1
|
Campuzano S, Pedrero M, Barderas R, Pingarrón JM. Breaking barriers in electrochemical biosensing using bioinspired peptide and phage probes. Anal Bioanal Chem 2024; 416:7225-7247. [PMID: 38639792 PMCID: PMC11584481 DOI: 10.1007/s00216-024-05294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Electrochemical biosensing continues to advance tirelessly, overcoming barriers that have kept it from leaving research laboratories for many years. Among them, its compromised performance in complex biological matrices due to fouling or receptor stability issues, the limitations in determining toxic and small analytes, and its use, conditioned to the commercial availability of commercial receptors and the exploration of natural molecular interactions, deserved to be highlighted. To address these challenges, in addition to the intrinsic properties of electrochemical biosensing, its coupling with biomimetic materials has played a fundamental role, among which bioinspired phage and peptide probes stand out. The versatility in design and employment of these probes has opened an unimaginable plethora of possibilities for electrochemical biosensing, improving their performance far beyond the development of highly sensitive and selective devices. The state of the art offers robust electroanalytical biotools, capable of operating in complex samples and with exciting opportunities to discover and determine targets regardless of their toxicity and size, the commercial availability of bioreceptors, and prior knowledge of molecular interactions. With all this in mind, this review offers a panoramic, novel, and updated vision of both the tremendous advances and opportunities offered by the combination of electrochemical biosensors with bioinspired phage and peptide probes and the challenges and research efforts that are envisioned in the immediate future.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain.
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| |
Collapse
|
2
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
3
|
Ahmed H, Lopez H, Boselli F, Tarricone G, Vercellino S, Costantini PE, Castagnola V, Veronesi M, Benfenati F, Danielli A, Boselli L, Pompa PP. Biomimetic Plasmonic Nanophages by Head/Tail Self-Assembling: Gold Nanoparticle/Virus Interactions. ACS NANO 2024; 18:21302-21315. [PMID: 39083652 DOI: 10.1021/acsnano.4c05198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Gold nanoparticles (AuNPs), because of their dual plasmonic and catalytic functionalities, are among the most promising nanomaterials for the development of therapeutic and diagnostic tools for severe diseases such as cancer and neurodegeneration. Bacteriophages, massively present in human biofluids, are emerging as revolutionary biotechnological tools as they can be engineered to display multiple specific binding moieties, providing effective targeting ability, high stability, low cost, and sustainable production. Coupling AuNPs with phages can lead to an advanced generation of nanotools with great potential for biomedical applications. In the present study, we analyzed the interactions between differently sized AuNPs and filamentous M13 phages, establishing an advanced characterization platform that combines analytical techniques and computational models for an in-depth understanding of these hybrid self-assembling systems. A precise and structurally specific interaction of the AuNP-M13 hybrid complexes was observed, leading to a peculiar head/tail "tadpole-like" configuration. In silico simulations allowed explaining the mechanisms underlying the preferential assembly route and providing information about AuNPs' size-dependent interplay with specific M13 capsid proteins. The AuNP-M13 structures were proven to be biomimetic, eluding the formation of biomolecular corona. By keeping the biological identity of the virion, hybrid nanostructures maintained their natural recognition/targeting ability even in the presence of biomolecular crowding. In addition, we were able to tune the hybrid nanostructures' tropism toward E. coli based on the AuNP size. Overall, our results set the fundamental basis and a standard workflow for the development of phage-based targeting nanotools, valuable for a wide spectrum of nanotechnology applications.
Collapse
Affiliation(s)
- Hazem Ahmed
- Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Hender Lopez
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Grangegorman D07 ADY7, Ireland
| | - Francesco Boselli
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
- Department of Engineering, Durham University, South Road, Durham DH1 3LE, U.K
| | - Giulia Tarricone
- Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Silvia Vercellino
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi 3, Bologna 40126, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Marina Veronesi
- Structural Biophysics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi 3, Bologna 40126, Italy
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
4
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
5
|
Mousavi Khaneghah A, Mostashari P. Decoding food reactions: a detailed exploration of food allergies vs. intolerances and sensitivities. Crit Rev Food Sci Nutr 2024:1-45. [DOI: 10.1080/10408398.2024.2349740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
7
|
Shivaram KB, Bhatt P, Verma MS, Clase K, Simsek H. Bacteriophage-based biosensors for detection of pathogenic microbes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165859. [PMID: 37516175 DOI: 10.1016/j.scitotenv.2023.165859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Wastewater is discarded from several sources, including industry, livestock, fertilizer application, and municipal waste. If the disposed of wastewater has not been treated and processed before discharge to the environment, pathogenic microorganisms and toxic chemicals are accumulated in the disposal area and transported into the surface waters. The presence of harmful microbes is responsible for thousands of human deaths related to water-born contamination every year. To be able to take the necessary step and quick action against the possible presence of harmful microorganisms and substances, there is a need to improve the effective speed of identification and treatment of these problems. Biosensors are such devices that can give quantitative information within a short period of time. There have been several biosensors developed to measure certain parameters and microorganisms. The discovered biosensors can be utilized for the detection of axenic and mixed microbial strains from the wastewaters. Biosensors can further be developed for specific conditions and environments with an in-depth understanding of microbial organization and interaction within that community. In this regard, bacteriophage-based biosensors have become a possibility to identify specific live bacteria in an infected environment. This paper has investigated the current scenario of microbial community analysis and biosensor development in identifying the presence of pathogenic microorganisms.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Mohit S Verma
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Kari Clase
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
8
|
Pradanas-González F, Peltomaa R, Lahtinen S, Luque-Uría Á, Más V, Barderas R, Maragos CM, Canales Á, Soukka T, Benito-Peña E, Moreno-Bondi MC. Homogeneous immunoassay for cyclopiazonic acid based upon mimotopes and upconversion-resonance energy transfer. Biosens Bioelectron 2023; 233:115339. [PMID: 37126866 DOI: 10.1016/j.bios.2023.115339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Strains of Penicillium spp. are used for fungi-ripened cheeses and Aspergillus spp. routinely contaminate maize and other crops. Some of these strains can produce toxic secondary metabolites (mycotoxins), including the neurotoxin α-cyclopiazonic acid (CPA). In this work, we developed a homogeneous upconversion-resonance energy transfer (UC-RET) immunoassay for the detection of CPA using a novel epitope mimicking peptide, or mimotope, selected by phage display. CPA-specific antibody was used to isolate mimotopes from a cyclic 7-mer peptide library in consecutive selection rounds. Enrichment of antibody binding phages was achieved, and the analysis of individual phage clones revealed four different mimotope peptide sequences. The mimotope sequence, ACNWWDLTLC, performed best in phage-based immunoassays, surface plasmon resonance binding analyses, and UC-RET-based immunoassays. To develop a homogeneous assay, upconversion nanoparticles (UCNP, type NaYF4:Yb3+, Er3+) were used as energy donors and coated with streptavidin to anchor the synthetic biotinylated mimotope. Alexa Fluor 555, used as an energy acceptor, was conjugated to the anti-CPA antibody fragment. The homogeneous single-step immunoassay could detect CPA in just 5 min and enabled a limit of detection (LOD) of 30 pg mL-1 (1.5 μg kg-1) and an IC50 value of 0.36 ng mL-1. No significant cross-reactivity was observed with other co-produced mycotoxins. Finally, we applied the novel method for the detection of CPA in spiked maize samples using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) as a reference method.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Riikka Peltomaa
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Álvaro Luque-Uría
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Vicente Más
- Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, 28220, Madrid, Spain
| | - Rodrigo Barderas
- Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, 28220, Madrid, Spain
| | - Chris M Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N University, Peoria, IL, 61604, USA
| | - Ángeles Canales
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
9
|
Kim T, Lee J, Lee JP, Kim BN, Kim YH, Lee YS, Min J. Screening of novel peptides that specifically interact with vitamin D bound biocomplex proteins. Sci Rep 2023; 13:2116. [PMID: 36746976 PMCID: PMC9901391 DOI: 10.1038/s41598-023-28881-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The majority of the vitamin D that is present in the blood binds to vitamin D binding protein (VDBP) and circulates in the form of a complex (VDBP-Complex). Knowing the level of vitamin D in the body is crucial for vitamin D-related treatments so that the right dosage of vitamin D can be given. In other words, it is essential to distinguish between the protein VDBP and the complex form bound to vitamin D. As a novel way for the detection of VDBP-Complex, a more effective phage display methodology was applied in this study along with the addition of two approaches. In order to screen a sequence specific to the target only, the pre-binding method and after-binding method were performed. VDBP-Complex was directly coated on the petri dishes. In order to select phages that specifically bind to the VDBP-Complex, random phages were attached, and selected by 7 times of biopanning. Individual DNA sequences were analyzed for each biopanning to find specific peptide sequences for VDBP-Complex. The affinity of binding phages was verified by ELISA assay using an anti-M13 antibody. The phage having a sequence of SFTKTSTFTWRD (called as M3) has shown the highest binding affinity to VDBP-Complex. As a result of the removal test of VDBP-Complex using magnetic beads conjugated with M3 peptide, it was confirmed that significant decrease of VDBP-Complex. The unique characteristic of the M3 sequence was confirmed through a sequence-modified peptide (SFT motif). That is, it is expected that the M3 peptide may be used to determine the vitamin D levels in the blood.
Collapse
Affiliation(s)
- Taehwan Kim
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jaewoong Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Bit-Na Kim
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Yang-Hoon Kim
- School of Biological Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Youn-Sik Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
10
|
Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. BIOSENSORS 2022; 12:905. [PMID: 36291042 PMCID: PMC9599427 DOI: 10.3390/bios12100905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bruce M. Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Ye J, Guo J, Li T, Tian J, Yu M, Wang X, Majeed U, Song W, Xiao J, Luo Y, Yue T. Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review. Compr Rev Food Sci Food Saf 2022; 21:1843-1867. [PMID: 35142431 DOI: 10.1111/1541-4337.12908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023]
Abstract
Foodborne pathogens and microbial toxins are the main causes of foodborne illness. However, trace pathogens and toxins in foods are difficult to detect. Thus, techniques for their rapid and sensitive identification and quantification are urgently needed. Phages can specifically recognize and adhere to certain species of microbes or toxins due to molecular complementation between capsid proteins of phages and receptors on the host cell wall or toxins, and thus they have been successfully developed into a detection platform for pathogens and toxins. This review presents an update on phage-based luminescent detection technologies as well as their working principles and characteristics. Based on phage display techniques of temperate phages, reporter gene detection assays have been designed to sensitively detect trace pathogens by luminous intensity. By the host-specific lytic effects of virulent phages, enzyme-catalyzed chemiluminescent detection technologies for pathogens have been exploited. Notably, these phage-based luminescent detection technologies can discriminate viable versus dead microbes. Further, highly selective and sensitive immune-based assays have been developed to detect trace toxins qualitatively and quantitatively via antibody analogs displayed by phages, such as phage-ELISA (enzyme-linked immunosorbent assay) and phage-IPCR (immuno-polymerase chain reaction). This literature research may lead to novel and innocuous phage-based rapid detection technologies to ensure food safety.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaqing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Tairan Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaxin Tian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
13
|
Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Güven E, Azizoglu RO. The Recent Original Perspectives on Nonculture-Based Bacteria Detection Methods: A Comprehensive Review. Foodborne Pathog Dis 2022; 19:425-440. [DOI: 10.1089/fpd.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ece Güven
- Department of Gene and Cell Therapy and Mediterranean (Akdeniz) University, Antalya, Turkey
| | - Reha Onur Azizoglu
- Department of Gene and Cell Therapy and Mediterranean (Akdeniz) University, Antalya, Turkey
- Department of Food Engineering, Mediterranean (Akdeniz) University, Antalya, Turkey
| |
Collapse
|
15
|
Peltomaa R, Barderas R, Benito-Peña E, Moreno-Bondi MC. Recombinant antibodies and their use for food immunoanalysis. Anal Bioanal Chem 2022; 414:193-217. [PMID: 34417836 PMCID: PMC8380008 DOI: 10.1007/s00216-021-03619-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Life Sciences, University of Turku, 20014, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, 20014, Turku, Finland
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2021; 46:6407522. [PMID: 34673942 DOI: 10.1093/femsre/fuab052] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 "for the phage display of peptides and antibodies". In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
17
|
Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. SENSORS (BASEL, SWITZERLAND) 2021; 21:3781. [PMID: 34072572 PMCID: PMC8198293 DOI: 10.3390/s21113781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
The rapid progress in the development of surface plasmon resonance-based immunosensing platforms offers wide application possibilities in medical diagnostics as a label-free alternative to enzyme immunoassays. The early diagnosis of diseases or metabolic changes through the detection of biomarkers in body fluids requires methods characterized by a very good sensitivity and selectivity. In the case of the SPR technique, as well as other surface-sensitive detection strategies, the quality of the transducer-immunoreceptor interphase is crucial for maintaining the analytical reliability of an assay. In this work, an overview of general approaches to the design of functional SPR-immunoassays is presented. It covers both immunosensors, the design of which utilizes well-known and often commercially available substrates, as well as the latest solutions developed in-house. Various approaches employing chemical and passive binding, affinity-based antibody immobilization, and the introduction of nanomaterial-based surfaces are discussed. The essence of their influence on the improvement of the main analytical parameters of a given immunosensor is explained. Particular attention is paid to solutions compatible with the latest trends in the development of label-free immunosensors, such as platforms dedicated to real-time monitoring in a quasi-continuous mode, the use of in situ-generated receptor layers (elimination of the regeneration step), and biosensors using recombinant and labelled protein receptors.
Collapse
Affiliation(s)
- Marcin Drozd
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Sylwia Karoń
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Elżbieta Malinowska
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
18
|
João J, Lampreia J, Prazeres DMF, Azevedo AM. Manufacturing of bacteriophages for therapeutic applications. Biotechnol Adv 2021; 49:107758. [PMID: 33895333 DOI: 10.1016/j.biotechadv.2021.107758] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Bacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment. In particular, phages offer a solution to one of the major problems in public health nowadays, i.e. the emergence of multidrug-resistant bacteria. In these situations, the use of virulent phages as therapeutic agents offers an alternative to the classic, antibiotic-based strategies. The development of phage therapies should be accompanied by the improvement of phage biomanufacturing processes, both at laboratory and industrial scales. In this review, we first present some historical and general aspects related with the discovery, usage and biology of phages and provide a brief overview of the most relevant phage therapy applications. Then, we showcase current processes used for the production and purification of phages and future alternatives in development. On the production side, key factors such as the bacterial physiological state, the conditions of phage infection and the operation parameters are described alongside with the different operation modes, from batch to semi-continuous and continuous. Traditional purification methods used in the initial phage isolation steps are then described followed by the presentation of current state-of-the-art purification approaches. Continuous purification of phages is finally presented as a future biomanufacturing trend.
Collapse
Affiliation(s)
- Jorge João
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - João Lampreia
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Duarte Miguel F Prazeres
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| |
Collapse
|
19
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Xu M, Xu M, Tu Q. Comparative evaluation of Vibrio delineation methodologies in post-genomic era. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:209-217. [PMID: 33533180 DOI: 10.1111/1758-2229.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrios are widespread in both marine and coastal water environments and are recognized as one of the most important prokaryotic pathogens because they may potentially threaten the health of both aquacultures and human beings. However, owing to highly similar physiological and biochemical properties, accurate classification and identification of Vibrio strains remains challenging. This hampers further research on the physiology, pathogeny, genomics, epidemics, and ecology of vibrios. Here, we comparatively evaluated multiple approaches including 16S rRNA gene identity, average nucleotide identity (ANI), gene content similarity and mutilocus sequence analysis (MLSA) to investigate their ability in delineating Vibrio strains. In addition, we also evaluated the possibility of applying bacterial prophages in classifying and identifying Vibrio strains. Our results showed that MLSA outperformed other methods in discriminating Vibrio species, suggesting that the other four approaches should be used with cautions in Vibrio delineation. Interestingly, we also found that prophages identified in Vibrio strains were highly specific at strain- and species-level, suggesting that prophages held the potential to be used for microbial species, sub-species, and strain-level identifications. This study is expected to provide valuable insights into the taxonomic identification and classification of complex microbial groups in the post-genomic era.
Collapse
Affiliation(s)
- Mengzhao Xu
- Department of Marine Sciences, Ocean College, Zhejiang University, Zhoushan, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qichao Tu
- Institute for Marine Science and Technology, Shandong University, Qingdao, China
| |
Collapse
|
21
|
Brooks SM, Alper HS. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat Commun 2021; 12:1390. [PMID: 33654085 PMCID: PMC7925609 DOI: 10.1038/s41467-021-21740-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology holds great promise for addressing global needs. However, most current developments are not immediately translatable to 'outside-the-lab' scenarios that differ from controlled laboratory settings. Challenges include enabling long-term storage stability as well as operating in resource-limited and off-the-grid scenarios using autonomous function. Here we analyze recent advances in developing synthetic biological platforms for outside-the-lab scenarios with a focus on three major application spaces: bioproduction, biosensing, and closed-loop therapeutic and probiotic delivery. Across the Perspective, we highlight recent advances, areas for further development, possibilities for future applications, and the needs for innovation at the interface of other disciplines.
Collapse
Affiliation(s)
- Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
22
|
Peltomaa R, Fikacek S, Benito-Peña E, Barderas R, Head T, Deo S, Daunert S, Moreno-Bondi MC. Bioluminescent detection of zearalenone using recombinant peptidomimetic Gaussia luciferase fusion protein. Mikrochim Acta 2020; 187:547. [PMID: 32886242 DOI: 10.1007/s00604-020-04538-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
Abstract
The development of a bioluminescent immunosensor is reported for the determination of zearalenone (ZEA) based on a peptide mimetic identified by phage display. The peptide mimetic GW, with a peptide sequence GWWGPYGEIELL, was used to create recombinant fusion proteins with the bioluminescent Gaussia luciferase (GLuc) that were directly used as tracers for toxin detection in a competitive immunoassay without the need for secondary antibodies or further labeling. The bioluminescent sensor, based on protein G-coupled magnetic beads for antibody immobilization, enabled determination of ZEA with a detection limit of 4.2 ng mL-1 (corresponding to 420 μg kg-1 in food samples) and an IC50 value of 11.0 ng mL-1. The sensor performance was evaluated in spiked maize and wheat samples, with recoveries ranging from 87 to 106% (RSD < 20%, n = 3). Finally, the developed method was applied to the analysis of a naturally contaminated reference matrix material and good agreement with the reported concentrations was obtained.Graphical abstract.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Sabrina Fikacek
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km 2.2, 28220, Madrid, Spain
| | - Trajen Head
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Coral Gables, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Coral Gables, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Coral Gables, FL, 33136, USA.,University of Miami Clinical and Translational Science Institute, University of Miami, Miami, FL, 33136, USA
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Rezaei ZS, Shahangian SS, Hasannia S, Sajedi RH. Development of a phage display-mediated immunoassay for the detection of vascular endothelial growth factor. Anal Bioanal Chem 2020; 412:7639-7648. [PMID: 32876721 DOI: 10.1007/s00216-020-02901-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
Because of the critical role of vascular endothelial growth factor (VEGF) in angiogenesis and its significantly increased serum levels in early stages of cancer, VEGF is considered an important prognostic biomarker in different cancers. Herein, the amplification power of PCR combined with phage displaying anti-VEGF VHH, a sensitive real-time immunoassay, was precisely designed based on phage display-mediated immuno-PCR (PD-IPCR) for the detection of VEGF. This system benefits from strong and specific binding of antigen and antibody in a sandwich immunosorbent assay platform using avastin (anti-VEGF monoclonal antibody) as the capture antibody. The anti-VEGF phage particles were used as both anti-VEGF agent and DNA template in the PD-IPCR. Anti-VEGF phage ELISA showed a linear range of 3-250 ng/ml and a limit of detection (LOD) of 1.1 ng/ml. Using the PD-IPCR method, the linear range of VEGF detection was found to be 0.06-700 ng/ml, with a detection limit of 3 pg/ml. The recovery rate in serum ranged from 83% to 99%, with a relative standard deviation of 1.2-4.9%. These values indicate that the method has good sensitivity for use in clinical analysis. The proposed method was successfully applied to the clinical determination of VEGF in human serum samples, and the results showed excellent correlation with conventional ELISA (R2 = 0.995). The novel immunoassay provides a specific and sensitive immunoassay protocol for VEGF detection at very low levels. Graphical abstract.
Collapse
Affiliation(s)
- Zahra S Rezaei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Guilan, 4199613776, Iran
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115-154, Iran.
| |
Collapse
|
24
|
Pilát Z, Jonáš A, Pilátová J, Klementová T, Bernatová S, Šiler M, Maňka T, Kizovský M, Růžička F, Pantůček R, Neugebauer U, Samek O, Zemánek P. Analysis of Bacteriophage-Host Interaction by Raman Tweezers. Anal Chem 2020; 92:12304-12311. [PMID: 32815709 DOI: 10.1021/acs.analchem.0c01963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level. We employed Raman tweezers to analyze the phage-host interaction of Staphylococcus aureus strain FS159 with a virulent phage JK2 (=812K1/420) of the Myoviridae family and a temperate phage 80α of the Siphoviridae family. We analyzed the timeline of phage-induced molecular changes in infected host cells. We reliably detected the presence of replicating phages in bacterial cells within 5 min after infection. Our results lay the foundations for building a Raman-based diagnostic instrument capable of real-time, in vivo, in situ, nondestructive characterization of the phage-host relationship on the level of individual cells, which has the potential of importantly contributing to the development of phage therapy and enzybiotics.
Collapse
Affiliation(s)
- Zdeněk Pilát
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Alexandr Jonáš
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Tereza Klementová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Silvie Bernatová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Martin Šiler
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Tadeáš Maňka
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Martin Kizovský
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Filip Růžička
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.,Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| | - Pavel Zemánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Czech Academy of Sciences, Královopolská 147, 612 64 Brno, Czech Republic
| |
Collapse
|
25
|
Abstract
Bacteriophages are interesting entities on the border of biology and chemistry. In nature, they are bacteria parasites, while, after genetic manipulation, they gain new properties, e.g., selectively binding proteins. Owing to this, they may be applied as recognition elements in biosensors. Combining bacteriophages with different transducers can then result in the development of innovative sensor designs that may revolutionize bioanalytics and improve the quality of medical services. Therefore, here, we review the use of bacteriophages, or peptides from bacteriophages, as new sensing elements for the recognition of biomarkers and the construction of the highly effective diagnostics tools.
Collapse
|
26
|
Passaretti P, Sun Y, Dafforn TR, Oppenheimer PG. Determination and characterisation of the surface charge properties of the bacteriophage M13 to assist bio-nanoengineering. RSC Adv 2020; 10:25385-25392. [PMID: 35517472 PMCID: PMC9055230 DOI: 10.1039/d0ra04086j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
To truly understand the mechanisms behind the supramolecular self-assembly of nanocomponents, the characterisation of their surface properties is crucial. M13 emerged as a practical nanocomponent for bio-nanoassemblies of functional materials and devices, and its popularity is increasing as time goes by. The investigation performed in this study provides important information about the surface charge and the surface area of M13 determined through the comparison of structural data and the measurement of ζ-potential at pH ranging between 2 and 11. The developed methodologies along with the experimental findings can be subsequently exploited as a novel and convenient prediction tool of the total charge of modified versions of M13. This, in turn, will facilitate the design of the self-assembly strategies which would combine the virus building block with other micro and nano components via intermolecular interactions.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Science, University of Birmingham Birmingham B15 2TT UK
| | - Yiwei Sun
- School of Engineering and Materials Science, Queen Mary University of London London E1 4NS UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham Birmingham B15 2TT UK
| | | |
Collapse
|
27
|
Matamp N, Bhat SG. Genome characterization of novel lytic Myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus. Arch Virol 2019; 165:387-396. [PMID: 31865470 DOI: 10.1007/s00705-019-04493-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/07/2019] [Indexed: 01/06/2023]
Abstract
A pathogen of significance in the aquaculture sector, the Gram-negative marine bacterium Vibrio parahaemolyticus causes gastroenteritis associated with consumption of improperly prepared seafood. This bacterium can be controlled using lytic bacteriophages as an alternative to antibiotics. ϕVP-1 is a lytic phage of V. parahaemolyticus that was isolated from an aquafarm water sample with the aim of assessing its potential as a bio-control agent and determining its physicochemical properties and genomic sequence. Morphological analysis by transmission electron microscopy and phylogenetic analysis based on the large terminase subunit gene showed that this phage belongs to the family Myoviridae. It could infect multiple-drug-resistant (MDR) V. parahaemolyticus and V. alginolyticus strains of mangrove and seafood origin. With a maximum adsorption time of 30 min, ϕVP-1 has a short latent period of 10 min with burst size of 44 particles/cell. Whole-genome sequencing was done using the Illumina platform, and annotation was done using GeneMarkS and Prodigal. The 150,764bp genome with an overall G+C content of 41.84% had 203 putative protein-encoding open reading frames, one tRNA gene, and 66 predicted promoters. A number of putative DNA replication and regulation, DNA packaging and structure, and host lysis genes were identified. Comparison of the ϕVP-1 genome sequence to those of known Vibrio phages indicated little discernible DNA sequence similarity, suggesting that ϕVP-1 is a novel Vibrio phage. Sequence analysis revealed the presence of 64 potential ORFs with a T4-like genomic organization. In silico analysis suggested an obligate lytic life cycle and showed the absence of lysogeny or virulence genes. The complete sequence of ϕVP-1 was annotated and deposited in the GenBank database (accession no. MH363700). The genetic features of this novel phage suggest that it might be applicable for phage therapy against pathogenic strains of V. parahaemolyticus.
Collapse
Affiliation(s)
- Nandita Matamp
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.
| |
Collapse
|
28
|
Xu J, Chau Y, Lee YK. Phage-based Electrochemical Sensors: A Review. MICROMACHINES 2019; 10:E855. [PMID: 31817610 PMCID: PMC6952932 DOI: 10.3390/mi10120855] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/10/2023]
Abstract
Phages based electrochemical sensors have received much attention due to their high specificity, sensitivity and simplicity. Phages or bacteriophages provide natural affinity to their host bacteria cells and can serve as the recognition element for electrochemical sensors. It can also act as a tool for bacteria infection and lysis followed by detection of the released cell contents, such as enzymes and ions. In addition, possible detection of the other desired targets, such as antibodies have been demonstrated with phage display techniques. In this paper, the recent development of phage-based electrochemical sensors has been reviewed in terms of the different immobilization protocols and electrochemical detection techniques.
Collapse
Affiliation(s)
- Jingting Xu
- Bioengineering Program, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; (J.X.); (Y.C.)
| | - Ying Chau
- Bioengineering Program, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; (J.X.); (Y.C.)
| | - Yi-kuen Lee
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
29
|
Peltomaa R, Agudo-Maestro I, Más V, Barderas R, Benito-Peña E, Moreno-Bondi MC. Development and comparison of mimotope-based immunoassays for the analysis of fumonisin B1. Anal Bioanal Chem 2019; 411:6801-6811. [DOI: 10.1007/s00216-019-02068-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/28/2022]
|
30
|
Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. Phage Display in the Quest for New Selective Recognition Elements for Biosensors. ACS OMEGA 2019; 4:11569-11580. [PMID: 31460264 PMCID: PMC6682082 DOI: 10.1021/acsomega.9b01206] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Phages are bacterial viruses that have gained a significant role in biotechnology owing to their widely studied biology and many advantageous characteristics. Perhaps the best-known application of phages is phage display that refers to the expression of foreign peptides or proteins outside the phage virion as a fusion with one of the phage coat proteins. In 2018, one half of the Nobel prize in chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies." The outstanding technology has evolved and developed considerably since its first description in 1985, and today phage display is commonly used in a wide variety of disciplines, including drug discovery, enzyme optimization, biomolecular interaction studies, as well as biosensor development. A cornerstone of all biosensors, regardless of the sensor platform or transduction scheme used, is a sensitive and selective bioreceptor, or a recognition element, that can provide specific binding to the target analyte. Many environmentally or pharmacologically interesting target analytes might not have naturally appropriate binding partners for biosensor development, but phage display can facilitate the production of novel receptors beyond known biomolecular interactions, or against toxic or nonimmunogenic targets, making the technology a valuable tool in the quest of new recognition elements for biosensor development.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme (UFIEC), Instituto de
Salud Carlos III, Ctra.
Majadahonda-Pozuelo Km 2.2, 28220 Madrid, Spain
| | - María C. Moreno-Bondi
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
31
|
Qiu Y, Li P, Liu B, Liu Y, Wang Y, Tao T, Xu J, Hammock BD, Liu X, Guan R, Zhang C. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1642307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yulou Qiu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, People’s Republic of China
| | - Pan Li
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Beibei Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yuan Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yulong Wang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Tingting Tao
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Junli Xu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Bruce D. Hammock
- Laboratory of Pesticide and Nematology Biotechnology, Department of Entomology, University of California, Davis, CA, USA
| | - Xianjin Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Rongfa Guan
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, People’s Republic of China
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
32
|
Wang D, Hinkley T, Chen J, Talbert JN, Nugen SR. Phage based electrochemical detection of Escherichia coli in drinking water using affinity reporter probes. Analyst 2019; 144:1345-1352. [PMID: 30564809 DOI: 10.1039/c8an01850b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The monitoring of drinking water for indicators of fecal contamination is crucial for ensuring a safe supply. In this study, a novel electrochemical method was developed for the rapid and sensitive detection of Escherichia coli (E. coli) in drinking water. This strategy is based on the use of engineered bacteriophages (phages) to separate and concentrate target E. coli when conjugated with magnetic beads, and to facilitate the detection by expressing gold binding peptides fused alkaline phosphatase (GBPs-ALP). The fusion protein GBPs-ALP has both the enzymatic activity and the ability to directly bind onto a gold surface. This binding-peptide mediated immobilization method provided a novel and simple approach to immobilize proteins on a solid surface, requiring no post-translational modifications. The concentration of E. coli was determined by measuring the activity of the ALP on gold electrodes electrochemically using linear sweep voltammetry (LSV). This approach was successfully applied in the detection of E. coli in drinking water. We were able to detect 105 CFU mL-1 of E. coli within 4 hours. After 9 hours of preincubation, 1 CFU of E. coli in 100 mL of drinking water was detected with a total assay time of 12 hours. This approach compares favorably to the current EPA method and has the potential to be applied to detect different bacteria in other food matrices.
Collapse
Affiliation(s)
- Danhui Wang
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
33
|
Torbensen K, Patel AN, Anne A, Chovin A, Demaille C, Bataille L, Michon T, Grelet E. Immuno-Based Molecular Scaffolding of Glucose Dehydrogenase and Ferrocene Mediator on fd Viral Particles Yields Enhanced Bioelectrocatalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kristian Torbensen
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Anisha N. Patel
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Agnès Anne
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Arnaud Chovin
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Christophe Demaille
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Laure Bataille
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 71, Avenue Edouard Bourlaux, CS 20032-33882 CEDEX Villenave d’Ornon, France
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 71, Avenue Edouard Bourlaux, CS 20032-33882 CEDEX Villenave d’Ornon, France
| | - Eric Grelet
- Centre de Recherche Paul-Pascal, UMR 5031 CNRS, Université de Bordeaux, 115 Avenue Schweitzer, 33600 Pessac, France
| |
Collapse
|
34
|
Barderas R, Benito-Peña E. The 2018 Nobel Prize in Chemistry: phage display of peptides and antibodies. Anal Bioanal Chem 2019; 411:2475-2479. [PMID: 30888467 DOI: 10.1007/s00216-019-01714-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
One-half of the 2018 Nobel Prize in Chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies". This feature article summarizes significant achievements leading to the development of phage display of peptides and antibodies, where a bacteriophage is genetically modified to display peptides and proteins, with the primary aim of producing new biopharmaceuticals. These significant achievements are proven to be useful for the development of phage-based bioassays and biosensors.
Collapse
Affiliation(s)
- Rodrigo Barderas
- Functional Proteomics Unit, UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
35
|
Reynoso EC, Torres E, Bettazzi F, Palchetti I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. BIOSENSORS 2019; 9:E20. [PMID: 30720729 PMCID: PMC6468886 DOI: 10.3390/bios9010020] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
Pesticides, due to their intensive use and their peculiar chemical features, can persist in the environment and enter the trophic chain, thus representing an environmental risk for the ecosystems and human health. Although there are several robust and reliable standard analytical techniques for their monitoring, the high frequency of contamination caused by pesticides requires methods for massive monitoring campaigns that are capable of rapidly detecting these compounds in many samples of different origin. Immunosensors represent a potential tool for simple, rapid, and sensitive monitoring of pesticides. Antibodies coupled to electrochemical or optical transducers have resulted in effective detection devices. In this review, the new trends in immunosensor development and the application of immunosensors for the detection of pesticides of environmental concern-such as glyphosate, organophosphates, and neonicotinoids-are described.
Collapse
Affiliation(s)
- Eduardo C Reynoso
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Eduardo Torres
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico.
| | - Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
| |
Collapse
|
36
|
Janczuk-Richter M, Marinović I, Niedziółka-Jönsson J, Szot-Karpińska K. Recent applications of bacteriophage-based electrodes: A mini-review. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
37
|
Peltomaa R, Amaro-Torres F, Carrasco S, Orellana G, Benito-Peña E, Moreno-Bondi MC. Homogeneous Quenching Immunoassay for Fumonisin B 1 Based on Gold Nanoparticles and an Epitope-Mimicking Yellow Fluorescent Protein. ACS NANO 2018; 12:11333-11342. [PMID: 30481972 DOI: 10.1021/acsnano.8b06094] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity, sensitivity, and speed. On the basis of a previously identified epitope-mimicking peptide, or mimotope, we developed a homogeneous fluorescence quenching immunoassay based on gold nanoparticles (AuNPs) and a recombinant epitope-mimicking fusion protein for the detection of mycotoxin fumonisin B1 (FB1). The fumonisin mimotope was cloned as a fusion protein with a yellow fluorescent protein that could be used directly as the tracer for FB1 detection without the need of labeling or a secondary antibody. Furthermore, owing to the fluorescence quenching ability of AuNPs, a homogeneous immunoassay could be performed in a single step without washing steps to separate the unbound tracer. The homogeneous quenching assay showed negligible matrix effects in 5% wheat extract and high sensitivity for FB1 detection, with a dynamic range from 7.3 to 22.6 ng mL-1, a detection limit of 1.1 ng mL-1, and IC50 value of 12.9 ng mL-1, which was significantly lower than the IC50 value of the previously reported assay using the synthetic counterpart of the same mimotope in a microarray format. The homogeneous assay was demonstrated to be specific for fumonisins B1 and B2, as no significant cross-reactivity with other mycotoxins was observed, and acceptable recoveries (86% for FB1 2000 μg kg-1 and 103% for FB1 4000 μg kg-1), with relative standard deviation less than 6.5%, were reported from spiked wheat samples, proving that the method could provide a valuable tool for simple analysis of mycotoxin-contaminated food samples.
Collapse
|
38
|
Pali M, Bever CRS, Vasylieva N, Hammock BD, Suni II. Impedance Detection of 3-Phenoxybenzoic Acid with a Noncompetitive Two-site Phage Anti-immunocomplex Assay. ELECTROANAL 2018. [DOI: 10.1002/elan.201800457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Madhavi Pali
- Department of Chemistry & Biochemistry, Materials Technology Center; Southern Illinois University; Carbondale IL 62901
| | - Candace R. S. Bever
- Department of Entomology & Nematology; University of California; Davis CA 95616
- Western Regional Research Center; Agricultural Research Service Unided States Department of Agriculture; 800 Buchanan Street Albany CA 94710 USA
| | - Natalia Vasylieva
- Department of Entomology & Nematology; University of California; Davis CA 95616
| | - Bruce D. Hammock
- Department of Entomology & Nematology; University of California; Davis CA 95616
| | - Ian I. Suni
- Department of Chemistry & Biochemistry, Materials Technology Center; Southern Illinois University; Carbondale IL 62901
- Department of Mechanical Engineering & Energy Processes; Southern Illinois University; Carbondale IL 62901
| |
Collapse
|
39
|
Wang X, Xiao Y, Hao H, Zhang Y, Xu X, Tang R. Therapeutic Potential of Biomineralization‐Based Engineering. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Yun Xiao
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Haibin Hao
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ying Zhang
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xurong Xu
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
40
|
Kunstmann S, Scheidt T, Buchwald S, Helm A, Mulard LA, Fruth A, Barbirz S. Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens. Viruses 2018; 10:E431. [PMID: 30111705 PMCID: PMC6116271 DOI: 10.3390/v10080431] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.
Collapse
Affiliation(s)
- Sonja Kunstmann
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Tom Scheidt
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Saskia Buchwald
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Alexandra Helm
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Laurence A Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Roux, 75015 Paris, France.
- CNRS UMR 3523, Institut Pasteur, 75015 Paris, France.
| | - Angelika Fruth
- National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, 38855 Wernigerode, Germany.
| | - Stefanie Barbirz
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
41
|
Qiu Y, Li P, Dong S, Zhang X, Yang Q, Wang Y, Ge J, Hammock BD, Zhang C, Liu X. Phage-Mediated Competitive Chemiluminescent Immunoassay for Detecting Cry1Ab Toxin by Using an Anti-Idiotypic Camel Nanobody. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:950-956. [PMID: 29293334 PMCID: PMC7314401 DOI: 10.1021/acs.jafc.7b04923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cry toxins have been widely used in genetically modified organisms for pest control, raising public concern regarding their effects on the natural environment and food safety. In this work, a phage-mediated competitive chemiluminescent immunoassay (c-CLIA) was developed for determination of Cry1Ab toxin using anti-idiotypic camel nanobodies. By extracting RNA from camels' peripheral blood lymphocytes, a naive phage-displayed nanobody library was established. Using anti-Cry1Ab toxin monoclonal antibodies (mAbs) against the library for anti-idiotypic antibody screening, four anti-idiotypic nanobodies were selected and confirmed to be specific for anti-Cry1Ab mAb binding. Thereafter, a c-CLIA was developed for detection of Cry1Ab toxin based on anti-idiotypic camel nanobodies and employed for sample testing. The results revealed a half-inhibition concentration of developed assay to be 42.68 ± 2.54 ng/mL, in the linear range of 10.49-307.1 ng/mL. The established method is highly specific for Cry1Ab recognition, with negligible cross-reactivity for other Cry toxins. For spiked cereal samples, the recoveries of Cry1Ab toxin ranged from 77.4% to 127%, with coefficient of variation of less than 9%. This study demonstrated that the competitive format based on phage-displayed anti-idiotypic nanobodies can provide an alternative strategy for Cry toxin detection.
Collapse
Affiliation(s)
- Yulou Qiu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaoshuai Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qianru Yang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Ge
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bruce D. Hammock
- Laboratory of Pesticide & Biotechnology, Department of Entomology, University of California, Davis, CA 95616, USA
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Corresponding author at: Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Tel.:+86-25-8439 0401; (C. Zhang)
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
42
|
Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov Today 2017; 23:448-455. [PMID: 29158194 DOI: 10.1016/j.drudis.2017.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
Fast and reliable bacteria detection is crucial for lowering the socioeconomic burden related to bacterial infections (e.g., in healthcare, industry or security). Bacteriophages (i.e., viruses with bacterial hosts) pose advantages such as great specificity, robustness, toughness and cheap preparation, making them popular biorecognition elements in biosensors and other assays for bacteria detection. There are several possible designs of bacteriophage-based biosensors. Here, we focus on developments based on whole virions as recognition agents. We divide the review into sections dealing with phage lysis as an analytical signal, phages as capturing elements in assays and phage-based sensing layers, putting the main focus on development reported within the past three years but without omitting the fundamentals.
Collapse
Affiliation(s)
- Łukasz Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Janczuk-Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
43
|
Peltomaa R, Benito-Peña E, Moreno-Bondi MC. Bioinspired recognition elements for mycotoxin sensors. Anal Bioanal Chem 2017; 410:747-771. [PMID: 29127461 DOI: 10.1007/s00216-017-0701-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
Abstract
Mycotoxins are low molecular weight molecules produced as secondary metabolites by filamentous fungi that can be found as natural contaminants in many foods and feeds. These toxins have been shown to have adverse effects on both human and animal health, and are the cause of significant economic losses worldwide. Sensors for mycotoxin analysis have traditionally applied elements of biological origin for the selective recognition purposes. However, since the 1970s there has been an exponential growth in the use of genetically engineered or synthetic biomimetic recognition elements that allow some of the limitations associated with the use of natural receptors for the analyses of these toxins to be circumvented. This review provides an overview of recent advances in the application of bioinspired recognition elements, including recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, to the development of sensors for mycotoxins based on different transduction elements. Graphical abstract Novel analytical methods based on bioinspired recognition elements, such as recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, can improve the detection of mycotoxins and provide better tools than their natural counterparts to ensure food safety.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
44
|
Wang X, Yang T, Zhang X, Chen M, Wang J. In situ growth of gold nanoparticles on Hg 2+-binding M13 phages for mercury sensing. NANOSCALE 2017; 9:16728-16734. [PMID: 29067391 DOI: 10.1039/c7nr06292c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mercury poses a serious threat to human health and the ecosystem. Its pollution is still prevalent in developing areas, which calls for the development of a simple on-site method for Hg2+ detection. Plasmonic nanosensors for mercury, especially those based on gold nanoparticles (AuNPs), have been increasingly developed due to the flourish of nanotechnology in the last decade. However, the limitation on either selectivity or stability hindered their practical applications. Herein, by taking advantage of the unique optical properties of AuNPs and the versatility of M13 phages, a novel Hg2+ sensing strategy is proposed. AuNPs grew in situ on the surface of Hg2+-binding M13 phages at room temperature and the resulting AuNP-phage networks were directly used for mercury sensing. Hg2+ was selectively captured by M13 phages indwelling in the networks and gathered around AuNPs, followed by the reduction into Hg(0) and deposition on the AuNP surfaces, wherein it resulted in a blue shift of the SPR band of AuNPs and an increase in the absorbance. An LOD of 8 × 10-8 mol L-1 was achieved based on the quantification of the absorption ratio of AuNPs at 525 and 650 nm. As the Hg2+ recognition was double guaranteed by the capture of Hg2+-binding phages as well as the unique affinity between mercury and gold, the sensing system showed a high selectivity and a superior interference tolerance capability, facilitating its practical applications in environmental water bodies without deterioration of the sensing performance.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | |
Collapse
|
45
|
Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MR, Garton NJ, Stapley AG, Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 2017; 249:100-133. [PMID: 28688779 DOI: 10.1016/j.cis.2017.05.014] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
Abstract
Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver for formulation and encapsulation is shelf life and storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to document approaches used in the published literature on the formulation and stabilisation of phage for storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles, nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the review concludes by looking at promising new approaches for micro- and nanoencapsulation of phages and how these may address gaps in the field.
Collapse
|
46
|
Cinti S, Volpe G, Piermarini S, Delibato E, Palleschi G. Electrochemical Biosensors for Rapid Detection of Foodborne Salmonella: A Critical Overview. SENSORS 2017; 17:s17081910. [PMID: 28820458 PMCID: PMC5579882 DOI: 10.3390/s17081910] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
Salmonella has represented the most common and primary cause of food poisoning in many countries for at least over 100 years. Its detection is still primarily based on traditional microbiological culture methods which are labor-intensive, extremely time consuming, and not suitable for testing a large number of samples. Accordingly, great efforts to develop rapid, sensitive and specific methods, easy to use, and suitable for multi-sample analysis, have been made and continue. Biosensor-based technology has all the potentialities to meet these requirements. In this paper, we review the features of the electrochemical immunosensors, genosensors, aptasensors and phagosensors developed in the last five years for Salmonella detection, focusing on the critical aspects of their application in food analysis.
Collapse
Affiliation(s)
- Stefano Cinti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Giulia Volpe
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Silvia Piermarini
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Elisabetta Delibato
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Giuseppe Palleschi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
47
|
Richter Ł, Bielec K, Leśniewski A, Łoś M, Paczesny J, Hołyst R. Dense Layer of Bacteriophages Ordered in Alternating Electric Field and Immobilized by Surface Chemical Modification as Sensing Element for Bacteria Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19622-19629. [PMID: 28523910 DOI: 10.1021/acsami.7b03497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Faster and more sensitive environmental monitoring should be developed to face the worldwide problem of bacterial infections. To remedy this issue, we demonstrate a bacteria-sensing element that utilizes dense and ordered layers of bacteriophages specific to the given bacteria strain. We combine (1) the chemical modification of a surface to increase the surface coverage of bacteriophages (2) with an alternating electric field to greatly increase the number of properly oriented bacteriophages at the surface. Usually, in sensing elements, a random orientation of bacteriophages results in steric hindrance, which results in no more than a few percent of all receptors being available. An increased number of properly ordered phages results in the optimal performance of phage receptors, manifesting in up to a 64-fold increase in sensitivity and a limit of detection as low as 100 CFU mL-1. Our sensing elements can be applied for selective, sensitive, and fast (15 min) bacterial detection. A well-studied pair T4 bacteriophage-bacteria Escherichia coli, was used as a model; however, the method could be adapted to prepare bacteriophage-based sensors for detection of a variety of bacterial strains.
Collapse
Affiliation(s)
- Łukasz Richter
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Bielec
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Leśniewski
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Łoś
- Department of Molecular Biology, University of Gdansk , Wita Stwosza 59, 80-308 Gdansk, Poland
- Phage Consultants , Partyzantów 10/18, 80-254 Gdansk, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
48
|
Peltomaa R, Benito-Peña E, Barderas R, Sauer U, González Andrade M, Moreno-Bondi MC. Microarray-Based Immunoassay with Synthetic Mimotopes for the Detection of Fumonisin B1. Anal Chem 2017; 89:6216-6223. [DOI: 10.1021/acs.analchem.7b01178] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | - Ursula Sauer
- Center
for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Martin González Andrade
- Department
of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán D.F., México
City 04510, México
| | | |
Collapse
|
49
|
Bettazzi F, Marrazza G, Minunni M, Palchetti I, Scarano S. Biosensors and Related Bioanalytical Tools. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
Hinman SS, Cheng Q. Bioinspired Assemblies and Plasmonic Interfaces for Electrochemical Biosensing. J Electroanal Chem (Lausanne) 2016; 781:136-146. [PMID: 28163664 PMCID: PMC5283611 DOI: 10.1016/j.jelechem.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrochemical biosensing represents a collection of techniques that may be utilized for capture and detection of biomolecules in both simple and complex media. While the instrumentation and technological aspects play important roles in detection capabilities, the interfacial design aspects are of equal importance, and often, those inspired by nature produce the best results. This review highlights recent material designs, recognition schemes, and method developments as they relate to targeted electrochemical analysis for biological systems. This includes the design of electrodes functionalized with peptides, proteins, nucleic acids, and lipid membranes, along with nanoparticle mediated signal amplification mechanisms. The topic of hyphenated surface plasmon resonance assays is also discussed, as this technique may be performed concurrently with complementary and/or confirmatory measurements. Together, smart materials and experimental designs will continue to pave the way for complete biomolecular analyses of complex and technically challenging systems.
Collapse
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
| | - Quan Cheng
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, USA
| |
Collapse
|