineering strategies of the P450s catalytic system are reviewed from four aspects: cofactor regeneration, selection of redox-partners, P450s and redox-partner engineering, and electrochemically or photochemically driven electron transfer.
Collapse
Affiliation(s)
- Jingting He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi 832003, China;
| | - Xin Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Stevanović MZ, Bekić SS, Petri ET, Ćelić AS, Jakimov DS, Sakač MN, Kuzminac IZ. Synthesis, in vitro and in silico anticancer evaluation of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives. Future Med Chem 2024; 16:1127-1145. [PMID: 38629440 PMCID: PMC11221553 DOI: 10.4155/fmc-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: The aim of this study was the synthesis of steroid compounds with heterocyclic rings and good anticancer properties. Materials & methods: The synthesis, in silico and in vitro anticancer testing of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives was performed. Results: All synthesized compounds have shown promising results for, antiproliferative activity, relative binding affinities for the ligand binding domains of estrogen receptors α, β and androgen receptor, aromatase binding potential, and inhibition of AKR1C3 enzyme. Conclusion: 3-Benzyloxy (17E)-pycolinilidene derivative 9 showed the best antitumor potential against MDA-MB-231 cell line, an activity that can be explained by its moderate inhibition of AKR1C3. Molecular docking simulation indicates that it binds to AKR1C3 in a very similar orientation and geometry as steroidal inhibitor EM1404.
Collapse
Affiliation(s)
- Milica Z Stevanović
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sofija S Bekić
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Edward T Petri
- Department of Biology & Ecology, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Andjelka S Ćelić
- Department of Biology & Ecology, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Marija N Sakač
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Z Kuzminac
- Department of Chemistry, Biochemistry & Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
10
|
Iizaka Y, Yamada M, Koshino S, Takahashi S, Saito R, Sherman DH, Anzai Y. Production of hybrid macrolide antibiotics by exploiting the specific substrate recognition characteristics of multifunctional cytochrome P450 enzyme MycG. FEMS Microbiol Lett 2024; 371:fnae080. [PMID: 39341787 DOI: 10.1093/femsle/fnae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Macrolide antibiotics are biosynthesized via enzymatic modifications, including glycosylation, methylation, and oxidation, after the core macro-lactone ring is generated by a polyketide synthase system. This study explored the diversification of macrolides by combining biosynthetic enzymes and reports an approach to produce unnatural hybrid macrolide antibiotics. The cytochrome (CYP) P450 monooxygenase MycG exhibits bifunctional activity, catalyzing late-stage hydroxylation at C-14 followed by epoxidation at C-12/13 during mycinamicin biosynthesis. The mycinose sugar of mycinamicin serves as a key molecular recognition element for binding to MycG. Thus, we subjected the hybrid macrolide antibiotic 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (IZI) to MycG, and confirmed that MycG catalyzed hydroxylation at C-22 and epoxidation at C-12/13 in IZI. In addition, the introduction of mycinose biosynthesis-related genes and mycG into rosamicin-producing Micromonospora rosaria enabled the fermentative production of 22-hydroxylated and 12,13-epoxidized forms of IZI. Interestingly, MycG catalyzed the sequential oxidation of hydroxylation and epoxidation in mycinamicin biosynthesis, but only single reactions in IZI. These findings highlight the potential for expanding the application of the multifunctional P450 monooxygenase MycG for the production of unnatural compounds.
Collapse
Affiliation(s)
- Yohei Iizaka
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Mari Yamada
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Suirei Koshino
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sawa Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Ryota Saito
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yojiro Anzai
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
11
|
Rougée LRA, Bedwell DW, Hansen K, Abraham TL, Hall SD. Impact of Heterotropic Allosteric Modulation on the Time-Dependent Inhibition of Cytochrome P450 3A4. Drug Metab Dispos 2023; 51:1372-1380. [PMID: 37524542 DOI: 10.1124/dmd.123.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
The current study was designed to investigate the influence of allosteric effectors on the metabolism of the prototypical cytochrome P450 (CYP) 3A4 substrate midazolam (MDZ), and on the determination in vitro time-dependent inhibition (TDI) of CYP3A4 using human liver microsomes (HLM). As the concentration of midazolam increased to 250 µM in HLMs, homotropic cooperativity resulted in a decrease in the 1'-hydroxymidazolam to 4-hydroxymidazolam ratio to a maximum of 1.1. The presence of varying concentrations of testosterone, progesterone (PGS), or carbamazepine (CBZ) in HLMs with MDZ could recapitulate the effect of homotropic cooperativity such that the formation rates of the 1'hydroxymidazolam and 4-hydroxymidazolam were equal even at low concentrations of MDZ. The presence of PGS (10 or 100 µM) and CBZ (100 or 1000 µM) in in vitro TDI determination of four known CYP3A4 time-dependent inactivators (clarithromycin, troleandomycin, mibefradil, raloxifene) simultaneously decreased potency and inactivation rate constant, resulting in fold changes in inactivation efficiency on average of 1.6-fold and 13-fold for the low and high concentrations of allosteric modulator tested, respectively. The formation of a metabolic-intermediate complex (MIC) for clarithromycin and troleandomycin decreased in the presence of the allosteric modulators in a concentration-dependent manner, reaching a new steady state formation that could not be overcome with increased incubation time. Maximum reduction of the MIC formed by clarithromycin was up to ∼91%, while troleandomycin MIC decreased up to ∼31%. These findings suggest that the absence of endogenous allosteric modulators may contribute to the poor translation of HLM-based drug-drug interaction predictions. SIGNIFICANCE STATEMENT: The reported overprediction of in vitro human liver microsome time-dependent inhibition of CYP3A4 and observed drug interactions in vivo remains an issue in drug development. We provide characterization of allosteric modulators on the CYP3A4 metabolism of the prototypical substrate midazolam, demonstrating the ability of the modulators to recapitulate the homotropic cooperativity of midazolam. Furthermore, we demonstrate that allosteric heterotropic cooperativity of CYP3A4 can impact the time-dependent inhibition kinetics of known mechanisms-based inhibitors, providing a potential mechanism to explain the overprediction.
Collapse
Affiliation(s)
- Luc R A Rougée
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - David W Bedwell
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Kasi Hansen
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Trent L Abraham
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Stephen D Hall
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
12
|
Mohamed H, Ghith A, Bell SG. The binding of nitrogen-donor ligands to the ferric and ferrous forms of cytochrome P450 enzymes. J Inorg Biochem 2023; 242:112168. [PMID: 36870164 DOI: 10.1016/j.jinorgbio.2023.112168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The cytochrome P450 superfamily of heme-thiolate monooxygenase enzymes can catalyse various oxidation reactions. The addition of a substrate or an inhibitor ligand induces changes in the absorption spectrum of these enzymes and UV-visible (UV-vis) absorbance spectroscopy is the most common and readily available technique used to interrogate their heme and active site environment. Nitrogen-containing ligands can inhibit the catalytic cycle of heme enzymes by interacting with the heme. Here we evaluate the binding of imidazole and pyridine-based ligands to the ferric and ferrous forms of a selection of bacterial cytochrome P450 enzymes using UV-visible absorbance spectroscopy. The majority of these ligands interact with the heme as one would expect for type II nitrogen directly coordinated to a ferric heme-thiolate species. However, the spectroscopic changes observed in the ligand-bound ferrous forms indicated differences in the heme environment across these P450 enzyme/ligand combinations. Multiple species were observed in the UV-vis spectra of the ferrous ligand-bound P450s. None of the enzymes gave rise to the isolation of a single species with a Soret band at ∼442-447 nm, indicative of a 6-coordinate ferrous thiolate species with a nitrogen-donor ligand. A ferrous species with Soret band at ∼427 nm coupled with an α-band of increased intensity was observed with the imidazole ligands. With some enzyme-ligand combinations reduction resulted in breaking of the iron‑nitrogen bond yielding a 5-coordinate high-spin ferrous species. In other instances, the ferrous form was readily oxidised back to the ferric form on addition of the ligand.
Collapse
Affiliation(s)
- Hebatalla Mohamed
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Amna Ghith
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
13
|
Liu J, Offei SD, Yoshimoto FK, Scott EE. Pyridine-containing substrate analogs are restricted from accessing the human cytochrome P450 8B1 active site by tryptophan 281. J Biol Chem 2023; 299:103032. [PMID: 36806682 PMCID: PMC10033310 DOI: 10.1016/j.jbc.2023.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The human oxysterol 12α-hydroxylase cytochrome P450 8B1 (CYP8B1) is a validated drug target for both type 2 diabetes and nonalcoholic fatty liver disease, but effective selective inhibitors are not yet available. Herein, steroidal substrate-mimicking compounds with a pyridine ring appended to the C12 site of metabolism were designed as inhibitors, synthesized, and evaluated in terms of their functional and structural interactions with CYP8B1. While the pyridine nitrogen was intended to coordinate the CYP8B1 active site heme iron, none of these compounds elicited shifts in the CYP8B1 Soret absorbance consistent with this type of interaction. However, when CYP8B1 was cocrystallized with the pyridine-containing compound with the 3-keto-Δ4 steroid backbone most similar to the endogenous substrate, it was apparent that this ligand was bound in a channel leading to the active site, instead of near the heme iron. Inspection of this structure suggested that tryptophan 281 directly above the heme might restrict active site binding of potential inhibitors with this design. This hypothesis was supported when a CYP8B1 W281F mutation did allow all three compounds to coordinate the heme iron as designed. These results indicated that the design of next-generation CYP8B1 inhibitors should be compatible with the low-ceiling tryptophan immediately above the heme iron.
Collapse
Affiliation(s)
- Jinghan Liu
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel D Offei
- Department of Chemistry, The University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, Texas, USA
| | - Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, Texas, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Biological Chemistry and Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
14
|
De Sciscio ML, Nardi AN, Parisi G, Bulfaro G, Costanzo A, Gugole E, Exertier C, Freda I, Savino C, Vallone B, Montemiglio LC, D’Abramo M. Effect of Salts on the Conformational Dynamics of the Cytochrome P450 OleP. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020832. [PMID: 36677890 PMCID: PMC9867029 DOI: 10.3390/molecules28020832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Cytochrome P450 OleP catalytic activity is strongly influenced by its structural dynamic conformational behavior. Here, we combine equilibrium-binding experiments with all-atom molecular dynamics simulations to clarify how different environments affect OleP conformational equilibrium between the open and the closed-catalytic competent-forms. Our data clearly show that at high-ionic strength conditions, the closed form is favored, and, very interestingly, different mechanisms, depending on the chemistry of the cations, can be used to rationalize such an effect.
Collapse
Affiliation(s)
- Maria Laura De Sciscio
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, IIT, 00185 Rome, Italy
| | - Giovanni Bulfaro
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
| | - Antonella Costanzo
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Elena Gugole
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Ida Freda
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| | - Marco D’Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| |
Collapse
|
15
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
16
|
Krenc D, Na-Bangchang K. Spectroscopic observations of β-eudesmol binding to human cytochrome P450 isoforms 3A4 and 1A2, but not to isoforms 2C9, 2C19 and 2D6. Xenobiotica 2022; 52:199-208. [PMID: 35139770 DOI: 10.1080/00498254.2022.2037168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-Eudesmol is a sesquiterpenoid component o Atractylodes lancea with cytotoxic activity against cholangiocarcinoma. Its lipophilic nature makes β-eudesmol a likely substrate of human cytochrome P450 (P450) enzymes.Using ligand-binding difference spectroscopy, the affinities of this compound to recombinant CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 were investigated in Escherichia coli membrane preparations.CYP3A4 showed a type I spectral change, with a binding constant Ks of 77 ± 23 (mean ± SD) μM at 0.5 μM P450 (Ks/[P450] ≈ 155). The reference substrate testosterone and the inhibitor fluconazole bound to the enzyme with apparent affinities of 86 ± 4 μM (type I) and 21 μM (type II), respectively. β-Eudesmol was bound to CYP3A4 in a non-cooperative manner (Hill coefficient n ≈ 0.8). CYP1A2 showed reverse type I difference spectra with either β-eudesmol or caffeine. The CYP1A2 affinity for β-eudesmol was higher (0.23 mM) than for caffeine (0.37 mM) but lower than for phenacetin (0.11 mM, type I). β-Eudesmol did not bind significantly to CYP2C9, CYP2C19, and CYP2D6.Confirmation of metabolic activity and studies on the involvement of other human P450 isoforms studies are required. Double-beam spectrometry is needed to validate Ks measurements made with a plate reader.
Collapse
Affiliation(s)
- Dawid Krenc
- Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand.,Drug Discovery and Development Center, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
17
|
Yang J, Qi Y, Blodgett JAV, Wencewicz TA. Multifunctional P450 Monooxygenase CftA Diversifies the Clifednamide Pool through Tandem C-H Bond Activations. JOURNAL OF NATURAL PRODUCTS 2022; 85:47-55. [PMID: 35086337 DOI: 10.1021/acs.jnatprod.1c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polycyclic tetramate macrolactams (PTMs) are a class of structurally complex hybrid polyketide-nonribosomal peptide (PK-NRP) natural products produced by diverse bacteria. Several PTMs display pharmaceutically interesting bioactivities, and the early stages of PTM biosynthesis involving polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) enzymology are well studied. However, the timing and mechanisms of post PKS-NRPS oxidations by P450 monooxygenases encoded in PTM biosynthetic gene clusters (BGCs) remain poorly characterized. Here we demonstrate that CftA, encoded in clifednamide-type PTM BGCs, is a multifunctional P450 monooxygenase capable of converting the C29-C30 ethyl side chain of ikarugamycin to either a C29-C30 methyl ketone or a C29-C30 hydroxymethyl ketone through C-H bond activation, resulting in the formation of clifednamide A or clifednamide C, respectively. We also report the complete structure of clifednamide C solved via multidimensional NMR (COSY, HSQC, HMBC, NOESY, and TOCSY) using material purified from an engineered Streptomyces strain optimized for production. Finally, the in vitro reconstitution of recombinant CftA catalytic activity revealed the oxidation cascade for sequential conversion of ikarugamycin to clifednamide A and clifednamide C. Our findings confirm prior genetics-based predictions on the origins of clifednamide complexity via P450s encoded in PTM BGCs and place CftA into a growing group of multifunctional P450s that tailor PTM natural products through late-stage regioselective C-H bond activation.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Joshua A V Blodgett
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
18
|
Montemiglio LC, Gugole E, Freda I, Exertier C, D’Auria L, Chen CG, Nardi AN, Cerutti G, Parisi G, D’Abramo M, Savino C, Vallone B. Point Mutations at a Key Site Alter the Cytochrome P450 OleP Structural Dynamics. Biomolecules 2021; 12:biom12010055. [PMID: 35053203 PMCID: PMC8774231 DOI: 10.3390/biom12010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Substrate binding to the cytochrome P450 OleP is coupled to a large open-to-closed transition that remodels the active site, minimizing its exposure to the external solvent. When the aglycone substrate binds, a small empty cavity is formed between the I and G helices, the BC loop, and the substrate itself, where solvent molecules accumulate mediating substrate-enzyme interactions. Herein, we analyzed the role of this cavity in substrate binding to OleP by producing three mutants (E89Y, G92W, and S240Y) to decrease its volume. The crystal structures of the OleP mutants in the closed state bound to the aglycone 6DEB showed that G92W and S240Y occupied the cavity, providing additional contact points with the substrate. Conversely, mutation E89Y induces a flipped-out conformation of this amino acid side chain, that points towards the bulk, increasing the empty volume. Equilibrium titrations and molecular dynamic simulations indicate that the presence of a bulky residue within the cavity impacts the binding properties of the enzyme, perturbing the conformational space explored by the complexes. Our data highlight the relevance of this region in OleP substrate binding and suggest that it represents a key substrate-protein contact site to consider in the perspective of redirecting its activity towards alternative compounds.
Collapse
Affiliation(s)
- Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (L.C.M.); (C.E.)
| | - Elena Gugole
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
| | - Ida Freda
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (L.C.M.); (C.E.)
| | - Lucia D’Auria
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
| | - Cheng Giuseppe Chen
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (C.G.C.); (A.N.N.); (M.D.)
| | - Alessandro Nicola Nardi
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (C.G.C.); (A.N.N.); (M.D.)
| | - Gabriele Cerutti
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
| | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, IIT, 00185 Rome, Italy;
| | - Marco D’Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (C.G.C.); (A.N.N.); (M.D.)
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (L.C.M.); (C.E.)
- Correspondence: (C.S.); (B.V.); Tel.: +39-06-49910548 (C.S. & B.V.)
| | - Beatrice Vallone
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
- Correspondence: (C.S.); (B.V.); Tel.: +39-06-49910548 (C.S. & B.V.)
| |
Collapse
|
19
|
Zou X, Zhang Y, Zeng X, Liu T, Li G, Dai Y, Xie Y, Luo Z. Molecular Cloning and Identification of NADPH Cytochrome P450 Reductase from Panax ginseng. Molecules 2021; 26:molecules26216654. [PMID: 34771064 PMCID: PMC8588036 DOI: 10.3390/molecules26216654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Mey.) is a precious Chinese traditional medicine, for which ginsenosides are the most important medicinal ingredients. Cytochrome P450 enzymes (CYP450) and their primary redox molecular companion NADPH cytochrome P450 reductase (CPR) play a key role in ginsenoside biosynthesis pathway. However, systematic studies of CPR genes in ginseng have not been reported. Numerous studies on ginsenoside synthesis biology still use Arabidopsis CPR (AtCPR1) as a reductase. In this study, we isolated two CPR genes (PgCPR1, PgCPR2) from ginseng adventitious roots. Phylogenetic tree analysis showed that both PgCPR1 and PgCPR2 are grouped in classⅡ of dicotyledonous CPR. Enzyme experiments showed that recombinant proteins PgCPR1, PgCPR2 and AtCPR1 can reduce cytochrome c and ferricyanide with NADPH as the electron donor, and PgCPR1 had the highest enzymatic activities. Quantitative real-time PCR analysis showed that PgCPR1 and PgCPR2 transcripts were detected in all examined tissues of Panax ginseng and both showed higher expression in stem and main root. Expression levels of the PgCPR1 and PgCPR2s were both induced after a methyl jasmonate (MeJA) treatment and its pattern matched with ginsenoside accumulation. The present investigation suggested PgCPR1 and PgCPR2 are associated with the biosynthesis of ginsenoside. This report will assist in future CPR family studies and ultimately improving ginsenoside production through transgenic engineering and synthetic biology.
Collapse
|
20
|
Campomizzi CS, Ghanatios GE, Estrada DF. 19F-NMR reveals substrate specificity of CYP121A1 in Mycobacterium tuberculosis. J Biol Chem 2021; 297:101287. [PMID: 34634307 PMCID: PMC8571521 DOI: 10.1016/j.jbc.2021.101287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochromes P450 are versatile enzymes that function in endobiotic and xenobiotic metabolism and undergo meaningful structural changes that relate to their function. However, the way in which conformational changes inform the specific recognition of the substrate is often unknown. Here, we demonstrate the utility of fluorine (19F)-NMR spectroscopy to monitor structural changes in CYP121A1, an essential enzyme from Mycobacterium tuberculosis. CYP121A1 forms functional dimers that catalyze the phenol-coupling reaction of the dipeptide dicyclotyrosine. The thiol-reactive compound 3-bromo-1,1,1-trifluoroacetone was used to label an S171C mutation of the enzyme FG loop, which is located adjacent to the homodimer interface. Substrate titrations and inhibitor-bound 19F-NMR spectra indicate that ligand binding reduces conformational heterogeneity at the FG loop in both the dimer and in an engineered monomer of CYP121A1. However, only the dimer was found to promote a substrate-bound conformation that was preexisting in the substrate-free spectra, thus confirming a role for the dimer interface in dicyclotyrosine recognition. Moreover, 19F-NMR spectra in the presence of substrate analogs indicate the hydrogen-bonding feature of the dipeptide aromatic side chain as a dicyclotyrosine specificity criterion. This study demonstrates the utility of 19F-NMR as applied to a multimeric cytochrome P450, while also revealing mechanistic insights for an essential M. tuberculosis enzyme.
Collapse
Affiliation(s)
- Christopher S Campomizzi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - George E Ghanatios
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
21
|
Ebrecht AC, Aschenbrenner JC, Smit MS, Opperman DJ. Biocatalytic synthesis of non-vicinal aliphatic diols. Org Biomol Chem 2021; 19:439-445. [PMID: 33331366 DOI: 10.1039/d0ob02086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biocatalysts are receiving increased attention in the field of selective oxyfunctionalization of C-H bonds, with cytochrome P450 monooxygenases (CYP450s), and the related peroxygenases, leading the field. Here we report on the substrate promiscuity of CYP505A30, previously characterized as a fatty acid hydroxylase. In addition to its regioselective oxyfunctionalization of saturated fatty acids (ω-1 - ω-3 hydroxylation), primary fatty alcohols are also accepted with similar regioselectivities. Moreover, alkanes such as n-octane and n-decane are also readily accepted, allowing for the production of non-vicinal diols through sequential oxygenation.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa.
| | - Jasmin C Aschenbrenner
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa. and South African DST-NRF Centre of Excellence in Catalysis, c*change, South Africa
| | - Martha S Smit
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa. and South African DST-NRF Centre of Excellence in Catalysis, c*change, South Africa
| | - Diederik J Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa.
| |
Collapse
|
22
|
Parisi G, Freda I, Exertier C, Cecchetti C, Gugole E, Cerutti G, D’Auria L, Macone A, Vallone B, Savino C, Montemiglio LC. Dissecting the Cytochrome P450 OleP Substrate Specificity: Evidence for a Preferential Substrate. Biomolecules 2020; 10:biom10101411. [PMID: 33036250 PMCID: PMC7600006 DOI: 10.3390/biom10101411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022] Open
Abstract
The cytochrome P450 OleP catalyzes the epoxidation of aliphatic carbons on both the aglycone 8.8a-deoxyoleandolide (DEO) and the monoglycosylated L-olivosyl-8.8a-deoxyoleandolide (L-O-DEO) intermediates of oleandomycin biosynthesis. We investigated the substrate versatility of the enzyme. X-ray and equilibrium binding data show that the aglycone DEO loosely fits the OleP active site, triggering the closure that prepares it for catalysis only on a minor population of enzyme. The open-to-closed state transition allows solvent molecules to accumulate in a cavity that forms upon closure, mediating protein–substrate interactions. In silico docking of the monoglycosylated L-O-DEO in the closed OleP–DEO structure shows that the L-olivosyl moiety can be hosted in the same cavity, replacing solvent molecules and directly contacting structural elements involved in the transition. X-ray structures of aglycone-bound OleP in the presence of L-rhamnose confirm the cavity as a potential site for sugar binding. All considered, we propose L-O-DEO as the optimal substrate of OleP, the L-olivosyl moiety possibly representing the molecular wedge that triggers a more efficient structural response upon substrate binding, favoring and stabilizing the enzyme closure before catalysis. OleP substrate versatility is supported by structural solvent molecules that compensate for the absence of a glycosyl unit when the aglycone is bound.
Collapse
Affiliation(s)
- Giacomo Parisi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
- Current affiliation: Center for Life Nano Science @ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Rome, Italy
| | - Ida Freda
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
| | - Cécile Exertier
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
| | - Cristina Cecchetti
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
- Current affiliation: Department of Life Sciences Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Elena Gugole
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
| | - Gabriele Cerutti
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
- Current affiliation: Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Lucia D’Auria
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (L.D.); (A.M.)
| | - Alberto Macone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (L.D.); (A.M.)
| | - Beatrice Vallone
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
- Correspondence: (C.S.); (L.C.M.)
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
- Correspondence: (C.S.); (L.C.M.)
| |
Collapse
|
23
|
Claesen JLA, Koomen E, Schene IF, Jans JJM, Mast N, Pikuleva IA, van der Ham M, de Sain‐van der Velden MGM, Fuchs SA. Misdiagnosis of CTX due to propofol: The interference of total intravenous propofol anaesthesia with bile acid profiling. J Inherit Metab Dis 2020; 43:843-851. [PMID: 31990370 PMCID: PMC7354202 DOI: 10.1002/jimd.12219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cerebrotendinous xanthomatosis (CTX) is a rare genetic disorder, characterised by chronic diarrhoea, xanthomas, cataracts, and neurological deterioration. CTX is caused by CYP27A1 deficiency, which leads to abnormal cholesterol and bile acid metabolism. Urinary bile acid profiling (increased m/z 627: glucuronide-5β-cholestane-pentol) serves as diagnostic screening for CTX. However, this led to a false positive CTX diagnosis in two patients, who had received total intravenous anaesthesia (TIVA) with propofol. METHODS To determine the influence of propofol on bile acid profiling, 10 urinary samples and 2 blood samples were collected after TIVA with propofol Fresenius 7 to 10 mg/kg/h from 12 subjects undergoing scoliosis correction. Urinary bile acids were analysed using flow injection negative electrospray mass spectrometry. Propofol binding to recombinant CYP27A1, the effects of propofol on recombinant CYP27A1 activity, and CYP27A1 expression in liver organoids were investigated using spectral binding, enzyme activity assays, and qPCR, respectively. Accurate masses were determined with high-resolution mass spectrometry. RESULTS Abnormal urinary profiles were identified in all subjects after TIVA, with a trend correlating propofol dose per kilogramme and m/z 627 peak intensity. Propofol only induced a weak CYP27A1 response in the spectral binding assay, minimally affected CYP27A1 activity and did not affect CYP27A1 expression. The accurate mass of m/z 627 induced by propofol differed >10 PPM from m/z 627 observed in CTX. CONCLUSIONS TIVA with propofol invariably led to a urinary profile misleadingly suggestive of CTX, but not through CYP27A1 inhibition. To avoid further misdiagnoses, propofol administration should be considered when interpreting urinary bile acid profiles.
Collapse
Affiliation(s)
- Joep L. A. Claesen
- Department of Metabolic Diseases, University Medical Center UtrechtUtrechtNetherlands
| | - Erik Koomen
- Department of Paediatric Intensive CareUniversity Medical Center UtrechtUtrechtNetherlands
| | - Imre F. Schene
- Department of Metabolic Diseases, University Medical Center UtrechtUtrechtNetherlands
| | - Judith J. M. Jans
- Department of GeneticsSection Metabolic Diagnostics, Center for Molecular Medicine, University Medical Center UtrechtUtrechtNetherlands
| | - Natalia Mast
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhio
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhio
| | - Maria van der Ham
- Department of GeneticsSection Metabolic Diagnostics, Center for Molecular Medicine, University Medical Center UtrechtUtrechtNetherlands
| | | | - Sabine A. Fuchs
- Department of Metabolic Diseases, University Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
24
|
Barnette DA, Schleiff MA, Osborn LR, Flynn N, Matlock M, Swamidass SJ, Miller GP. Dual mechanisms suppress meloxicam bioactivation relative to sudoxicam. Toxicology 2020; 440:152478. [PMID: 32437779 DOI: 10.1016/j.tox.2020.152478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
Thiazoles are biologically active aromatic heterocyclic rings occurring frequently in natural products and drugs. These molecules undergo typically harmless elimination; however, a hepatotoxic response can occur due to multistep bioactivation of the thiazole to generate a reactive thioamide. A basis for those differences in outcomes remains unknown. A textbook example is the high hepatotoxicity observed for sudoxicam in contrast to the relative safe use and marketability of meloxicam, which differs in structure from sudoxicam by the addition of a single methyl group. Both drugs undergo bioactivation, but meloxicam exhibits an additional detoxification pathway due to hydroxylation of the methyl group. We hypothesized that thiazole bioactivation efficiency is similar between sudoxicam and meloxicam due to the methyl group being a weak electron donator, and thus, the relevance of bioactivation depends on the competing detoxification pathway. For a rapid analysis, we modeled epoxidation of sudoxicam derivatives to investigate the impact of substituents on thiazole bioactivation. As expected, electron donating groups increased the likelihood for epoxidation with a minimal effect for the methyl group, but model predictions did not extrapolate well among all types of substituents. Through analytical methods, we measured steady-state kinetics for metabolic bioactivation of sudoxicam and meloxicam by human liver microsomes. Sudoxicam bioactivation was 6-fold more efficient than that for meloxicam, yet meloxicam showed a 6-fold higher efficiency of detoxification than bioactivation. Overall, sudoxicam bioactivation was 15-fold more likely than meloxicam considering all metabolic clearance pathways. Kinetic differences likely arise from different enzymes catalyzing respective metabolic pathways based on phenotyping studies. Rather than simply providing an alternative detoxification pathway, the meloxicam methyl group suppressed the bioactivation reaction. These findings indicate the impact of thiazole substituents on bioactivation is more complex than previously thought and likely contributes to the unpredictability of their toxic potential.
Collapse
Affiliation(s)
- Dustyn A Barnette
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Laura R Osborn
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Noah Flynn
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - Matthew Matlock
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States.
| |
Collapse
|
25
|
Barnette DA, Davis MA, Flynn N, Pidugu AS, Swamidass SJ, Miller GP. Comprehensive kinetic and modeling analyses revealed CYP2C9 and 3A4 determine terbinafine metabolic clearance and bioactivation. Biochem Pharmacol 2019; 170:113661. [PMID: 31605674 PMCID: PMC6905088 DOI: 10.1016/j.bcp.2019.113661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/07/2019] [Indexed: 01/27/2023]
Abstract
Terbinafine N-dealkylation pathways result in formation of 6,6-dimethyl-2-hepten-4-ynal (TBF-A), a reactive allylic aldehyde, that may initiate idiosyncratic drug-induced liver toxicity. Previously, we reported on the importance of CYP2C19 and 3A4 as major contributors to TBF-A formation. In this study, we expanded on those efforts to assess individual contributions of CYP1A2, 2B6, 2C8, 2C9, and 2D6 in terbinafine metabolism. The combined knowledge gained from these studies allowed us to scale the relative roles of the P450 isozymes in hepatic clearance of terbinafine including pathways leading to TBF-A, and hence, provide a foundation for assessing their significance in terbinafine-induced hepatotoxicity. We used in vitro terbinafine reactions with recombinant P450s to measure kinetics for multiple metabolic pathways and calculated contributions of all individual P450 isozymes to in vivo hepatic clearance for the average human adult. The findings confirmed that CYP3A4 was a major contributor (at least 30% total metabolism) to all three of the possible N-dealkylation pathways; however, CYP2C9, and not CYP2C19, played a critical role in terbinafine metabolism and even exceeded CYP3A4 contributions for terbinafine N-demethylation. A combination of their metabolic capacities accounted for at least 80% of the conversion of terbinafine to TBF-A, while CYP1A2, 2B6, 2C8, and 2D6 made minor contributions. Computational approaches provide a more rapid, less resource-intensive strategy for assessing metabolism, and thus, we additionally predicted terbinafine metabolism using deep neural network models for individual P450 isozymes. Cytochrome P450 isozyme models accurately predicted the likelihood for terbinafine N-demethylation, but overestimated the likelihood for a minor N-denaphthylation pathway. Moreover, the models were not able to differentiate the varying roles of the individual P450 isozymes for specific reactions with this particular drug. Taken together, the significance of CYP2C9 and 3A4 and to a lesser extent, CYP2C19, in terbinafine metabolism is consistent with reported drug interactions. This finding suggests that variations in individual P450 contributions due to other factors like polymorphisms may similarly contribute to terbinafine-related adverse health outcomes. Nevertheless, the impact of their metabolic capacities on formation of reactive TBF-A and consequent idiosyncratic hepatotoxicity will be mitigated by competing detoxification pathways, TBF-A decay, and TBF-A adduction to glutathione that remain understudied.
Collapse
Affiliation(s)
- Dustyn A Barnette
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Mary A Davis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Noah Flynn
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63130, United States
| | - Anirudh S Pidugu
- Department of Chemistry, Emory University, Atlanta, GA 30322, Georgia
| | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63130, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
26
|
Theron CW, Labuschagné M, Albertyn J, Smit MS. Heterologous coexpression of the benzoate-para-hydroxylase CYP53B1 with different cytochrome P450 reductases in various yeasts. Microb Biotechnol 2019; 12:1126-1138. [PMID: 30341814 PMCID: PMC6801163 DOI: 10.1111/1751-7915.13321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 monooxygenases (P450) are enzymes with high potential as biocatalysts for industrial applications. Their large-scale applications are, however, limited by instability and requirement for coproteins and/or expensive cofactors. These problems are largely overcome when whole cells are used as biocatalysts. We previously screened various yeast species heterologously expressing self-sufficient P450s for their potential as whole-cell biocatalysts. Most P450s are, however, not self-sufficient and consist of two or three protein component systems. Therefore, in the present study, we screened different yeast species for coexpression of P450 and P450-reductase (CPR) partners, using CYP53B1 from Rhodotorula minuta as an exemplary P450. The abilities of three different coexpressed CPR partners to support P450 activity were investigated, two from basidiomycetous origin and one from an ascomycete. The various P450-CPR combinations were cloned into strains of Saccharomyces cerevisiae, Kluyveromyces marxianus, Hansenula polymorpha, Yarrowia lipolytica and Arxula adeninivorans, using a broad-range yeast expression vector. The results obtained supported the previous finding that recombinant A. adeninivorans strains perform excellently as whole-cell biocatalysts. This study also demonstrated for the first time the P450 reductase activity of the CPRs from R. minuta and U. maydis. A very interesting observation was the variation in the supportive activity provided by the different reductase partners tested and demonstrated better P450 activity enhancement by a heterologous CPR compared to its natural partner CPR. This study highlights reductase selection as a critical variable for consideration in the pursuit of optimal P450-based catalytic systems. The usefulness of A. adeninivorans as both a host for recombinant P450s and whole-cell biocatalyst was emphasized, supporting earlier findings.
Collapse
Affiliation(s)
- Chrispian W. Theron
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
- South African DST‐NRF Centre of Excellence in Catalysis, c*changeUniversity of Cape TownCape TownSouth Africa
| | - Michel Labuschagné
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
| | - Martha S. Smit
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
- South African DST‐NRF Centre of Excellence in Catalysis, c*changeUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
27
|
Abstract
![]()
A correct estimate
of ligand binding modes and a ratio of their
occupancies is crucial for calculations of binding free energies.
The newly developed method BLUES combines molecular dynamics with
nonequilibrium candidate Monte Carlo. Nonequilibrium candidate Monte
Carlo generates a plethora of possible binding modes and molecular
dynamics enables the system to relax. We used BLUES to investigate
binding modes of caffeine in the active site of its metabolizing enzyme
Cytochrome P450 1A2 with the aim of elucidating metabolite-formation
profiles at different concentrations. Because the activation energies
of all sites of metabolism do not show a clear preference for one
metabolite over the others, the orientations in the active site must
play a key role. In simulations with caffeine located in a spacious
pocket above the I-helix, it points N3 and N1 to the heme iron, whereas
in simulations where caffeine is in close proximity to the heme N7
and C8 are preferably oriented toward the heme iron. We propose a
mechanism where at low caffeine concentrations caffeine binds to the
upper part of the active site, leading to formation of the main metabolite
paraxanthine. On the other hand, at high concentrations two molecules
are located in the active site, forcing one molecule into close proximity
to the heme and yielding metabolites theophylline and trimethyluretic
acid. Our results offer an explanation of previously published experimental
results.
Collapse
Affiliation(s)
- Zuzana Jandova
- Institute of Molecular Modeling and Simulation , University of Natural Resources and Life Sciences, Vienna , 1180 Vienna , Austria
| | | | | | | | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation , University of Natural Resources and Life Sciences, Vienna , 1180 Vienna , Austria
| |
Collapse
|
28
|
Guengerich FP, Wilkey CJ, Phan TTN. Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. J Biol Chem 2019; 294:10928-10941. [PMID: 31147443 DOI: 10.1074/jbc.ra119.009305] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) enzymes are major catalysts involved in the oxidations of most drugs, steroids, carcinogens, fat-soluble vitamins, and natural products. The binding of substrates to some of the 57 human P450s and other mammalian P450s is more complex than a two-state system and has been proposed to involve mechanisms such as multiple ligand occupancy, induced-fit, and conformational-selection. Here, we used kinetic analysis of binding with multiple concentrations of substrates and computational modeling of these data to discern possible binding modes of several human P450s. We observed that P450 2D6 binds its ligand rolapitant in a mechanism involving conformational-selection. P450 4A11 bound the substrate lauric acid via conformational-selection, as did P450 2C8 with palmitic acid. Binding of the steroid progesterone to P450 21A2 was also best described by a conformational-selection model. Hexyl isonicotinate binding to P450 2E1 could be described by either a conformational-selection or an induced-fit model. Simulation of the binding of the ligands midazolam, bromocriptine, testosterone, and ketoconazole to P450 3A4 was consistent with an induced-fit or a conformational-selection model, but the concentration dependence of binding rates for varying both P450 3A4 and midazolam concentrations revealed discordance in the parameters, indicative of conformational-selection. Binding of the P450s 2C8, 2D6, 3A4, 4A11, and 21A2 was best described by conformational-selection, and P450 2E1 appeared to fit either mode. These findings highlight the complexity of human P450-substrate interactions and that conformational-selection is a dominant feature of many of these interactions.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| | - Clayton J Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
29
|
Four Major Channels Detected in the Cytochrome P450 3A4: A Step toward Understanding Its Multispecificity. Int J Mol Sci 2019; 20:ijms20040987. [PMID: 30823507 PMCID: PMC6412807 DOI: 10.3390/ijms20040987] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
We computed the network of channels of the 3A4 isoform of the cytochrome P450 (CYP) on the basis of 16 crystal structures extracted from the Protein Data Bank (PDB). The calculations were performed with version 2 of the CCCPP software that we developed for this research project. We identified the minimal cost paths (MCPs) output by CCCPP as probable ways to access to the buried active site. The algorithm of calculation of the MCPs is presented in this paper, with its original method of visualization of the channels. We found that these MCPs constitute four major channels in CYP3A4. Among the many channels proposed by Cojocaru et al. in 2007, we found that only four of them open in 3A4. We provide a refined description of these channels together with associated quantitative data.
Collapse
|
30
|
Kubo M, Yamamoto K, Itoh T. Design and synthesis of selective CYP1B1 inhibitor via dearomatization of α-naphthoflavone. Bioorg Med Chem 2019; 27:285-304. [DOI: 10.1016/j.bmc.2018.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
|
31
|
|
32
|
Xu LH, Du YL. Rational and semi-rational engineering of cytochrome P450s for biotechnological applications. Synth Syst Biotechnol 2018; 3:283-290. [PMID: 30533540 PMCID: PMC6263019 DOI: 10.1016/j.synbio.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
The cytochrome P450 enzymes are ubiquitous heme-thiolate proteins performing regioselective and stereoselective oxygenation reactions in cellular metabolism. Due to their broad substrate scope and catalytic versatility, P450 enzymes are also attractive candidates for many industrial and biopharmaceutical applications. For particular uses, enzyme properties of P450s can be further optimized through directed evolution, rational, and semi-rational engineering approaches, all of which introduce mutations within the P450 structures. In this review, we describe the recent applications of these P450 engineering approaches and highlight the key regions and residues that have been identified using such approaches. These “hotspots” lie within critical functional areas of the P450 structure, including the active site, the substrate access channel, and the redox partner interaction interface.
Collapse
Affiliation(s)
- Lian-Hua Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Corresponding author.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Corresponding author.
| |
Collapse
|
33
|
Parisi G, Montemiglio LC, Giuffrè A, Macone A, Scaglione A, Cerutti G, Exertier C, Savino C, Vallone B. Substrate-induced conformational change in cytochrome P450 OleP. FASEB J 2018; 33:1787-1800. [PMID: 30207799 DOI: 10.1096/fj.201800450rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The regulation of cytochrome P450 activity is often achieved by structural transitions induced by substrate binding. We describe the conformational transition experienced upon binding by the P450 OleP, an epoxygenase involved in oleandomycin biosynthesis. OleP bound to the substrate analog 6DEB crystallized in 2 forms: one with an ensemble of open and closed conformations in the asymmetric unit and another with only the closed conformation. Characterization of OleP-6DEB binding kinetics, also using the P450 inhibitor clotrimazole, unveiled a complex binding mechanism that involves slow conformational rearrangement with the accumulation of a spectroscopically detectable intermediate where 6DEB is bound to open OleP. Data reported herein provide structural snapshots of key precatalytic steps in the OleP reaction and explain how structural rearrangements induced by substrate binding regulate activity.-Parisi, G., Montemiglio, L. C., Giuffrè, A., Macone, A., Scaglione, A., Cerutti, G., Exertier, C., Savino, C., Vallone, B. Substrate-induced conformational change in cytochrome P450 OleP.
Collapse
Affiliation(s)
- Giacomo Parisi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Linda Celeste Montemiglio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Alberto Macone
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Antonella Scaglione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Gabriele Cerutti
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Cécile Exertier
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Beatrice Vallone
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
34
|
Geronimo I, Denning CA, Heidary DK, Glazer EC, Payne CM. Molecular Determinants of Substrate Affinity and Enzyme Activity of a Cytochrome P450 BM3 Variant. Biophys J 2018; 115:1251-1263. [PMID: 30224054 DOI: 10.1016/j.bpj.2018.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450BM3 catalyzes the hydroxylation and/or epoxidation of fatty acids, fatty amides, and alcohols. Protein engineering has produced P450BM3 variants capable of accepting drug molecules normally metabolized by human P450 enzymes. The enhanced substrate promiscuity has been attributed to the greater flexibility of the lid of the substrate channel. However, it is not well understood how structurally different and highly polar drug molecules can stably bind in the active site nor how the activity and coupling efficiency of the enzyme may be affected by the lack of enzyme-substrate complementarity. To address these important aspects of non-native small molecule binding, this study investigated the binding of drug molecules with different size, charge, polar surface area, and human P450 affinity on the promiscuous R47L/F87V/L188Q/E267V/F81I pentuple mutant of P450BM3. Binding free energy data and energy decomposition analysis showed that pentuple mutant P450BM3 stably binds (i.e., negative ΔGb°) a broad range of substrate and inhibitor types because dispersion interactions with active site residues overcome unfavorable repulsive and electrostatic effects. Molecular dynamics simulations revealed that 1) acidic substrates tend to disrupt the heme propionate A-K69 salt bridge, which may reduce heme oxidizing ability, and 2) the lack of complementarity leads to high substrate mobility and water density in the active site, which may lead to uncoupling. These factors must be considered in future developments of P450BM3 as a biocatalyst in the large-scale production of drug metabolites.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | | | - David K Heidary
- Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, Lexington, Kentucky.
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
35
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. Methods for Determination of Functional Activity of Cytochrome P450 Isoenzymes. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Peng HM, Barlow C, Auchus RJ. Catalytic modulation of human cytochromes P450 17A1 and P450 11B2 by phospholipid. J Steroid Biochem Mol Biol 2018; 181:63-72. [PMID: 29548669 PMCID: PMC5992074 DOI: 10.1016/j.jsbmb.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Unlike most of the drug-metabolizing cytochrome P450s, microsomal P450 17A1 and mitochondrial P450 11B2 catalyze sequential multi-step reactions in steroid biosynthesis. The membrane phospholipid composition might be one parameter that modulates the efficiency and processivity of specific pathways. Here we systematically examined the effects of physiologically relevant phospholipids on the catalysis of purified P450 17A1, P450 11B2, and P450 11B1 in reconstituted assay systems. Both dioleoylphosphatidylcholine (DOPC, 18:1) and dilauroylphosphatidylcholine (DLPC, 12:0) were found to be very efficient in reconstituting 17-hydroxylase and 1720-lyase reactions of P450 17A1. Phosphatidylethanolamine (PE) specifically enhanced 1720-lyase activity up to 2.4-fold in the presence of phosphatidylcholine. On the other hand, P450 11B2-catalyzed production of aldosterone from 11-deoxycorticosterone was very low and from 18-hydroxycorticosterone nil, implying low processivity. DOPC or cardiolipin, which is exclusively located in the inner mitochondrial membrane, maximized aldosterone yield. In sharp contrast, reconstitution of homologous P450 11B1 with DOPC significantly decreased corticosterone formation without affecting the synthesis of 18-hydroxycorticosterone. The intrinsic fluorescence of P450 17A1 and 11B2 increased in the presence of DOPC, DLPC and PE. Acrylamide quenching studies showed that PE decreased solvent accessibility for tryptophan in P450 17A1, as did 20:4 PC or 18:2 PC for P450 11B2. A moderately positive correlation between the proportion of high-spin substrate-bound species and catalytic activity was only observed in the presence of phosphatidylcholines with low-temperature phase transition. These results demonstrate the potential for phospholipids to regulate the activity of steroidogenic P450 activities and thereby steroid hormone biosynthetic pathways.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Chase Barlow
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
37
|
Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, Anzenbacher P, Otyepka M. Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem 2018; 183:117-136. [DOI: 10.1016/j.jinorgbio.2018.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/08/2023]
|
38
|
Increased Phenacetin Oxidation upon the L382V Substitution in Cytochrome P450 1A2 is Associated with Altered Substrate Binding Orientation. Int J Mol Sci 2018; 19:ijms19061580. [PMID: 29799514 PMCID: PMC6032418 DOI: 10.3390/ijms19061580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 11/22/2022] Open
Abstract
Leucine382 of cytochrome P450 1A2 (CYP1A2) plays an important role in binding and O-dealkylation of phenacetin, with the L382V mutation increasing substrate oxidation (Huang and Szklarz, 2010, Drug Metab. Dispos. 38:1039–1045). This was attributed to altered substrate binding orientation, but no direct experimental evidence had been available. Therefore, in the current studies, we employed nuclear magnetic resonance (NMR) longitudinal (T1) relaxation measurements to investigate phenacetin binding orientations within the active site of CYP1A2 wild type (WT) and mutants. Paramagnetic relaxation time (T1P) for each proton of phenacetin was calculated from the T1 value obtained from the enzymes in ferric and ferrous-CO state in the presence of phenacetin, and used to model the orientation of phenacetin in the active site. All aromatic protons of phenacetin were nearly equidistant from the heme iron (6.34–8.03 Å). In contrast, the distance between the proton of the –OCH2– group, which is abstracted during phenacetin oxidation, and the heme iron, was much shorter in the L382V (5.93 Å) and L382V/N312L (5.96 Å) mutants compared to the N312L mutant (7.84 Å) and the wild type enzyme (6.55 Å), consistent with modeling results. These studies provide direct evidence for the molecular mechanism underlying increased oxidation of phenacetin upon the L382V mutation.
Collapse
|
39
|
Malla S, Kadimisetty K, Jiang D, Choudhary D, Rusling JF. Pathways of Metabolite-Related Damage to a Synthetic p53 Gene Exon 7 Oligonucleotide Using Magnetic Enzyme Bioreactor Beads and LC-MS/MS Sequencing. Biochemistry 2018; 57:3883-3893. [PMID: 29750510 DOI: 10.1021/acs.biochem.8b00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reactive metabolites of environmental chemicals and drugs can cause site specific damage to the p53 tumor suppressor gene in a major pathway for genotoxicity. We report here a high-throughput, cell-free, 96-well plate magnetic bead-enzyme system interfaced with LC-MS/MS sequencing for bioactivating test chemicals and identifying resulting adduction sites on genes. Bioactivated aflatoxin B1 was reacted with a 32 bp exon 7 fragment of the p53 gene using eight microsomal cytochrome (cyt) P450 enzymes from different organs coated on magnetic beads. All cyt P450s converted aflatoxin B1 to aflatoxin B1-8,9-epoxide that adducts guanine (G) in codon 249, with subsequent depurination to give abasic sites and then strand breaks. This is the first demonstration in a cell-free medium that the aflatoxin B1 metabolite selectively causes abasic site formation and strand breaks at codon 249 of the p53 probe, corresponding to the chemical pathway and mutations of p53 in human liver cells and tumors. Molecular modeling supports the view that binding of aflatoxin B1-8,9-epoxide to G in codon 249 precedes the SN2 adduction reaction. Among a range of metabolic enzymes characteristic of different organs, human liver microsomes and cyt P450 3A5 supersomes showed the highest bioactivation rate for p53 exon 7 damage. This method of identifying metabolite-related gene damage sites may facilitate predictions of organ specific cancers for test chemicals via correlations with mutation sites.
Collapse
Affiliation(s)
- Spundana Malla
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Karteek Kadimisetty
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Di Jiang
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Dharamainder Choudhary
- Department of Surgery and Neag Cancer Center , UConn Health , Farmington , Connecticut 06032 , United States
| | - James F Rusling
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States.,Department of Surgery and Neag Cancer Center , UConn Health , Farmington , Connecticut 06032 , United States.,Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States.,School of Chemistry , National University of Ireland at Galway , Galway , Ireland
| |
Collapse
|
40
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. [Methods for determining of cytochrome P450 isozymes functional activity]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:149-168. [PMID: 29723145 DOI: 10.18097/pbmc20186402149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is dedicated to modern methods and technologies for determining of cytochrome P450 isozymes functional activity, such as absorbance and fluorescent spectroscopy, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), Raman, Mossbauer, and X-ray spectroscopy, surface plasmon resonance (SPR), atomic force microscopy (AFM). Methods of molecular genetic analysis were reviewed from personalized medicine point of view. The use of chromate-mass-spectrometric methods for cytochrome P450-dependent catalytic reactions' products was discussed. The review covers modern electrochemical systems based on cytochrome P450 isozymes for their catalytic activity analysis, their use in practice and further development perspectives for experimental pharmacology, biotechnology and translational medicine.
Collapse
Affiliation(s)
- A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
41
|
Lam M, Mast N, Pikuleva IA. Drugs and Scaffold That Inhibit Cytochrome P450 27A1 In Vitro and In Vivo. Mol Pharmacol 2018; 93:101-108. [PMID: 29192124 PMCID: PMC5749491 DOI: 10.1124/mol.117.110742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 27A1 (CYP27A1) is a ubiquitous enzyme that hydroxylates cholesterol and other sterols. Complete CYP27A1 deficiency owing to genetic mutations is detrimental to human health, whereas 50% of activity retention is not and does not affect the whole body cholesterol levels. CYP27A1 is considered a potential therapeutic target in breast cancer and age-related neurodegenerative diseases; however, CYP27A1 inhibition should be ≤50%. Herein, 131 pharmaceuticals were tested for their effect on CYP27A1-mediated cholesterol 27-hydroxylation by in vitro enzyme assay. Of them, 14 drugs inhibited CYP27A1 by ≥75% and were evaluated for in vitro binding to the enzyme active site and for inhibition constants. All drugs except one (dasatinib) elicited a spectral response in CYP27A1 and had Ki values for cholesterol 27-hydroxylation either in the submicromolar (clevidipine, delavirdine, etravirine, felodipine, nicardipine, nilotinib, and sorafenib) or low micromolar range (abiratone, candesartan, celecoxib, dasatinib, nilvadipine, nimodipine, and regorafenib). Clevidipine, felodipine, nicardipine, nilvadipine, and nimodipine have the same 1,4-dihydropyridine scaffold and are indicated for hypertension. We used two of these antihypertensives (felodipine and nilvadipine) for administration to mice at a 1-mg/kg of body weight dose, daily, for 7 days. Mouse 27-hydroxycholesterol levels in the plasma, brain, and liver were reduced, whereas tissue levels of total cholesterol were unchanged. Structure-activity relationships within the 1,4-dihydropyridine scaffold were investigated, and features important for CY27A1 inhibition were identified. We confirmed our previous finding that CYP27A1 is a druggable enzyme and found additional drugs as well as the scaffold with potential for partial CYP27A1 inhibition in humans.
Collapse
Affiliation(s)
- Morrie Lam
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
42
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
43
|
Wisnewski AV, Liu J, Redlich CA, Nassar AF. Polymerization of hexamethylene diisocyanate in solution and a 260.23 m/z [M+H] + ion in exposed human cells. Anal Biochem 2017; 543:21-29. [PMID: 29175138 DOI: 10.1016/j.ab.2017.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
Hexamethylene diisocyanate (HDI) is an important industrial chemical that can cause asthma, however pathogenic mechanisms remain unclear. Upon entry into the respiratory tract, HDI's N=C=O groups may undergo nucleophilic addition (conjugate) to host molecules (e.g. proteins), or instead react with water (hydrolyze), releasing CO2 and leaving a primary amine in place of the original N=C=O. We hypothesized that (primary amine groups present on) hydrolyzed or partially hydrolyzed HDI may compete with proteins and water as a reaction target for HDI in solution, resulting in polymers that could be identified and characterized using LC-MS and LC-MS/MS. Analysis of the reaction products formed when HDI was mixed with a pH buffered, isotonic, protein containing solution identified multiple [M+H]+ ions with m/z's and collision-induced dissociation (CID) fragmentation patterns consistent with those expected for dimers (259.25/285.23 m/z), and trimers (401.36/427.35 m/z) of partially hydrolyzed HDI (e.g. ureas/oligoureas). Human peripheral blood mononuclear cells (PBMCs) and monocyte-like U937, but not airway epithelial NCI-H292 cell lines cultured with these HDI ureas contained a novel 260.23 m/z [M+H]+ ion. LC-MS/MS analysis of the 260.23 m/z [M+H]+ ion suggest the formula C13H29N3O2 and a structure containing partially hydrolyzed HDI, however definitive characterization will require further orthogonal analyses.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University, New Haven, CT 06520, United States.
| | - Jian Liu
- Department of Internal Medicine, Yale University, New Haven, CT 06520, United States
| | - Carrie A Redlich
- Department of Internal Medicine, Yale University, New Haven, CT 06520, United States
| | - Ala F Nassar
- Department of Internal Medicine, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
44
|
Ebert MCCJC, Guzman Espinola J, Lamoureux G, Pelletier JN. Substrate-Specific Screening for Mutational Hotspots Using Biased Molecular Dynamics Simulations. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maximilian C. C. J. C. Ebert
- Département
de Biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3T 1J4, Canada
- PROTEO, The Québec
Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
| | - Joaquin Guzman Espinola
- Département
de Biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3T 1J4, Canada
- PROTEO, The Québec
Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
| | - Guillaume Lamoureux
- PROTEO, The Québec
Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- Department
of Chemistry and Biochemistry and Centre for Research in Molecular
Modeling (CERMM), Concordia University, Montréal, QC H4B 1R6, Canada
| | - Joelle N. Pelletier
- Département
de Biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3T 1J4, Canada
- PROTEO, The Québec
Network for Research on Protein Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- Département
de Chimie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
45
|
Lin H, Wang J, Qi M, Guo J, Rong Q, Tang J, Wu Y, Ma X, Huang L. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata. Int J Biol Macromol 2017; 102:208-217. [DOI: 10.1016/j.ijbiomac.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/07/2023]
|
46
|
Dornevil K, Davis I, Fielding AJ, Terrell JR, Ma L, Liu A. Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway. J Biol Chem 2017; 292:13645-13657. [PMID: 28667013 DOI: 10.1074/jbc.m117.794099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
CYP121, the cytochrome P450 enzyme in Mycobacterium tuberculosis that catalyzes a single intramolecular C-C cross-linking reaction in the biosynthesis of mycocyclosin, is crucial for the viability of this pathogen. This C-C coupling reaction represents an expansion of the activities carried out by P450 enzymes distinct from oxygen insertion. Although the traditional mechanism for P450 enzymes has been well studied, it is unclear whether CYP121 follows the general P450 mechanism or uses a different catalytic strategy for generating an iron-bound oxidant. To gain mechanistic insight into the CYP121-catalyzed reaction, we tested the peroxide shunt pathway by using rapid kinetic techniques to monitor the enzyme activity with its substrate dicyclotyrosine (cYY) and observed the formation of the cross-linked product mycocyclosin by LC-MS. In stopped-flow experiments, we observed that cYY binding to CYP121 proceeds in a two-step process, and EPR spectroscopy indicates that the binding induces active site reorganization and uniformity. Using rapid freeze-quenching EPR, we observed the formation of a high-spin intermediate upon the addition of peracetic acid to the enzyme-substrate complex. This intermediate exhibits a high-spin (S = 5/2) signal with g values of 2.00, 5.77, and 6.87. Likewise, iodosylbenzene could also produce mycocyclosin, implicating compound I as the initial oxidizing species. Moreover, we also demonstrated that CYP121 performs a standard peroxidase type of reaction by observing substrate-based radicals. On the basis of these results, we propose plausible free radical-based mechanisms for the C-C bond coupling reaction.
Collapse
Affiliation(s)
- Kednerlin Dornevil
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Ian Davis
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Andrew J Fielding
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and
| | - James R Terrell
- the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Li Ma
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and
| | - Aimin Liu
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and
| |
Collapse
|
47
|
Xiong S, Wang Y, Yao M, Liu H, Zhou X, Xiao W, Yuan Y. Cell foundry with high product specificity and catalytic activity for 21-deoxycortisol biotransformation. Microb Cell Fact 2017; 16:105. [PMID: 28610588 PMCID: PMC5470312 DOI: 10.1186/s12934-017-0720-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Background 21-deoxycortisol (21-DF) is the key intermediate to manufacture pharmaceutical glucocorticoids. Recently, a Japan patent has realized 21-DF production via biotransformation of 17-hydroxyprogesterone (17-OHP) by purified steroid 11β-hydroxylase CYP11B1. Due to the less costs on enzyme isolation, purification and stabilization as well as cofactors supply, whole-cell should be preferentially employed as the biocatalyst over purified enzymes. No reports as so far have demonstrated a whole-cell system to produce 21-DF. Therefore, this study aimed to establish a whole-cell biocatalyst to achieve 21-DF transformation with high catalytic activity and product specificity. Results In this study, Escherichia coli MG1655(DE3), which exhibited the highest substrate transportation rate among other tested chassises, was employed as the host cell to construct our biocatalyst by co-expressing heterologous CYP11B1 together with bovine adrenodoxin and adrenodoxin reductase. Through screening CYP11B1s (with mutagenesis at N-terminus) from nine sources, Homo sapiens CYP11B1 mutant (G25R/G46R/L52 M) achieved the highest 21-DF transformation rate at 10.6 mg/L/h. Furthermore, an optimal substrate concentration of 2.4 g/L and a corresponding transformation rate of 16.2 mg/L/h were obtained by screening substrate concentrations. To be noted, based on structural analysis of the enzyme-substrate complex, two types of site-directed mutations were designed to adjust the relative position between the catalytic active site heme and the substrate. Accordingly, 1.96-fold enhancement on 21-DF transformation rate (to 47.9 mg/L/h) and 2.78-fold improvement on product/by-product ratio (from 0.36 to 1.36) were achieved by the combined mutagenesis of F381A/L382S/I488L. Eventually, after 38-h biotransformation in shake-flask, the production of 21-DF reached to 1.42 g/L with a yield of 52.7%, which is the highest 21-DF production as known. Conclusions Heterologous CYP11B1 was manipulated to construct E. coli biocatalyst converting 17-OHP to 21-DF. Through the strategies in terms of (1) screening enzymes (with N-terminal mutagenesis) sources, (2) optimizing substrate concentration, and most importantly (3) rational design novel mutants aided by structural analysis, the 21-DF transformation rate was stepwise improved by 19.5-fold along with 4.67-fold increase on the product/byproduct ratio. Eventually, the highest 21-DF reported production was achieved in shake-flask after 38-h biotransformation. This study highlighted above described methods to obtain a high efficient and specific biocatalyst for the desired biotransformation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0720-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuting Xiong
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Mingdong Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiao Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
48
|
Roellecke K, Jäger VD, Gyurov VH, Kowalski JP, Mielke S, Rettie AE, Hanenberg H, Wiek C, Girhard M. Ligand characterization of CYP4B1 isoforms modified for high-level expression in Escherichia coli and HepG2 cells. Protein Eng Des Sel 2017; 30:205-216. [PMID: 28073960 PMCID: PMC5421619 DOI: 10.1093/protein/gzw075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/06/2016] [Indexed: 01/25/2023] Open
Abstract
Human CYP4B1, a cytochrome P450 monooxygenase predominantly expressed in the lung, inefficiently metabolizes classical CYP4B1 substrates, such as the naturally occurring furan pro-toxin 4-ipomeanol (4-IPO). Highly active animal forms of the enzyme convert 4-IPO to reactive alkylating metabolite(s) that bind(s) to cellular macromolecules. By substitution of 13 amino acids, we restored the enzymatic activity of human CYP4B1 toward 4-IPO and this modified cDNA is potentially valuable as a suicide gene for adoptive T-cell therapies. In order to find novel pro-toxins, we tested numerous furan analogs in in vitro cell culture cytotoxicity assays by expressing the wild-type rabbit and variants of human CYP4B1 in human liver-derived HepG2 cells. To evaluate the CYP4B1 substrate specificities and furan analog catalysis, we optimized the N-terminal sequence of the CYP4B1 variants by modification/truncation and established their heterologous expression in Escherichia coli (yielding 70 and 800 nmol·l-1 of recombinant human and rabbit enzyme, respectively). Finally, spectral binding affinities and oxidative metabolism of the furan analogs by the purified recombinant CYP4B1 variants were analyzed: the naturally occurring perilla ketone was found to be the tightest binder to CYP4B1, but also the analog that was most extensively metabolized by oxidative processes to numerous non-reactive reaction products.
Collapse
Affiliation(s)
- Katharina Roellecke
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Vera D Jäger
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Veselin H Gyurov
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - John P Kowalski
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Mielke
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Allan E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
49
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Davydov DR, Yang Z, Davydova N, Halpert JR, Hubbell WL. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy. Biophys J 2016; 110:1485-1498. [PMID: 27074675 DOI: 10.1016/j.bpj.2016.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022] Open
Abstract
We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, Washington; V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | - Zhongyu Yang
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Nadezhda Davydova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - James R Halpert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|