1
|
Molinari MDC, Fuganti-Pagliarini R, Yu Y, Florentino LH, Mertz-Henning LM, Lima RN, Bittencourt DMDC, Freire MO, Rech E. Exploring the Proteomic Profile of Soybean Bran: Unlocking the Potential for Improving Protein Quality and Quantity. PLANTS (BASEL, SWITZERLAND) 2023; 12:2704. [PMID: 37514318 PMCID: PMC10383420 DOI: 10.3390/plants12142704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Soybean is a rich source of vegetal protein for both animal and human consumption. Despite the high levels of protein in soybean seeds, industrial processing to obtain soybean bran significantly decreases the final protein content of the byproducts. To overcome this problem, cultivars with higher protein contents must be developed. However, selecting the target proteins is difficult because of the lack of information on the proteome profile of soybean bran. Therefore, this study obtained the comparative proteomic profiles of both natural coatless seeds and defatted bran from an elite tropical-soybean cultivar. Thus, their extracts were characterized using LC-MS/MS and a total of 550 proteins were identified. Among these, 526 proteins were detected in coatless seeds and 319 proteins in defatted bran. Moreover, a total of 139 proteins were identified as presenting different levels of content in coatless seeds and defatted bran. Among them, only 46 were retained after the seed processing. These proteins were clustered in several important metabolic pathways, such as amino-acid biosynthesis, sugar biosynthesis, and antioxidant activity, meaning that they could act as targets for bioactive products or genome editing to improve protein quality and quantity in soybean grains. These findings can enhance our understanding regarding protein robustness for both soybean crops and the commercial bran improvement because target proteins must remain intact after processing and must be bioactive when overexpressed. Overall, the soybean bran proteomic profile was explored for the first time, providing a valuable catalogue of target proteins that can tolerate the industrial process.
Collapse
Affiliation(s)
| | | | - Yanbao Yu
- J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Lilian Hasegawa Florentino
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Distrito Federal 70770-917, Brazil
| | | | - Rayane Nunes Lima
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Distrito Federal 70770-917, Brazil
| | | | | | - Elibio Rech
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Distrito Federal 70770-917, Brazil
| |
Collapse
|
2
|
Ortiz Caltempa A, Hernández M, Pérez AL, Aguilar L, Guzmán C, Ayón-Núñez DA, Fragoso G, Bobes RJ, López ME, Sciutto E, Villareal ML. Improvement of cell suspension cultures of transformed and untransformed Carica papaya cell lines, towards the development of an antiparasitic product against the gastrointestinal nematode Haemonchus contortus. Front Cell Infect Microbiol 2022; 12:958741. [PMID: 36159651 PMCID: PMC9493254 DOI: 10.3389/fcimb.2022.958741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic diseases have a major impact on human and animal health worldwide. Despite the availability of effective anti-parasitic drugs, their excessive and uncontrolled use has promoted the emergence of drug resistance, severely affecting ecosystems and human health. Thus, developing environmentally friendly antiparasitic treatments is urgently needed. Carica papaya has shown promising effects against infectious diseases. C. papaya embryogenic calluses were genetically modified by our research team to insert immunogenic peptides with the goal of developing an oral anti-cysticercosis vaccine. Among these callus cell lines, one labeled as CF-23, which expresses the KETc7 immunogenic peptide, induced the highest protection levels against experimental cysticercosis. In the process of designing a natural antiparasitic product based on C. papaya that simultaneously induced immunity against cysticercosis, both transformed (SF-23) and untransformed (SF-WT) suspension cultures were produced and optimized. Our results showed a better duplication time (td) for SF-23 (6.9 days) than SF-WT (13.02 days); thus, the SF-23 line was selected for scale-up in a 2-L airlift bioreactor, reaching a td of 4.4 days. This is the first time that a transgenic line of C. papaya has been grown in an airlift bioreactor, highlighting its potential for scale-up cultivation in this type of reactor. Considering the previously reported nematocidal activity of C. papaya tissues, their activity against the nematode Haemonchus contortus of aqueous extracts of SF-WT and SF-23 was explored in this study, with promising results. The information herein reported will allow us to continue the cultivation of the transgenic cell suspension line of C. papaya under reproducible conditions, to develop a new anti-parasitic product.
Collapse
Affiliation(s)
- Anabel Ortiz Caltempa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Marisela Hernández
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Lilia Pérez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Liliana Aguilar
- Centro de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Cynthia Guzmán
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Dolores Adriana Ayón-Núñez
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gladis Fragoso
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Raúl J. Bobes
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria Eugenia López
- Centro de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Edda Sciutto
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: María Luisa Villareal, ; Edda Sciutto,
| | - María Luisa Villareal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: María Luisa Villareal, ; Edda Sciutto,
| |
Collapse
|
3
|
Benevenuto RF, Zanatta CB, Guerra MP, Nodari RO, Agapito-Tenfen SZ. Proteomic Profile of Glyphosate-Resistant Soybean under Combined Herbicide and Drought Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112381. [PMID: 34834744 PMCID: PMC8622064 DOI: 10.3390/plants10112381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 05/14/2023]
Abstract
While some genetically modified (GM) plants have been targeted to confer tolerance to abiotic stressors, transgenes are impacted by abiotic stressors, causing adverse effects on plant physiology and yield. However, routine safety analyses do not assess the response of GM plants under different environmental stress conditions. In the context of climate change, the combination of abiotic stressors is a reality in agroecosystems. Therefore, the aim of this study was to analyze the metabolic cost by assessing the proteomic profiles of GM soybean varieties under glyphosate spraying and water deficit conditions compared to their non-transgenic conventional counterparts. We found evidence of cumulative adverse effects that resulted in the reduction of enzymes involved in carbohydrate metabolism, along with the expression of amino acids and nitrogen metabolic enzymes. Ribosomal metabolism was significantly enriched, particularly the protein families associated with ribosomal complexes L5 and L18. The interaction network map showed that the affected module representing the ribosome pathway interacts strongly with other important proteins, such as the chloro-plastic gamma ATP synthase subunit. Combined, these findings provide clear evidence for increasing the metabolic costs of GM soybean plants in response to the accumulation of stress factors. First, alterations in the ribosome pathway indicate that the GM plant itself carries a metabolic burden associated with the biosynthesis of proteins as effects of genetic transformation. GM plants also showed an imbalance in energy demand and production under controlled conditions, which was increased under drought conditions. Identifying the consequences of altered metabolism related to the interaction between plant transgene stress responses allows us to understand the possible effects on the ecology and evolution of plants in the medium and long term and the potential interactions with other organisms when these organisms are released in the environment.
Collapse
Affiliation(s)
- Rafael Fonseca Benevenuto
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Caroline Bedin Zanatta
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Miguel Pedro Guerra
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Rubens Onofre Nodari
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Sarah Z. Agapito-Tenfen
- GenØk Centre for Biosafety, Siva Innovasjonssenter Postboks 6418, 9294 Tromsø, Norway
- Correspondence:
| |
Collapse
|
4
|
Proteomic Advances in Cereal and Vegetable Crops. Molecules 2021; 26:molecules26164924. [PMID: 34443513 PMCID: PMC8401599 DOI: 10.3390/molecules26164924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023] Open
Abstract
The importance of vegetables in human nutrition, such as cereals, which in many cases represent the main source of daily energy for humans, added to the impact that the incessant increase in demographic pressure has on the demand for these plant foods, entails the search for new technologies that can alleviate this pressure on markets while reducing the carbon footprint of related activities. Plant proteomics arises as a response to these problems, and through research and the application of new technologies, it attempts to enhance areas of food science that are fundamental for the optimization of processes. This review aims to present the different approaches and tools of proteomics in the investigation of new methods for the development of vegetable crops. In the last two decades, different studies in the control of the quality of crops have reported very interesting results that can help us to verify parameters as important as food safety, the authenticity of the products, or the increase in the yield by early detection of diseases. A strategic plan that encourages the incorporation of these new methods into the industry will be essential to promote the use of proteomics and all the advantages it offers in the optimization of processes and the solution of problems.
Collapse
|
5
|
Zanon Agapito-Tenfen S, Guerra MP, Nodari RO, Wikmark OG. Untargeted Proteomics-Based Approach to Investigate Unintended Changes in Genetically Modified Maize for Environmental Risk Assessment Purpose. FRONTIERS IN TOXICOLOGY 2021; 3:655968. [PMID: 35295118 PMCID: PMC8915820 DOI: 10.3389/ftox.2021.655968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022] Open
Abstract
Profiling technologies, such as proteomics, allow the simultaneous measurement and comparison of thousands of plant components without prior knowledge of their identity. The combination of these non-targeted methods facilitates a more comprehensive approach than targeted methods and thus provides additional opportunities to identify genotypic changes resulting from genetic modification, including new allergens or toxins. The purpose of this study was to investigate unintended changes in GM Bt maize grown in South Africa. In the present study, we used bi-dimensional gel electrophoresis based on fluorescence staining, coupled with mass spectrometry in order to compare the proteome of the field-grown transgenic hybrid (MON810) and its near-isogenic counterpart. Proteomic data showed that energy metabolism and redox homeostasis were unequally modulated in GM Bt and non-GM maize variety samples. In addition, a potential allergenic protein-pathogenesis related protein -1 has been identified in our sample set. Our data shows that the GM variety is not substantially equivalent to its non-transgenic near-isogenic variety and further studies should be conducted in order to address the biological relevance and the potential risks of such changes. These finding highlight the suitability of unbiased profiling approaches to complement current GMO risk assessment practices worldwide.
Collapse
Affiliation(s)
| | - Miguel Pedro Guerra
- CropScience Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rubens Onofre Nodari
- CropScience Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
6
|
Ferreira da Costa L, Francisco Tormena C, Aurélio Zezzi Arruda M. Ionomics and lipidomics for evaluating the transgenic (cp4-EPSPS gene) and non-transgenic soybean seed generations. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
de Campos BK, Galazzi RM, Dos Santos BM, Balbuena TS, Dos Santos FN, Mokochinski JB, Eberlin MN, Arruda MAZ. Comparison of generational effect on proteins and metabolites in non-transgenic and transgenic soybean seeds through the insertion of the cp4-EPSPS gene assessed by omics-based platforms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110918. [PMID: 32800253 DOI: 10.1016/j.ecoenv.2020.110918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This work evaluates different generations of transgenic (cp4-EPSPS gene) and non-transgenic soybean plants through proteomics and metabolomics. For proteomics purpose, 24 differentially abundant protein spots were found through 2-D DIGE, being 4 belonging to transgenic plants. From this total, 19 were successfully identified, storage proteins as predominant class. Some identified proteins are involved in growing and cell division, and stress response, such as LEA and dehydrin. For metabolomics, 17 compounds were putatively annotated, mainly belonging to the secondary metabolism, such as flavonoids. From these analyzes, all generations and varieties of the soybean are prone to be differentiate by PLS-DA. According to our results, transgenic plants appear to be more stable than non-transgenic ones. In addition, the omics-based approaches allowed access some relations between those differential spot proteins and metabolites, mainly those storage proteins and flavonoid.
Collapse
Affiliation(s)
- Bruna K de Campos
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rodrigo M Galazzi
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Bruna M Dos Santos
- Department of Technology, School of Agricultural and Veterinary Studies, State University "Júlio de Mesquita Filho"- UNESP - Jaboticabal, SP, 14884- 900, Brazil
| | - Tiago S Balbuena
- Department of Technology, School of Agricultural and Veterinary Studies, State University "Júlio de Mesquita Filho"- UNESP - Jaboticabal, SP, 14884- 900, Brazil
| | - Fábio N Dos Santos
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - João B Mokochinski
- London Institute of Medical Sciences, Faculty of Medicine Imperial College London, UK Research and Innovation, London, W12 0NN, United Kingdom
| | - Marcos N Eberlin
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Marco A Z Arruda
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
8
|
Devi S, Chu PY, Wu BH, Ho YP. Mass spectrometry combined with affinity probes for the identification of CP4 EPSPS in genetically modified soybeans. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4371. [PMID: 31077490 DOI: 10.1002/jms.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/12/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Sample preparation methods used for genetically modified organisms (GMOs) analysis are often time consuming, require extensive manual manipulation, and result in limited amounts of purified protein, which may complicate the detection of low-abundance GM protein. A robust sample pretreatment method prior to mass spectrometry (MS) detection of the transgenic protein (5-enolpyruvylshikimate-3-phosphate synthase [CP4 EPSPS]) present in Roundup Ready soya is investigated. Liquid chromatography-multiple reaction monitoring tandem MS (nano LC-MS/MS-MRM) was used for the detection and quantification of CP4 EPSPS. Gold nanoparticles (AuNPs) and concanavalin A (Con A)-immobilized Sepharose 4B were used as selective probes for the separation of the major storage proteins in soybeans. AuNPs that enable the capture of cysteine-containing proteins were used to reduce the complexity of the crude extract of GM soya. Con A-sepharose was used for the affinity capture of β-conglycinin and other glycoproteins of soya prior to enzymatic digestion. The methods enabled the detection of unique peptides of CP4 EPSPS at a level as low as 0.5% of GM soya in MRM mode. Stable-isotope dimethyl labeling was further applied to the quantification of GM soya. Both probes exhibited high selectivity and efficiency for the affinity capture of storage proteins, leading to the quantitative detection at 0.5% GM soya, which is a level below the current European Union's threshold for food labeling. The square correlation coefficients were greater than 0.99. The approach for sample preparation is very simple without the need for time-consuming protein prefractionation or separation procedures and thus presents a significant improvement over existing methods for the analysis of the GM soya protein.
Collapse
Affiliation(s)
- Shobha Devi
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, Hyderabad, India
| | - Pei-Yu Chu
- Department of Chemistry, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Bo-Hung Wu
- Department of Chemistry, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien, 97401, Taiwan
| |
Collapse
|
9
|
Liu W, Zhang Z, Liu X, Jin W. iTRAQ-based quantitative proteomic analysis of two transgenic soybean lines and the corresponding non-genetically modified isogenic variety. J Biochem 2020; 167:67-78. [PMID: 31596463 DOI: 10.1093/jb/mvz081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/27/2019] [Indexed: 11/14/2022] Open
Abstract
To investigate the unintended effects of genetically modified (GM) crops, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed with seed cotyledons of two GM soybean lines, MON87705 and MON87701×MON89788, and the corresponding non-transgenic isogenic variety A3525. Thirty-five differentially abundant proteins (DAPs) were identified in MON87705/A3525, 27 of which were upregulated and 8 downregulated. Thirty-eight DAPs were identified from the MON87701×MON89788/A3525 sample, including 29 upregulated proteins and 9 downregulated proteins. Pathway analysis showed that most of these DAPs participate in protein processing in endoplasmic reticulum and in metabolic pathways. Protein-protein interaction analysis of these DAPs demonstrated that the main interacting proteins are associated with post-translational modification, protein turnover, chaperones and signal transduction mechanisms. Nevertheless, these DAPs were not identified as new unintended toxins or allergens and only showed changes in abundance. All these results suggest that the seed cotyledon proteomic profiles of the two GM soybean lines studied were not dramatically altered compared with that of their natural isogenic control.
Collapse
Affiliation(s)
- Weixiao Liu
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| | - Zhe Zhang
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| | - Xuri Liu
- Department of Food and Biological Engineering, Handan Polytechnic College, No.141 Zhuhe Road, Hanshan District, Handan, P.R. China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, P.R. China
| |
Collapse
|
10
|
Chen J, Tan W, Wang W, Hou S, Chen G, Xia L, Lu Y. Identification of common antigens of three pathogenic Nocardia species and development of DNA vaccine against fish nocardiosis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:357-367. [PMID: 31678532 DOI: 10.1016/j.fsi.2019.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Fish nocardiosis is a chronic granulomatous bacterial disease and three pathogens have been reported so far, including Nocardia asteroids, N. seriolae and N. salmonicida. However, the absence of antigen markers is a bottleneck for developing effective vaccines against fish nocardiosis. In this study, the antigenicity of whole-cell protein of these three pathogenic Nocardia species were profiled by immunoproteomic analysis and 7 common immunogenic proteins were identified as follows: molecular chaperone DnaK (DnaK), molecular chaperone GroEL (GroEL), 30 S ribosomal protein S1 (RpsA), TerD family protein (TerD), FHA domain-containing protein (FHA), 50 S ribosomal protein L7/L12 (RplL) and PspA/IM30 family protein (PspA). Furthermore, the DNA vaccine encoding FHA gene against fish nocardiosis was developed and its efficacy was investigated in hybrid snakehead. The results suggested that it needed at least 7 d to transport pcDNA-FHA DNA vaccine from injected muscle to head kidney, spleen and liver and stimulate host's immune system for later protection. In addition, non-specific immunity paraments (serum lysozyme (LYZ), peroxidase (POD), acid phosphatase (ACP), alkaline phosphatase (AKP) and superoxide dismutase (SOD) activities), specific antibody (IgM) titers production and immune-related genes (MHCIα, MHCIIα, CD4, CD8α, IL-1β and TNFα) were used to evaluate the immune response induced in pcDNA-FHA vaccinated hybrid snakehead, it proved that all these mentioned immune activities were significantly enhanced after immunization. The results also showed hybrid snakehead vaccinated with pcDNA-FHA had higher survival rate (79.33%) compared with the controls after challenge with N. seriolae, indicating that the pcDNA-FHA DNA vaccine can supply immune protection against N. seriolae infection. Taken together, this study may warrant further development of these common immunogenic proteins as the antigens for vaccine or diagnosis and facilitate the prevention and treatment of fish nocardiosis.
Collapse
Affiliation(s)
- Jianlin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Wanchun Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China
| | - Wenji Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Suying Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Guoquan Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Tan Y, Zhang J, Sun Y, Tong Z, Peng C, Chang L, Guo A, Wang X. Comparative Proteomics of Phytase-transgenic Maize Seeds Indicates Environmental Influence is More Important than that of Gene Insertion. Sci Rep 2019; 9:8219. [PMID: 31160654 PMCID: PMC6547748 DOI: 10.1038/s41598-019-44748-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Proteomic differences were compared between phytase-transgenic (PT) maize seeds and nontransgenic (NT) maize seeds through two-dimensional electrophoresis (2-DE) with mass spectrometry (MS). When maize was grown under field conditions, 30 differentially accumulated proteins (DAPs) were successfully identified in PT seeds (PT/NT). Clusters of Orthologous Groups (COG) functional classification of these proteins showed that the largest group was associated with posttranslational modifications. To investigate the effects of environmental factors, we further compared the seed protein profiles of the same maize planted in a greenhouse or under field conditions. There were 76 DAPs between the greenhouse- and field-grown NT maize seeds and 77 DAPs between the greenhouse- and field-grown PT maize seeds However, under the same planting conditions, there were only 43 DAPs (planted in the greenhouse) or 37 DAPs (planted in the field) between PT and NT maize seeds. The results revealed that DAPs caused by environmental factors were more common than those caused by the insertion of exogenous genes, indicating that the environment has much more important effects on the seed protein profiles. Our maize seed proteomics results also indicated that the occurrence of unintended effects is not specific to genetically modified crops (GMCs); instead, such effects often occur in traditionally bred plants. Our data may be beneficial for biosafety assessments of GMCs at the protein profile level in the future.
Collapse
Affiliation(s)
- Yanhua Tan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jiaming Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.,College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China. .,College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
12
|
Sample Preparation Focusing on Plant Omics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:161-185. [PMID: 31236843 DOI: 10.1007/978-3-030-12298-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of strong impact of omics in many fields, and the complexity of the samples when focusing on areas such as genomics, (metallo)proteomics, metabolomics, among others, it is easy to rationalize the great importance that sample preparation has for achieving reliable results, mainly considering plant science. Then, this chapter points out applications of the sample preparation focusing on such areas, and a diversity of strategies, techniques, and procedures is highlighted and commented.
Collapse
|
13
|
Liu W, Xu W, Li L, Dong M, Wan Y, He X, Huang K, Jin W. iTRAQ-based quantitative tissue proteomic analysis of differentially expressed proteins (DEPs) in non-transgenic and transgenic soybean seeds. Sci Rep 2018; 8:17681. [PMID: 30518773 PMCID: PMC6281665 DOI: 10.1038/s41598-018-35996-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
The unintended effects of transgenesis have increased food safety concerns, meriting comprehensive evaluation. Proteomic profiling provides an approach to directly assess the unintended effects. Herein, the isobaric tags for relative and absolute quantitation (iTRAQ) comparative proteomic approach was employed to evaluate proteomic profile differences in seed cotyledons from 4 genetically modified (GM) and 3 natural genotypic soybean lines. Compared with their non-GM parents, there were 67, 61, 13 and 22 differentially expressed proteins (DEPs) in MON87705, MON87701 × MON89788, MON87708, and FG72. Overall, 170 DEPs were identified in the 3 GM soybean lines with the same parents, but 232 DEPs were identified in the 3 natural soybean lines. Thus, the differences in protein expression among the genotypic varieties were greater than those caused by GM. When considering ≥2 replicates, 4 common DEPs (cDEPs) were identified in the 3 different GM soybean lines with the same parents and 6 cDEPs were identified in the 3 natural varieties. However, when considering 3 replicates, no cDEPs were identified. Regardless of whether ≥2 or 3 replicates were considered, no cDEPs were identified among the 4 GM soybean lines. Therefore, no feedback due to GM was observed at the common protein level in this study.
Collapse
Affiliation(s)
- Weixiao Liu
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Liang Li
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Mei Dong
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Yusong Wan
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China
| | - Xiaoyun He
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Agricultural and Academic Sciences, Beijing, 100081, PR China.
| |
Collapse
|
14
|
Carneiro JMT, Chacón-Madrid K, Galazzi RM, Campos BK, Arruda SCC, Azevedo RA, Arruda MAZ. Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches. J Trace Elem Med Biol 2017; 44:50-58. [PMID: 28965600 DOI: 10.1016/j.jtemb.2017.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
Abstract
The mitigation of Cd-stress through Si addition to Arabidopsis thaliana cultivation is evaluated in terms of total metal content, proteomic and enzymatic approaches. Four different treatment are evaluated: TC (control, without Si or Cd addition), T1 (with Si addition), T2 (with Cd addition), and T3 (with Si and Cd addition). Through the total determination of Cd and Si in Arabidopsis leaves, the Cd concentration decreased by half when T2 is compared with T3 treatment. In terms of proteomic approach, some differential protein species are achieved by comparative proteomics through 2-D DIGE of all treatments evaluated. Fifty six differential abundant proteins spots (abundance factor ≥1.5) are detected, and 32 of them accurately characterized and identified through nESI-LC-MS/MS. These proteins are differentially produced due to Cd and/or Si treatments, which mainly include proteins associated with disease/defense, energy and metabolism. The most difference in the abundance of proteins is found due to the presence or absence of Si in plants treated with Cd. Regarding the enzymatic approaches, a major increase is found on APX, CAT and GR activities (5.0, 3.5, and 1.5-fold, respectively). The same is observed for the MDA concentration because an increase of 3-fold is found when TC are compared to those treated with T2. However, when T3 plants are evaluated, the enzymes activities are similar to TC plants. Differences ranging from 6.5 to 21% are detected considering the activity of SOD in the treatments (T1-T3 x TC). The decreased activities of CAT, APX and GR and lower MDA concentration indicate a lower reactive oxygen species production in plants treated with Cd and Si. Based on a proteomics point of view it is possible to conclude that Si-Cd interactions occur at protein level and allow plants to respond effectively to the Cd toxicity, revealing the active involvement of Si on mechanisms involved in Si-induced Cd tolerance in Arabidopsis plants. Additionally, from an enzymatic point of view, it is possible to conclude that Si positively interferes diminishing the negative effects of Cd in Arabidopsis by decreasing the reactive oxygen species generation and increasing the antioxidative enzyme activity.
Collapse
Affiliation(s)
- Josiane M T Carneiro
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Katherine Chacón-Madrid
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Rodrigo M Galazzi
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Bruna K Campos
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Sandra C C Arruda
- Department of Genetics, Laboratory of Biochemistry and Genetics of Plants, Escola Superior de Agricultura Luiz de Queiroz, ESALQ-University of São Paulo, 13400-970, Piracicaba, SP, Brazil
| | - Ricardo A Azevedo
- Department of Genetics, Laboratory of Biochemistry and Genetics of Plants, Escola Superior de Agricultura Luiz de Queiroz, ESALQ-University of São Paulo, 13400-970, Piracicaba, SP, Brazil
| | - Marco A Z Arruda
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
15
|
Moldes CA, Cantarelli MA, Camiña JM, Tsai SM, Azevedo RA. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8823-8828. [PMID: 28920676 DOI: 10.1021/acs.jafc.7b03676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.
Collapse
Affiliation(s)
- Carlos Alberto Moldes
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa , Avenida Uruguay 151, CP 6300, Santa Rosa, La Pampa, Argentina
- Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP) , Avenida Uruguay 151, CP 6300, Santa Rosa, La Pampa, Argentina
| | - Miguel Angel Cantarelli
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa , Avenida Uruguay 151, CP 6300, Santa Rosa, La Pampa, Argentina
| | - José Manuel Camiña
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa , Avenida Uruguay 151, CP 6300, Santa Rosa, La Pampa, Argentina
- Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP) , Avenida Uruguay 151, CP 6300, Santa Rosa, La Pampa, Argentina
| | - Siu Mui Tsai
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo , Avenida Centenário 303, CEP 13400-970, Piracicaba, São Paulo, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo , Avenida Pádua Dias, 11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| |
Collapse
|
16
|
Gomes MP, Bicalho EM, Smedbol É, Cruz FVDS, Lucotte M, Garcia QS. Glyphosate Can Decrease Germination of Glyphosate-Resistant Soybeans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2279-2286. [PMID: 28245120 DOI: 10.1021/acs.jafc.6b05601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated the effects of different concentrations of glyphosate acid and one of its formulations (Roundup) on seed germination of two glyphosate-resistant (GR) and one non-GR variety of soybean. As expected, the herbicide affected the shikimate pathway in non-GR seeds but not in GR seeds. We observed that glyphosate can disturb the mitochondrial electron transport chain, leading to H2O2 accumulation in soybean seeds, which was, in turn, related to lower seed germination. In addition, GR seeds showed increased activity of antioxidant systems when compared to non-GR seeds, making them less vulnerable to oxidative stress induced by glyphosate. The differences in the responses of GR varieties to glyphosate exposure corresponded to their differences in enzymatic activity related to H2O2 scavenging and mitochondrial complex III (the proposed site of ROS induction by glyphosate). Our results showed that glyphosate ought to be used carefully as a pre-emergence herbicide in soybean field crop systems because this practice may reduce seed germination.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Avenida Antônio Carlos 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil
| | - Elisa Monteze Bicalho
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Avenida Antônio Carlos 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil
| | - Élise Smedbol
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Avenida Antônio Carlos 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal , C.P. 8888, Succ. Centre-Ville, H3C 3P8 Montréal, Québec, Canada
| | - Fernanda Vieira da Silva Cruz
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Avenida Antônio Carlos 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil
| | - Marc Lucotte
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal , C.P. 8888, Succ. Centre-Ville, H3C 3P8 Montréal, Québec, Canada
| | - Queila Souza Garcia
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Avenida Antônio Carlos 6627, Pampulha, Caixa Postal 486, 31270-970 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
17
|
Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo RA. Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. PROTOPLASMA 2017; 254:771-783. [PMID: 27263082 DOI: 10.1007/s00709-016-0989-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 05/18/2023]
Abstract
There is a very effective cross-talk between signals triggered by reactive oxygen species and hormonal responses in plants, activating proteins/enzymes likely to be involved in stress tolerance. Abscisic acid (ABA) is known as a stress hormone that takes part in the integration of signals. This work aimed to characterize the biochemical response and ultrastructural changes induced by cadmium (Cd) in the Micro-Tom (MT) sitiens ABA-deficient mutant (sit) and its wild-type (MT) counterpart. MT and sit plants were grown over a 96-h period in the presence of Cd (0, 10, and 100 μM CdCl2). The overall results indicated increases in lipid peroxidation, hydrogen peroxide content and in the activities of the key antioxidant enzymes such as catalase, glutathione reductase, and ascorbate peroxidase in both genotypes. On the other hand, no alteration was observed in chlorophyll content, while the activity of another antioxidant enzyme, superoxide dismutase, remained constant or even decreased in the presence of Cd. Roots and shoots of the sit mutant and MT were analyzed by light and transmission electron microscopy in order to characterize the structural changes caused by the exposure to this metal. Cd caused a decrease in intercellular spaces in shoots and a decrease in cell size in roots of both genotypes. In leaves, Cd affected organelle shape and internal organization of the thylakoid membranes, whereas noticeable increase in the number of mitochondria and vacuoles in MT and sit roots were observed. These results add new information that should help unravel the relative importance of ABA in regulating the cell responses to stressful conditions induced by Cd apart from providing the first characterization of this mutant to oxidative stress.
Collapse
Affiliation(s)
- Georgia B Pompeu
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz-ESALQ, Universidade de São Paulo-USP, 13418-900, Piracicaba, SP, Brazil
| | - Milca B Vilhena
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz-ESALQ, Universidade de São Paulo-USP, 13418-900, Piracicaba, SP, Brazil
| | - Priscila L Gratão
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias-FCAV, Universidade Estadual Paulista-UNESP, 14884-900, Jaboticabal, SP, Brazil
| | - Rogério F Carvalho
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias-FCAV, Universidade Estadual Paulista-UNESP, 14884-900, Jaboticabal, SP, Brazil
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura-CENA, Universidade de São Paulo-USP, 13400-970, Piracicaba, SP, Brazil
| | - Adriana P Martinelli
- Centro de Energia Nuclear na Agricultura-CENA, Universidade de São Paulo-USP, 13400-970, Piracicaba, SP, Brazil
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz-ESALQ, Universidade de São Paulo-USP, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
18
|
Mesnage R, Agapito-Tenfen SZ, Vilperte V, Renney G, Ward M, Séralini GE, Nodari RO, Antoniou MN. An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Sci Rep 2016; 6:37855. [PMID: 27991589 PMCID: PMC5171704 DOI: 10.1038/srep37855] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Glyphosate tolerant genetically modified (GM) maize NK603 was assessed as 'substantially equivalent' to its isogenic counterpart by a nutrient composition analysis in order to be granted market approval. We have applied contemporary in depth molecular profiling methods of NK603 maize kernels (sprayed or unsprayed with Roundup) and the isogenic corn to reassess its substantial equivalence status. Proteome profiles of the maize kernels revealed alterations in the levels of enzymes of glycolysis and TCA cycle pathways, which were reflective of an imbalance in energy metabolism. Changes in proteins and metabolites of glutathione metabolism were indicative of increased oxidative stress. The most pronounced metabolome differences between NK603 and its isogenic counterpart consisted of an increase in polyamines including N-acetyl-cadaverine (2.9-fold), N-acetylputrescine (1.8-fold), putrescine (2.7-fold) and cadaverine (28-fold), which depending on context can be either protective or a cause of toxicity. Our molecular profiling results show that NK603 and its isogenic control are not substantially equivalent.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | | | - Vinicius Vilperte
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | - George Renney
- Proteomics Facility, King’s College London, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Malcolm Ward
- Proteomics Facility, King’s College London, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Gilles-Eric Séralini
- University of Caen, Institute of Biology, EA 2608 and Network on Risks, Quality and Sustainable Environment, MRSH, Esplanade de la Paix, University of Caen, Caen 14032, Cedex, France
| | - Rubens O. Nodari
- CropScience Department, Federal University of Santa Catarina, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, Brazil
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| |
Collapse
|
19
|
Subramanian S, Ricci E, Souleimanov A, Smith DL. A Proteomic Approach to Lipo-Chitooligosaccharide and Thuricin 17 Effects on Soybean GerminationUnstressed and Salt Stress. PLoS One 2016; 11:e0160660. [PMID: 27560934 PMCID: PMC4999219 DOI: 10.1371/journal.pone.0160660] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/23/2016] [Indexed: 12/13/2022] Open
Abstract
Salt stress is an important abiotic stressor affecting crop growth and productivity. Of the 20 percent of the terrestrial earth's surface available as agricultural land, 50 percent is estimated by the United Nations Environment Program to be salinized to the level that crops growing on it will be salt-stressed. Increased soil salinity has profound effects on seed germination and germinating seedlings as they are frequently confronted with much higher salinities than vigorously growing plants, because germination usually occurs in surface soils, the site of greatest soluble salt accumulation. The growth of soybean exposed to 40 mM NaCl is negatively affected, while an exposure to 80 mM NaCl is often lethal. When treated with the bacterial signal compounds lipo-chitooligosaccharide (LCO) and thuricin 17 (Th17), soybean seeds (variety Absolute RR) responded positively at salt stress of up to 150 mM NaCl. Shotgun proteomics of unstressed and 100 mM NaCl stressed seeds (48 h) in combination with the LCO and Th17 revealed many known, predicted, hypothetical and unknown proteins. In all, carbon, nitrogen and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with signals. PEP carboxylase, Rubisco oxygenase large subunit, pyruvate kinase, and isocitrate lyase were some of the noteworthy proteins enhanced by the signals, along with antioxidant glutathione-S-transferase and other stress related proteins. These findings suggest that the germinating seeds alter their proteome based on bacterial signals and on stress, the specificity of this response plays a crucial role in organ maturation and transition from one stage to another in the plants' life cycle; understanding this response is of fundamental importance in agriculture and, as a result, global food security. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004106.
Collapse
Affiliation(s)
- Sowmyalakshmi Subramanian
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Emily Ricci
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Alfred Souleimanov
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Donald L. Smith
- Department of Plant Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, H9X3V9, Canada
| |
Collapse
|
20
|
Review on proteomics for food authentication. J Proteomics 2016; 147:212-225. [PMID: 27389853 DOI: 10.1016/j.jprot.2016.06.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Consumers have the right to know what is in the food they are eating. Accordingly, European and global food regulations require that the provenance of the food can be guaranteed from farm to fork. Many different instrumental techniques have been proposed for food authentication. Although traditional methods are still being used, new approaches such as genomics, proteomics, and metabolomics are helping to complement existing methodologies for verifying the claims made about certain food products. During the last decade, proteomics (the large-scale analysis of proteins in a particular biological system at a particular time) has been applied to different research areas within food technology. Since proteins can be used as markers for many properties of a food, even indicating processes to which the food has been subjected, they can provide further evidence of the foods labeling claim. This review is a comprehensive and updated overview of the applications, drawbacks, advantages, and challenges of proteomics for food authentication in the assessment of the foods compliance with labeling regulations and policies. SIGNIFICANCE This review paper provides a comprehensive and critical overview of the application of proteomics approaches to determine the authenticity of several food products updating the performances and current limitations of the applied techniques in both laboratory and industrial environments.
Collapse
|
21
|
Schmidt D, Gaziola SA, Boaretto LF, Azevedo RA. Proteomic analysis of mature barley grains from C-hordein antisense lines. PHYTOCHEMISTRY 2016; 125:14-26. [PMID: 26976333 DOI: 10.1016/j.phytochem.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 05/24/2023]
Abstract
Hordeins are the major storage proteins in barley grains and are responsible for their low nutritional quality. Previously, antisense C-hordein barley lines were generated and were shown to contain a more balanced amino acid composition and an altered storage protein profile. In the present study, a proteomic approach that combined two-dimensional gel electrophoresis (2-DE) and mass spectrometry was used to (1) identify the changes in the protein profile of non-storage proteins (salt soluble fraction) in antisense C-hordein barley lines (L1, L2 and L3) and (2) map the differentially expressed proteins compared to the non-transgenic control line (Hordeum vulgare cv. Golden Promise). Moreover, the changes in the proteins were correlated with the more balanced amino acid composition of these lines, with special attention to the lysine content. The results showed that suppression of C-hordein expression does not exclusively affect hordein synthesis and accumulation. The more balanced amino acid composition observed in the transgenic lines L1, L2 and L3 was an indirect result of the profound alterations in the patterns of the non-storage proteins. The observed changes included up-regulated expression of the proteins involved in stress and detoxification (L1), defence (L2 and L3), and storage globulins (L1, L2 and L3). To a lesser extent, the proteins involved in grain metabolism were also changed. Thus, the increased essential amino acids content results from changes in distinct protein sources among the three antisense C-hordein lines analyzed, although the up-regulated expression of lysine-rich proteins was consistently observed in all lines.
Collapse
Affiliation(s)
- Daiana Schmidt
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Salete Aparecida Gaziola
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Luis Felipe Boaretto
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil.
| |
Collapse
|
22
|
de Almeida Lopes KB, Carpentieri-Pipolo V, Oro TH, Stefani Pagliosa E, Degrassi G. Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 2016; 120:740-55. [PMID: 26744016 DOI: 10.1111/jam.13046] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/25/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
AIMS Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. METHODS AND RESULTS Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. CONCLUSIONS The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. SIGNIFICANCE AND IMPACT OF THE STUDY Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean.
Collapse
Affiliation(s)
- K B de Almeida Lopes
- Agronomy Department, Post Graduation Program in Agronomy, Londrina State University, Londrina, PR, Brazil
| | | | - T H Oro
- Agronomy Department, Post Graduation Program in Agronomy, Londrina State University, Londrina, PR, Brazil
| | - E Stefani Pagliosa
- Agronomy Department, Post Graduation Program in Agronomy, Londrina State University, Londrina, PR, Brazil
| | - G Degrassi
- Industrial Biotechnology Group, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
- IBioBA-ICGEB, Polo Cientifico Tecnologico, Buenos Aires, Argentina
| |
Collapse
|
23
|
Balsamo GM, Valentim-Neto PA, Mello CS, Arisi ACM. Comparative Proteomic Analysis of Two Varieties of Genetically Modified (GM) Embrapa 5.1 Common Bean (Phaseolus vulgaris L.) and Their Non-GM Counterparts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10569-10577. [PMID: 26575080 DOI: 10.1021/acs.jafc.5b04659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The genetically modified (GM) common bean event Embrapa 5.1 was commercially approved in Brazil in 2011; it is resistant to golden mosaic virus infection. In the present work grain proteome profiles of two Embrapa 5.1 common bean varieties, Pérola and Pontal, and their non-GM counterparts were compared by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). Analyses detected 23 spots differentially accumulated between GM Pérola and non-GM Pérola and 21 spots between GM Pontal and non-GM Pontal, although they were not the same proteins in Pérola and Pontal varieties, indicating that the variability observed may not be due to the genetic transformation. Among them, eight proteins were identified in Pérola varieties, and four proteins were identified in Pontal. Moreover, we applied principal component analysis (PCA) on 2-DE data, and variation between varieties was explained in the first two principal components. This work provides a first 2-DE-MS/MS-based analysis of Embrapa 5.1 common bean grains.
Collapse
Affiliation(s)
- Geisi M Balsamo
- Food Science and Technology Department, Federal University of Santa Catarina , Rod. Admar Gonzaga 1346, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Pedro A Valentim-Neto
- Food Science and Technology Department, Federal University of Santa Catarina , Rod. Admar Gonzaga 1346, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Carla S Mello
- Food Science and Technology Department, Federal University of Santa Catarina , Rod. Admar Gonzaga 1346, 88034-001 Florianópolis, Santa Catarina, Brazil
| | - Ana C M Arisi
- Food Science and Technology Department, Federal University of Santa Catarina , Rod. Admar Gonzaga 1346, 88034-001 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
24
|
Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol 2015; 15:89. [PMID: 26427366 PMCID: PMC4591623 DOI: 10.1186/s12896-015-0207-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soybean (Glycine max) has been bred for thousands of years to produce seeds rich in protein for human and animal consumption, making them an appealing bioreactor for producing valuable recombinant proteins at high levels. However, the effects of expressing recombinant protein at high levels on bean physiology are not well understood. To address this, we investigated whether gene expression within transgenic soybean seed tissue is altered when large amounts of recombinant proteins are being produced and stored exclusively in the seeds. We used RNA-Seq to survey gene expression in three transgenic soybean lines expressing recombinant protein at levels representing up to 1.61 % of total protein in seed tissues. The three lines included: ST77, expressing human thyroglobulin protein (hTG), ST111, expressing human myelin basic protein (hMBP), and 764, expressing a mutant, nontoxic form of a staphylococcal subunit vaccine protein (mSEB). All lines selected for analysis were homozygous and contained a single copy of the transgene. METHODS Each transgenic soybean seed was screened for transgene presence and recombinant protein expression via PCR and western blotting. Whole seed mRNA was extracted and cDNA libraries constructed for Illumina sequencing. Following alignment to the soybean reference genome, differential gene expression analysis was conducted using edgeR and cufflinks. Functional analysis of differentially expressed genes was carried out using the gene ontology analysis tool AgriGO. RESULTS The transcriptomes of nine seeds from each transgenic line were sequenced and compared with wild type seeds. Native soybean gene expression was significantly altered in line 764 (mSEB) with more than 3000 genes being upregulated or downregulated. ST77 (hTG) and ST111 (hMBP) had significantly less differences with 52 and 307 differentially expressed genes respectively. Gene ontology enrichment analysis found that the upregulated genes in the 764 line were annotated with functions related to endopeptidase inhibitors and protein synthesis, but suppressed expression of genes annotated to the nuclear pore and to protein transport. No significant gene ontology terms were detected in ST77, and only a few genes involved in photosynthesis and thylakoid functions were downregulated in ST111. Despite these differences, transgenic plants and seeds appeared phenotypically similar to non-transgenic controls. There was no correlation between recombinant protein expression level and the quantity of differentially expressed genes detected. CONCLUSIONS Measurable unscripted gene expression changes were detected in the seed transcriptomes of all three transgenic soybean lines analyzed, with line 764 being substantially altered. Differences detected at the transcript level may be due to T-DNA insert locations, random mutations following transformation or direct effects of the recombinant protein itself, or a combination of these. The physiological consequences of such changes remain unknown.
Collapse
Affiliation(s)
- Kevin C Lambirth
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Adam M Whaley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Ivory C Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Jessica A Schlueter
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Kenneth L Bost
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Kenneth J Piller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
25
|
Vidal N, Barbosa H, Jacob S, Arruda M. Comparative study of transgenic and non-transgenic maize ( Zea mays ) flours commercialized in Brazil, focussing on proteomic analyses. Food Chem 2015; 180:288-294. [DOI: 10.1016/j.foodchem.2015.02.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/19/2015] [Accepted: 02/11/2015] [Indexed: 11/16/2022]
|
26
|
Wang L, Wang X, Jin X, Jia R, Huang Q, Tan Y, Guo A. Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves. Proteome Sci 2015; 13:15. [PMID: 25949214 PMCID: PMC4422549 DOI: 10.1186/s12953-015-0071-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
Background As the rapid growth of the commercialized acreage in genetically modified (GM) crops, the unintended effects of GM crops’ biosafety assessment have been given much attention. To investigate whether transgenic events cause unintended effects, comparative proteomics of cotton leaves between the commercial transgenic Bt + CpTI cotton SGK321 (BT) clone and its non-transgenic parental counterpart SY321 wild type (WT) was performed. Results Using enzyme linked immunosorbent assay (ELISA), Cry1Ac toxin protein was detected in the BT leaves, while its content was only 0.31 pg/g. By 2-DE, 58 differentially expressed proteins (DEPs) were detected. Among them 35 were identified by MS. These identified DEPs were mainly involved in carbohydrate transport and metabolism, chaperones related to post-translational modification and energy production. Pathway analysis revealed that most of the DEPs were implicated in carbon fixation and photosynthesis, glyoxylate and dicarboxylate metabolism, and oxidative pentose phosphate pathway. Thirteen identified proteins were involved in protein-protein interaction. The protein interactions were mainly involved in photosynthesis and energy metabolite pathway. Conclusions Our study demonstrated that exogenous DNA in a host cotton genome can affect the plant growth and photosynthesis. Although some unintended variations of proteins were found between BT and WT cotton, no toxic proteins or allergens were detected. This study verified genetically modified operation did not sharply alter cotton leaf proteome, and the target proteins were hardly checked by traditional proteomic analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0071-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Limin Wang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China ; Chinese Academy of Agricultural Sciences, The Oilcrops Research Institute, Wuhan, 430062 China
| | - Xuchu Wang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Xiang Jin
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Ruizong Jia
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Qixing Huang
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Yanhua Tan
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| | - Anping Guo
- Chinese Academy of Tropical Agricultural Sciences, The Institute of Tropical Biosciences and Biotechnology, Haikou, Hainan 571101 China
| |
Collapse
|
27
|
Xu XP, Liu H, Tian L, Dong XB, Shen SH, Qu LQ. Integrated and comparative proteomics of high-oil and high-protein soybean seeds. Food Chem 2015; 172:105-16. [PMID: 25442530 DOI: 10.1016/j.foodchem.2014.09.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/22/2014] [Accepted: 09/08/2014] [Indexed: 01/10/2023]
Abstract
We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding.
Collapse
Affiliation(s)
- Xiu Ping Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Hui Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Xiang Bai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Shi Hua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Xiangshan, Beijing 100093, China.
| |
Collapse
|
28
|
Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, Nguyen HT. Expanding Omics Resources for Improvement of Soybean Seed Composition Traits. FRONTIERS IN PLANT SCIENCE 2015; 6:1021. [PMID: 26635846 PMCID: PMC4657443 DOI: 10.3389/fpls.2015.01021] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 05/19/2023]
Abstract
Food resources of the modern world are strained due to the increasing population. There is an urgent need for innovative methods and approaches to augment food production. Legume seeds are major resources of human food and animal feed with their unique nutrient compositions including oil, protein, carbohydrates, and other beneficial nutrients. Recent advances in next-generation sequencing (NGS) together with "omics" technologies have considerably strengthened soybean research. The availability of well annotated soybean genome sequence along with hundreds of identified quantitative trait loci (QTL) associated with different seed traits can be used for gene discovery and molecular marker development for breeding applications. Despite the remarkable progress in these technologies, the analysis and mining of existing seed genomics data are still challenging due to the complexity of genetic inheritance, metabolic partitioning, and developmental regulations. Integration of "omics tools" is an effective strategy to discover key regulators of various seed traits. In this review, recent advances in "omics" approaches and their use in soybean seed trait investigations are presented along with the available databases and technological platforms and their applicability in the improvement of soybean. This article also highlights the use of modern breeding approaches, such as genome-wide association studies (GWAS), genomic selection (GS), and marker-assisted recurrent selection (MARS) for developing superior cultivars. A catalog of available important resources for major seed composition traits, such as seed oil, protein, carbohydrates, and yield traits are provided to improve the knowledge base and future utilization of this information in the soybean crop improvement programs.
Collapse
|
29
|
Ayyadurai VAS, Deonikar P. Do GMOs Accumulate Formaldehyde and Disrupt Molecular Systems Equilibria? Systems Biology May Provide Answers. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/as.2015.67062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Maciel BCM, Barbosa HS, Pessôa GS, Salazar MM, Pereira GAG, Gonçalves DC, Ramos CHI, Arruda MAZ. Comparative proteomics and metallomics studies in Arabidopsis thaliana leaf tissues: evaluation of the selenium addition in transgenic and nontransgenic plants using two-dimensional difference gel electrophoresis and laser ablation imaging. Proteomics 2014; 14:904-12. [PMID: 24678036 DOI: 10.1002/pmic.201300427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
The main goal of this work is to evaluate some differential protein species in transgenic (T) and nontransgenic (NT) Arabidopsis thaliana plants after their cultivation in the presence or absence of sodium selenite. The transgenic line was obtained through insertion of CaMV 35S controlling nptII gene. Comparative proteomics through 2D-DIGE is carried out in four different groups (NT × T; NT × Se-NT (where Se is selenium); Se-NT × Se-T, and T × Se-T). Although no differential proteins are achieved in the T × Se-T group, for the others, 68 differential proteins (by applying a regulation factor ≥1.5) are achieved, and 27 of them accurately characterized by ESI-MS/MS. These proteins are classified into metabolism, energy, signal transduction, disease/defense categories, and some of them are involved in the glycolysis pathway-Photosystems I and II and ROS combat. Additionally, laser ablation imaging is used for evaluating the Se and sulfur distribution in leaves of different groups, corroborating some results obtained and related to proteins involved in the glycolysis pathway. From these results, it is possible to conclude that the genetic modification also confers to the plant resistance to oxidative stress.
Collapse
Affiliation(s)
- Bruna C M Maciel
- Department of Analytical Chemistry, Group of Spectrometry, Sample Preparation and Mechanization-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil; Institute of Chemistry, National Institute of Science and Technology for Bioanalytics, University of Campinas-Unicamp, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Oliveira SR, Menegário AA, Arruda MAZ. Evaluation of Fe uptake and translocation in transgenic and non-transgenic soybean plants using enriched stable (57)Fe as a tracer. Metallomics 2014; 6:1832-40. [PMID: 25079128 DOI: 10.1039/c4mt00162a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A tracer experiment is carried out with transgenic T (variety M 7211 RR) and non-transgenic NT (variety MSOY 8200) soybean plants to evaluate if genetic modification can influence the uptake and translocation of Fe. A chelate of EDTA with enriched stable (57)Fe is applied to the plants cultivated in vermiculite plus substrate and the (57)Fe acts as a tracer. The exposure of plants to enriched (57)Fe causes the dilution of the natural previously existing Fe in the plant compartments and then the changed Fe isotopic ratio ((57)Fe/(56)Fe) is measured using a quadrupole-based inductively coupled plasma mass spectrometer equipped with a dynamic reaction cell (DRC). Mathematical calculations based on the isotope dilution methodology allow distinguishing the natural abundance Fe from the enriched Fe (incorporated during the experiment). The NT soybean plants acquire higher amounts of Fe from natural abundance (originally present in the soil) and from enriched Fe (coming from the (57)Fe-EDTA during the experiment) than T soybean ones, demonstrating that the NT soybean plants probably absorb higher amounts of Fe, independently of the source. The percentage of newly incorporated Fe (coming from the treatment) was approximately 2.0 and 1.1% for NT and T soybean plants, respectively. A higher fraction (90.1%) of enriched Fe is translocated to upper parts, and a slightly lower fraction (3.8%) is accumulated in the stems by NT plants than by T ones (85.1%; 5.1%). Moreover, in both plants, the Fe-EDTA facilitates the transport and translocation of Fe to the leaves. The genetic modification is probably responsible for differences observed between T and NT soybean plants.
Collapse
Affiliation(s)
- Silvana R Oliveira
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM and National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, Department of Analytical Chemistry, University of Campinas - Unicamp, PO Box 6154, 13083-970, Campinas, SP, Brazil.
| | | | | |
Collapse
|
32
|
Hossain Z, Komatsu S. Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance. Proteomes 2014; 2:107-127. [PMID: 28250373 PMCID: PMC5302732 DOI: 10.3390/proteomes2010107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
Dissecting molecular pathways at protein level is essential for comprehensive understanding of plant stress response mechanism. Like other legume crops, soybean, the world's most widely grown seed legume and an inexpensive source of protein and vegetable oil, is also extremely sensitive to abiotic stressors including flood and drought. Irrespective of the kind and severity of the water stress, soybean exhibits a tight control over the carbon metabolism to meet the cells required energy demand for alleviating stress effects. The present review summarizes the major proteomic findings related to changes in soybean proteomes in response to flood and drought stresses to get a clear insight into the complex mechanisms of stress tolerance. Furthermore, advantages and disadvantages of different protein extraction protocols and challenges and future prospects of soybean proteome study are discussed in detail to comprehend the underlying mechanism of water stress acclimation.
Collapse
Affiliation(s)
- Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State University, Kolkata-700126, India.
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
33
|
Abstract
Soybean, the world's most widely grown seed legume, is an important global source of vegetable oil and protein. Though, complete draft genome sequence of soybean is now available, but functional genomics studies remain in their infancy, as this agricultural legume species exhibits genetic constrains like genome duplications and self-incompatibilities. The techniques of proteomics provide much powerful tool for functional analysis of soybean. In the present review, an attempt has been made to summarize all significant contributions in the field of soybean proteomics. Special emphasis is given to subcellular proteomics in response to abiotic stresses for better understanding molecular basis of acquisition of stress tolerance mechanism. Detailed protocols of protein extraction, solubilization, fractionation of subcellular organelle, and proteins identification are explained for soybean proteomics. All this information would not only enrich us in understanding the plants response to environmental stressors but would also enable us to design genetically engineered stress tolerant soybean.
Collapse
Affiliation(s)
- Zahed Hossain
- Department of Botany, West Bengal State University, Kolkata, West Bengal, India
| | | |
Collapse
|
34
|
Valdés A, Simó C, Ibáñez C, García-Cañas V. Foodomics strategies for the analysis of transgenic foods. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Arruda SCC, Barbosa HS, Azevedo RA, Arruda MAZ. Comparative studies focusing on transgenic through cp4EPSPS gene and non-transgenic soybean plants: an analysis of protein species and enzymes. J Proteomics 2013; 93:107-16. [PMID: 23796491 DOI: 10.1016/j.jprot.2013.05.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/17/2013] [Accepted: 05/27/2013] [Indexed: 11/15/2022]
Abstract
This work evaluates the activity of a few key enzymes involved in combating reactive oxygen species (ROS), such as ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), glutathione reductase (EC 1.6.4.2), and superoxide dismutase (EC 1.15.1.1), as well as the concentration of malondialdehyde and hydrogen peroxide in transgenic and non-transgenic soybean leaves. Additionally, differential protein species from leaves of both genotypes were evaluated by applying a regulation factor of ≥1.8 to further corroborate the hypothesis that genetic modification itself can be a stress factor for these plants. For this task, transgenic soybean plants were obtained from seeds modified with the cp4EPSPS gene. The results revealed higher activities of all evaluated enzymes in transgenic than in non-transgenic soybean leaves (ranging from 13.8 to 70.1%), as well as higher concentrations of malondialdehyde and hydrogen peroxide in transgenic soybean leaves, clearly indicating a condition of oxidative stress established in the transgenic genotype. Additionally, 47 proteins were differentially abundant when comparing the leaves of both plants, with 26 species accurately identified, including the protein involved in the genetic modification (CP4EPSPS). From these results, it is possible to conclude that the plant is searching for a new equilibrium to maintain its metabolism because the stress condition is being maintained within levels that can be tolerated by the plant. BIOLOGICAL SIGNIFICANCE The present paper is the first one in the literature where are shown translational aspects involving plant stress and the genetic modification for soybean involving the cp4 EPSPS gene. The main biological importance of this work is to make possible the demystification of the genetic modification, allowing answers for some questions that still remain unknown, and enlarge our knowledge about genetically modified organisms. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Sandra C C Arruda
- Laboratory of Plant Biochemistry and Genetics, Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz, ESALQ, USP, Piracicaba, SP 13400-970, Brazil
| | | | | | | |
Collapse
|
36
|
Poboży E, Filaber M, Koc A, Garcia-Reyes JF. Application of capillary electrophoretic chips in protein profiling of plant extracts for identification of genetic modifications of maize. Electrophoresis 2013; 34:2740-53. [DOI: 10.1002/elps.201300103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Ewa Poboży
- Department of Chemistry; University of Warsaw; Warsaw; Poland
| | - Monika Filaber
- Department of Chemistry; University of Warsaw; Warsaw; Poland
| | - Anna Koc
- Department of Chemistry; University of Warsaw; Warsaw; Poland
| | - Juan F. Garcia-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry; University of Jaén; Jaén; Spain
| |
Collapse
|
37
|
Gong CY, Wang T. Proteomic evaluation of genetically modified crops: current status and challenges. FRONTIERS IN PLANT SCIENCE 2013; 4:41. [PMID: 23471542 PMCID: PMC3590489 DOI: 10.3389/fpls.2013.00041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 05/07/2023]
Abstract
Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.
Collapse
Affiliation(s)
| | - Tai Wang
- *Correspondence: Tai Wang, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing 100093, China. e-mail:
| |
Collapse
|
38
|
Murad AM, Rech EL. NanoUPLC-MSE proteomic data assessment of soybean seeds using the Uniprot database. BMC Biotechnol 2012; 12:82. [PMID: 23126227 PMCID: PMC3532185 DOI: 10.1186/1472-6750-12-82] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/24/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recombinant DNA technology has been extensively employed to generate a variety of products from genetically modified organisms (GMOs) over the last decade, and the development of technologies capable of analyzing these products is crucial to understanding gene expression patterns. Liquid chromatography coupled with mass spectrometry is a powerful tool for analyzing protein contents and possible expression modifications in GMOs. Specifically, the NanoUPLC-MSE technique provides rapid protein analyses of complex mixtures with supported steps for high sample throughput, identification and quantization using low sample quantities with outstanding repeatability. Here, we present an assessment of the peptide and protein identification and quantification of soybean seed EMBRAPA BR16 cultivar contents using NanoUPLC-MSE and provide a comparison to the theoretical tryptic digestion of soybean sequences from Uniprot database. RESULTS The NanoUPLC-MSE peptide analysis resulted in 3,400 identified peptides, 58% of which were identified to have no miscleavages. The experiment revealed that 13% of the peptides underwent in-source fragmentation, and 82% of the peptides were identified with a mass measurement accuracy of less than 5 ppm. More than 75% of the identified proteins have at least 10 matched peptides, 88% of the identified proteins have greater than 30% of coverage, and 87% of the identified proteins occur in all four replicates. 78% of the identified proteins correspond to all glycinin and beta-conglycinin chains.The theoretical Uniprot peptide database has 723,749 entries, and 548,336 peptides have molecular weights of greater than 500 Da. Seed proteins represent 0.86% of the protein database entries. At the peptide level, trypsin-digested seed proteins represent only 0.3% of the theoretical Uniprot peptide database. A total of 22% of all database peptides have a pI value of less than 5, and 25% of them have a pI value between 5 and 8. Based on the detection range of typical NanoUPLC-MSE experiments, i.e., 500 to 5000 Da, 64 proteins will not be identified. CONCLUSIONS NanoUPLC-MSE experiments provide good protein coverage within a peptide error of 5 ppm and a wide MW detection range from 500 to 5000 Da. A second digestion enzyme should be used depending on the tissue or proteins to be analyzed. In the case of seed tissue, trypsin protein digestion results offer good databank coverage. The Uniprot database has many duplicate entries that may result in false protein homolog associations when using NanoUPLC-MSE analysis. The proteomic profile of the EMBRAPA BR-16 seed lacks certain described proteins relative to the profiles of transgenic soybeans reported in other works.
Collapse
Affiliation(s)
- Andre M Murad
- EMBRAPA Genetic Resources and Biotechnology, Synthetic Biology and Nanotechnology Group - Parque Estação Biológica, PqEB, Av. W5 Norte, 70770-917, Brasília, DF, Brazil
| | - Elibio L Rech
- EMBRAPA Genetic Resources and Biotechnology, Synthetic Biology and Nanotechnology Group - Parque Estação Biológica, PqEB, Av. W5 Norte, 70770-917, Brasília, DF, Brazil
| |
Collapse
|
39
|
Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA. Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 56:79-96. [PMID: 22609458 DOI: 10.1016/j.plaphy.2012.04.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/13/2012] [Indexed: 05/21/2023]
Abstract
In order to further address the modulation of signaling pathways of stress responses and their relation to hormones, we used the ethylene-insensitive Never ripe (Nr) and the auxin-insensitive diageotropica (dgt) tomato mutants. The two mutants and the control Micro-Tom (MT) cultivar were grown over a 40-day period in the presence of Cd (0.2 mM CdCl₂ and 1 mM CdCl₂). Lipid peroxidation, leaf chlorophyll, proline content, Cd content and antioxidant enzyme activities in roots, leaves and fruits were determined. The overall results indicated that the MT genotype had the most pronounced Cd damage effects while Nr and dgt genotypes might withstand or avoid stress imposed by Cd. This fact may be attributed, at least in part, to the fact that the known auxin-stimulated ethylene production is comprised in dgt plants. Conversely, the Nr genotype was more affected by the Cd imposed stress than dgt, which may be explained by the fact that Nr retains a partial sensitivity to ethylene. These results add further information that should help unraveling the relative importance of ethylene in regulating the cell responses to stressful conditions.
Collapse
Affiliation(s)
- Priscila L Gratão
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista "Júlio de Mesquita Filho"-UNESP, 14884-900 Jaboticabal, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Monteiro CC, Rolão MB, Franco MR, Peters LP, Cia MC, Capaldi FR, Carvalho RF, Gratão PL, Rossi ML, Martinelli AP, Peres LE, Azevedo RA. Biochemical and histological characterization of tomato mutants. ACTA ACUST UNITED AC 2012; 84:573-85. [DOI: 10.1590/s0001-37652012005000022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
Abstract
Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT), we observed that the malondialdehyde (MDA) content was enhanced in the diageotropica (dgt) and lutescent (l) mutants, whilst the highest levels of hydrogen peroxide (H2O2) were observed in high pigment 1 (hp1) and aurea (au) mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT) activity when compared to MT. Guaiacol peroxidase (GPOX) was enhanced in both sitiens (sit) and notabilis (not) mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX). Based on PAGE analysis, the activities of glutathione reductase (GR) isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD) isoform III was reduced in leaves of sit, epi, Never ripe (Nr) and green flesh (gf) mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.
Collapse
|
41
|
Mataveli LRV, Fioramonte M, Gozzo FC, Arruda MAZ. Improving metallomics information related to transgenic and non-transgenic soybean seeds using 2D-HPLC-ICP-MS and ESI-MS/MS. Metallomics 2012; 4:373-8. [PMID: 22392224 DOI: 10.1039/c2mt00186a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
This work reports the use of 2D-HPLC-ICP-MS to enlarge metallomics information when considering soybean seeds. Separations using size exclusion chromatography (SEC) allowed the identification of three metal fractions: the first corresponding to molecular weights from 38.1 to 181.1 kDa, the second from 8.2 to 17.2 kDa and the third from 0.4 to 3.8 kDa. In a second dimension, using anion exchange chromatography (AEX), three sub-fractions containing Fe, Mg and Mn, one containing Cu, and three containing Co, Cu, Mg, Mn and Zn were obtained. After these separations, 33 proteins were identified using the ESI-MS/MS technique, and divided into four functional categories: plant growth/cell division, protein destination and storage, metabolism and unclassified proteins. Among the identified proteins, proteins previously related to metals were found.
Collapse
Affiliation(s)
- Lidiane Raquel Verola Mataveli
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | | | | | | |
Collapse
|