1
|
Krock B, Mudge EM, Müller A, Meyer S, Tebben J, McCarron P, Abele D, Tillmann U. Azaspiracid-59 accumulation and transformation in mussels (Mytilus edulis) after feeding with Azadinium poporum (Dinophyceae). Toxicon 2024; 251:108152. [PMID: 39490451 DOI: 10.1016/j.toxicon.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Azaspiracid-59 (AZA-59) was detected in plankton in coastal waters of the Pacific Northwest USA. Given that bivalves metabolize and transform accumulated phycotoxins, a strain of Azadinium poporum isolated from the coast of Washington State that is a known producer of AZA-59 was used in a controlled feeding experiment with mussels (Mytilus edulis) to assess AZA-59 accumulation rates and transformation into shellfish metabolites. Mussels started feeding immediately after the addition of A. poporum. Mussels were generally healthy during the entire experimental exposure of 18 days with prevailingly high rates of clearance (approx. 100 mL per mussel per hour) and ingestion. Mussels were extracted after different exposure times and were analyzed by liquid chromatography coupled with low- and high-resolution mass spectrometry. In the course of the experiment a number of putative AZA-59 metabolites were detected including hydroxyl and carboxy analogues that corresponded with previously reported mussel metabolites of AZA-1. A significant formation of 3-OH fatty acid acyl esters relative to free AZAs was observed through the time course of the study, with numerous fatty acid ester variants of AZA-59 confirmed. These results illustrate the potential for metabolism of AZA-59 in shellfish and provide important information for local AZA monitoring and toxicity testing along the Northern Pacific US coast.
Collapse
Affiliation(s)
- Bernd Krock
- Alfred-Wegener-Institut Helmholz-Zentrum für Polar und Meeresforschung, Ökologische Chemie, Bremerhaven, Germany.
| | - Elizabeth M Mudge
- Biotoxin Metrology, National Research Council of Canada, Halifax, NS, B3H 3Z1, Canada.
| | - Annegret Müller
- Alfred-Wegener-Institut Helmholz-Zentrum für Polar und Meeresforschung, Ökologische Chemie, Bremerhaven, Germany.
| | - Stefanie Meyer
- Alfred-Wegener-Institut Helmholz-Zentrum für Polar- und Meeresforschung, Benthosökologie, Bremerhaven, Germany.
| | - Jan Tebben
- Alfred-Wegener-Institut Helmholz-Zentrum für Polar und Meeresforschung, Ökologische Chemie, Bremerhaven, Germany.
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council of Canada, Halifax, NS, B3H 3Z1, Canada.
| | - Doris Abele
- Alfred-Wegener-Institut Helmholz-Zentrum für Polar- und Meeresforschung, Benthosökologie, Bremerhaven, Germany
| | - Urban Tillmann
- Alfred-Wegener-Institut Helmholz-Zentrum für Polar und Meeresforschung, Ökologische Chemie, Bremerhaven, Germany.
| |
Collapse
|
2
|
Kuwata K, Lum WM, Takahashi K, Benico G, Takahashi K, Lim PT, Leaw CP, Uchida H, Ozawa M, Matsushima R, Watanabe R, Suzuki T, Iwataki M. Phylogeny and ultrastructure of a non-toxigenic dinoflagellate Amphidoma fulgens sp. nov. (Amphidomataceae, Dinophyceae), with a wide distribution across Asian Pacific. HARMFUL ALGAE 2024; 138:102701. [PMID: 39244236 DOI: 10.1016/j.hal.2024.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
Amphidoma languida, a marine thecate dinoflagellate that produces the lipophilic toxin azaspiracids (AZAs), is primarily found in the Atlantic. Although this species has not been recorded in the Asian Pacific, environmental DNAs related to Am. languida have been widely detected in the region by metabarcoding analysis. Their morphology and AZA production remain unclear. In this study, the morphology, ultrastructure, phylogeny, and AZA production of nine Amphidoma strains isolated from Japan, Malaysia, and Philippines were investigated. Phylogenetic trees inferred from rDNAs (SSU, ITS, and LSU rDNA) showed monophyly of the nine Pacific strains and were sister to the Am. languida clade, including the toxigenic strains from the Atlantic. Cells were ellipsoid, 8.7-16.7 µm in length and 7.4-14.0 µm in width, with a conspicuous apical pore complex. A large nucleus in the hyposome, parietal chloroplast with a spherical pyrenoid in the episome, and refractile bodies were observed. Thecal tabulation was typical of Amphidoma, Po, cp, X, 6', 6'', 6C, 5S, 6''', 2''''. A ventral pore was located on the anterior of 1' plate, beside the suture to 6' plate. The presence of a ventral depression, on the anterior of anterior sulcal plate, was different from Am. languida. A large antapical pore, containing approximately 10 small pores, was observed. Cells were apparently smaller than Am. trioculata, a species possessing three pores (ventral pore, ventral depression, and antapical pore). TEM showed the presence of crystalline structures, resembling guanine crystals, and cytoplasmic invaginations into the pyrenoid matrix. Flagellar apparatus lacking the striated root connective is similar to peridinioids and related dinoflagellates. AZAs were not detected from the Pacific strains by LC-MS/MS. This non-toxigenic Amphidoma species, here we propose as Amphidoma fulgens sp. nov., is widely distributed in the Asian Pacific. Moreover, molecular comparison also suggested that most of the environmental DNA sequences previously reported as Am. languida or related sequences from the Asian Pacific were attributable to Am. fulgens.
Collapse
Affiliation(s)
- Koyo Kuwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Wai Mun Lum
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan; Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Kazuya Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Garry Benico
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan; Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, 3120, Philippines
| | - Kazutaka Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Mayu Ozawa
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Ryoji Matsushima
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Ryuichi Watanabe
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Mitsunori Iwataki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
3
|
Wu H, Zhang Q, Dong C, Zheng G, Tan Z, Gu H. Coordination regulation of enhanced performance reveals the tolerance mechanism of Chlamys farreri to azaspiracid toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135247. [PMID: 39029196 DOI: 10.1016/j.jhazmat.2024.135247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Azaspiracids (AZAs) are lipid biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. However, the mechanisms underlying the tolerance of shellfish to high levels of such toxins remain poorly understood. This study investigated the combined effects of detoxification metabolism and stress-related responses in scallops Chlamys farreri exposed to AZA. Scallops accumulated a maximum of 361.81 μg AZA1 eq/kg and 41.6 % AZA residue remained after 21 days of exposure. A range of AZA2 metabolites, including AZA19, AZA11, and AZA23, and trace levels of AZA2-GST, were detected. Total hemocyte counts significantly increased and ROS levels remained consistently high until gradually decreasing. Immune system activation mediated mitochondrial dysfunction and severe energy deficiency. DEGs increased over time, with key genes CYP2J6 and GPX6 contributing to AZA metabolism. These transcriptome and metabolic results identify the regulation of energy metabolism pathways, including inhibition of the TCA cycle and activation of carbohydrates, amino acids, and lipids. AZA also induced autophagy through the MAPK-AMPK signaling pathways, and primary inhibited PI3K/AKT to decrease mTOR pathway expression. Our results provide additional insights into the resistance of C. farreri to AZA, characterized by re-establishing redox homeostasis toward a more oxidative state.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianru Zhang
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| |
Collapse
|
4
|
Norambuena-Subiabre L, Carbonell P, Salgado P, Zamora C, Espinoza-González O. Sources and profiles of toxins in shellfish from the south-central coast of Chile (36°‒ 43° S). HARMFUL ALGAE 2024; 133:102608. [PMID: 38485442 DOI: 10.1016/j.hal.2024.102608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
The study of marine toxins in shellfish is of the utmost importance to ensure people's food safety. Marine toxins in shellfish and microalgae in the water column off the south-central coast of Chile (36°‒43° S) were studied in a network of 64 stations over a 14-month period. The relative abundance of harmful species Alexandrium catenella, Alexandrium ostenfeldii, Protoceratium reticulatum, Dinophysis acuminata, Dinophysis acuta, Pseudo-nitzschia seriata group and P. delicatissima group was analyzed. The detection and quantification of lipophilic toxins and domoic acid (DA) in shellfish was determined by UHPLC-MS/MS, and for Paralytic Shellfish Toxins (PSTs) by HPLC-FD with post-column oxidation, while for a culture of A. ostenfeldii a Hylic-UHPLC-MS/MS was used. Results showed that DA, gonyautoxin (GTX)-2, GTX-3 and pectenotoxin (PTX)-2 were detected below the permitted limits, while Gymnodimine (GYM)-A and 13-desmethylespirolide C (SPX-1) were below the limit of quantitation. According to the distribution and abundance record of microalgae, DA would be associated to P. seriata and P. delicatissima-groups, PTX-2 to D. acuminata, and GTX-2, GTX-3, GYM-A, and SPX-1 to A. ostenfeldii. However, the toxin analysis of an A. ostenfeldii culture from the Biobío region only showed the presence of the paralytic toxins C2, GTX-2, GTX-3, GTX-5 and saxitoxin, therefore, the source of production of GYM and SPX is still undetermined.
Collapse
Affiliation(s)
- Luis Norambuena-Subiabre
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile.
| | - Pamela Carbonell
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile
| | - Pablo Salgado
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Enrique Abello 0552, Punta Arenas, Chile
| | - Claudia Zamora
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Enrique Abello 0552, Punta Arenas, Chile
| | - Oscar Espinoza-González
- Instituto de Fomento Pesquero (IFOP), Centro de Estudios de Algas Nocivas (CREAN), Padre Harter 574, Puerto Montt, Chile
| |
Collapse
|
5
|
Yang J, Sun W, Sun M, Cui Y, Wang L. Current Research Status of Azaspiracids. Mar Drugs 2024; 22:79. [PMID: 38393050 PMCID: PMC10890026 DOI: 10.3390/md22020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The presence and impact of toxins have been detected in various regions worldwide ever since the discovery of azaspiracids (AZAs) in 1995. These toxins have had detrimental effects on marine resource utilization, marine environmental protection, and fishery production. Over the course of more than two decades of research and development, scientists from all over the world have conducted comprehensive studies on the in vivo metabolism, in vitro synthesis methods, pathogenic mechanisms, and toxicology of these toxins. This paper aims to provide a systematic introduction to the discovery, distribution, pathogenic mechanism, in vivo biosynthesis, and in vitro artificial synthesis of AZA toxins. Additionally, it will summarize various detection methods employed over the past 20 years, along with their advantages and disadvantages. This effort will contribute to the future development of rapid detection technologies and the invention of detection devices for AZAs in marine environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Lianghua Wang
- Basic Medical College, Naval Medical University, Shanghai 200433, China; (J.Y.); (W.S.); (M.S.); (Y.C.)
| |
Collapse
|
6
|
Accoroni S, Cangini M, Angeletti R, Losasso C, Bacchiocchi S, Costa A, Taranto AD, Escalera L, Fedrizzi G, Garzia A, Longo F, Macaluso A, Melchiorre N, Milandri A, Milandri S, Montresor M, Neri F, Piersanti A, Rubini S, Suraci C, Susini F, Vadrucci MR, Mudadu AG, Vivaldi B, Soro B, Totti C, Zingone A. Marine phycotoxin levels in shellfish-14 years of data gathered along the Italian coast. HARMFUL ALGAE 2024; 131:102560. [PMID: 38212084 DOI: 10.1016/j.hal.2023.102560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Along the Italian coasts, toxins of algal origin in wild and cultivated shellfish have been reported since the 1970s. In this study, we used data gathered by the Veterinary Public Health Institutes (IZS) and the Italian Environmental Health Protection Agencies (ARPA) from 2006 to 2019 to investigate toxicity events along the Italian coasts and relate them to the distribution of potentially toxic species. Among the detected toxins (OA and analogs, YTXs, PTXs, STXs, DAs, AZAs), OA and YTX were those most frequently reported. Levels exceeding regulatory limits in the case of OA (≤2,448 μg equivalent kg-1) were associated with high abundances of Dinophysis spp., and in the case of YTXs (≤22 mg equivalent kg-1) with blooms of Gonyaulax spinifera, Lingulodinium polyedra, and Protoceratium reticulatum. Seasonal blooms of Pseudo-nitzschia spp. occur all along the Italian coast, but DA has only occasionally been detected in shellfish at concentrations always below the regulatory limit (≤18 mg kg-1). Alexandrium spp. were recorded in several areas, although STXs (≤13,782 µg equivalent kg-1) rarely and only in few sites exceeded the regulatory limit in shellfish. Azadinium spp. have been sporadically recorded, and AZAs have been sometimes detected but always in low concentrations (≤7 µg equivalent kg-1). Among the emerging toxins, PLTX-like toxins (≤971 μg kg-1 OVTX-a) have often been detected mainly in wild mussels and sea urchins from rocky shores due to the presence of Ostreopsis cf. ovata. Overall, Italian coastal waters harbour a high number of potentially toxic species, with a few HAB hotspots mainly related to DSP toxins. Nevertheless, rare cases of intoxications have occurred so far, reflecting the whole Mediterranean Sea conditions.
Collapse
Affiliation(s)
| | - Monica Cangini
- National Reference Laboratory for Marine Biotoxins, CRM, Cesenatico, FC, Italy
| | | | | | | | | | | | | | | | - Angela Garzia
- DiSVA, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | - Anna Milandri
- National Reference Laboratory for Marine Biotoxins, CRM, Cesenatico, FC, Italy
| | - Stefania Milandri
- National Reference Laboratory for Marine Biotoxins, CRM, Cesenatico, FC, Italy
| | | | - Francesca Neri
- DiSVA, Università Politecnica delle Marche, Ancona, Italy
| | | | - Silva Rubini
- IZS della Lombardia e dell'Emilia-Romagna, Ferrara, Italy
| | | | | | | | | | | | | | - Cecilia Totti
- DiSVA, Università Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
7
|
Salas R, Murphy E, Doohan R, Tillmann U, Thomas OP. Production of the dinoflagellate Amphidoma languida in a large scale photobioreactor and structure elucidation of its main metabolite AZA-39. HARMFUL ALGAE 2023; 127:102471. [PMID: 37544671 DOI: 10.1016/j.hal.2023.102471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 08/08/2023]
Abstract
Shellfish contamination with azaspiracids (AZA) is a major and recurrent problem for the Irish shellfish industry. Amphidoma languida, a small thecate dinoflagellate of the family Amphidomataceae, is widely distributed in Irish coastal waters and is one of the identified source species of azaspiracids. Irish and North Sea strains of Am. languida have been found to produce as major metabolites AZA-38 and -39 whose structures have only been provisionally elucidated by mass spectrometry and their toxic potential is currently unknown. In order to provide pure AZA-38 and -39 for subsequent structural and toxicological analyses, we present the first successful large-scale culture of Am. languida. A 180 L in house prototype bioreactor was used for culture growth and harvesting in semi-continuous mode for two months. Two different runs of the photobiorector with different light and pH setting showed the highest toxin yield at higher light intensity and slightly higher pH. AZA-38 and -39 cell quota were measured throughout the complete growth cycle with AZA-39 cell quota increasing in proportion to AZA-38 at late stationary to senescence phase. Over two experiments a total of 700 L of culture was harvested yielding 0.45 mg of pure AZA-39. The structure of AZA-39 was elucidated through NMR data analyses, which led to a revision of the structure proposed previously by mass spectrometry. While the spirotetrahydrofuran/tetrahydrofuran of rings A and B has been confirmed by NMR for AZA-39, a methyl is still present in position C-14 and the carboxylic acid chain is different from the structure proposed initially.
Collapse
Affiliation(s)
- Rafael Salas
- Marine Institute, Rinville, Oranmore, H91 R673, Co. Galway, Ireland.
| | - Elliot Murphy
- Marine Institute, Rinville, Oranmore, H91 R673, Co. Galway, Ireland; School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91TK33 Galway, Ireland
| | - Roisin Doohan
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91TK33 Galway, Ireland
| | - Urban Tillmann
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91TK33 Galway, Ireland
| |
Collapse
|
8
|
Liu M, Tillmann U, Ding G, Wang A, Gu H. Metabarcoding revealed a high diversity of Amphidomataceae (Dinophyceae) and the seasonal distribution of their toxigenic species in the Taiwan Strait. HARMFUL ALGAE 2023; 124:102404. [PMID: 37164557 DOI: 10.1016/j.hal.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/12/2023]
Abstract
The dinophyte family Amphidomataceae includes the genera Azadinium and Amphidoma. Four of these species are known to produce azaspiracids, which are lipophilic phycotoxins accumulating in shellfish. The diversity and biogeography of Amphidomataceae is far from yet resolved. Here we performed a time series sampling of both water and sediments in the Taiwan Strait from Nov. 2018 to April 2021. Metabarcoding was performed to unveil the diversity of Amphidomataceae targeting internal transcribed spacer (ITS1) region and partial large subunit ribosomal DNA (LSU rDNA D1-D3), followed by quantitative PCR (qPCR) with modified primers for Az. poporum ribotypes. The diversity of Amphidomataceae was revealed from the water samples with the aid of ITS1 and LSU based molecular phylogeny. The LSU based approach detected only a few species. In contrast, ITS1 based dataset showed eight new Azadinium clades and several ZOTUs (zero-radius operational taxonomic units) grouping together with Am. languida. Moreover, eleven known Azadinium species including three ribotypes of Az. poporum and Az. dexteroporum, and two ribotypes of Az. spinosum, were detected. The latter two species have not been reported in China before. Among these toxigenic species, Az. poporum was relevantly abundant whereas others were rare. The maximum of 209 cells L -1 of Az. poporum ribotype A was estimated using qPCR nearby Quanzhou in Nov. 2018 and 172 cells L 1 of Az. poporum ribotype B was detected far off coast in Apr. 2021. Metabarcoding on sediment samples revealed Az. poporum ribotypes B and C, but strains obtained with sediment incubation experiments yielded only ribotype B. Using qPCR about 0.2 cysts g -1 of Az. poporum ribotype B were quantified in May 2019 but cysts of Az. poporum ribotype C were not detected. Our results suggest that metabarcoding targeting ITS1 region is powerful to uncover the diversity of harmful dinophytes. Our results also highlight the rich diversity of Amphidomataceae and risk potential of azaspiracids in the Taiwan Strait and surrounding waters.
Collapse
Affiliation(s)
- Minlu Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR. China
| | - Urban Tillmann
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Guangmao Ding
- Fishery Resources Monitoring Center of Fujian Province, Fuzhou 350003, PR. China
| | - Aijun Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR. China; Fujian Provincial Key Laboratory of Marine Physical and Geological Processes, Xiamen 361005, PR. China
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR. China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR. China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR. China.
| |
Collapse
|
9
|
Dzhembekova N, Moncheva S, Slabakova N, Zlateva I, Nagai S, Wietkamp S, Wellkamp M, Tillmann U, Krock B. New Knowledge on Distribution and Abundance of Toxic Microalgal Species and Related Toxins in the Northwestern Black Sea. Toxins (Basel) 2022; 14:685. [PMID: 36287954 PMCID: PMC9610735 DOI: 10.3390/toxins14100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
Numerous potentially toxic plankton species commonly occur in the Black Sea, and phycotoxins have been reported. However, the taxonomy, phycotoxin profiles, and distribution of harmful microalgae in the basin are still understudied. An integrated microscopic (light microscopy) and molecular (18S rRNA gene metabarcoding and qPCR) approach complemented with toxin analysis was applied at 41 stations in the northwestern part of the Black Sea for better taxonomic coverage and toxin profiling in natural populations. The combined dataset included 20 potentially toxic species, some of which (Dinophysis acuminata, Dinophysis acuta, Gonyaulax spinifera, and Karlodinium veneficum) were detected in over 95% of the stations. In parallel, pectenotoxins (PTX-2 as a major toxin) were registered in all samples, and yessotoxins were present at most of the sampling points. PTX-1 and PTX-13, as well as some YTX variants, were recorded for the first time in the basin. A positive correlation was found between the cell abundance of Dinophysis acuta and pectenotoxins, and between Lingulodinium polyedra and Protoceratium reticulatum and yessotoxins. Toxic microalgae and toxin variant abundance and spatial distribution was associated with environmental parameters. Despite the low levels of the identified phycotoxins and their low oral toxicity, chronic toxic exposure could represent an ecosystem and human health hazard.
Collapse
Affiliation(s)
- Nina Dzhembekova
- Institute of Oceanology “Fridtjof Nansen”—Bulgarian Academy of Sciences, 9000 Varna, Bulgaria
| | - Snejana Moncheva
- Institute of Oceanology “Fridtjof Nansen”—Bulgarian Academy of Sciences, 9000 Varna, Bulgaria
| | - Nataliya Slabakova
- Institute of Oceanology “Fridtjof Nansen”—Bulgarian Academy of Sciences, 9000 Varna, Bulgaria
| | - Ivelina Zlateva
- Institute of Oceanology “Fridtjof Nansen”—Bulgarian Academy of Sciences, 9000 Varna, Bulgaria
| | - Satoshi Nagai
- Fisheries Research and Education Agency, Fisheries Technology Institute, Yokohama 236-8648, Kanagawa, Japan
| | - Stephan Wietkamp
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, 0471 Bremerhaven, Germany
| | - Marvin Wellkamp
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, 0471 Bremerhaven, Germany
| | - Urban Tillmann
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, 0471 Bremerhaven, Germany
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Ökologische Chemie, 0471 Bremerhaven, Germany
| |
Collapse
|
10
|
Aboualaalaa H, El Kbiach ML, Rijal Leblad B, Hervé F, Hormat-Allah A, Baudy L, Ennaskhi I, Hammi I, Ibghi M, Elmortaji H, Abadie E, Rolland JL, Amzil Z, Laabir M. Development of harmful algal blooms species responsible for lipophilic and amnesic shellfish poisoning intoxications in southwestern Mediterranean coastal waters. Toxicon 2022; 219:106916. [PMID: 36115413 DOI: 10.1016/j.toxicon.2022.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022]
Abstract
Mediterranean waters have undergone environmental changes during the last decades leading to various modifications of the structure of phytoplankton populations, especially Harmful Algal Blooms (HABs) species. Monitoring of the potentially toxic phytoplankton species was carried out biweekly in the western Mediterranean coast of Morocco from March 2018 to March 2019. Lipophilic Shellfish Toxins (LSTs) using LC-MS/MS and Domoic Acid (DA) using HPLC-UV were measured in the exploited mollusks, the cockle Acanthocardia tuberculata and the smooth clam Callista chione. We also determined the prevailing environmental factors in four surveyed sites (M'diq bay, Martil, Kaa Asras, and Djawn) selected to cover a variety of coastal ecosystems. Results showed that Pseudo-nitzschia spp. a DA producer species, was abundant with a pick of 50 × 103 cells l-1 on October 2018 in Djawn. Dinophysis caudata was the dominate Dinophysis species and showed a maximum density of 2200 cells l-1 on July in Djawn. Prorocentrum lima, an epibenthic dinoflagellate, appeared rarely in the water column with densities <80 cells l-1. Gonyaulax spinifera and Protoceratium reticulatum were found occasionally with a maximum density of 160 cells l-1. Karenia selliformis was detected only five times (<80 cells l-1) throughout the survey period. LC-MS/MS analyses revealed the presence of OA/DTX3, PTX-2, PTX-2 sa, and PTX-2 sa epi in the cockle at concentrations of up to 44.81 (OA/DTX-3+PTXs) ng g-1 meat. GYM-A was detected in the clam at concentrations of up to 4.22 ng g-1 meat. For the first time, AZAs and YTXs were detected in the southwestern Mediterranean with maximum values of 2.49 and 10.93 ng g-1 meat of cockle, respectively. DA was detected in moderate concentrations not exceeding 5.65 μg g-1 in both mollusks. Results showed that the observed toxic algae in the water column were responsible from the analysed toxins in the mollusks. It is likely that the southwestern Mediterranean waters could see the development of emergent species producing potent toxins (YTXs, AZAs, GYM-A). These dinoflagellates have to be isolated, ribotyped, and their toxin profiles determined.
Collapse
Affiliation(s)
- Hicham Aboualaalaa
- Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Morocco; INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco; Université Montpellier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| | | | - Benlahcen Rijal Leblad
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco.
| | - Fabienne Hervé
- Ifremer (French Research Institute for Exploitation of the Sea), PHYTOX, METALG Laboratory, Nantes, France
| | - Amal Hormat-Allah
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Lauriane Baudy
- Ifremer (French Research Institute for Exploitation of the Sea), PHYTOX, METALG Laboratory, Nantes, France
| | - Ismail Ennaskhi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Ikram Hammi
- INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco
| | - Mustapha Ibghi
- Equipe de Biotechnologie Végétale, Faculty of Sciences, Abdelmalek Essaadi University Tetouan, Morocco; INRH (Moroccan Institute of Fisheries Research), Marine Environment Monitoring Laboratory, Tangier, Morocco; Université Montpellier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| | - Hind Elmortaji
- INRH (Moroccan Institute of Fisheries Research), Marine Biotoxins Laboratory, Casablanca, Morocco
| | - Eric Abadie
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Jean Luc Rolland
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Zouher Amzil
- Ifremer (French Research Institute for Exploitation of the Sea), PHYTOX, METALG Laboratory, Nantes, France
| | - Mohamed Laabir
- Université Montpellier, MARBEC CNRS, IRD, Ifremer, Montpellier, France
| |
Collapse
|
11
|
McGirr S, Clarke D, Kilcoyne J, Silke J, Touzet N. Co-localisation of Azaspiracid Analogs with the Dinoflagellate Species Azadinium spinosum and Amphidoma languida in the Southwest of Ireland. MICROBIAL ECOLOGY 2022; 83:635-646. [PMID: 34195856 DOI: 10.1007/s00248-021-01777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton and biotoxin monitoring programmes have been implemented in many countries to protect human health and to mitigate the impacts of harmful algal blooms (HABs) on the aquaculture industry. Several amphidomatacean species have been confirmed in Irish coastal waters, including the azaspiracid-producing species Azadinium spinosum and Amphidoma languida. Biogeographic distribution studies have been hampered by the fact that these small, armoured dinoflagellates share remarkably similar morphologies when observed by light microscopy. The recent releases of species-specific molecular detection assays have, in this context, been welcome developments. A survey of the south west and west coasts of Ireland was carried out in August 2017 to investigate the late summer distribution of toxic amphidomataceans and azaspiracid toxins. Azadinium spinosum and Am. languida were detected in 83% of samples in the southwest along the Crease Line and Bantry Bay transects between 20 and 70 m depth, with maximal cell concentrations of 7000 and 470,000 cells/L, respectively. Azaspiracid concentrations were well aligned with the distributions of Az. spinosum and Am. languida, up to 1.1 ng/L and 4.9 ng/L for combined AZA-1, -2, -33, and combined AZA-38, -39, respectively. Although a snapshot in time, this survey provides new insights in the late summer prominence of AZAs and AZA-producing species in the southwest of Ireland, where major shellfish aquaculture operations are located. Results showed a substantial overlap in the distribution of amphidomatacean species in the area and provide valuable baseline information in the context of ongoing monitoring efforts of toxigenic amphidomataceans in the region.
Collapse
Affiliation(s)
- Stephen McGirr
- School of Science, Department of Environmental Science, Innovation and Sustainability, Institute of Technology Sligo, Centre for Environmental Research, Ash Lane, Sligo, F91 YW50, Ireland.
| | - Dave Clarke
- Shellfish Safety, Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Jane Kilcoyne
- Shellfish Safety, Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Joe Silke
- Shellfish Safety, Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Innovation and Sustainability, Institute of Technology Sligo, Centre for Environmental Research, Ash Lane, Sligo, F91 YW50, Ireland
| |
Collapse
|
12
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
13
|
Wright EJ, Beach DG, McCarron P. Non-target analysis and stability assessment of reference materials using liquid Chromatography‒High-Resolution mass spectrometry. Anal Chim Acta 2022; 1201:339622. [DOI: 10.1016/j.aca.2022.339622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
|
14
|
Ozawa M, Uchida H, Watanabe R, Matsushima R, Oikawa H, Takahashi K, Iwataki M, Suzuki T. Complex profiles of azaspiracid analogues in two culture strains of Azadinium poporum (Amphidomataceae, Dinophyceae) isolated from Japanese coastal waters determined by LC-MS/MS. Toxicon 2021; 199:145-155. [PMID: 34166679 DOI: 10.1016/j.toxicon.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Lipophilic marine biotoxins azaspiracids (AZAs) are produced by dinoflagellates Azadinium and Amphidoma. Recently, several strains of Azadinium poporum were isolated from Japanese coastal waters. In our present study, AZA analogues in two strains (mdd421 and HM536) of A. poporum were analyzed by several detection techniques on the liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOFMS). The dominant AZA analogue in the Japanese A. poporum strains was AZA2. Other known AZA analogues were AZA11, AZA35, AZA2 methyl ester and AZA2 phosphate ester. Besides these AZAs, thirteen new AZA analogues were discovered in the two strains. A putative AZA analogue (Compound 1) with the smallest molecular weight ever found in nature was also discovered in the two strains. This is the first report describing detailed AZA profiles in Japanese isolates of A. poporum.
Collapse
Affiliation(s)
- Mayu Ozawa
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan; Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Ryuichi Watanabe
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Ryoji Matsushima
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hiroshi Oikawa
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Kazuya Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| | - Mitsunori Iwataki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| |
Collapse
|
15
|
Dillon M, Zaczek-Moczydlowska MA, Edwards C, Turner AD, Miller PI, Moore H, McKinney A, Lawton L, Campbell K. Current Trends and Challenges for Rapid SMART Diagnostics at Point-of-Site Testing for Marine Toxins. SENSORS (BASEL, SWITZERLAND) 2021; 21:2499. [PMID: 33916687 PMCID: PMC8038394 DOI: 10.3390/s21072499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
In the past twenty years marine biotoxin analysis in routine regulatory monitoring has advanced significantly in Europe (EU) and other regions from the use of the mouse bioassay (MBA) towards the high-end analytical techniques such as high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS). Previously, acceptance of these advanced methods, in progressing away from the MBA, was hindered by a lack of commercial certified analytical standards for method development and validation. This has now been addressed whereby the availability of a wide range of analytical standards from several companies in the EU, North America and Asia has enhanced the development and validation of methods to the required regulatory standards. However, the cost of the high-end analytical equipment, lengthy procedures and the need for qualified personnel to perform analysis can still be a challenge for routine monitoring laboratories. In developing regions, aquaculture production is increasing and alternative inexpensive Sensitive, Measurable, Accurate and Real-Time (SMART) rapid point-of-site testing (POST) methods suitable for novice end users that can be validated and internationally accepted remain an objective for both regulators and the industry. The range of commercial testing kits on the market for marine toxin analysis remains limited and even more so those meeting the requirements for use in regulatory control. Individual assays include enzyme-linked immunosorbent assays (ELISA) and lateral flow membrane-based immunoassays (LFIA) for EU-regulated toxins, such as okadaic acid (OA) and dinophysistoxins (DTXs), saxitoxin (STX) and its analogues and domoic acid (DA) in the form of three separate tests offering varying costs and benefits for the industry. It can be observed from the literature that not only are developments and improvements ongoing for these assays, but there are also novel assays being developed using upcoming state-of-the-art biosensor technology. This review focuses on both currently available methods and recent advances in innovative methods for marine biotoxin testing and the end-user practicalities that need to be observed. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid POST, indicating potential detection methods that will shape the future market.
Collapse
Affiliation(s)
- Michael Dillon
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
- Faculty of Health, Peninsula Medical School, University of Plymouth, Plymouth PL4 8AA, UK
| | - Maja A. Zaczek-Moczydlowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK; (C.E.); (L.L.)
| | - Andrew D. Turner
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset DT4 8UB, UK;
| | - Peter I. Miller
- Plymouth Marine Laboratory, Remote Sensing Group, Prospect Place, Plymouth PL1 3DH, UK;
| | - Heather Moore
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, Northern Ireland BT9 5PX, UK; (H.M.); (A.M.)
| | - April McKinney
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, Northern Ireland BT9 5PX, UK; (H.M.); (A.M.)
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK; (C.E.); (L.L.)
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (M.D.); (M.A.Z.-M.)
| |
Collapse
|
16
|
Zingone A, Escalera L, Aligizaki K, Fernández-Tejedor M, Ismael A, Montresor M, Mozetič P, Taş S, Totti C. Toxic marine microalgae and noxious blooms in the Mediterranean Sea: A contribution to the Global HAB Status Report. HARMFUL ALGAE 2021; 102:101843. [PMID: 33875177 DOI: 10.1016/j.hal.2020.101843] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 06/12/2023]
Abstract
We review the spatial distribution of toxic marine microalgal species and the impacts of all types of harmful algal events (Harmful Algal Blooms, HABs) in the Mediterranean Sea (MS), including the Black Sea, the Sea of Marmara, coastal lagoons and transitional waters, based on two databases compiled in the Ocean Biogeographic Information System (OBIS). Eighty-four potentially toxic species have been detected in the MS (2,350 records), of which 16 described from these waters between 1860 and 2014 and a few suspected to have been introduced. More than half of these species (46) produce toxins that may affect human health, the remainders ichthyotoxic substances (29) or other types of toxins (9). Nevertheless, toxicity-related events are not frequent in the MS (308 records in 31 years), and mainly consist of impacts on aquaculture, caused by the dinoflagellates Dinophysis and Alexandrium, along with a few actual shellfish poisoning cases. Pseudo-nitzschia blooms are widespread, but domoic acid in shellfish rarely exceeds regulatory levels. Fish kills are probably less sporadic than reported, representing a problem at a few places along the southern MS coasts and in the Ebro River Delta. Since the last decade of the 20th century, blooms of the benthic dinoflagellates Ostreopsis cf. ovata have regularly occurred all along rocky shores of the MS, at times with human health problems caused by toxic aerosol. New records of Gambierdiscus and Fukuyoa, until now reported for the westernmost and easternmost MS coasts, raise concerns about the risk of ciguatera, a syndrome so far known only for subtropical and tropical areas. Recent discoveries are the dinoflagellates Vulcanodinium rugosum, responsible for the presence of pinnatoxins in French lagoons' shellfish, and the azaspiracid-producers Azadinium spp. Mucilages and discolorations have a major impact on tourism in summer. Reports of toxic species and HABs have apparently increased in the MS over the last half century, which is likely related to the increased awareness and monitoring operations rather than to an actual increase of these phenomena. Indeed, while the case of Ostreopsis appears as a sudden upsurge rather than a trend, no actual increase of toxic or noxious events has so far emerged in intensively studied areas, such as the French and Spanish coasts or the Adriatic Sea. Moreover, some cases of decrease are reported, e.g., for Alexandrium minutum blooms disappearing from the Harbour of Alexandria. Overall, main HAB risks derive from cases of massive development of microalgal biomass and consequent impacts of reduced coastal water quality on tourism, which represents the largest part of the marine economy along the MS coasts.
Collapse
Affiliation(s)
- Adriana Zingone
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Laura Escalera
- Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Katerina Aligizaki
- Laboratory Unit for Harmful Marine Microalgae, Biology Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | - Amany Ismael
- Faculty of Science, Alexandria University, 2151 Moharram Bey, Egypt.
| | - Marina Montresor
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - Patricija Mozetič
- National Institute of Biology, Marine Biological Station Piran, 6330 Piran, Slovenia.
| | - Seyfettin Taş
- Institute of Marine Sciences and Management, University of Istanbul, 34134 Istanbul, Turkey.
| | - Cecilia Totti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
17
|
Tillmann U, Wietkamp S, Gu H, Krock B, Salas R, Clarke D. Multiple New Strains of Amphidomataceae (Dinophyceae) from the North Atlantic Revealed a High Toxin Profile Variability of Azadinium spinosum and a New Non-Toxigenic Az. cf. spinosum. Microorganisms 2021; 9:134. [PMID: 33430155 PMCID: PMC7826828 DOI: 10.3390/microorganisms9010134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell-1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.
Collapse
Affiliation(s)
- Urban Tillmann
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Stephan Wietkamp
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bernd Krock
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Rafael Salas
- Marine Institute, Rinville, Oranmore, H91 R673 Co. Galway, Ireland; (R.S.); (D.C.)
| | - Dave Clarke
- Marine Institute, Rinville, Oranmore, H91 R673 Co. Galway, Ireland; (R.S.); (D.C.)
| |
Collapse
|
18
|
Adams NG, Tillmann U, Trainer VL. Temporal and spatial distribution of Azadinium species in the inland and coastal waters of the Pacific northwest in 2014-2018. HARMFUL ALGAE 2020; 98:101874. [PMID: 33129464 DOI: 10.1016/j.hal.2020.101874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Azaspiracids, produced by some species of the dinoflagellate genera Azadinium and Amphidoma, can cause a syndrome in humans called azaspiracid shellfish poisoning (AZP). In 1995, mussels from the Irish west coast contaminated with azaspiracids were, for the first time, linked to this human illness that has symptoms of nausea, vomiting, severe diarrhea, and stomach cramps. The only confirmed cases of AZP to date in the United States occurred in Washington State in 2008 from mussels imported from Ireland. Shortly after this case, several others involving similar gastrointestinal symptoms were reported by shellfish consumers from Washington State. However, no detectable diarrhetic shellfish toxins or Vibrio contamination were found. Cursory analysis of Solid Phase Adsorption Toxin Tracking (SPATT) samplers suggested the presence of azaspiracids in Washington State waters and motivated a study to evaluate the presence and distribution of Azadinium species in the region. During the spring and summer months of 2014-2015, quantitative polymerase chain reaction (qPCR) analyses detected the presence of the toxigenic species Azadinium poporum and A. spinosum on the outer coast and throughout the inland waters of Washington State. In 2016-2018, standard curves developed using A. poporum isolated from Puget Sound and A. spinosum isolated from the North Sea were used to quantify abundances of up to 10,525 cells L-1 of A. poporum and 156 cells L-1 of A. spinosum at shore-based sites. Abundances up to 1,206 cells L-1 of A. poporum and 30 cells L-1 of A. spinosum were measured in the coastal waters of the Pacific Northwest in 2017. Other harmful genera, including Alexandrium, Dinophysis, and Pseudo-nitzschia, were observed using light microscopy at coastal sites where A. poporum was also observed. In some samples where both A. poporum and A. spinosum were absent, an Amphidomataceae-specific qPCR assay indicated that other species of Azadinium or Amphidoma were present. The identification of Azadinium species in the PNW demonstrates the need to assess their toxicity and to incorporate their routine detection in monitoring programs to aid resource managers in mitigating risks to azaspiracid shellfish poisoning in this region.
Collapse
Affiliation(s)
- Nicolaus G Adams
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12 D-27570 Bremerhaven, Germany
| | - Vera L Trainer
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
19
|
Distribution and abundance of azaspiracid-producing dinophyte species and their toxins in North Atlantic and North Sea waters in summer 2018. PLoS One 2020; 15:e0235015. [PMID: 32559229 PMCID: PMC7304611 DOI: 10.1371/journal.pone.0235015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Representatives of the marine dinophyte family Amphidomataceae produce lipophilic phycotoxins called azaspiracids (AZA) which may cause azaspiracid shellfish poisoning (AZP) in humans after consumption of contaminated seafood. Three of the four known toxigenic species are observed frequently in the eastern North Atlantic. In 2018, a research survey was performed to strengthen knowledge on the distribution and abundance of toxigenic Amphidomataceae and their respective toxins in Irish coastal waters and in the North Sea. Species-specific quantification of the three toxigenic species (Azadinium spinosum, Azadinium poporum and Amphidoma languida) was based on recently developed qPCR assays, whose performance was successfully validated and tested with specificity tests and spike experiments. The multi-method approach of on-board live microscopy, qPCR assays and chemical AZA-analysis revealed the presence of Amphidomataceae in the North Atlantic including the three targeted toxigenic species and their respective AZA analogues (AZA-1, -2, -33, -38, -39). Azadinium spinosum was detected at the majority of Irish stations with a peak density of 8.3 x 104 cells L-1 and AZA (AZA-1, -2, -33) abundances up to 1,274 pg L-1. Amphidoma languida was also present at most Irish stations but appeared in highest abundance in a bloom at a central North Sea station with a density of 1.2 x 105 cells L-1 and an AZA (AZA-38, -39) abundances of 618 pg L-1. Azadinium poporum was detected sporadically at the Irish south coast and North Sea and was rather low in abundance during this study. The results confirmed the wide distribution and frequent occurrence of the target species in the North Atlantic area and revealed, for the first time, bloom abundances of toxigenic Amphidomataceae in this area. This emphasizes the importance of future studies and monitoring of amphidomatacean species and their respective AZA analogues in the North Atlantic.
Collapse
|
20
|
Dai X, Bill BD, Adams NG, Tillmann U, Sloan C, Lu D, Trainer VL. The effect of temperature and salinity on growth rate and azaspiracid cell quotas in two strains of Azadinium poporum (Dinophyceae) from Puget Sound, Washington State. HARMFUL ALGAE 2019; 89:101665. [PMID: 31672233 DOI: 10.1016/j.hal.2019.101665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Azaspiracids (AZA) are novel lipophilic polyether marine biotoxins associated with azaspiracid shellfish poisoning (AZP). Azaspiracid-59 (AZA-59) is a new AZA that was recently detected in strains of Azadinium poporum from Puget Sound, Washington State. In order to understand how environmental factors affect AZA abundances in Puget Sound, a laboratory experiment was conducted with two local strains of A. poporum to estimate the growth rate and AZA-59 (both intra- and extracellular) cell quotas along temperature and salinity gradients. Both strains of A. poporum grew across a wide range of temperatures (6.7 °C to 25.0 °C), and salinities (15 to 35). Growth rates increased with increasing temperature up to 20.0 °C, with a range from 0.10 d-1 to 0.42 d-1. Both strains of A. poporum showed variable growth rates from 0.26 d-1 to 0.38 d-1 at salinities from 15 to 35. The percentage of intracellular AZA-59 in both strains was generally higher in exponential than in stationary phase along temperature and salinity gradients, indicating higher retention of toxin in actively growing cells. Cellular toxin quotas varied by strain in both the temperature and salinity treatments but were highest at the lowest growth rates, especially for the faster growing strain, NWFSC1011. Consistent with laboratory experiments, field investigations in Sequim Bay, WA, during 2016-2018 showed that A. poporum was detected when salinity and temperature became favorable to higher growth rates in June and July. Although current field data of A. poporum in Puget Sound indicate a generally low abundance, the potential of local A. poporum to adapt to and grow in a wide range of temperature and salinity may open future windows for blooms. Although increased temperatures, anticipated for the Puget Sound region over the next decades, will enhance the growth of A. poporum, these higher temperatures will not necessarily support higher toxin cell quotas. Additional sampling and assessment of the total toxicity of AZA-59 will provide the basis for a more accurate estimation of risk for azaspiracid poisoning in Puget Sound shellfish.
Collapse
Affiliation(s)
- Xinfeng Dai
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA.
| | - Brian D Bill
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA
| | - Nicolaus G Adams
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Catherine Sloan
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA
| | - Douding Lu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Vera L Trainer
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98112, USA.
| |
Collapse
|
21
|
Biological Effects of the Azaspiracid-Producing Dinoflagellate Azadinium dexteroporum in Mytilus galloprovincialis from the Mediterranean Sea. Mar Drugs 2019; 17:md17100595. [PMID: 31652521 PMCID: PMC6835248 DOI: 10.3390/md17100595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Azaspiracids (AZAs) are marine biotoxins including a variety of analogues. Recently, novel AZAs produced by the Mediterranean dinoflagellate Azadinium dexteroporum were discovered (AZA-54, AZA-55, 3-epi-AZA-7, AZA-56, AZA-57 and AZA-58) and their biological effects have not been investigated yet. This study aimed to identify the biological responses (biomarkers) induced in mussels Mytilus galloprovincialis after the bioaccumulation of AZAs from A. dexteroporum. Organisms were fed with A. dexteroporum for 21 days and subsequently subjected to a recovery period (normal diet) of 21 days. Exposed organisms accumulated AZA-54, 3-epi-AZA-7 and AZA-55, predominantly in the digestive gland. Mussels' haemocytes showed inhibition of phagocytosis activity, modulation of the composition of haemocytic subpopulation and damage to lysosomal membranes; the digestive tissue displayed thinned tubule walls, consumption of storage lipids and accumulation of lipofuscin. Slight genotoxic damage was also observed. No clear occurrence of oxidative stress and alteration of nervous activity was detected in AZA-accumulating mussels. Most of the altered parameters returned to control levels after the recovery phase. The toxic effects detected in M. galloprovincialis demonstrate a clear biological impact of the AZAs produced by A. dexteroporum, and could be used as early indicators of contamination associated with the ingestion of seafood.
Collapse
|
22
|
Effects of Temperature, Growth Media, and Photoperiod on Growth and Toxin Production of Azadinium spinosum. Mar Drugs 2019; 17:md17090489. [PMID: 31443393 PMCID: PMC6780083 DOI: 10.3390/md17090489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
Azaspiracids (AZAs) are microalgal toxins that can accumulate in shellfish and lead to human intoxications. To facilitate their study and subsequent biomonitoring, purification from microalgae rather than shellfish is preferable; however, challenges remain with respect to maximizing toxin yields. The impacts of temperature, growth media, and photoperiod on cell densities and toxin production in Azadinium spinosum were investigated. Final cell densities were similar at 10 and 18 °C, while toxin cell quotas were higher (~3.5-fold) at 10 °C. A comparison of culture media showed higher cell densities and AZA cell quotas (2.5-5-fold) in f10k compared to f/2 and L1 media. Photoperiod also showed differences, with lower cell densities in the 8:16 L:D treatment, while toxin cell quotas were similar for 12:12 and 8:16 L:D treatments but slightly lower for the 16:8 L:D treatment. AZA1, -2 and -33 were detected during the exponential phase, while some known and new AZAs were only detected once the stationary phase was reached. These compounds were additionally detected in field water samples during an AZA event.
Collapse
|
23
|
Dhanji-Rapkova M, O'Neill A, Maskrey BH, Coates L, Swan SC, Teixeira Alves M, Kelly RJ, Hatfield RG, Rowland-Pilgrim SJ, Lewis AM, Turner AD. Variability and profiles of lipophilic toxins in bivalves from Great Britain during five and a half years of monitoring: azaspiracids and yessotoxins. HARMFUL ALGAE 2019; 87:101629. [PMID: 31349886 DOI: 10.1016/j.hal.2019.101629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Cefas has been responsible for the delivery of official control biotoxin testing of bivalve molluscs from Great Britain for just over a decade. Liquid chromatography tandem mass spectrometric (LC-MS/MS) methodology has been used for the quantitation of lipophilic toxins (LTs) since 2011. The temporal and spatial distribution of okadaic acid group toxins and profiles in bivalves between 2011 and 2016 have been recently reported. Here we present data on the two other groups of regulated lipophilic toxins, azaspiracids (AZAs) and yessotoxins (YTXs), over the same period. The latter group has also been investigated for a potential link with Protoceratium reticulatum and Lingulodinium polyedra, both previously recognised as YTXs producing phytoplankton. On average, AZAs were quantified in 3.2% of all tested samples but notable inter-annual variation in abundance was observed. The majority of all AZA contaminated samples were found between July 2011 and August 2013 in Scotland, while only two, three-month long, AZA events were observed in 2015 and 2016 in the south-west of England. Maximum concentrations were generally reached in late summer or early autumn. Reasons for AZAs persistence during the 2011/2012 and 2012/2013 winters are discussed. Only one toxin profile was identified, represented by both AZA1 and AZA2 toxins at an approximate ratio of 2 : 1, suggesting a single microalgal species was the source of AZAs in British bivalves. Although AZA1 was always the most dominant toxin, its proportion varied between mussels, Pacific oysters and surf clams. The YTXs were the least represented group among regulated LTs. YTXs were found almost exclusively on the south-west coast of Scotland, with the exception of 2013, when the majority of contaminated samples originated from the Shetland Islands. The highest levels were recorded in the summer months and followed a spike in Protoceratium reticulatum cell densities. YTX was the most dominant toxin in shellfish, further strengthening the link to P. reticulatum as the YTX source. Neither homo-YTX, nor 45-OH homo-YTX were detected throughout the monitored period. 45-OH YTX, thought to be a shellfish metabolite associated with YTX elimination, contributed on average 26% in mussels. Although the correlation between 45-OH YTX abundance and the speed of YTX depuration could not be confirmed, we noted the half-life of YTX was more than two-times longer in queen scallops, which contained 100% YTX, than in mussels. No other bivalve species were affected by YTXs. This is the first detailed evaluation of AZAs and YTXs occurrences and their profiles in shellfish from Great Britain over a period of multiple years.
Collapse
Affiliation(s)
- Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom.
| | - Alison O'Neill
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Lewis Coates
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Sarah C Swan
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, United Kingdom
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Rebecca J Kelly
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Stephanie J Rowland-Pilgrim
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, United Kingdom
| |
Collapse
|
24
|
Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions. Mar Drugs 2019; 17:md17050276. [PMID: 31072021 PMCID: PMC6562809 DOI: 10.3390/md17050276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Azaspiracids (AZAs) are marine toxins that are produced by Azadinium and Amphidoma dinoflagellates that can contaminate edible shellfish inducing a foodborne poisoning in humans, which is characterized by gastrointestinal symptoms. Among these, AZA1, -2, and -3 are regulated in the European Union, being the most important in terms of occurrence and toxicity. In vivo studies in mice showed that, in addition to gastrointestinal effects, AZA1 induces liver alterations that are visible as a swollen organ, with the presence of hepatocellular fat droplets and vacuoles. Hence, an in vitro study was carried out to investigate the effects of AZA1, -2, and -3 on liver cells, using human non-tumor IHH hepatocytes. RESULTS The exposure of IHH cells to AZA1, -2, or -3 (5 × 10-12-1 × 10-7 M) for 24 h did not affect the cell viability and proliferation (Sulforhodamine B assay and 3H-Thymidine incorporation assay), but they induced a significant concentration-dependent increase of mitochondrial dehydrogenases activity (MTT reduction assay). This effect depends on the activity of mitochondrial electron transport chain complex I and II, being counteracted by rotenone and tenoyl trifluoroacetone, respectively. Furthermore, AZAs-increased mitochondrial dehydrogenase activity was almost totally suppressed in the K+-, Cl--, and Na+-free media and sensitive to the specific inhibitors of KATP and hERG potassium channels, Na+/K+, ATPase, and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. CONCLUSIONS These results suggest that AZA mitochondrial effects in hepatocytes derive from an imbalance of intracellular levels of K+ and, in particular, Cl- ions, as demonstrated by the selective reduction of toxin effects by CFTR chloride channel inhibition.
Collapse
|
25
|
Zingone A, D'Alelio D, Mazzocchi MG, Montresor M, Sarno D, team LTERMC. Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.34.30789] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plankton are a pivotal component of the diversity and functioning of coastal marine ecosystems. A long time-series of observations is the best tool to trace their patterns and variability over multiple scales, ultimately providing a sound foundation for assessing, modelling and predicting the effects of anthropogenic and natural environmental changes on pelagic communities. At the same time, a long time-series constitutes a formidable asset for different kinds of research on specific questions that emerge from the observations, whereby the results of these complementary studies provide precious interpretative tools that augment the informative value of the data collected. In this paper, we review more than 140 studies that have been developed around a Mediterranean plankton time series gathered in the Gulf of Naples at the station LTER-MC since 1984. These studies have addressed different topics concerning marine plankton, which have included: i) seasonal patterns and trends; ii) taxonomic diversity, with a focus on key or harmful algal species and the discovery of many new taxa; iii) molecular diversity of selected species, groups of species or the whole planktonic community; iv) life cycles of several phyto- and zooplankton species; and v) interactions among species through trophic relationships, parasites and viruses. Overall, the products of this research demonstrate the great value of time series besides the record of fluctuations and trends, and highlight their primary role in the development of the scientific knowledge of plankton much beyond the local scale.
Collapse
|
26
|
Samdal IA, Løvberg KE, Kristoffersen AB, Briggs LR, Kilcoyne J, Forsyth CJ, Miles CO. A Practical ELISA for Azaspiracids in Shellfish via Development of a New Plate-Coating Antigen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2369-2376. [PMID: 30763083 DOI: 10.1021/acs.jafc.8b05652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins that appear periodically in shellfish and can cause food poisoning in humans. Current methods for quantifying the regulated AZAs are restricted to LC-MS but are not well suited to detecting novel and unregulated AZAs. An ELISA method for total AZAs in shellfish was reported recently, but unfortunately, it used relatively large amounts of the AZA-1-containing plate-coating conjugate, consuming significant amounts of pure AZA-1 per assay. Therefore, a new plate-coater, OVA-cdiAZA1 was produced, resulting in an ELISA with a working range of 0.30-4.1 ng/mL and a limit of quantification of 37 μg/kg for AZA-1 in shellfish. This ELISA was nearly twice as sensitive as the previous ELISA while using 5-fold less plate-coater. The new ELISA displayed broad cross-reactivity toward AZAs, detecting all available quantitative AZA reference materials as well as the precursors to AZA-3 and AZA-6, and results from shellfish analyzed with the new ELISA showed excellent correlation ( R2 = 0.99) with total AZA-1-10 by LC-MS. The results suggest that the new ELISA is suitable for screening samples for total AZAs, even in cases where novel AZAs are present and regulated AZAs are absent, such as was reported recently from Puget Sound and the Bay of Naples.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
| | | | - Lyn R Briggs
- AgResearch Ltd., Ruakura Research Centre , Hamilton 3214 , New Zealand
| | - Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, County Galway H91 R673 , Ireland
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43220 , United States
| | - Christopher O Miles
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
- National Research Council Canada , 1411 Oxford St , Halifax , NS B3H 3Z1 , Canada
| |
Collapse
|
27
|
Krock B, Tillmann U, Tebben J, Trefault N, Gu H. Two novel azaspiracids from Azadinium poporum, and a comprehensive compilation of azaspiracids produced by Amphidomataceae, (Dinophyceae). HARMFUL ALGAE 2019; 82:1-8. [PMID: 30928006 DOI: 10.1016/j.hal.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Two novel azaspiracids (AZA) with a molecular mass of 869 Da were found in Pacific strains of Azadinium poporum and characterized by tandem mass spectrometry and high resolution mass spectrometry (HRMS). One compound, AZA-42, was found in Az. poporum strains AZFC25 and AZFC26, both isolated from the South China Sea. AZA-42 belongs to the 360-type AZA that in comparison to AZA-1 has an additional double bond in the F-I ring system of AZA comprising C28-C40. The other compound, AZA-62, was detected in Az. poporum strain 1D5 isolated off Chañaral, Northern Chile. Mass spectral data indicate that AZA-62 is a variant of AZA-11 with an additional double bond in the C1-C9 region of AZA. In addition to the description of the two novel AZA, a comprehensive list of all AZA known to be produced by species of the genera Azadinium and Amphidoma comprising 26 AZA variants is presented.
Collapse
Affiliation(s)
- Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Urban Tillmann
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Jan Tebben
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Faculty of Sciences, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Haifeng Gu
- Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| |
Collapse
|
28
|
Abstract
Azaspiracid-34 (AZA34) is a recently described structurally unique member of the azaspiracid class of marine neurotoxins. Its novel structure, tentatively assigned on the basis of MS and 1H NMR spectroscopy, is accompanied by a 5.5-fold higher level of toxicity against Jurkat T lymphocytes than AZA1. To completely assign the structure of AZA34 and provide material for in-depth biological evaluation and detection, synthetic access to AZA34 was targeted. This began with the convergent and stereoselective assembly of the C1-C19 domain of AZA34 designed to dovetail with the recent total synthesis approach to AZA3.
Collapse
Affiliation(s)
- Antony A Okumu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
29
|
Tillmann U, Edvardsen B, Krock B, Smith KF, Paterson RF, Voß D. Diversity, distribution, and azaspiracids of Amphidomataceae (Dinophyceae) along the Norwegian coast. HARMFUL ALGAE 2018; 80:15-34. [PMID: 30502808 DOI: 10.1016/j.hal.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 06/09/2023]
Abstract
Azaspiracids (AZA) are a group of lipophilic polyether compounds which have been implicated in shellfish poisoning incidents around Europe. They are produced by a few species of the dinophycean genera Azadinium and Amphidoma (Amphidomataceae). The presence of AZA toxins in Norway is well documented, but knowledge of the distribution and diversity of Azadinium and other Amphidomataceae along the Norwegian coast is rather limited and poorly documented. On a research survey along the Norwegian coast in 2015 from the Skagerrak in the South to Trondheimsfjorden in the North, plankton samples from 67 stations were analysed for the presence of Azadinium and Amphidoma and their respective AZA by on-board live microscopy, real-time PCR assays specific for Amphidomataceae, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Microscopy using live samples and positive real-time PCR assays using a general family probe and two species specific probes revealed the presence of Amphidomataceae distributed throughout the sampling area. Overall abundance was low, however, and was in agreement with a lack of detectable AZA in plankton samples. Single cell isolation and morphological and molecular characterisation of established strains revealed the presence of 7 amphidomatacean species (Azadiniun spinosum, Az. poporum, Az. obesum, Az. dalianense, Az. trinitatum, Az. polongum, Amphidoma languida) in the area. Azaspiracids were produced by the known AZA producing species Az. spinosum, Az. poporum and Am. languida only. LC-MS/MS analysis further revealed that Norwegian strains produce previously unreported AZA for Norway (AZA-11 by Az. spinosum, AZA-37 by Az. poporum, AZA-38 and AZA-39 by Am. languida), and also four novel compounds (AZA-50, -51 by Az. spinosum, AZA-52, -53 by Am. languida), whose structural properties are described and which now can be included in existing analytical protocols. A maximum likelihood analysis of concatenated rDNA regions (SSU, ITS1-ITS2, partial LSU) showed that the strains of Az. spinosum fell in two well supported clades, where most but not all new Norwegian strains formed the new Ribotype B. Ribotype differentiation was supported by a minor morphological difference with respect to the presence/absence of a rim around the pore plate, and was consistently reflected by different AZA profiles. Strains of Az. spinosum from ribotype A produce AZA-1, -2 and -33, whereas the new strains of ribotype B produce mainly AZA-11 and AZA-51. Significant sequence differences between both Az. spinosum ribotypes underline the need to redesign the currently used qPCR probes in order to detect all AZA producing Az. spinosum. The results generally underline the conclusion that for the Norwegian coast area it is important that amphidomatacean species are taken into account in future studies and monitoring programs.
Collapse
Affiliation(s)
- Urban Tillmann
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Bente Edvardsen
- University of Oslo, Department of Biosciences, Section for Aquatic Biology and Toxicology, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Bernd Krock
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Kirsty F Smith
- Cawthron Institute, Privat Bag 2, Nelson 7042, New Zealand
| | - Ruth F Paterson
- Scottish Association for Marine Science, Scotland, PA37 1QA, United Kingdom
| | - Daniela Voß
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, Schleusenstraße 1, D-26382 Wilhelmshaven, Germany
| |
Collapse
|
30
|
Luo Z, Krock B, Giannakourou A, Venetsanopoulou A, Pagou K, Tillmann U, Gu H. Sympatric occurrence of two Azadinium poporum ribotypes in the Eastern Mediterranean Sea. HARMFUL ALGAE 2018; 78:75-85. [PMID: 30196927 DOI: 10.1016/j.hal.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The marine dinoflagellate Azadinium poporum produce azaspiracids (AZA) and has been recorded widely in the world. However, information on its biogeography is still limited, especially in view of the fact that A. poporum comprises several genetically differentiated groups. A total of 18 strains of A. poporum were obtained from the Eastern Mediterranean area by incubating surface sediment collected from Ionian Sea of Greece. The morphology of these strains was examined with light microscopy and scanning electron microscopy. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from all cultured strains. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences confirmed three ribotypes within A. poporum and revealed two subclades within ribotypes A and C. Greek strains of A. poporum ribotype A were nested within ribotype A2 together with strains from Western Mediterranean Sea and French Atlantic, and Greek strains of A. poporum ribotype C were nested within ribotype C2 together with a strain from the Gulf of Mexico. Growth experiments on four selected strains revealed that ribotypes A and C from Greece differed in their growth at higher temperatures, indicating that they are physiologically differentiated. Azaspiracid profiles were analyzed for 15 cultured A. poporum strains using LCMS/MS and demonstrate that the A. poporum ribotype A from Greece produce low level or no AZA and A. poporum ribotype C from Greece produces predominantly AZA-40 (9.6-30.2 fg cell-1) followed by AZA-2 (2.1-2.6 fg cell-1). The first record of AZA-40 producing A. poporum from the Mediterranean suggests that this species is a potential source for azaspiracid contaminations in shellfish from the Eastern Mediterranean Sea.
Collapse
Affiliation(s)
- Zhaohe Luo
- Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Antonia Giannakourou
- Hellenic Center for Marine Research, Institute of Oceanography, Attica 19013, Greece
| | | | - Kalliopi Pagou
- Hellenic Center for Marine Research, Institute of Oceanography, Attica 19013, Greece
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Haifeng Gu
- Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| |
Collapse
|
31
|
Kilcoyne J, McCarron P, Twiner MJ, Rise F, Hess P, Wilkins AL, Miles CO. Identification of 21,22-Dehydroazaspiracids in Mussels ( Mytilus edulis) and in Vitro Toxicity of Azaspiracid-26. JOURNAL OF NATURAL PRODUCTS 2018; 81:885-893. [PMID: 29488755 DOI: 10.1021/acs.jnatprod.7b00973] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Azaspiracids (AZAs) are marine biotoxins produced by the genera Azadinium and Amphidoma, pelagic marine dinoflagellates that may accumulate in shellfish resulting in human illness following consumption. The complexity of these toxins has been well documented, with more than 40 structural variants reported that are produced by dinoflagellates, result from metabolism in shellfish, or are extraction artifacts. Approximately 34 μg of a new AZA with MW 823 Da (AZA26 (3)) was isolated from blue mussels ( Mytilus edulis), and its structure determined by MS and NMR spectroscopy. AZA26, possibly a bioconversion product of AZA5, lacked the C-20-C-21 diol present in all AZAs reported thus far and had a 21,22-olefin and a keto group at C-23. Toxicological assessment of 3 using an in vitro model system based on Jurkat T lymphocyte cells showed the potency to be ∼30-fold lower than that of AZA1. The corresponding 21,22-dehydro-23-oxo-analogue of AZA10 (AZA28) and 21,22-dehydro analogues of AZA3, -4, -5, -6, -9, and -10 (AZA25, -48 (4), -60, -27, -49, and -61, respectively) were also identified by HRMS/MS, periodate cleavage reactivity, conversion from known analogues, and NMR (for 4 that was present in a partially purified sample of AZA7).
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute , Rinville, Oranmore , Co. Galway H91 R673 , Ireland
| | - Pearse McCarron
- Measurement Science and Standards , National Research Council Canada , Halifax , NS B3H 3Z1 , Canada
| | - Michael J Twiner
- Department of Emergency Medicine, Detroit Receiving Hospital , Wayne State University , Detroit , Michigan 48202 , United States
| | - Frode Rise
- Department of Chemistry , University of Oslo , N-0315 Oslo , Norway
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines , Rue de l'Ile d'Yeu , 44311 Nantes , France
| | - Alistair L Wilkins
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, 0106 Oslo , Norway
| | - Christopher O Miles
- Measurement Science and Standards , National Research Council Canada , Halifax , NS B3H 3Z1 , Canada
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, 0106 Oslo , Norway
| |
Collapse
|
32
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, Zhang Z, Chen Y, Nguyen S, Xu J, Ding Y, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Total Synthesis of (6
R
,10
R
,13
R
,14
R
,16
R
,17
R
,19
S
,20
R
,21
R
,24
S
, 25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 Reveals Non‐Identity with the Natural Product. Angew Chem Int Ed Engl 2018; 57:805-809. [DOI: 10.1002/anie.201711006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/16/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yong Chen
- Asymchem Life Science No. 71 7th Ave., TEDA Tianjin 300000 P. R. China
| | - Son Nguyen
- Johnson Matthey Pharma Services 25 Patton Road Devens MA 01434 USA
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yue Ding
- Viva Biotech Ltd. 581 Shenkuo Rd., Pudong District Shanghai 201203 China
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
33
|
Kenton NT, Adu‐Ampratwum D, Okumu AA, Zhang Z, Chen Y, Nguyen S, Xu J, Ding Y, McCarron P, Kilcoyne J, Rise F, Wilkins AL, Miles CO, Forsyth CJ. Total Synthesis of (6
R
,10
R
,13
R
,14
R
,16
R
,17
R
,19
S
,20
R
,21
R
,24
S
, 25
S
,28
S
,30
S
,32
R
,33
R
,34
R
,36
S
,37
S
,39
R
)‐Azaspiracid‐3 Reveals Non‐Identity with the Natural Product. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nathaniel T. Kenton
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Daniel Adu‐Ampratwum
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Antony A. Okumu
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yong Chen
- Asymchem Life Science No. 71 7th Ave., TEDA Tianjin 300000 P. R. China
| | - Son Nguyen
- Johnson Matthey Pharma Services 25 Patton Road Devens MA 01434 USA
| | - Jianyan Xu
- Shanghai Hengrui Pharmaceutical Inc. No. 279 Wenjing Road Shanghai 200245 P. R. China
| | - Yue Ding
- Viva Biotech Ltd. 581 Shenkuo Rd., Pudong District Shanghai 201203 China
| | - Pearse McCarron
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
| | - Jane Kilcoyne
- Marine Institute, RinvilleOranmore, Co. Galway Ireland
| | - Frode Rise
- Department of ChemistryUniversity of Oslo 0315 Oslo Norway
| | - Alistair L. Wilkins
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
- Chemistry DepartmentUniversity of Waikato Private Bag 3105 3240 Hamilton New Zealand
| | - Christopher O. Miles
- Measurement Science and StandardsNational Research Council of Canada Halifax Nova Scotia B3H 3Z1 Canada
- Norwegian Veterinary Institute P.O. Box 750 Sentrum 0106 Oslo Norway
| | - Craig J. Forsyth
- Department of Chemistry and BiochemistryThe Ohio State University 151 W. Woodruff Ave Columbus OH 43210 USA
| |
Collapse
|
34
|
Toxic equivalency factors (TEFs) after acute oral exposure of azaspiracid 1, -2 and -3 in mice. Toxicol Lett 2017; 282:136-146. [PMID: 29107028 DOI: 10.1016/j.toxlet.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 11/22/2022]
Abstract
Azaspiracids (AZAs) are marine algal toxins that can be accumulated by edible shellfish to cause a foodborne gastrointestinal poisoning in humans. In the European Union, only AZA1, -2 and -3 are currently regulated and their concentration in shellfish is determined through their toxic equivalency factors (TEFs) derived from the intraperitoneal lethal potency in mice. Nevertheless, considering the potential human exposure by oral route, AZAs TEFs should be calculated by comparative oral toxicity data. Thus, the acute oral toxicity of AZA1, -2 and -3 was investigated in female CD-1 mice treated with different doses (AZA1: 135-1100μg/kg; AZA2 and AZA3: 300-1100μg/kg) and sacrificed after 24h or 14days. TEFs derived from the median lethal doses (LD50) were 1.0, 0.7 and 0.5, respectively for AZA1, -2 and -3. In fact, after 24h from gavage administration, LD50s were 443μg/kg (AZA1; 95% CL: 350-561μg/kg), 626μg/kg (AZA2; 95% CL: 430-911μg/kg) and 875μg/kg (AZA3; 95% CL: 757-1010μg/kg). Mice dead more than 5h after the treatment or those sacrificed after 24h (doses: ≥175μg AZA1/kg, ≥500μg AZA2/kg and ≥600μg AZA3/kg) showed enlarged pale liver, while increased serum markers of liver alteration were recorded even at the lowest doses. Blood chemistry revealed significantly increased serum levels of K+ ions (≥500mg/kg), whereas light microscopy showed tissue changes in the gastrointestinal tract, liver and spleen. No lethality, macroscopic, tissue or haematological changes were recorded two weeks post exposure, indicating reversible toxic effects. LC-MS/MS analysis of the main organs showed a dose-dependency in gastrointestinal absorption of these toxins: at 24h, the highest levels were detected in the stomach and, in descending order, in the intestinal content, liver, small intestine, kidneys, lungs, large intestine, heart as well as detectable traces in the brain. After 14days, AZA1 and AZA2 were still detectable in almost all the organs and intestinal content.
Collapse
|
35
|
Presence of azaspiracids in bivalve molluscs from Northern Spain. Toxicon 2017; 137:135-143. [DOI: 10.1016/j.toxicon.2017.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022]
|
36
|
Kim JH, Tillmann U, Adams NG, Krock B, Stutts WL, Deeds JR, Han MS, Trainer VL. Identification of Azadinium species and a new azaspiracid from Azadinium poporum in Puget Sound, Washington State, USA. HARMFUL ALGAE 2017; 68:152-167. [PMID: 28962976 DOI: 10.1016/j.hal.2017.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The identification of a new suite of toxins, called azaspiracids (AZA), as the cause of human illnesses after the consumption of shellfish from the Irish west coast in 1995, resulted in interest in understanding the global distribution of these toxins and of species of the small dinoflagellate genus Azadinium, known to produce them. Clonal isolates of four species of Azadinium, A. poporum, A. cuneatum, A. obesum and A. dalianense were obtained from incubated sediment samples collected from Puget Sound, Washington State in 2016. These Azadinium species were identified using morphological characteristics confirmed by molecular phylogeny. Whereas AZA could not be detected in any strains of A. obesum, A. cuneatum and A. dalianense, all four strains of A. poporum produced a new azaspiracid toxin, based on LC-MS analysis, named AZA-59. The presence of AZA-59 was confirmed at low levels in situ using a solid phase resin deployed at several stations along the coastlines of Puget Sound. Using a combination of molecular methods for species detection and solid phase resin deployment to target shellfish monitoring of toxin at high-risk sites, the risk of azaspiracid shellfish poisoning can be minimized.
Collapse
Affiliation(s)
- Joo-Hwan Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Urban Tillmann
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Nicolaus G Adams
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Whitney L Stutts
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Jonathan R Deeds
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Myung-Soo Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea.
| | - Vera L Trainer
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| |
Collapse
|
37
|
Luo Z, Krock B, Mertens KN, Nézan E, Chomérat N, Bilien G, Tillmann U, Gu H. Adding new pieces to the Azadinium (Dinophyceae) diversity and biogeography puzzle: Non-toxigenic Azadinium zhuanum sp. nov. from China, toxigenic A. poporum from the Mediterranean, and a non-toxigenic A. dalianense from the French Atlantic. HARMFUL ALGAE 2017; 66:65-78. [PMID: 28602255 DOI: 10.1016/j.hal.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The marine planktonic dinophyceaen genus Azadinium is a primary source of azaspiracids, but due to their small size its diversity may be underestimated and information on its biogeography is still limited. A new Azadinium species, A. zhuanum was obtained from the East China Sea and Yellow Sea of China by incubating surface sediments. Five strains were established by isolating single germinated cells and their morphology was examined with light microscopy and scanning electron microscopy. Azadinium zhuanum was characterized by a plate pattern of Po, cp, X, 4', 2a, 6'', 6C, 5S, 6''', 2'''', by a distinct ventral pore at the junction of Po, the first and fourth apical plates, and a conspicuous antapical spine. Moreover, Azadinium poporum was obtained for the first time from the Mediterranean by incubating surface sediment collected from Diana Lagoon (Corsica) and a new strain of Azadinium dalianense was isolated from the French Atlantic. The morphology of both strains was examined. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. In addition, LSU sequences were obtained by single cell sequencing of two presumable A. poporum cells collected from the French Atlantic. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences revealed that A. zhuanum was closest to A. polongum. French A. poporum from Corsica (Mediterranean) and from the Atlantic showed some genetic differences but were nested within one of the A. poporum ribotypes together with other European strains. Azadinium dalianense from France together with the type strain of the species from China comprised a well resolved clade now consisting of two ribotypes. Azaspiracid profiles were analyzed for the cultured Azadinium strains using LC-MS/MS and demonstrate that the Mediterranean A. poporum strain produced AZA-2 and AZA-2 phosphate with an amount of 0.44fgcell-1. Azadinium zhuanum and A. dalianense did not produce detectable AZA. Results of the present study support the view of a high diversity and wide distribution of species belonging to Azadinium. The first record of AZA-2 producing A. poporum from the Mediterranean suggests that this species may be responsible for azaspiracid contaminations in shellfish from the Mediterranean Sea.
Collapse
Affiliation(s)
- Zhaohe Luo
- Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Kenneth Neil Mertens
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau Cedex, France
| | - Elisabeth Nézan
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau Cedex, France
| | - Nicolas Chomérat
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau Cedex, France
| | - Gwenael Bilien
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau Cedex, France
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Haifeng Gu
- Third Institute of Oceanography, SOA, Xiamen 361005, China.
| |
Collapse
|