1
|
Liu J, Yang J, Wu Q, Fang Z, Wang T, Wang Z, Xu D. Review of osteokines in spinal cord injury: potential biomarkers during rehabilitation. J Orthop Surg Res 2025; 20:64. [PMID: 39827357 PMCID: PMC11742232 DOI: 10.1186/s13018-024-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
After spinal cord injury (SCI), mechanical unloading, denervation, as well as negative changes in blood supply, inflammation state, and hormone levels produce significant negative effects on bone density, leading to a high prevalence of osteoporosis after SCI. It has been recently discovered that skeletal bone also has endocrine functions. Osteokines, secreted from bone tissue, could play multiple roles in regulating bone density, muscle mass, glucose metabolism, and functions of the central nervous system-changes in the osteokine levels after SCI have been detected. Therefore, bone density and osteokine levels should be stressed in clinical settings. Clinical treatment measures for bone loss after SCI include exercise training, physical agent therapy, acupuncture, and so on. According to previous studies, these treatments could affect the expression levels of osteokines. In conclusion, bone loss and changes in osteokines after SCI are worthy of great attention during the rehabilitation of SCI. Osteokines could become biomarkers during SCI rehabilitation, reflecting both bone density and systemic functions. This review summarized recent findings regarding bone loss after SCI, changes in osteokines, and the effect of rehabilitation therapies, with a particular emphasis on the local and systemic regulatory roles of osteokines, as well as their potential as biomarkers during SCI rehabilitation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai District, Hanzhong Road 155th, Nanjing, 210029, China
| | - Jingyi Yang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China
| | - Qi Wu
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China
| | - Zixuan Fang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China
| | - Tong Wang
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China.
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Gulou District, Guangzhou Road 300th, Nanjing, 210029, China.
| | - Zun Wang
- Rehabilitation therapy department, School of Acupuncture-Moxibustion and Tuina of Nanjing, University of Chinese Medicine·School of Health Preservation and Rehabilitation of Nanjing University of Chinese Medicine, Qixia District, Xianlin Road 138th, Nanjing, 210023, China.
- Rehabilitation Medicine School, Nanjing Medical University, Nanjing, 210029, China.
| | - Daoming Xu
- Department of Acupuncture and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Qinhuai District, Hanzhong Road 155th, Nanjing, 210029, China.
| |
Collapse
|
2
|
Singh G, Darwin R, Panda KC, Afzal SA, Katiyar S, Dhakar RC, Mani S. Gene expression and hormonal signaling in osteoporosis: from molecular mechanisms to clinical breakthroughs. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-36. [PMID: 39729311 DOI: 10.1080/09205063.2024.2445376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Osteoporosis is well noted to be a universal ailment that realization impaired bone mass and micro architectural deterioration thus enhancing the probability of fracture. Despite its high incidence, its management remains highly demanding because of the multifactorial pathophysiology of the disease. This review highlights recent findings in the management of osteoporosis particularly, gene expression and hormonal control. Some of the newest approaches regarding the subject are described, including single-cell RNA sequencing and long non-coding RNAs. Also, the review reflects new findings on hormonal signaling and estrogen and parathyroid hormone; patient-specific approaches due to genetic and hormonal variation. Potential new biomarkers and AI comprised as factors for improving the ability to anticipate and manage fractures. These hold great potential of new drugs, combination therapies and gene based therapies for osteoporosis in the future. Further studies and cooperation of scientists and clinicians will help to apply such novelties into practical uses in the sphere of medicine in order to enhance the treatment of patients with osteoporosis.
Collapse
Affiliation(s)
- Gurinderdeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Ronald Darwin
- School of Pharmaceutical Sciences, Vels Institute of Science Technology & Advanced Studies, Chennai, India
| | - Krishna Chandra Panda
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur, India
| | - Shaikh Amir Afzal
- Department of Pharmaceutics, SCES's Indira College of Pharmacy, Pune, India
| | - Shashwat Katiyar
- Department of Biochemistry, School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Ram C Dhakar
- SRG Hospital and Medical College, Jhalawar, India
| | - Sangeetha Mani
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
3
|
Horikawa A, Kasukawa Y, Hongo M, Sano A, Miyakoshi N. The Effects of Switch Therapy in Osteoporosis Treatment after Romosozumab after Comparing with Prior Treatment. J Osteoporos 2024; 2024:2144527. [PMID: 38235310 PMCID: PMC10791350 DOI: 10.1155/2024/2144527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Rationale. Although romosozumab is one of the most effective treatments for osteoporosis by increasing bone mineral density in the lumbar spine and femur and recommended for denosumab as switch therapy, these effects regarding its prior treatment have not yet been evaluated clearly. This study focused on the effects of switch therapy from romosozumab to denosumab in regard to prior treatment of osteoporosis including bone mineral density and bone turnover marker and other related factors. Patient Concerns. 15 osteoporotic patients were assigned to the naïve group, 15 were assigned to the teriparatide group, and 10 were assigned to the bisphosphonate group. Interventions. Patients who were treated as outpatients for osteoporosis with romosozumab for 1 year and switched to denosumab between 2020 and 2022 at our hospital were examined. Our hospital registry included 40 osteoporotic patients who were over 65 years of age with bone mineral density (bone mineral density): T score <-2.5 standard deviations (SDs) and fracture assessment tool (FRAX) score >20%. Outcomes. The naïve group had the highest increase in LS BMD among these three groups during switch therapy from romosozumab to denosumab, while there were no significant differences about adverse drug events and serum Ca concentration among them. There was no incidence of fracture. Conclusion. These findings indicate that the effects of osteoporotic treatment of switch therapy from romosozumab to denosumab were likely to affect prior treatment of osteoporosis.
Collapse
Affiliation(s)
- Akira Horikawa
- Shizuoka Tokushukai Hospital, 1-11 Surugaku-Simokawahara-Minami, Shizuoka 421 0117, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Michio Hongo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Akihisa Sano
- Shizuoka Tokushukai Hospital, 1-11 Surugaku-Simokawahara-Minami, Shizuoka 421 0117, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
4
|
Yuan J, Pedrini S, Thota R, Doecke J, Chatterjee P, Sohrabi HR, Teunissen CE, Verberk IMW, Stoops E, Vanderstichele H, Meloni BP, Mitchell C, Rainey-Smith S, Goozee K, Tai ACP, Ashton N, Zetterberg H, Blennow K, Gao J, Liu D, Mastaglia F, Inderjeeth C, Zheng M, Martins RN. Elevated plasma sclerostin is associated with high brain amyloid-β load in cognitively normal older adults. NPJ AGING 2023; 9:17. [PMID: 37666862 PMCID: PMC10477312 DOI: 10.1038/s41514-023-00114-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 09/06/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) mainly affect older individuals, and the possibility of an underlying link contributing to their shared epidemiological features has rarely been investigated. In the current study, we investigated the association between levels of plasma sclerostin (SOST), a protein primarily produced by bone, and brain amyloid-beta (Aβ) load, a pathological hallmark of AD. The study enrolled participants meeting a set of screening inclusion and exclusion criteria and were stratified into Aβ- (n = 65) and Aβ+ (n = 35) according to their brain Aβ load assessed using Aβ-PET (positron emission tomography) imaging. Plasma SOST levels, apolipoprotein E gene (APOE) genotype and several putative AD blood-biomarkers including Aβ40, Aβ42, Aβ42/Aβ40, neurofilament light (NFL), glial fibrillary acidic protein (GFAP), total tau (t-tau) and phosphorylated tau (p-tau181 and p-tau231) were detected and compared. It was found that plasma SOST levels were significantly higher in the Aβ+ group (71.49 ± 25.00 pmol/L) compared with the Aβ- group (56.51 ± 22.14 pmol/L) (P < 0.01). Moreover, Spearman's correlation analysis showed that plasma SOST concentrations were positively correlated with brain Aβ load (ρ = 0.321, P = 0.001). Importantly, plasma SOST combined with Aβ42/Aβ40 ratio significantly increased the area under the curve (AUC) when compared with using Aβ42/Aβ40 ratio alone (AUC = 0.768 vs 0.669, P = 0.027). In conclusion, plasma SOST levels are elevated in cognitively unimpaired older adults at high risk of AD and SOST could complement existing plasma biomarkers to assist in the detection of preclinical AD.
Collapse
Grants
- 2018-02532 Vetenskapsrådet (Swedish Research Council)
- KB is supported by the Swedish Research Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), and the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495).
Collapse
Affiliation(s)
- Jun Yuan
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Steve Pedrini
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Rohith Thota
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - James Doecke
- Australian E-Health Research Centre, CSIRO, Brisbane, QLD, Australia
| | - Pratishtha Chatterjee
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia
- The Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, WA, Australia
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, 9052, Gent, Belgium
| | | | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Christopher Mitchell
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Stephanie Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- KaRa Institute of Neurological Disease, Macquarie Park, NSW, Australia
| | - Andrew Chi Pang Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Nicholas Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Delin Liu
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Frank Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Charles Inderjeeth
- School of Medicine, The University of Western Australia, Perth, WA, Australia
- Sir Charles Gairdner and Osborne Park Health Care Group, Perth, Australia
| | - Minghao Zheng
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
- Centre for Orthopaedic Translational Research, Medical School, The University of Western Australia, Nedlands, WA, Australia.
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia
- The Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
5
|
Jiang H, Li D, Han Y, Li N, Tao X, Liu J, Zhang Z, Yu Y, Wang L, Yu S, Zhang N, Xiao H, Yang X, Zhang Y, Zhang G, Zhang BT. The role of sclerostin in lipid and glucose metabolism disorders. Biochem Pharmacol 2023; 215:115694. [PMID: 37481136 DOI: 10.1016/j.bcp.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Lipid and glucose metabolism are critical for human activities, and their disorders can cause diabetes and obesity, two prevalent metabolic diseases. Studies suggest that the bone involved in lipid and glucose metabolism is emerging as an endocrine organ that regulates systemic metabolism through bone-derived molecules. Sclerostin, a protein mainly produced by osteocytes, has been therapeutically targeted by antibodies for treating osteoporosis owing to its ability to inhibit bone formation. Moreover, recent evidence indicates that sclerostin plays a role in lipid and glucose metabolism disorders. Although the effects of sclerostin on bone have been extensively examined and reviewed, its effects on systemic metabolism have not yet been well summarized. In this paper, we provide a systemic review of the effects of sclerostin on lipid and glucose metabolism based on in vitro and in vivo evidence, summarize the research progress on sclerostin, and prospect its potential manipulation for obesity and diabetes treatment.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Dijie Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying Han
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Nanxi Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaohui Tao
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Luyao Wang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sifan Yu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Huan Xiao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Xin Yang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yihao Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.
| |
Collapse
|
6
|
Geusens P, Appelman-Dijkstra N, Lems W, van den Bergh J. Romosozumab for the treatment of postmenopausal women at high risk of fracture. Expert Opin Biol Ther 2023; 23:11-19. [PMID: 36440489 DOI: 10.1080/14712598.2022.2152320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Romosozumab is a monoclonal antibody that binds to sclerostin (an inhibitor of the Wingless-related integration site (Wnt) signaling pathway). It is a new osteoanabolic drug that simultaneously increases bone formation and decreases bone resorption. It has recently been approved by the US and EU authorities in postmenopausal women with at high risk of fractures. AREAS COVERED The literature on romosozumab in preclinical and in phase II and III clinical studies has been reviewed about the effect on bone, bone markers, and fracture reduction and its safety. EXPERT OPINION Compared to antiresorptive agents, its unique mechanism of action results in a quicker and greater increase in bone mineral density, it repairs and restores trabecular and cortical bone microarchitecture, and reduces fracture risk more rapidly and more effectively than alendronate, with persisting effects for at least two years after transition to antiresorptive agents. This finding has introduced the concept that, in patients at very high risk of fractures, the optimal sequence of treatment is to start with an osteoanabolic agent, followed by a potent AR drug. Recent national and international guidelines recommend the use of romosozumab as an initial treatment in patients at very high fracture risk without a history of stroke or myocardial infarction.
Collapse
Affiliation(s)
- Piet Geusens
- Department of Rheumatology, University Maastricht, Minderbroedersberg 4-6, 6211 LK Maastricht, Netherlands
| | - Natasha Appelman-Dijkstra
- Department of Internal Medicine-Endocrinology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Willem Lems
- Department of Rheumatology, Amsterdam University Medical Centre, De Boelelaan 1117 1081 HV Amsterdam, Netherlands
| | - Joop van den Bergh
- Department of Internal Medicine, VieCuri Medical Centre, Tegelseweg 210, 5912 BL Venlo, Netherlands
| |
Collapse
|
7
|
Sun L, Zhang Y, Chen G, Ji Y, Ma Q, Qiao X, Wu S, Zhou L, Bu J, Zhu X, Zhang X, Jiang X, Liu C, Li X, Liu Y, Yang Y, Liu C. Targeting SOST using a small-molecule compound retards breast cancer bone metastasis. Mol Cancer 2022; 21:228. [PMID: 36581888 PMCID: PMC9798707 DOI: 10.1186/s12943-022-01697-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer metastasis to the bone can be exacerbated by osteoporosis, is associated with poor long-term survival, and has limited therapeutic options. Sclerostin (SOST) is an endogenous inhibitor of bone formation, and an attractive target for treatment of osteoporosis. However, it is unclear whether SOST can be used as a therapeutic target for bone metastases of breast cancer, and whether small molecule compounds that target SOST in breast cancer cells can inhibit breast cancer bone metastasis. METHODS SOST expression in 442 breast cancer tissues was characterized by immunohistochemistry and statistically analyzed for the association with breast cancer bone metastases. Bone metastatic breast cancer SCP2 cells were induced for SOST silencing or overexpression and their bone metastatic behaviors were tested in vitro and in vivo. To identify potential therapeutics, we screened inhibitors of the interaction of SOST with STAT3 from a small chemical molecule library and tested the inhibitory effects of one inhibitor on breast cancer growth and bone metastasis in vitro and in vivo. RESULTS We found that up-regulated SOST expression was associated with breast cancer bone metastases and worse survival of breast cancer patients. SOST silencing significantly reduced the bone metastatic capacity of SCP2 cells. SOST interacted with STAT3 to enhance the TGF-β/KRAS signaling, increasing both tumor growth and bone metastasis. Treatment with one lead candidate, S6, significantly inhibited the growth of breast-cancer organoids and bone metastasis in mice. CONCLUSIONS Our findings highlight a new class of potential therapeutics for treatment of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Lisha Sun
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Urology Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guanglei Chen
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qingtian Ma
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sijin Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China.
| | - Lin Zhou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiawen Bu
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xudong Zhu
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoying Zhang
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofan Jiang
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Liu
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinnan Li
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongliang Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Caigang Liu
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translation Medicine Lab, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Catalano A, Vita GL, Bellone F, Sframeli M, Distefano MG, La Rosa M, Gaudio A, Vita G, Morabito N, Messina S. Bone health in Duchenne muscular dystrophy: clinical and biochemical correlates. J Endocrinol Invest 2022; 45:517-525. [PMID: 34524678 DOI: 10.1007/s40618-021-01676-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE An increased fracture risk is commonly reported in Duchenne muscular dystrophy (DMD). Our aim was to investigate bone mineral density (BMD) and bone turnover, including sclerostin, and their association with markers of cardiac and respiratory performance in a cohort of DMD subjects. METHODS In this single center, cross sectional observational study, lumbar spine (LS) BMD Z-scores, C-terminal telopeptide of procollagen type I (CTX) and osteocalcin (BGP), as bone resorption and formation markers, respectively, and sclerostin were assessed. Left ventricular ejection fraction (LVEF) and forced vital capacity (FVC) were evaluated. Clinical prevalent fractures were also recorded. RESULTS Thirty-one patients [median age = 14 (12-21.5) years] were studied. Ambulant subjects had higher LS BMD Z-scores compared with non-ambulant ones and subjects with prevalent clinical fractures [n = 9 (29%)] showed lower LS BMD Z-scores compared with subjects without fractures. LS BMD Z-scores were positively correlated with FVC (r = 0.50; p = 0.01), but not with glucocorticoid use, and FVC was positively associated with BGP (r = 0.55; p = 0.02). In non-ambulant subjects, LS BMD Z-scores were associated with BMI (r = 0.54; p = 0.02) and sclerostin was associated with age (r = 0.44; p = 0.05). Age, BMI, FVC and sclerostin were independently associated with LS BMD Z-score in a stepwise multiple regression analysis. Older age, lower BMI, FVC and sclerostin were associated with lower LS BMD Z-scores. CONCLUSION In a cohort of DMD patients, our data confirm low LS BMD Z-scores, mainly in non-ambulant subjects and irrespective of the glucocorticoid use, and suggest that FVC and sclerostin are independently associated with LS BMD Z-scores.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adolescent
- Biomarkers/metabolism
- Bone Density
- Bone Remodeling
- Collagen Type I/metabolism
- Fractures, Bone/epidemiology
- Fractures, Bone/etiology
- Fractures, Bone/prevention & control
- Glucocorticoids/therapeutic use
- Humans
- Italy/epidemiology
- Lumbar Vertebrae/diagnostic imaging
- Lumbar Vertebrae/pathology
- Mobility Limitation
- Muscular Dystrophy, Duchenne/diagnosis
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Peptides/metabolism
- Stroke Volume
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/etiology
- Vital Capacity
Collapse
Affiliation(s)
- Antonino Catalano
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy.
| | - Gian Luca Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Aurora Onlus Foundation, University Hospital "G. Martino", Messina, Italy
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Maria Sframeli
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Aurora Onlus Foundation, University Hospital "G. Martino", Messina, Italy
| | - Maria Grazia Distefano
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Matteo La Rosa
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Agostino Gaudio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giuseppe Vita
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Aurora Onlus Foundation, University Hospital "G. Martino", Messina, Italy
| | - Nunziata Morabito
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, A.O.U. Policlinico "G. Martino", University of Messina, Via C. Valeria, 98125, Messina, Italy
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Aurora Onlus Foundation, University Hospital "G. Martino", Messina, Italy
| |
Collapse
|
9
|
Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomater 2022; 140:178-189. [PMID: 34875361 DOI: 10.1016/j.actbio.2021.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Scaffolds associated with different types of mesenchymal stromal stem cells (MSC) are extensively studied for the development of novel therapies for large bone defects. Moreover, monoclonal antibodies have been recently introduced for the treatment of cancer-associated bone loss and other skeletal pathologies. In particular, antibodies against sclerostin, a key player in bone remodeling regulation, have demonstrated a real benefit for treating osteoporosis but their contribution to bone tissue-engineering remains uncharted. Here, we show that combining implantation of dense collagen hydrogels hosting wild-type (WT) murine dental pulp stem cells (mDPSC) with weekly systemic injections of a sclerostin antibody (Scl-Ab) leads to increased bone regeneration within critical size calvarial defects performed in WT mice. Furthermore, we show that bone formation is equivalent in calvarial defects in WT mice implanted with Sost knock-out (KO) mDPSC and in Sost KO mice, suggesting that the implantation of sclerostin-deficient MSC similarly promotes new bone formation than complete sclerostin deficiency. Altogether, our data demonstrate that an antibody-based therapy can potentialize tissue-engineering strategies for large craniofacial bone defects and urges the need to conduct research for antibody-enabled local inhibition of sclerostin. STATEMENT OF SIGNIFICANCE: The use of monoclonal antibodies is nowadays broadly spread for the treatment of several conditions including skeletal bone diseases. However, their use to potentialize tissue engineering constructs for bone repair remains unmet. Here, we demonstrate that the neutralization of sclerostin, through either a systemic inhibition by a monoclonal antibody or the implantation of sclerostin-deficient mesenchymal stromal stem cells (MSC) directly within the defect, improves the outcome of a tissue engineering approach, combining dense collagen hydrogels and MSC derived from the dental pulp, for the treatment of large craniofacial bone defects.
Collapse
|
10
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
11
|
Endocrinology of bone mineralization: an update. ANNALES D'ENDOCRINOLOGIE 2021; 83:46-53. [PMID: 34921812 DOI: 10.1016/j.ando.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Throughout the world, millions of people suffer from fragilizing osteopathies such as osteomalacia and osteoporosis.Osteomalacia is a rare disorder, corresponding to mineralization abnormalities in adult bone, as opposed to rickets in children. Renal phosphate loss and hypophosphatasia are the main causes of vitamin-resistant osteomalacia. Diagnosis is based on clinical history, phosphocalcic metabolism assessment and, if necessary, molecular characterization, and must be rapid in order to initiate the most appropriate treatment and consider new treatments such as burosumab if necessary.Osteoporosis is characterized by reduced bone mass and strength, which increases the risk of fragility fracture. Fracture-related burden is expected to increase over the coming decades linked to the aging of population and a treatment gap. In order to reduce this treatment gap, it is important to develop two strategies: improvement of screening and of treatment. Systematic screening using the FRAX® fracture risk assessment tool could be useful to increase anti-osteoporosis medical treatment and reduce fracture rates. The question of treatment sequencing in osteoporosis is another challenge, notably after denosumab cessation, complicated by a decrease in bone mineral density and increased risk of fracture. New treatments are also available, including romosozumab, a humanized monoclonal antibody which promotes bone formation and inhibits bone resorption by inhibiting sclerostin. Romosozumab is approved in several countries, including France, for treating severe osteoporosis in postmenopausal women at high risk of fracture and free of cardiovascular comorbidity.Endocrinologists need to be aware of these fragilizing osteopathies in order to improve both diagnosis and treatment.
Collapse
|
12
|
Abstract
Bone fragility fractures remain an important worldwide health and economic problem due to increased morbidity and mortality. The current methods for predicting fractures are largely based on the measurement of bone mineral density and the utilization of mathematical risk calculators based on clinical risk factors for bone fragility. Despite these approaches, many bone fractures remain undiagnosed. Therefore, current research is focused on the identification of new factors such as bone turnover markers (BTM) for risk calculation. BTM are a group of proteins and peptides released during bone remodeling that can be found in serum or urine. They derive from bone resorptive and formative processes mediated by osteoclasts and osteoblasts, respectively. Potential use of BTM in monitoring these phenomenon and therefore bone fracture risk is limited by physiologic and pathophysiologic factors that influence BTM. These limitations in predicting fractures explain why their inclusion in clinical guidelines remains limited despite the large number of studies examining BTM.
Collapse
Affiliation(s)
- Lisa Di Medio
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy
| |
Collapse
|
13
|
Gao X, Wang S, Zhang J, Wang S, Bai F, Liang J, Wu J, Wang H, Gao Y, Chang H. Differential bone remodeling mechanism in hindlimb unloaded rats and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse. J Comp Physiol B 2021; 191:793-814. [PMID: 34002279 DOI: 10.1007/s00360-021-01375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
To determine that differential bone remodeling mechanism (especially Wnt signaling) in hindlimb unloaded rats and hibernating Daurian ground squirrels, the bone microstructure, mechanical properties, and expression levels of bone remodeling related proteins and key proteins of Wnt/β-catenin signaling were analyzed in this study. The thickness of cortical and trabecular bone was decreased in femur of hindlimb unloaded rats, while it was maintained in femur of hibernating ground squirrels. Interestingly, the ultimate bending energy and ultimate normalized displacement were reduced and the bending rigidity was increased in tibia of hibernating ground squirrels. Besides, the protein level of Runx2 was decreased in femur and tibia of unloaded rats, while it was maintained in tibia and even increased in femur of hibernating ground squirrels. The protein levels of RANKL and MMP-9 were increased in femur and tibia in unloaded rats, while they were maintained in both femur and tibia of hibernating ground squirrels. The protein level of GSK-3β was increased in femur and tibia of unloaded rats, while it was maintained in both femur and tibia of hibernating ground squirrels. The phospho-β-catenin expression was increased in both femur and tibia of unloaded rats, while it was only decreased in femur, but maintained in tibia of hibernating ground squirrels. In conclusion, the femur and tibia in hindlimb unloaded rats showed obvious bone loss, while they mitigated disuse-induced bone loss in hibernating ground squirrels, involving differential protein expression of key molecules in bone remodeling. In comparison with hindlimb unloaded rats, promoting osteoblast differentiation through activating canonical GSK-3β/β-catenin signaling involving Runx2 might be an adaptation to natural disuse in femur of hibernating Daurian ground squirrels. However, there was no statistical change in the protein levels of bone formation related proteins, GSK-3β and phospho-β-catenin in tibia of hibernating Daurian ground squirrels.
Collapse
Affiliation(s)
- Xuli Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Siqi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Shuyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Feiyan Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Skeletal integrity is maintained by a meticulous balance between bone resorption and bone formation, and recent studies have revealed the essential role of canonical Wnt signaling pathways in maintaining skeletal homeostasis. The SOST gene, which encodes sclerostin, a member of Dan family glycoproteins, was originally identified as the gene responsible for two sclerosing bone dysplasias, sclerosteosis and van Buchem disease. Sclerostin is highly expressed by osteocytes, negatively regulates canonical Wnt signaling pathways by binding to low-density lipoprotein receptor-related protein (LRP) 5/6, and suppresses osteoblast differentiation and/or function. Romosozumab, a specific anti-sclerostin antibody, inhibits sclerostin-LRP5/6 interactions and indirectly activates canonical Wnt signaling pathways and bone formation. This review focuses on the mechanism of action of sclerostin and summarizes clinical studies that demonstrated the efficacy of romosozumab to increase bone mineral density and reduce osteoporotic fractures, as well as its cardiovascular safety.
Collapse
Affiliation(s)
- Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
15
|
Abstract
Romosozumab (Evenity®), a humanized monoclonal antibody, promotes bone formation and inhibits bone resorption by inhibiting sclerostin, a protein involved in the regulation of bone formation. Subcutaneous romosozumab is approved in several countries, including those of the EU for treating severe osteoporosis as well as in the USA for osteoporosis in postmenopausal women at high risk of fracture. In pivotal phase III trials (FRAME and ARCH), 12 months' once-monthly romosozumab 210 mg significantly reduced vertebral and clinical fracture risk versus placebo and oral alendronate in postmenopausal women with osteoporosis. After patients transitioned from romosozumab to 12-24 months of subcutaneous denosumab or oral alendronate, fracture risks were significantly improved versus placebo-to-denosumab and alendronate-only treatment. In these trials and a phase IIIb trial, romosozumab significantly increased bone mineral density (BMD) relative to placebo, alendronate and subcutaneous teriparatide at 12 months, with these benefits maintained 12-24 months after patients transitioned from romosozumab to alendronate or denosumab in pivotal trials. Romosozumab had a generally manageable tolerability profile. While further clinical experience is needed to more definitively establish its efficacy and safety, including its CV safety, romosozumab extends the treatment options in postmenopausal women with osteoporosis who have a high risk of fracture and in those who have failed or are intolerant to other available osteoporosis therapy.
Collapse
Affiliation(s)
- Julia Paik
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Lesley J Scott
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|
16
|
Abstract
The phenotypic trait of high bone mass (HBM) is an excellent example of the nexus between common and rare disease genetics. HBM may arise from carriage of many 'high bone mineral density [BMD]'-associated alleles, and certainly the genetic architecture of individuals with HBM is enriched with high BMD variants identified through genome-wide association studies of BMD. HBM may also arise as a monogenic skeletal disorder, due to abnormalities in bone formation, bone resorption, and/or bone turnover. Individuals with monogenic disorders of HBM usually, though not invariably, have other skeletal abnormalities (such as mandible enlargement) and thus are best regarded as having a skeletal dysplasia rather than just isolated high BMD. A binary etiological division of HBM into polygenic vs. monogenic, however, would be excessively simplistic: the phenotype of individuals carrying rare variants of large effect can still be modified by their common variant polygenic background, and by the environment. HBM disorders-whether predominantly polygenic or monogenic in origin-are not only interesting clinically and genetically: they provide insights into bone processes that can be exploited therapeutically, with benefits both for individuals with these rare bone disorders and importantly for the many people affected by the commonest bone disease worldwide-i.e., osteoporosis. In this review we detail the genetic architecture of HBM; we provide a conceptual framework for considering HBM in the clinical context; and we discuss monogenic and polygenic causes of HBM with particular emphasis on anabolic causes of HBM.
Collapse
Affiliation(s)
- Celia L. Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Emma L. Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Bone, a Secondary Growth Site of Breast and Prostate Carcinomas: Role of Osteocytes. Cancers (Basel) 2020; 12:cancers12071812. [PMID: 32640686 PMCID: PMC7408809 DOI: 10.3390/cancers12071812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is the primarily preferred site for breast and prostate cancer to metastasize. Bone metastases are responsible for most deaths related to breast and prostate cancer. The bone's particular microenvironment makes it conducive for the growth of cancer cells. Studies on bone metastasis have focused on the interaction between cancer cells and the bone microenvironment. Osteocytes, the most common cell type of bone tissue, have received little attention in bone metastasis, although they are master signal sensors, integrators, and skeleton transducers. They play an important role in regulating bone mass by acting on both osteoblasts and osteoclasts, through the release of proteins such as sclerostin, Dickkopf-1 (DKK-1), and fibroblast growth factor 23 (FGF23). Osteocytes have been extensively re-evaluated, in light of their multiple functions: with different experimental approaches, it has been shown that, indeed, osteocytes are actively involved in the colonization of bone tissue by cancer cells. The present review focuses on recent research on the role that osteocytes play in bone metastasis of breast and prostate cancers. Moreover, the studies here summarized open up perspectives for new therapeutic approaches focused on modulating the activity of osteocytes to improve the condition of the bone metastatic patients. A better understanding of the complex interactions between cancer cells and bone-resident cells is indispensable for identifying potential therapeutic targets to stop tumor progression and prevent bone metastases.
Collapse
|
18
|
Gao X, Tang Y, Amra S, Sun X, Cui Y, Cheng H, Wang B, Huard J. Systemic investigation of bone and muscle abnormalities in dystrophin/utrophin double knockout mice during postnatal development and the mechanisms. Hum Mol Genet 2020; 28:1738-1751. [PMID: 30689868 DOI: 10.1093/hmg/ddz012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022] Open
Abstract
The dystrophin-/-/utrophin-/-/ double knockout (dKO-Hom) mouse is a murine model of human Duchenne muscular dystrophy. This study investigated the bone and muscle abnormalities of dKO-Hom mouse and mechanisms. We collected bone and skeletal muscle samples from control mice and three muscular dystrophic mouse models at different ages and performed micro-computer tomography and histological analyses of both bone and skeletal muscle tissues. Serum receptor activator of nuclear factor kappa-Β ligand (RANKL) and sclerostin (SOST) levels, osteoclastogenesis and serum proteomics were also analyzed. Our results indicated that dKO-Hom mice developed skeletal muscle histopathologies by 5 days of age, whereas bone abnormalities developed at 4 weeks of age. Furthermore, our results indicated that the numbers of osteoblasts and osteoclasts were decreased in the proximal tibia and spine trabecular bone of dKO-Hom mice compared to wild-type (WT) mice, which correlated with a significant reduction in serum RANKL levels. The number of tibia cortical osteocytes also decreased, whereas serum SOST levels increased significantly in dKO-Hom mice than WT mice. Osteoblastic number was significantly lower, but osteoclast number increased, in the spine L6 of dKO-Hom mice than WT mice at 6 weeks of age, resulting in a decrease in bone formation and an increase in bone resorption. Serum proteomics results revealed abnormal proteome profiles in dKO-Hom mice compared to control mice. In conclusion, our study elucidated the timing of development of bone and muscle abnormalities. The bone abnormalities in dKO-Hom mice are correlated with lower serum RANKL and higher SOST levels that resulted in dysregulation of osteogenesis and osteoclastogenesis and bone loss.
Collapse
Affiliation(s)
- Xueqin Gao
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA.,Steadman Philippon Research Institute, Vail, CO, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Sarah Amra
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuying Sun
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, USA.,Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
19
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
20
|
PHARMACOLOGICAL MANAGEMENT OF OSTEOPOROSIS IN POSTMENOPAUSAL WOMEN: THE CURRENT STATE OF THE ART. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY 2019. [DOI: 10.15586/jptcp.v26i4.646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Wnt Signaling in the Regulation of Immune Cell and Cancer Therapeutics. Cells 2019; 8:cells8111380. [PMID: 31684152 PMCID: PMC6912555 DOI: 10.3390/cells8111380] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is one of the important pathways to play a major role in various biological processes, such as embryonic stem-cell development, tissue regeneration, cell differentiation, and immune cell regulation. Recent studies suggest that Wnt signaling performs an essential function in immune cell modulation and counteracts various disorders. Nonetheless, the emerging role and mechanism of action of this signaling cascade in immune cell regulation, as well as its involvement in various cancers, remain debatable. The Wnt signaling in immune cells is very diverse, e.g., the tolerogenic role of dendritic cells, the development of natural killer cells, thymopoiesis of T cells, B-cell-driven initiation of T-cells, and macrophage actions in tissue repair, regeneration, and fibrosis. The purpose of this review is to highlight the current therapeutic targets in (and the prospects of) Wnt signaling, as well as the potential suitability of available modulators for the development of cancer immunotherapies. Although there are several Wnt inhibitors relevant to cancer, it would be worthwhile to extend this approach to immune cells.
Collapse
|
22
|
Chavassieux P, Chapurlat R, Portero-Muzy N, Roux JP, Garcia P, Brown JP, Libanati C, Boyce RW, Wang A, Grauer A. Bone-Forming and Antiresorptive Effects of Romosozumab in Postmenopausal Women With Osteoporosis: Bone Histomorphometry and Microcomputed Tomography Analysis After 2 and 12 Months of Treatment. J Bone Miner Res 2019; 34:1597-1608. [PMID: 31233639 PMCID: PMC7027577 DOI: 10.1002/jbmr.3735] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Sclerostin, a protein produced by osteocytes, inhibits bone formation. Administration of sclerostin antibody results in increased bone formation in multiple animal models. Romosozumab, a humanized sclerostin antibody, has a dual effect on bone, transiently increasing serum biochemical markers of bone formation and decreasing serum markers of bone resorption, leading to increased BMD and reduction in fracture risk in humans. We aimed to evaluate the effects of romosozumab on bone tissue. In a subset of 107 postmenopausal women with osteoporosis in the multicenter, international, randomized, double-blind, placebo-controlled Fracture Study in Postmenopausal Women with Osteoporosis (FRAME), transiliac bone biopsies were performed either after 2 (n = 34) or 12 (n = 73) months of treatment with 210 mg once monthly of romosozumab or placebo to evaluate histomorphometry and microcomputed tomography-based microarchitectural endpoints. After 2 months, compared with either baseline values assessed after a quadruple fluorochrome labeling or placebo, significant increases (P < 0.05 to P < 0.001) in dynamic parameters of formation (median MS/BS: romosozumab 1.51% and 5.64%; placebo 1.60% and 2.31% at baseline and month 2, respectively) were associated with a significant decrease compared with placebo in parameters of resorption in cancellous (median ES/BS: placebo 3.4%, romosozumab 1.8%; P = 0.022) and endocortical (median ES/BS: placebo 6.3%, romosozumab 1.6%; P = 0.003) bone. At 12 months, cancellous bone formation was significantly lower (P < 0.05 to P < 0.001) in romosozumab versus placebo and the lower values for resorption endpoints seen at month 2 persisted (P < 0.001), signaling a decrease in bone turnover (P = 0.006). No significant change was observed in periosteal and endocortical bone. This resulted in an increase in bone mass and trabecular thickness with improved trabecular connectivity, without significant modification of cortical porosity at month 12. In conclusion, romosozumab produced an early and transient increase in bone formation, but a persistent decrease in bone resorption. Antiresorptive action eventually resulted in decreased bone turnover. This effect resulted in significant increases in bone mass and improved microarchitecture. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | | | | | - Pedro Garcia
- Endocrinology Service, Osteoporosis Center, University Hospital of Monterrey, Monterrey, Mexico
| | - Jacques P Brown
- CHU de Quebec Research Centre and Department of Medicine, Laval University, Quebec, Canada
| | | | | | | | | |
Collapse
|
23
|
Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches. Stem Cells Int 2019; 2019:1730978. [PMID: 31281368 PMCID: PMC6589256 DOI: 10.1155/2019/1730978] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic disease that affects the skeleton, causing reduction of bone density and mass, resulting in destruction of bone microstructure and increased risk of bone fractures. Since osteoporosis is a disease affecting the elderly and the aging of the world's population is constantly increasing, it is expected that the incidence of osteoporosis and its financial burden on the insurance systems will increase continuously and there is a need for more understanding this condition in order to prevent and/or treat it. At present, available drug therapy for osteoporosis primarily targets the inhibition of bone resorption and agents that promote bone mineralization, designed to slow disease progression. Safe and predictable pharmaceutical means to increase bone formation have been elusive. Stem cell therapy of osteoporosis, as a therapeutic strategy, offers the promise of an increase in osteoblast differentiation and thus reversing the shift towards bone resorption in osteoporosis. This review is focused on the current views regarding the implication of the stem cells in the cellular and physiologic mechanisms of osteoporosis and discusses data obtained from stem cell-based therapies of osteoporosis in experimental animal models and the possibility of their future application in clinical trials.
Collapse
|
24
|
Li M, Li S, Liu J, Cui X, Zhang S, Zhou J, Wang X, Yao Q. Sustained-release of sclerostin single-chain antibody fragments using poly(lactic-co-glycolic acid) microspheres for osteoporotic fracture repair. J Biomed Mater Res A 2019; 107:1832-1840. [PMID: 31012249 PMCID: PMC6618085 DOI: 10.1002/jbm.a.36704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 11/26/2022]
Abstract
Osteoporotic fracture is one of the most common bone diseases in middle and old age, as the most serious consequence of osteoporosis. Sclerostin single‐chain antibody fragments (SCL‐scFv) have been proven to promote bone formation by binding to scleroprotein, a natural antagonist of the Wnt pathway, but it is difficult to rule alone due to the weak permeability and immunogenicity. Herein, we prepared poly(lactic‐co‐glycolic acid) microspheres as a sustained‐release vehicle to prolong the activity of SCL‐scFv. The morphology of microspheres were uniform and nearly sphere, loading efficiency and encapsulation efficiency of SCL‐scFv microspheres were 6.28 ± 1.04% and 48.37 ± 8.11%, respectively. Approximately 90% of the SCL‐scFvs were released from the microspheres over 28 days with initial burst releasing (38%) in the first 4 days. Sustained‐release of active SCL‐scFv from microspheres promoted bone marrow mesenchymal stem cells osteogenic differentiation in vitro and enhanced fracture healing in ovariectomized rats by improving bone mass and bone formation in the fracture region. All these findings demonstrate that the microspheres are able to simultaneously achieve localized long‐term SCL‐scFv controlled release and effectively promote bone formation, which provides a promising approach for osteoporotic fracture.
Collapse
Affiliation(s)
- Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Shifei Li
- Department of Orthopedics, Beijing Shijitan Hospital Affiliated to Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Cui
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Shudong Zhang
- Department of Orthopedics, Beijing Shijitan Hospital Affiliated to Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Jian Zhou
- Department of Orthopedics, Beijing Shijitan Hospital Affiliated to Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qi Yao
- Department of Orthopedics, Beijing Shijitan Hospital Affiliated to Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| |
Collapse
|
25
|
Atkinson EG, Delgado‐Calle J. The Emerging Role of Osteocytes in Cancer in Bone. JBMR Plus 2019; 3:e10186. [PMID: 30918922 PMCID: PMC6419608 DOI: 10.1002/jbm4.10186] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in the last decade have established the osteocyte, the most abundant cell in bone, as a dynamic and multifunctional cell capable of controlling bone homeostasis by regulating the function of both osteoblasts and osteoclasts. In addition, accumulating evidence demonstrates that osteocyte function is altered in several skeletal disorders, and targeting osteocytes and their derived factors improves skeletal health. Despite the remarkable progress in our understanding of osteocyte biology, there has been a paucity of information regarding the role of osteocytes in the progression of cancer in bone. Exciting, recent discoveries suggest that tumor cells communicate with osteocytes to generate a microenvironment that supports the growth and survival of cancer cells and stimulates bone destruction. This review features these novel findings and discussions regarding the impact of chemotherapy on osteocyte function and the potential of targeting osteocytes for the treatment of cancer in bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Emily G Atkinson
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Jesús Delgado‐Calle
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of MedicineDivision of Hematology/OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
26
|
Liu C, Wang L, Zhu R, Liu H, Ma R, Chen B, Li L, Guo Y, Jia Q, Shi S, Zhao D, Mo F, Zhao B, Niu J, Fu M, Orekhov AN, Brömme D, Gao S, Zhang D. Rehmanniae Radix Preparata suppresses bone loss and increases bone strength through interfering with canonical Wnt/β-catenin signaling pathway in OVX rats. Osteoporos Int 2019; 30:491-505. [PMID: 30151623 DOI: 10.1007/s00198-018-4670-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
UNLABELLED Rehmanniae Radix Preparata (RRP) improves bone quality in OVX rats through the regulation of bone homeostasis via increasing osteoblastogenesis and decreasing osteoclastogenesis, suggesting it has a potential for the development of new anti-osteoporotic drugs. INTRODUCTION Determine the anti-osteoporotic effect of RRP in ovariectomized (OVX) rats and identify the signaling pathway involved in this process. METHODS OVX rats were treated with RRP aqueous extract for 14 weeks. The serum levels of tartrate-resistant acid phosphatase (TRAP), receptor activator of nuclear factor kappa-Β ligand (RANKL), alkaline phosphatase (ALP), and osteoprotegerin (OPG) were determined by ELISA. Bone histopathological alterations were evaluated by H&E, Alizarin red S, and Safranin O staining. Bone mineral density (BMD) and bone microstructure in rat femurs and lumbar bones were determined by dual-energy X-ray absorptiometry and micro-computed tomography. Femoral bone strength was detected by a three-point bending assay. The expression of Phospho-glycogen synthase kinase 3 beta (p-GSK-3β), GSK-3β, Dickkopf-related protein 1 (DKK1), cathepsin K, OPG, RANKL, IGF-1, Runx2, β-catenin, and p-β-catenin was determined by western blot and/or immunohistochemical staining. RESULTS Treatment of OVX rats with RRP aqueous extract rebuilt bone homeostasis demonstrated by increasing the levels of OPG as well as decreasing the levels of TRAP, RANKL, and ALP in serum. Furthermore, RRP treatment preserved BMD and mechanical strength by increasing cortical bone thickness and epiphyseal thickness as well as improving trabecular distribution in the femurs of OVX rats. In addition, RRP downregulated the expression of DKK1, sclerostin, RANKL, cathepsin K, and the ratio of p-β-catenin to β-catenin, along with upregulating the expression of IGF-1, β-catenin, and Runx2 and the ratio of p-GSK-3β to GSK-3β in the tibias and femurs of OVX rats. Echinacoside, jionoside A1/A2, acetoside, isoacetoside, jionoside B1, and jionoside B2 were identified in the RRP aqueous extract. CONCLUSION RRP attenuates bone loss and improves bone quality in OVX rats partly through its regulation of the canonical Wnt/β-catenin signaling pathway, suggesting that RRP has the potential to provide a new source of anti-osteoporotic drugs.
Collapse
Affiliation(s)
- C Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - L Wang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - R Zhu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - H Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - R Ma
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - B Chen
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - L Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Y Guo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- The Third Affiliated Clinical Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Q Jia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - S Shi
- Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - D Zhao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - F Mo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - B Zhao
- Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - J Niu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - M Fu
- The Research Institute of McGill University Health Center, Montreal, Quebec, H4A 3J1, Canada
| | - A N Orekhov
- Laboratory of Angiopathology, Russian Academy of Medical Sciences, Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia
| | - D Brömme
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - S Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - D Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
27
|
Cucchi D, Menon A, Galliera E, Messina C, Zanini B, Marazzi MG, Massaccesi L, Compagnoni R, Corsi Romanelli MM, Randelli P. A Prospective Assessment of Periprosthetic Bone Mineral Density and Osteoimmunological Biomarkers Variations After Total Knee Replacement Surgery. J Clin Densitom 2019; 22:86-95. [PMID: 30072203 DOI: 10.1016/j.jocd.2018.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Aseptic loosening is a major cause of premature failure of total knee replacement (TKR). Variations in periprosthetic bone mineral density (BMD) and osteoimmunological biomarkers levels could help to quantify prosthesis osteointegration and predict early aseptic loosening. The gene expression of 5 selected osteoimmunological biomarkers was evaluated in tibial plateau bone biopsies by real-time polymerase chain reaction and changes in their serum levels after TKR were prospectively evaluated with enzyme-linked immunosorbent assay for 1 yr after surgery. These variations were correlated to changes in periprosthetic BMD. Sixteen patients were evaluated. A statistically significant decrease in serum levels of Sclerostin (p = 0.0135) was observed immediately after surgery. A specular pattern was observed between dickkopf-related protein 1 and osteoprotegerin expression. No statistically significant changes were detectable in the other study biomarkers. Periprosthetic BMD did not change significantly across the duration of the follow-up. Prosthetic knee surgery has an impact on bone remodeling, in particular on sclerostin expression. Although not showing statistically significant changes, in the patterns of dickkopf-related protein 1, osteoprotegerin, and the ligand of the receptor activator of nuclear factor kappa-B symmetries and correspondences related to the biological activities of these proteins could be identified. Variation in osteoimmunological biomarkers after TKR surgery can help in quantifying prosthesis osteointegration.
Collapse
Affiliation(s)
- Davide Cucchi
- Department of Orthopaedics and Trauma Surgery, Universitätsklinikum Bonn, Bonn 53127, Germany; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy.
| | - Alessandra Menon
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan 20122, Italy
| | - Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; IRCCS Galeazzi Orthopaedic Institute, Milan 20161, Italy
| | - Carmelo Messina
- Department of Diagnostic and Interventional Radiology, IRCCS Galeazzi Orthopaedic Institute, Milan 20161, Italy
| | - Beatrice Zanini
- 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan 20122, Italy
| | - Monica Gioia Marazzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy
| | - Luca Massaccesi
- Department of Biomedical, Surgical and Oral Science, Università degli Studi di Milano, Milan 20133, Italy
| | - Riccardo Compagnoni
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan 20122, Italy
| | - Massimiliano M Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; U.O.C SMEL-1 Patologia Clinica, IRCCS Policlinico San Donato, Milan 20097, Italy
| | - Pietro Randelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan 20122, Italy
| |
Collapse
|
28
|
Herbert AJ, Williams AG, Hennis PJ, Erskine RM, Sale C, Day SH, Stebbings GK. The interactions of physical activity, exercise and genetics and their associations with bone mineral density: implications for injury risk in elite athletes. Eur J Appl Physiol 2019; 119:29-47. [PMID: 30377780 PMCID: PMC6342881 DOI: 10.1007/s00421-018-4007-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/04/2018] [Indexed: 01/30/2023]
Abstract
Low bone mineral density (BMD) is established as a primary predictor of osteoporotic risk and can also have substantial implications for athlete health and injury risk in the elite sporting environment. BMD is a highly multi-factorial phenotype influenced by diet, hormonal characteristics and physical activity. The interrelationships between such factors, and a strong genetic component, suggested to be around 50-85% at various anatomical sites, determine skeletal health throughout life. Genome-wide association studies and case-control designs have revealed many loci associated with variation in BMD. However, a number of the candidate genes identified at these loci have no known associated biological function or have yet to be replicated in subsequent investigations. Furthermore, few investigations have considered gene-environment interactions-in particular, whether specific genes may be sensitive to mechanical loading from physical activity and the outcome of such an interaction for BMD and potential injury risk. Therefore, this review considers the importance of physical activity on BMD, genetic associations with BMD and how subsequent investigation requires consideration of the interaction between these determinants. Future research using well-defined independent cohorts such as elite athletes, who experience much greater mechanical stress than most, to study such phenotypes, can provide a greater understanding of these factors as well as the biological underpinnings of such a physiologically "extreme" population. Subsequently, modification of training, exercise or rehabilitation programmes based on genetic characteristics could have substantial implications in both the sporting and public health domains once the fundamental research has been conducted successfully.
Collapse
Affiliation(s)
- Adam J. Herbert
- Department of Sport and Exercise, School of Health Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Alun G. Williams
- Sports Genomics Laboratory, Manchester Metropolitan University, Cheshire Campus, Crewe Green Road, Crewe, CW1 5DU UK
- Institute of Sport, Exercise and Health, University College London, Tottenham Court Road, London, W17 7HA UK
| | - Philip J. Hennis
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS UK
| | - Robert M. Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
- Institute of Sport, Exercise and Health, University College London, Tottenham Court Road, London, W17 7HA UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS UK
| | - Stephen H. Day
- Department of Biomedical Science & Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Georgina K. Stebbings
- Sports Genomics Laboratory, Manchester Metropolitan University, Cheshire Campus, Crewe Green Road, Crewe, CW1 5DU UK
| |
Collapse
|
29
|
Whyte MP, Deepak Amalnath S, McAlister WH, Pedapati R, Muthupillai V, Duan S, Huskey M, Bijanki VN, Mumm S. Sclerosteosis: Report of type 1 or 2 in three Indian Tamil families and literature review. Bone 2018; 116:321-332. [PMID: 30077757 DOI: 10.1016/j.bone.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 01/08/2023]
Abstract
Sclerosteosis (SOST) refers to two extremely rare yet similar skeletal dysplasias featuring a diffusely radiodense skeleton together with congenital syndactyly. SOST1 is transmitted as an autosomal recessive (AR) trait and to date caused by ten homozygous loss-of-function mutations within the gene SOST that encodes the inhibitor of Wnt-mediated bone formation, sclerostin. SOST2 is transmitted as an autosomal dominant (AD) or AR trait and to date caused by one heterozygous or two homozygous loss-of-function mutation(s), respectively, within the gene LRP4 that encodes the sclerostin interaction protein, low-density lipoprotein receptor-related protein 4 (LRP4). Herein, we investigated two teenagers and one middle-aged man with SOST in three families living in the state of Tamil Nadu in southern India. Next generation sequencing of their genomic DNA using our high bone density gene panel revealed SOST1 in the teenagers caused by a unique homozygous nonsense SOST mutation (c.129C > G, p.Tyr43X) and SOST2 in the man caused by homozygosity for one of the two known homozygous missense LRP4 mutations (c.3508C > T, p.Arg1170Trp). He becomes the fourth individual and the first non-European recognized with SOST2. His clinical course was milder than the life-threatening SOST1 demonstrated by the teenagers who suffered blindness, deafness, and raised intracranial pressure, yet his congenital syndactyly was more striking by featuring bony fusion of digits. All three patients were from consanguineous families and heterozygosity for the SOST mutation was documented in the mothers of both teenagers. Thus, on the endogamous genetic background of Indian Tamils, SOST1 from sclerostin deficiency compared to SOST2 from LRP4 deactivation is a more severe and life-threatening disorder featuring complications due to osteosclerosis of especially the skull. In contrast, the syndactyly of SOST2 is particularly striking by involving bony fusion of some digits. Both the SOST and LRP4 mutations in this ethnic population likely reflect genetic founders.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - S Deepak Amalnath
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Radhakrishna Pedapati
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | - Vivekanandan Muthupillai
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Abstract
The skeleton shows an unconventional role in the physiology and pathophysiology of the human organism, not only as the target tissue for a number of systemic hormones, but also as endocrine tissue modulating some skeletal and extraskeletal systems. From this point of view, the principal cells in the skeleton are osteocytes. These cells primarily work as mechano-sensors and modulate bone remodeling. Mechanically unloaded osteocytes synthetize sclerostin, the strong inhibitor of bone formation and RANKL, the strong activator of bone resorption. Osteocytes also express hormonally active vitamin D (1,25(OH)2D) and phosphatonins, such as FGF23. Both 1,25(OH)2D and FGF23 have been identified as powerful regulators of the phosphate metabolism, including in chronic kidney disease. Further endocrine cells of the skeleton involved in bone remodeling are osteoblasts. While FGF23 targets the kidney and parathyroid glands to control metabolism of vitamin D and phosphates, osteoblasts express osteocalcin, which through GPRC6A receptors modulates beta cells of the pancreatic islets, muscle, adipose tissue, brain and testes. This article reviews some knowledge concerning the interaction between the bone hormonal network and phosphate or energy homeostasis and/or male reproduction.
Collapse
Affiliation(s)
- I. ZOFKOVA
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
31
|
Skjødt MK, Frost M, Abrahamsen B. Side effects of drugs for osteoporosis and metastatic bone disease. Br J Clin Pharmacol 2018; 85:1063-1071. [PMID: 30192026 DOI: 10.1111/bcp.13759] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a common condition that leads to substantial morbidity and mortality and affects an increasing number of persons worldwide. Several pharmacological therapies that inhibit bone resorption, promote bone formation, or both, are available for the treatment of osteoporosis. The osteoanabolic treatment spectrum was recently expanded by the introduction of a novel bone-forming agent in the United States, and clinical trials indicate that a new class of bone anabolic therapy may become available. Both antiresorptive and bone anabolic therapies are associated with common and rare adverse effects, which are particularly important to address as these drugs are used for long-term treatment in numerous patients with a large proportion being elderly and/or having multimorbidity. In addition, antiresorptive drugs are used to inhibit bone resorption in patients with malignant hypercalcaemia or to prevent skeletal events in cancer patients, and bisphosphonates have been repurposed as a cancer preventive therapy. However, therapeutic doses are generally higher when antiresorptive drugs are used in the oncological setting, which influence the prevalence of adverse effects significantly. This review highlights key issues and controversies regarding adverse effects of currently available and emerging drugs used for osteoporosis and metastatic bone diseases.
Collapse
Affiliation(s)
- Michael Kriegbaum Skjødt
- Department of Medicine, Holbaek Hospital, Holbaek, Denmark.,Department of Medicine, Slagelse Hospital, Slagelse, Denmark
| | - Morten Frost
- Department of Endocrinology M, Odense University Hospital, Odense C, Denmark.,Steno Diabetes Centre Odense, Odense C, Denmark
| | - Bo Abrahamsen
- Department of Medicine, Holbaek Hospital, Holbaek, Denmark.,Odense Patient Data Explorative Network, Institute of Clinical Research University of Southern Denmark and Odense University Hospital, Odense C, Denmark
| |
Collapse
|
32
|
Abstract
Osteoporosis increases the risk of fractures, which are associated with increased mortality and lower quality of life. Patients with prevalent fracture are at high risk to of sustaining another one. Optimal protein and calcium intakes, and vitamin D supplies, together with regular weight bearing physical exercise are the corner stones of fracture prevention. Evidence for anti-fracture efficacy of pharmacological interventions relies on results from randomised controlled trials in postmenopausal women with fractures as the primary outcome. Treatments with bone resorption inhibitors, like bisphosphonates or denosumab, and bone formation stimulator like teriparatide, reduce vertebral and non-vertebral fracture risk. A reduction in vertebral fracture risk can already be detected within a year after starting therapy.
Collapse
Affiliation(s)
- René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211 Geneva 14, Switzerland.
| |
Collapse
|
33
|
Gregson CL, Newell F, Leo PJ, Clark GR, Paternoster L, Marshall M, Forgetta V, Morris JA, Ge B, Bao X, Duncan Bassett JH, Williams GR, Youlten SE, Croucher PI, Davey Smith G, Evans DM, Kemp JP, Brown MA, Tobias JH, Duncan EL. Genome-wide association study of extreme high bone mass: Contribution of common genetic variation to extreme BMD phenotypes and potential novel BMD-associated genes. Bone 2018; 114:62-71. [PMID: 29883787 PMCID: PMC6086337 DOI: 10.1016/j.bone.2018.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/13/2018] [Accepted: 06/02/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Generalised high bone mass (HBM), associated with features of a mild skeletal dysplasia, has a prevalence of 0.18% in a UK DXA-scanned adult population. We hypothesized that the genetic component of extreme HBM includes contributions from common variants of small effect and rarer variants of large effect, both enriched in an extreme phenotype cohort. METHODS We performed a genome-wide association study (GWAS) of adults with either extreme high or low BMD. Adults included individuals with unexplained extreme HBM (n = 240) from the UK with BMD Z-scores ≥+3.2, high BMD females from the Anglo-Australasian Osteoporosis Genetics Consortium (AOGC) (n = 1055) with Z-scores +1.5 to +4.0 and low BMD females also part of AOGC (n = 900), with Z-scores -1.5 to -4.0. Following imputation, we tested association between 6,379,332 SNPs and total hip and lumbar spine BMD Z-scores. For potential target genes, we assessed expression in human osteoblasts and murine osteocytes. RESULTS We observed significant enrichment for associations with established BMD-associated loci, particularly those known to regulate endochondral ossification and Wnt signalling, suggesting that part of the genetic contribution to unexplained HBM is polygenic. Further, we identified associations exceeding genome-wide significance between BMD and four loci: two established BMD-associated loci (5q14.3 containing MEF2C and 1p36.12 containing WNT4) and two novel loci: 5p13.3 containing NPR3 (rs9292469; minor allele frequency [MAF] = 0.33%) associated with lumbar spine BMD and 11p15.2 containing SPON1 (rs2697825; MAF = 0.17%) associated with total hip BMD. Mouse models with mutations in either Npr3 or Spon1 have been reported, both have altered skeletal phenotypes, providing in vivo validation that these genes are physiologically important in bone. NRP3 regulates endochondral ossification and skeletal growth, whilst SPON1 modulates TGF-β regulated BMP-driven osteoblast differentiation. Rs9292469 (downstream of NPR3) also showed some evidence for association with forearm BMD in the independent GEFOS sample (n = 32,965). We found Spon1 was highly expressed in murine osteocytes from the tibiae, femora, humeri and calvaria, whereas Npr3 expression was more variable. CONCLUSION We report the most extreme-truncate GWAS of BMD performed to date. Our findings, suggest potentially new anabolic bone regulatory pathways that warrant further study.
Collapse
Affiliation(s)
- Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Felicity Newell
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Paul J Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Graeme R Clark
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | | | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Vincenzo Forgetta
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - John A Morris
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Bing Ge
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Xiao Bao
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Scott E Youlten
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Peter I Croucher
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales, Australia
| | | | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - John P Kemp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Jon H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Duncan
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia; Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Abstract
The prevention and treatment of fragility fractures continuously evolve. Adequate fracture care should involve treating the fracture itself and the underlying bone disease. Although effective treatments of osteoporosis are available, a large proportion of patients with fragility fractures are not prescribed antiosteoporotic medications after their injury. Recent advances in diagnostic tools, medications, and implementation of Fracture Liaison Services allow for more effective and comprehensive treatment or fragility fractures. In the Fracture Liaison Service model, a physician and physician extenders coordinate care. This includes a thorough medical and surgical history, metabolic bone disease laboratory testing, dual-energy x-ray absorptiometry screening, treatment, and long-term follow-up. Treatment options include nonpharmacologic treatment with calcium and vitamin D and antiresorptive and anabolic agents. Antiresorptive agents such as bisphosphonates and denosumab are first-line treatments for osteoporosis and anabolic agents such as teriparatide are effective in reducing bone density loss and have implications in fracture healing. In addition, new anabolic agents including antisclerostin antibodies and parathyroid hormone-related protein show promise as potential treatments to increase bone density.
Collapse
|
35
|
Sun Q, Choudhary S, Mannion C, Kissin Y, Zilberberg J, Lee WY. Ex vivo replication of phenotypic functions of osteocytes through biomimetic 3D bone tissue construction. Bone 2018; 106:148-155. [PMID: 29066313 PMCID: PMC5694355 DOI: 10.1016/j.bone.2017.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
Abstract
Osteocytes, residing as 3-dimensionally (3D) networked cells in bone, are well known to regulate bone and mineral homeostasis and have been recently implicated to interact with cancer cells to influence the progression of bone metastases. In this study, a bone tissue consisting of 3D-networked primary human osteocytes and MLO-A5 cells was constructed using: (1) the biomimetic close-packed assembly of 20-25μm microbeads with primary cells isolated from human bone samples and MLO-A5 cells and (2) subsequent perfusion culture in a microfluidic device. With this 3D tissue construction approach, we replicated ex vivo, for the first time, the mechanotransduction function of human primary osteocytes and MLO-A5 cells by correlating the effects of cyclic compression on down-regulated SOST and DKK1 expressions. Also, as an example of using our ex vivo model to evaluate therapeutic agents, we confirmed previously reported findings that parathyroid hormone (PTH) decreases SOST and increases the ratio of RANKL and OPG. In comparison to other in vitro models, our ex vivo model: (1) replicates the cell density, phenotype, and functions of primary human osteocytes and MLO-A5 cells and (2) thus provides a clinically relevant means of studying bone diseases and metastases.
Collapse
Affiliation(s)
- Qiaoling Sun
- Department of Materials Science and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Saba Choudhary
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yair Kissin
- Department of Orthopeidc Surgery, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Jenny Zilberberg
- Department of Biomedical Research, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Woo Y Lee
- Department of Materials Science and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
36
|
Sun Q, Choudhary S, Mannion C, Kissin Y, Zilberberg J, Lee WY. Ex vivo construction of human primary 3D-networked osteocytes. Bone 2017; 105:245-252. [PMID: 28942121 PMCID: PMC5690542 DOI: 10.1016/j.bone.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 09/06/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
A human bone tissue model was developed by constructing ex vivo the 3D network of osteocytes via the biomimetic assembly of primary human osteoblastic cells with 20-25μm microbeads and subsequent microfluidic perfusion culture. The biomimetic assembly: (1) enabled 3D-constructed cells to form cellular network via processes with an average cell-to-cell distance of 20-25μm, and (2) inhibited cell proliferation within the interstitial confine between the microbeads while the confined cells produced extracellular matrix (ECM) to form a mechanically integrated structure. The mature osteocytic expressions of SOST and FGF23 genes became significantly higher, especially for SOST by 250 folds during 3D culture. The results validate that the bone tissue model: (1) consists of 3D cellular network of primary human osteocytes, (2) mitigates the osteoblastic differentiation and proliferation of primary osteoblast-like cells encountered in 2D culture, and (3) therefore reproduces ex vivo the phenotype of human 3D-networked osteocytes. The 3D tissue construction approach is expected to provide a clinically relevant and high-throughput means for evaluating drugs and treatments that target bone diseases with in vitro convenience.
Collapse
Affiliation(s)
- Qiaoling Sun
- Department of Materials Science and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Saba Choudhary
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yair Kissin
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Jenny Zilberberg
- Research Department, Hackensack University Medical Center, Hackensack, NJ, USA.
| | - Woo Y Lee
- Department of Materials Science and Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
37
|
Segredo-Morales E, García-García P, Évora C, Delgado A. BMP delivery systems for bone regeneration: Healthy vs osteoporotic population. Review. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Abstract
A role for low-density lipoprotein-related receptor 5 (LRP5) in human bone was first established by the identification of genetic alterations that led to dramatic changes in bone mass. Shortly thereafter, mutations that altered the function of the sclerostin (SOST) gene were also associated with altered human bone mass. Subsequent studies of LRP5 and sclerostin have provided important insights into the mechanisms by which these proteins regulate skeletal homeostasis. Sclerostin normally binds to LRP5 and the related LRP6 protein and prevents their activation by Wnts, the LRP5/LRP6 ligands. The interaction of sclerostin with LRP5 or LRP6 is facilitated by the LRP4 protein. Loss of LRP5 leads to defective osteoblast function and low bone mass, while loss of SOST or mutations in LRP5, which produce a protein that can no longer be bound by SOST, result in high bone mass. Insights gained from the use of genetically engineered mouse models are presented, as well as a brief summary of the status of antibodies in clinical trials that block the function of SOST as a mechanism to increase bone mass.
Collapse
Affiliation(s)
- Bart O Williams
- Center for Cancer and Cell Biology and Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, United States.
| |
Collapse
|
39
|
Antika LD, Lee EJ, Kim YH, Kang MK, Park SH, Kim DY, Oh H, Choi YJ, Kang YH. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. J Nutr Biochem 2017; 49:42-52. [PMID: 28866105 DOI: 10.1016/j.jnutbio.2017.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 01/21/2023]
Abstract
Osteoporosis is one of the most prevalent forms of age-related bone diseases. Increased bone loss with advancing age has become a grave public health concern. This study examined whether phlorizin and phloretin, dihydrochalcones in apple peels, inhibited senile osteoporosis through enhancing osteoblastogenic bone formation in cell-based and aged mouse models. Submicromolar phloretin and phlorizin markedly stimulated osteoblast differentiation of MC3T3-E1 cells with increased transcription of Runx2 and osteocalcin. Senescence-accelerated resistant mouse strain prone-6 (SAMP6) mice were orally supplemented with 10 mg/kg phlorizin and phloretin daily for 12 weeks. Male senescence-accelerated resistant mouse strain R1 mice were employed as a nonosteoporotic age-matched control. Oral administration of ploretin and phorizin boosted bone mineralization in all the bones of femur, tibia and vertebra of SAMP6. In particular, phlorizin reduced serum RANKL/OPG ratio and diminished TRAP-positive osteoclasts in trabecular bones of SAMP6. Additionally, treating phlorizin to SAMP6 inhibited the osteoporotic resorption in distal femoral bones through up-regulating expression of BMP-2 and collagen-1 and decreasing production of matrix-degrading cathepsin K and MMP-9. Finally, phlorizin and phloretin antagonized GSK-3β induction and β-catenin phosphorylation in osteoblasts and aged mouse bones. Therefore, phlorizin and phloretin were potential therapeutic agents encumbering senile osteoporosis through promoting bone-forming osteoblastogenesis via modulation of GSK-3β/β-catenin-dependent signaling.
Collapse
Affiliation(s)
- Lucia Dwi Antika
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
40
|
Zimmerli D, Hausmann G, Cantù C, Basler K. Pharmacological interventions in the Wnt pathway: inhibition of Wnt secretion versus disrupting the protein-protein interfaces of nuclear factors. Br J Pharmacol 2017; 174:4600-4610. [PMID: 28521071 DOI: 10.1111/bph.13864] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Mutations in components of the Wnt pathways are a frequent cause of many human diseases, particularly cancer. Despite the fact that a causative link between aberrant Wnt signalling and many types of human cancers was established more than a decade ago, no Wnt signalling inhibitors have made it into the clinic so far. One reason for this is that no pathway-specific kinase is known. Additionally, targeting the protein-protein interactions needed to transduce the signal has not met with success so far. Complicating the search for and use of inhibitors is the complexity of the cascades triggered by the Wnts and their paramount biological importance. Wnt/β-catenin signalling is involved in virtually all aspects of embryonic development and in the control of the homeostasis of adult tissues. Encouragingly, however, in recent years, first successes with Wnt-pathway inhibitors have been reported in mouse models of disease. In this review, we summarize possible roads to follow during the quest to pharmacologically modulate the Wnt signalling pathway in cancer. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
41
|
Fontana F, Hickman-Brecks CL, Salazar VS, Revollo L, Abou-Ezzi G, Grimston SK, Jeong SY, Watkins M, Fortunato M, Alippe Y, Link DC, Mbalaviele G, Civitelli R. N-cadherin Regulation of Bone Growth and Homeostasis Is Osteolineage Stage-Specific. J Bone Miner Res 2017; 32:1332-1342. [PMID: 28240364 PMCID: PMC5466462 DOI: 10.1002/jbmr.3112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 02/20/2017] [Indexed: 12/15/2022]
Abstract
N-cadherin inhibits osteogenic cell differentiation and canonical Wnt/β-catenin signaling in vitro. However, in vivo both conditional Cdh2 ablation and overexpression in osteoblasts lead to low bone mass. We tested the hypothesis that N-cadherin has different effects on osteolineage cells depending upon their differentiation stage. Embryonic conditional osteolineage Cdh2 deletion in mice results in defective growth, low bone mass, and reduced osteoprogenitor number. These abnormalities are prevented by delaying Cdh2 ablation until 1 month of age, thus targeting only committed and mature osteoblasts, suggesting they are the consequence of N-cadherin deficiency in osteoprogenitors. Indeed, diaphyseal trabecularization actually increases when Cdh2 is ablated postnatally. The sclerostin-insensitive Lrp5A214V mutant, associated with high bone mass, does not rescue the growth defect, but it overrides the low bone mass of embryonically Cdh2-deleted mice, suggesting N-cadherin interacts with Wnt signaling to control bone mass. Finally, bone accrual and β-catenin accumulation after administration of an anti-Dkk1 antibody are enhanced in N-cadherin-deficient mice. Thus, although lack of N-cadherin in embryonic and perinatal age is detrimental to bone growth and bone accrual, in adult mice loss of N-cadherin in osteolineage cells favors bone formation. Hence, N-cadherin inhibition may widen the therapeutic window of osteoanabolic agents. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Francesca Fontana
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia L Hickman-Brecks
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Valerie S Salazar
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Development Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Leila Revollo
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Development Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Grazia Abou-Ezzi
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Division of Oncology, Stem Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan K Grimston
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sung Yeop Jeong
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcus Watkins
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Manuela Fortunato
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yael Alippe
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Link
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Division of Oncology, Stem Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabriel Mbalaviele
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Roberto Civitelli
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
42
|
Adjuvant tamoxifen but not aromatase inhibitor therapy decreases serum levels of the Wnt inhibitor dickkopf-1 while not affecting sclerostin in breast cancer patients. Breast Cancer Res Treat 2017; 164:737-743. [PMID: 28526959 DOI: 10.1007/s10549-017-4296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Endocrine therapies, including tamoxifen or aromatase inhibitors, are indispensable for the treatment of patients with estrogen receptor (ER)- and/or progesterone-positive breast cancer. Whereas tamoxifen displays partial ER agonistic effects in bone, aromatase inhibitors increase bone resorption and fracture risk. The Wnt inhibitors dickkopf-1 (DKK-1) and sclerostin negatively impact bone formation and are considered targets for the treatment of bone disorders. However, the effect of endocrine therapies on serum DKK-1 and sclerostin levels in patients with primary breast cancer remains elusive. METHODS Serum DKK-1 and sclerostin levels were measured at primary diagnosis as well as 3-5 days and 12 months after surgery in a cohort of 45 pre- and postmenopausal women with primary estrogen receptor-positive breast cancer treated with adjuvant tamoxifen or aromatase inhibitors. RESULTS Mean baseline levels ±SD for DKK-1 and sclerostin were 29.7 ± 14.6 and 27.1 ± 16.2 pmol/l, respectively. A significant negative correlation of DKK-1 levels and age was observed (r = -0.32; p < 0.05), but not for sclerostin. Of note, DKK-1 levels were significantly lower in peri- and postmenopausal women compared to premenopausal patients (-47%; p < 0.05). In tamoxifen-treated patients, DKK-1 levels were reduced by 35% (p < 0.01) one year after surgery but remained unaltered in patients treated with aromatase inhibitors. No significant changes were observed for sclerostin. CONCLUSION DKK-1 serum levels were reduced in breast cancer patients receiving an adjuvant therapy with tamoxifen, possibly contributing to its bone-protective properties.
Collapse
|
43
|
Furness LM. Bridging the gap: the need for genomic and clinical -omics data integration and standardization in overcoming the bottleneck of variant interpretation. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1322897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Yu OHY, Richards B, Berger C, Josse RG, Leslie WD, Goltzman D, Kaiser SM, Kovacs CS, Davison KS. The association between sclerostin and incident type 2 diabetes risk: a cohort study. Clin Endocrinol (Oxf) 2017; 86:520-525. [PMID: 28090669 DOI: 10.1111/cen.13300] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether sclerostin is associated with fasting glucose, insulin levels, insulin resistance or increased risk of incident type 2 diabetes. BACKGROUND Type 2 diabetic patients have a higher risk of fractures. Recent studies suggest sclerostin, a regulator of osteoblast activity, is associated with diabetes. MATERIALS AND METHODS Sclerostin levels were obtained from 1778 individuals with no history of type 2 diabetes participating in the population-based Canadian Multicentre Osteoporosis Study (CaMos) cohort. Participants were followed until diagnosis of type 2 diabetes, death or end of the study period (31 December 2013). The relationship of sclerostin with fasting glucose, insulin levels and homoeostatic model assessment-insulin resistance (HOMA-IR) was studied in linear regression models. Cox proportional hazards models were used to determine the association of sclerostin levels and the risk of incident type 2 diabetes during a mean 7·5 years of follow-up. RESULTS Fasting glucose, fasting insulin levels and HOMA-IR were weakly correlated with sclerostin levels (Spearman's correlation coefficient: 0·11, P < 0·05; -0·09, P < 0·05; and -0·07, P = 0·02, respectively). Multiple linear regression analyses confirmed a significant association between sclerostin and fasting insulin and HOMA-IR but no significant association with fasting glucose levels. Sclerostin levels were not found to be significantly associated with the risk of incident type 2 diabetes (HR: 1·30; 95% CI: 0·37-4·57). CONCLUSIONS We observed an association between sclerostin levels with fasting insulin levels and HOMA-IR, but there was no clear association with type 2 diabetes risk. Further studies are needed to understand the role of sclerostin in type 2 diabetes.
Collapse
Affiliation(s)
- O H Y Yu
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Division of Endocrinology, Jewish General Hospital, Montreal, QC, Canada
| | - B Richards
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Division of Endocrinology, Jewish General Hospital, Montreal, QC, Canada
| | - C Berger
- CaMos Coordinating Centre, McGill University, Montreal, QC, Canada
| | - R G Josse
- Division of Endocrinology & Metabolism, St Michael's University of Toronto, Toronto, ON, Canada
| | - W D Leslie
- Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - D Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC, Canada
| | - S M Kaiser
- Division of Endocrinology & Metabolism, Dalhousie University, Halifax, NS, Canada
| | - C S Kovacs
- Discipline of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - K S Davison
- A Priori Medical Sciences Inc., Victoria, BC, Canada
| |
Collapse
|
45
|
Sang W, Jiang Y, Cheng B, Ma J, Zhu L, Lu H, Wang C. [Expression of Sclerostin in medial and lateral subchondral bone of the varus osteoarthritic knee plateau]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:295-299. [PMID: 29806257 DOI: 10.7507/1002-1892.201610082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To study the expression difference of Sclerostin in the medial and lateral subchondral bone of the varus osteoarthritic knee plateau. Methods The tibial plateau was obtained from 20 patients with varus knee osteoarthritis receiving total knee arthroplasty from March to October 2015. There were 8 males and 12 females with an average age of 67.8 years (range, 61-78 years). The mean course of osteoarthritis was 3.2 years (range, 2-5 years). Before operation, the varus angle was 12.0-25.5° (mean, 17.6°) on the X-ray film. Five cases were rated as grade III and 15 cases as grade IV according to Kellgren-Lawrance classification. Micro-CT scan was performed on the medial and lateral subchondral bone to compare the changes of bone structure; bone volume/total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), structure model index (SMI), and the trabecular separation (Tb.Sp) were measured. Immunohistochemistry and real-time fluorescent quantitative PCR were used to test the expressions of Sclerostin protein and sost gene. Results Micro-CT showed that BV/TV, Tb.N, and Tb.Th significantly increased in the medial subchondral bone when compared with the lateral part ( P<0.05), but SMI and Tb.Sp significantly reduced ( P<0.05). Real-time fluorescent quantitative PCR detection showed that sost gene expression level in the medial subchondral bone (1.000) was significantly lower than that in the lateral part (4.157±2.790) ( t=2.371, P=0.040). The percentage of Sclerostin positive cells in the lateral subchondral bone (52.00%±0.19%) was significantly higher than that in the medial subchondral bone (7.20%±0.04%) ( t=5.094, P=0.005). Conclusion Sclerostin plays an important role in the subchondral bone remodeling of the varus osteoarthritic knee. And the low expression of Sclerostin may be an important factor to promote bone remodeling and aggravate knee deformity.
Collapse
Affiliation(s)
- Weilin Sang
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Yafei Jiang
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Biao Cheng
- Department of Orthopedics, Clinical Medical School, The Affiliated Shanghai No.10 People's Hospital, Nanjing Medical University, Shanghai, 200072,
| | - Jinzhong Ma
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Libo Zhu
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Haiming Lu
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| | - Cong Wang
- Department of Orthopedics, Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai, 201620, P.R.China
| |
Collapse
|
46
|
|
47
|
Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone 2017; 96:29-37. [PMID: 27742498 PMCID: PMC5328835 DOI: 10.1016/j.bone.2016.10.007] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/29/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022]
Abstract
After discovering that lack of Sost/sclerostin expression is the cause of the high bone mass human syndromes Van Buchem disease and sclerosteosis, extensive animal experimentation and clinical studies demonstrated that sclerostin plays a critical role in bone homeostasis and that its deficiency or pharmacological neutralization increases bone formation. Dysregulation of sclerostin expression also underlies the pathophysiology of skeletal disorders characterized by loss of bone mass, as well as the damaging effects of some cancers in bone. Thus, sclerostin has quickly become a promising molecular target for the treatment of osteoporosis and other skeletal diseases, and beneficial skeletal outcomes are observed in animal studies and clinical trials using neutralizing antibodies against sclerostin. However, the anabolic effect of blocking sclerostin decreases with time, bone mass accrual is also accompanied by anti-catabolic effects, and there is bone loss over time after therapy discontinuation. Further, the cellular source of sclerostin in the bone/bone marrow microenvironment under physiological and pathological conditions, the pathways that regulate sclerostin expression and the mechanisms by which sclerostin modulates the activity of osteocytes, osteoblasts, and osteoclasts remain unclear. In this review, we highlight the current knowledge on the regulation of Sost/sclerotin expression and its mechanism(s) of action, discuss novel observations regarding its role in signaling pathways activated by hormones and mechanical stimuli in bone, and propose future research needed to understand the full potential of therapeutic interventions that modulate Sost/sclerostin expression.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| | - Amy Y Sato
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States.
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States; Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| |
Collapse
|
48
|
Affiliation(s)
- Socrates E Papapoulos
- Center for Bone Quality, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
49
|
Abstract
Osteoporosis, which is characterized by resorption of bone exceeding formation, remains a significant human health concern, and the impact of this condition will only increase with the "graying" of the worldwide population. This review focuses on current and emerging approaches for delivering therapeutic agents to restore bone remodeling homeostasis. Well-known antiresorptive and anabolic agents, such as estrogen, estrogen analogs, bisphosphonates, calcitonin, and parathyroid hormone, along with newer modulators and antibodies, are primarily administered orally, intravenously, or subcutaneously. Although these treatments can be effective, continuing problems include patient noncompliance and adverse systemic or remote-site effects. Controlled drug delivery via polymeric, targeted, and active release systems extends drug half-life by shielding against premature degradation and improves bioavailability while also providing prolonged, sustained, or intermittent release at therapeutic doses to more effectively treat osteoporosis and associated fracture risk.
Collapse
Affiliation(s)
- T A Asafo-Adjei
- Department of Biomedical Engineering, University of Kentucky, 522A Robotics and Manufacturing Building, Lexington, KY, 40506-0108, USA
| | - A J Chen
- Department of Biomedical Engineering, University of Kentucky, 522A Robotics and Manufacturing Building, Lexington, KY, 40506-0108, USA
| | - A Najarzadeh
- Department of Biomedical Engineering, University of Kentucky, 522A Robotics and Manufacturing Building, Lexington, KY, 40506-0108, USA
| | - D A Puleo
- Department of Biomedical Engineering, University of Kentucky, 522A Robotics and Manufacturing Building, Lexington, KY, 40506-0108, USA.
| |
Collapse
|
50
|
Wang CL, Xiao F, Wang CD, Zhu JF, Shen C, Zuo B, Wang H, Li D, Wang XY, Feng WJ, Li ZK, Hu GL, Zhang X, Chen XD. Gremlin2 Suppression Increases the BMP-2-Induced Osteogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells Via the BMP-2/Smad/Runx2 Signaling Pathway. J Cell Biochem 2016; 118:286-297. [PMID: 27335248 DOI: 10.1002/jcb.25635] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Osteoblasts are essential for maintaining skeletal architecture and modulating bone microenvironment homeostasis. From numerous associated investigations, the BMP-2 pathway has been well-defined as a vital positive modulator of bone homeostasis. Gremlin2 (Grem2) is a bone morphogenetic protein (BMP) antagonists. However, the effect of Grem2 on the BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs) remains ambiguous. This study aimed to analyze the procedure in vitro and in vivo. The differentiation of hBMSCs was assessed by determining the expression levels of several osteoblastic genes, as well as the enzymatic activity and calcification of alkaline phosphatase. We found that Grem2 expression was upregulated by BMP-2 within the range of 0-1 μg/mL, and significant increases were evident at 48, 72, and 96 h after BMP-2 treatment. Si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs, whereas overexpression of Grem2 had the opposite trend. The result was confirmed using a defective femur model. We also discovered that the BMP-2/Smad/Runx2 pathway played an important role in the process. This study showed that si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs via the BMP-2/Smad/Runx2 pathway. J. Cell. Biochem. 118: 286-297, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-Long Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuan-Dong Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Jun-Feng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chao Shen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hui Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xu-Yi Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Wei-Jia Feng
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Zhuo-Kai Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Guo-Li Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Dong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|