1
|
Kozlovski I, Jaimes-Becerra A, Sharoni T, Lewandowska M, Karmi O, Moran Y. Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals. PLoS Pathog 2024; 20:e1012320. [PMID: 39012849 PMCID: PMC11251625 DOI: 10.1371/journal.ppat.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
Collapse
Affiliation(s)
- Itamar Kozlovski
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ola Karmi
- Research Infrastructure Facility, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Diversity in the intrinsic apoptosis pathway of nematodes. Commun Biol 2020; 3:478. [PMID: 32859965 PMCID: PMC7456325 DOI: 10.1038/s42003-020-01208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 11/08/2022] Open
Abstract
Early studies of the free-living nematode C. elegans informed us how BCL-2-regulated apoptosis in humans is regulated. However, subsequent studies showed C. elegans apoptosis has several unique features compared with human apoptosis. To date, there has been no detailed analysis of apoptosis regulators in nematodes other than C. elegans. Here, we discovered BCL-2 orthologues in 89 free-living and parasitic nematode taxa representing four evolutionary clades (I, III, IV and V). Unlike in C. elegans, 15 species possess multiple (two to five) BCL-2-like proteins, and some do not have any recognisable BCL-2 sequences. Functional studies provided no evidence that BAX/BAK proteins have evolved in nematodes, and structural studies of a BCL-2 protein from the basal clade I revealed it lacks a functionally important feature of the C. elegans orthologue. Clade I CED-4/APAF-1 proteins also possess WD40-repeat sequences associated with apoptosome assembly, not present in C. elegans, or other nematode taxa studied.
Collapse
|
3
|
Colgren J, Nichols SA. The significance of sponges for comparative studies of developmental evolution. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e359. [PMID: 31352684 DOI: 10.1002/wdev.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
Sponges, ctenophores, placozoans, and cnidarians have key evolutionary significance in that they bracket the time interval during which organized animal tissues were first assembled, fundamental cell types originated (e.g., neurons and myocytes), and developmental patterning mechanisms evolved. Sponges in particular have often been viewed as living surrogates for early animal ancestors, largely due to similarities between their feeding cells (choanocytes) with choanoflagellates, the unicellular/colony-forming sister group to animals. Here, we evaluate these claims and highlight aspects of sponge biology with comparative value for understanding developmental evolution, irrespective of the purported antiquity of their body plan. Specifically, we argue that sponges strike a different balance between patterning and plasticity than other animals, and that environmental inputs may have prominence over genetically regulated developmental mechanisms. We then present a case study to illustrate how contractile epithelia in sponges can help unravel the complex ancestry of an ancient animal cell type, myocytes, which sponges lack. Sponges represent hundreds of millions of years of largely unexamined evolutionary experimentation within animals. Their phylogenetic placement lends them key significance for learning about the past, and their divergent biology challenges current views about the scope of animal cell and developmental biology. This article is characterized under: Comparative Development and Evolution > Evolutionary Novelties Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, Colorado
| |
Collapse
|
4
|
Sponges: A Reservoir of Genes Implicated in Human Cancer. Mar Drugs 2018; 16:md16010020. [PMID: 29320389 PMCID: PMC5793068 DOI: 10.3390/md16010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Recently, it was shown that the majority of genes linked to human diseases, such as cancer genes, evolved in two major evolutionary transitions—the emergence of unicellular organisms and the transition to multicellularity. Therefore, it has been widely accepted that the majority of disease-related genes has already been present in species distantly related to humans. An original way of studying human diseases relies on analyzing genes and proteins that cause a certain disease using model organisms that belong to the evolutionary level at which these genes have emerged. This kind of approach is supported by the simplicity of the genome/proteome, body plan, and physiology of such model organisms. It has been established for quite some time that sponges are an ideal model system for such studies, having a vast variety of genes known to be engaged in sophisticated processes and signalling pathways associated with higher animals. Sponges are considered to be the simplest multicellular animals and have changed little during evolution. Therefore, they provide an insight into the metazoan ancestor genome/proteome features. This review compiles current knowledge of cancer-related genes/proteins in marine sponges.
Collapse
|
5
|
Viewing BCL2 and cell death control from an evolutionary perspective. Cell Death Differ 2017; 25:13-20. [PMID: 29099481 DOI: 10.1038/cdd.2017.145] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/14/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The last 30 years of studying BCL2 have brought cell death research into the molecular era, and revealed its relevance to human pathophysiology. Most, if not all metazoans use an evolutionarily conserved process for cellular self destruction that is controlled and implemented by proteins related to BCL2. We propose the anti-apoptotic BCL2-like and pro-apoptotic BH3-only members of the family arose through duplication and modification of genes for the pro-apoptotic multi-BH domain family members, such as BAX and BAK1. In that way, a cell suicide process that initially evolved as a mechanism for defense against intracellular parasites was then also used in multicellular organisms for morphogenesis and to maintain the correct number of cells in adults by balancing cell production by mitosis.
Collapse
|
6
|
Li Y, Zhang L, Qu T, Tang X, Li L, Zhang G. Conservation and divergence of mitochondrial apoptosis pathway in the Pacific oyster, Crassostrea gigas. Cell Death Dis 2017; 8:e2915. [PMID: 28682310 PMCID: PMC5550854 DOI: 10.1038/cddis.2017.307] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/27/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023]
Abstract
Apoptosis is considered a crucial part of the host defense system in oysters according to previous reports; however, the exact process by which this occurs remains unclear. Besides, mitochondrial apoptosis is the primary method of apoptosis in vertebrate cells, but has been poorly studied in invertebrates and is quite controversial. In this study, we investigated the molecular mechanism of mitochondrial apoptosis in the Pacific oyster Crassostrea gigas. Notably, we show that most key elements involved in the vertebrate mitochondrial apoptosis pathway – including mitochondrial outer membrane permeabilization, cytochrome c release, and caspase activation – are also present in C. gigas. In contrast, the lack of Bcl-2 homology 3-only subfamily members and apoptotic protease activating factor-1 (APAF-1) protein revealed evolutionary diversity from other phyla. Our results support that mitochondrial apoptosis in animals predates the emergence of vertebrates, but suggest that an unexpectedly diverse mitochondrial apoptosis pathway may exist in invertebrates. In addition, our work provided new clues for an improved understanding of how bivalve acclimate themselves to an inconstant environment.
Collapse
Affiliation(s)
- Yingxiang Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tao Qu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xueying Tang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
7
|
Ivanova H, Luyten T, Decrock E, Vervliet T, Leybaert L, Parys JB, Bultynck G. The BH4 domain of Bcl-2 orthologues from different classes of vertebrates can act as an evolutionary conserved inhibitor of IP 3 receptor channels. Cell Calcium 2017; 62:41-46. [PMID: 28179071 DOI: 10.1016/j.ceca.2017.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 02/05/2023]
Abstract
Ca2+ signalling plays an important role in various physiological processes in vertebrates. In mammals, the highly conserved anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein is an important modulator of the inositol 1,4,5-trisphosphate receptor (IP3R), i.e. the main intracellular Ca2+ - release channel located at the endoplasmic reticulum (ER). The Bcl-2 Homology (BH) 4 domain of Bcl-2 (BH4-Bcl-2) is a critical determinant for inhibiting IP3Rs, by directly targeting a region in the modulatory domain of the receptor (domain 3). In this paper, we aimed to track the evolutionary history of IP3R regulation by the BH4 domain of Bcl-2 orthologues from different classes of vertebrates, including Osteichthyes, Amphibia, Reptilia, Aves and Mammalia. The high degree of conservation of the BH4 sequences correlated with the ability of all tested peptides to bind to the domain 3 of mouse IP3R1 in GST-pull downs and their overall ability to inhibit IP3-induced Ca2+ release (IICR) in permeabilized cells. Nevertheless, the BH4 domains differed in their potency to suppress IICR. The peptide derived from X. laevis was the least potent inhibitor. We identified a critical residue in BH4-Bcl-2 from H. sapiens, Thr7, which is replaced by Gly7 in X. laevis. Compared to the wild type X. laevis BH4-Bcl-2, a "humanized" version of the peptide (BH4-Bcl-2 Gly7Thr), displayed increased IP3R-inhibitory properties. Despite the differences in the inhibitory efficiency, our data indicate that the BH4 domain of Bcl-2 orthologues from different classes of vertebrates can act as a binding partner and inhibitor of IP3R channels.
Collapse
Affiliation(s)
- Hristina Ivanova
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and, Herestraat 49, BE-3000, Leuven, Belgium
| | - Tomas Luyten
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and, Herestraat 49, BE-3000, Leuven, Belgium
| | - Elke Decrock
- Ghent University, Physiology Group, Department of Basic Medical Sciences, BE-9000, Ghent, Belgium
| | - Tim Vervliet
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and, Herestraat 49, BE-3000, Leuven, Belgium
| | - Luc Leybaert
- Ghent University, Physiology Group, Department of Basic Medical Sciences, BE-9000, Ghent, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and, Herestraat 49, BE-3000, Leuven, Belgium; KU Leuven, Leuven Cancer Institute (LKI), BE-3000, Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and, Herestraat 49, BE-3000, Leuven, Belgium; KU Leuven, Leuven Cancer Institute (LKI), BE-3000, Leuven, Belgium.
| |
Collapse
|
8
|
Caria S, Hinds MG, Kvansakul M. Structural insight into an evolutionarily ancient programmed cell death regulator - the crystal structure of marine sponge BHP2 bound to LB-Bak-2. Cell Death Dis 2017; 8:e2543. [PMID: 28079890 PMCID: PMC5386376 DOI: 10.1038/cddis.2016.469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
Sponges of the porifera family harbor some of the evolutionary most ancient orthologs of the B-cell lymphoma-2 (Bcl-2) family, a protein family critical to regulation of apoptosis. The genome of the sponge Geodia cydonium contains the putative pro-survival Bcl-2 homolog BHP2, which protects sponge tissue as well as mammalian Hek-293 and NIH-3T3 cells against diverse apoptotic stimuli. The Lake Baikal demosponge Lubomirskia baicalensis has been shown to encode both putative pro-survival Bcl-2 (LB-Bcl-2) and pro-apoptotic Bcl-2 members (LB-Bak-2), which have been implied in axis formation (branches) in L. baicalensis. However, the molecular mechanism of action of sponge-encoded orthologs of Bcl-2 remains to be clarified. Here, we report that the pro-survival Bcl-2 ortholog BHP2 from G. cydonium is able to bind the BH3 motif of a pro-apoptotic Bcl-2 protein, LB-Bak-2 of the sponge L. baicalensis. Furthermore, we determined the crystal structure of BHP2 bound to LB-Bak-2, which revealed that using a binding groove conserved across all pro-survival Bcl-2 proteins, BHP2 binds multi-motif Bax-like proteins through their BH3-binding regions. However, BHP2 discriminates against BH3-only bearing proteins by blocking access to a hydrophobic pocket that is critical for BH3 motif binding in pro-survival Bcl-2 proteins from higher organisms. This differential binding mode is reflected in a structure-based phylogenetic comparison of BHP2 with other Bcl-2 family members, which revealed that BHP2 does not cluster with either Bcl-2 members of higher organisms or pathogen-encoded homologs, and assumes a discrete position. Our findings suggest that the molecular machinery and mechanisms for executing Bcl-2-mediated apoptosis as observed in mammals are evolutionary ancient, with early regulation of apoptotic machineries closely resembling their modern counterparts in mammals rather than Caenorhabditis elegans or drosophila.
Collapse
Affiliation(s)
- Sofia Caria
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne,Victoria 3086, Australia
| | - Mark G Hinds
- Department of Chemistry & Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne,Victoria 3086, Australia
| |
Collapse
|
9
|
Abstract
The mitochondrion descends from a bacterium that, about two billion years ago, became endosymbiotic. This organelle represents a Pandora’s box whose opening triggers cytochrome-c release and apoptosis of cells from multicellular animals, which evolved much later, about six hundred million years ago. BCL-2 proteins, which are critical apoptosis regulators, were recruited at a certain time point in evolution to either lock or unlock this mitochondrial Pandora’s box. Hence, particularly intriguing is the issue of when and how the “BCL-2 proteins–mitochondria–apoptosis” triptych emerged. This chapter explains what it takes from an evolutionary perspective to evolve a BCL-2-regulated apoptotic pathway, by focusing on the events occurring upstream of mitochondria.
Collapse
|
10
|
Kvansakul M, Hinds MG. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 2015; 20:136-50. [PMID: 25398535 DOI: 10.1007/s10495-014-1051-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for 'BH3-mimics', drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia,
| | | |
Collapse
|
11
|
Chaurasia MK, Palanisamy R, Harikrishnan R, Arasu MV, Al-Dhabi NA, Arockiaraj J. Molecular profiles and pathogen-induced transcriptional responses of prawn B cell lymphoma-2 related ovarian killer protein (BOK). FISH & SHELLFISH IMMUNOLOGY 2015; 45:598-607. [PMID: 25982403 DOI: 10.1016/j.fsi.2015.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
In this study, we have reported a molecular characterization of the first B cell lymphoma-2 (BCL-2) related ovarian killer protein (BOK) from freshwater prawn Macrobrachium rosenbergii (Mr). BOK is a novel pro-apoptotic protein of the BCL-2 family that entails in mediating apoptosis to remove cancer cells. A cDNA sequence of MrBOK was identified from the prawn cDNA library and its full length was obtained by internal sequencing. The coding region of MrBOK yields a polypeptide of 291 amino acids. The analysis revealed that MrBOK contains a transmembrane helix at V(261)-L(283) and a putative BCL-2 family domain at V(144)-W(245). MrBOK also possessed four putative BCL-2 homology domains including BH1, BH2, BH3 and weak BH4. The BH3 contains 21 binding sites and among them five residues are highly conserved with the aligned BOK proteins. The homology analysis showed that MrBOK shared maximum similarity with the Caligus rogercresseyi BOK A. The topology of the phylogenetic tree was classified into nine sister groups which includes BOK, BAK, BAX, BAD, BCL-2, BCL-XL, NR13 and MCL members. The BOK protein group further sub-grouped into vertebrate and invertebrate BOK, wherein MrBOK located within insect monophyletic clad of invertebrate BOK. The secondary structural analysis showed that MrBOK contains 11 α-helices (52.2%) which are connected over random coils (47.7%). The 3D structure of MrBOK showed three central helices (α6, α7 and α8) which formed the core of the protein and are flanked on one side by α1, α2 and α3, and on the other side by α4, α5 and α11. MrBOK mRNA is expressed most abundantly (P < 0.05) in ovary compared to other tissues taken for analysis. Hence ovary was selected to study the possible roles of MrBOK mRNA regulation upon bacterial (Aeromonas hydrophila and Vibrio harveyi) and viral [white spot syndrome virus (WSSV) and M. rosenbergii nodovirus] infection. During bacterial and viral infection, the highest MrBOK mRNA transcription was varied at different time points. In bacterial infected ovary tissue, the highest mRNA expression was at 24 h post-infection, whereas in viral infection, the expression was highest at 48 h post-infection. Thus we can conclude that MrBOK functions as an apoptotic protein in intracellular programmed cell-death pathway to counteract the anti-apoptotic proteins released by bacterial and viral pathogens at the time of infection. This is the first study that emphasizes the importance of BOK during bacterial and viral infection in crustacean.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
12
|
Sakamaki K, Imai K, Tomii K, Miller DJ. Evolutionary analyses of caspase-8 and its paralogs: Deep origins of the apoptotic signaling pathways. Bioessays 2015; 37:767-76. [DOI: 10.1002/bies.201500010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology; Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - David J. Miller
- Department of Molecular and Cell Biology; ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Queensland Australia
| |
Collapse
|
13
|
Lee Y, Whang I, Lee S, Menike U, Oh C, Kang DH, Heo GJ, Lee J, De Zoysa M. Two molluscan BCL-2 family members from Manila clam, Ruditapes philippinarum: molecular characterization and immune responses. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1628-1634. [PMID: 23558058 DOI: 10.1016/j.fsi.2013.03.366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/23/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Apoptosis based immune responses are important component of host defense in mollusks. In this study, we have identified two novel molluscan BCL-2 cDNAs from Manila clam, Ruditapes philippinarum and named as RpBCL-2A and RpBCL-2B. There were four and three highly conserved BCL-2 homology (BH) regions in RpBCL-2A and RpBCL-2B, respectively suggesting these two genes could be different isoforms of anti-apoptotic BCL-2 family. Phylogenetic results revealed that Manila clam BCL-2 genes were clustered closely with invertebrate BCL-2 members. It gives evidence of their common origin and conserved features of invertebrate BCL-2 family. RpBCL-2A and 2B were expressed in tissue-specific manner showing the highest and lowest level of expression in gills and hemocytes, respectively. However there was no clear expression profile difference between two genes. After Vibrio tapetis challenge, transcriptional responses of RpBCL-2A and RpBCL-2B were induced in gills and hemocytes with high variation that could be due to effects of immune reactions of other host defense molecules.
Collapse
Affiliation(s)
- Youngdeuk Lee
- Korea Institute of Ocean Science Technology, Ansan 426-744, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Taylor-Brown E, Hurd H. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 2013; 6:108. [PMID: 23597031 PMCID: PMC3640913 DOI: 10.1186/1756-3305-6-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022] Open
Abstract
It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.
Collapse
|
15
|
Abstract
The number of available eukaryotic genomes has expanded to the point where we can evaluate the complete evolutionary history of many cellular processes. Such analyses for the apoptosis regulatory networks suggest that this network already existed in the ancestor of the entire animal kingdom (Metazoa) in a form more complex than in some popular animal model organisms. This supports the growing realization that regulatory networks do not necessarily evolve from simple to complex and that the relative simplicity of these networks in nematodes and insects does not represent an ancestral state, but is the result of secondary simplifications. Network evolution is not a process of monotonous increase in complexity, but a dynamic process that includes lineage-specific gene losses and expansions, protein domain reshuffling, and emergence/reemergence of similar protein architectures by parallel evolution. Studying the evolution of such networks is a challenging yet interesting subject for research and investigation, and such studies on the apoptosis networks provide us with interesting hints of how these networks, critical in so many human diseases, have developed.
Collapse
Affiliation(s)
- Christian M Zmasek
- Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
16
|
Abstract
Euglena gracilis is a unicellular, free-living flagellate that inhabits various freshwater environments. Our research shows that exposure to UV-C light can trigger some form of programmed cell death. Cells exposed to UV-C light underwent delayed changes that were strongly reminiscent of apoptosis in mammalian cells, including cell shrinkage and DNA fragmentation that produced the characteristic ladder pattern commonly seen with apoptosis. DNA fragmentation could be inhibited by pretreatment with Z-VAD-FMK and also independently induced by exposure to staurosporine. In addition, Euglena possess proteins that cross-reacted with antibodies raised against human caspases 3 and 9. Given that Euglena are extremely easy to culture and represent a lineage positioned near the base of the eukaryotic tree, they will be an excellent model system for comparative analyses with apoptotic-like death processes in other eukaryotic microbes.
Collapse
|
17
|
Martinand-Mari C, Vacelet J, Nickel M, Wörheide G, Mangeat P, Baghdiguian S. Cell death and renewal during prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Poecilosclerida). J Exp Biol 2012; 215:3937-43. [DOI: 10.1242/jeb.072371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The sponge Asbestopluma hypogea is unusual among sponges due to its peculiar carnivorous feeding habit. During various stages of its nutrition cycle, the sponge is subjected to spectacular morphological modifications. Starved animals are characterized by many elongated filaments which are crucial for the sponge to capture prey. After capture, and during the digestion process, these filaments actively regress before being regenerated during a subsequent period of starvation. Here, we demonstrate that these morphological events repose on a highly dynamic cellular turnover implying a coordinated sequence of programmed cell death (apoptosis and autophagy), cell proliferation and cell migration. A candidate niche for cell renewal by stem cell proliferation and differentiation was identified at the base of the sponge peduncle, characterized by surpassing levels of BrdU/EdU incorporation. Therefore, BrdU/EdU positive-cells of the peduncle base are candidate motile cells responsible for the regeneration of the prey-capturing main sponge body, i.e. the dynamic filaments. Altogether, our results demonstrate that dynamic of cell renewal in sponge appears to be regulated by cellular mechanisms as multiple and complex as those already identified in bilaterian metazoans.
Collapse
|
18
|
Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes. Proc Natl Acad Sci U S A 2011; 108:6999-7003. [PMID: 21444803 DOI: 10.1073/pnas.1100652108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2-regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2-like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with "BH3 mimetic" drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment.
Collapse
|
19
|
Evidence for an instructive role of apoptosis during the metamorphosis of Hydractinia echinata (Hydrozoa). ZOOLOGY 2011; 114:11-22. [DOI: 10.1016/j.zool.2010.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/09/2010] [Accepted: 09/19/2010] [Indexed: 12/30/2022]
|
20
|
Pernice M, Dunn SR, Miard T, Dufour S, Dove S, Hoegh-Guldberg O. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora. PLoS One 2011; 6:e16095. [PMID: 21283671 PMCID: PMC3025915 DOI: 10.1371/journal.pone.0016095] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/07/2010] [Indexed: 01/21/2023] Open
Abstract
Background Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. Methodology/Principal Findings The present study reports the impacts of different stressors (colchicine and heat stress) on three phases of apoptosis: (i) the potential initiation by differential expression of Bcl-2 members, (ii) the execution of apoptotic events by activation of caspase 3-like proteases and (iii) and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. Conclusions/Significance In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.
Collapse
Affiliation(s)
- Mathieu Pernice
- Coral Reef Ecosystem Laboratory, Global Change Institute, ARC Centre for Excellence in Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Yuan S, Liu H, Gu M, Xu L, Huang S, Ren Z, Xu A. Characterization of the Extrinsic Apoptotic Pathway in the Basal Chordate Amphioxus. Sci Signal 2010; 3:ra66. [PMID: 20841567 DOI: 10.1126/scisignal.2000906] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shaochun Yuan
- State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, P. R. China
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Hydra is a member of the ancient metazoan phylum Cnidaria and is an especially well investigated model organism for questions of the evolutionary origin of metazoan processes. Apoptosis in Hydra is important for the regulation of cellular homeostasis under different conditions of nutrient supply. The molecular mechanisms leading to apoptosis in Hydra are surprisingly extensive and comparable to those in mammals. Genome wide sequence analysis has revealed the presence of large caspase and Bcl-2 families, the apoptotic protease activating factor (APAF-1), inhibitors of apoptotic proteases (IAPs) and components of a putative death receptor pathway. Regulation of apoptosis in Hydra may involve BH-3 only proteins and survival pathways, possibly including insulin signalling.
Collapse
|
23
|
Molecular evolution of Cide family proteins: novel domain formation in early vertebrates and the subsequent divergence. BMC Evol Biol 2008; 8:159. [PMID: 18500987 PMCID: PMC2426694 DOI: 10.1186/1471-2148-8-159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 05/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Cide family proteins including Cidea, Cideb and Cidec/Fsp27, contain an N-terminal CIDE-N domain that shares sequence similarity to the N-terminal CAD domain (NCD) of DNA fragmentation factors Dffa/Dff45/ICAD and Dffb/Dff40/CAD, and a unique C-terminal CIDE-C domain. We have previously shown that Cide proteins are newly emerged regulators closely associated with the development of metabolic diseases such as obesity, diabetes and liver steatosis. They modulate many metabolic processes such as lipolysis, thermogenesis and TAG storage in brown adipose tissue (BAT) and white adipose tissue (WAT), as well as fatty acid oxidation and lipogenesis in the liver. Results To understand the evolutionary process of Cide proteins and provide insight into the role of Cide proteins as potential metabolic regulators in various species, we searched various databases and performed comparative genomic analysis to study the sequence conservation, genomic structure, and phylogenetic tree of the CIDE-N and CIDE-C domains of Cide proteins. As a result, we identified signature sequences for the N-terminal region of Dffa, Dffb and Cide proteins and CIDE-C domain of Cide proteins, and observed that sequences homologous to CIDE-N domain displays a wide phylogenetic distribution in species ranging from lower organisms such as hydra (Hydra vulgaris) and sea anemone (Nematostella vectensis) to mammals, whereas the CIDE-C domain exists only in vertebrates. Further analysis of their genomic structures showed that although evolution of the ancestral CIDE-N domain had undergone different intron insertions to various positions in the domain among invertebrates, the genomic structure of Cide family in vertebrates is stable with conserved intron phase. Conclusion Based on our analysis, we speculate that in early vertebrates CIDE-N domain was evolved from the duplication of NCD of Dffa. The CIDE-N domain somehow acquired the CIDE-C domain that was formed around the same time, subsequently generating the Cide protein. Subsequent duplication and evolution have led to the formation of different Cide family proteins that play unique roles in the control of metabolic pathways in different tissues.
Collapse
|
24
|
Surprising complexity of the ancestral apoptosis network. Genome Biol 2008; 8:R226. [PMID: 17958905 PMCID: PMC2246300 DOI: 10.1186/gb-2007-8-10-r226] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022] Open
Abstract
A comparative genomics approach revealed that the genes for several components of the apoptosis network with single copies in vertebrates have multiple paralogs in cnidarian-bilaterian ancestors, suggesting a complex evolutionary history for this network. Background Apoptosis, one of the main types of programmed cell death, is regulated and performed by a complex protein network. Studies in model organisms, mostly in the nematode Caenorhabditis elegans, identified a relatively simple apoptotic network consisting of only a few proteins. However, analysis of several recently sequenced invertebrate genomes, ranging from the cnidarian sea anemone Nematostella vectensis, representing one of the morphologically simplest metazoans, to the deuterostomes sea urchin and amphioxus, contradicts the current paradigm of a simple ancestral network that expanded in vertebrates. Results Here we show that the apoptosome-forming CED-4/Apaf-1 protein, present in single copy in vertebrate, nematode, and insect genomes, had multiple paralogs in the cnidarian-bilaterian ancestor. Different members of this ancestral Apaf-1 family led to the extant proteins in nematodes/insects and in deuterostomes, explaining significant functional differences between proteins that until now were believed to be orthologous. Similarly, the evolution of the Bcl-2 and caspase protein families appears surprisingly complex and apparently included significant gene loss in nematodes and insects and expansions in deuterostomes. Conclusion The emerging picture of the evolution of the apoptosis network is one of a succession of lineage-specific expansions and losses, which combined with the limited number of 'apoptotic' protein families, resulted in apparent similarities between networks in different organisms that mask an underlying complex evolutionary history. Similar results are beginning to surface for other regulatory networks, contradicting the intuitive notion that regulatory networks evolved in a linear way, from simple to complex.
Collapse
|
25
|
Oberst A, Bender C, Green DR. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 2008; 15:1139-46. [PMID: 18451868 DOI: 10.1038/cdd.2008.65] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial pathway of cell death, in which apoptosis proceeds following mitochondrial outer membrane permeabilization, release of cytochrome c, and APAF-1 apoptosome-mediated caspase activation, represents the major pathway of physiological apoptosis in vertebrates. However, the well-characterized apoptotic pathways of the invertebrates C. elegans and D. melanogaster indicate that this apoptotic pathway is not universally conserved among animals. This review will compare the role of the mitochondria in the apoptotic programs of mammals, nematodes, and flies, and will survey our knowledge of the apoptotic pathways of other, less familiar model organisms in an effort to explore the evolutionary origins of the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- A Oberst
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
26
|
GAMULIN VERA, MÜLLER ISABELM, MÜLLER WERNERE. Sponge proteins are more similar to those of Homo sapiens than to Caenorhabditis elegans. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2000.tb01293.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Abstract
BCL-2 family proteins, which have either pro- or anti-apoptotic activities, have been studied intensively for the past decade owing to their importance in the regulation of apoptosis, tumorigenesis and cellular responses to anti-cancer therapy. They control the point of no return for clonogenic cell survival and thereby affect tumorigenesis and host-pathogen interactions and regulate animal development. Recent structural, phylogenetic and biological analyses, however, suggest the need for some reconsideration of the accepted organizational principles of the family and how the family members interact with one another during programmed cell death. Although these insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.
Collapse
|
28
|
Abstract
Sponges are the most simple and primitive metazoans, yet they have various biological and ecological properties that make them an influential component of coral-reef ecosystems. Marine sponges provide refuge for many small invertebrates and are critical to benthic-pelagic coupling across a wide range of habitats. Reports of sponge disease have increased dramatically in recent years with sponge populations decimated throughout the Mediterranean and Caribbean. Reports also suggest an increased prevalence of sponge disease in Papua New Guinea, the Great Barrier Reef and in the reefs of Cozumel, Mexico. These epidemics can have severe impacts on the survival of sponge populations, the ecology of the reef and the fate of associated marine invertebrates. Despite the ecological and commercial importance of sponges, the understanding of sponge disease is limited. There has generally been a failure to isolate and identify the causative agents of sponge disease, with only one case confirming Koch's postulates and identifying a novel Alphaproteobacteria strain as the primary pathogen. Other potential disease agents include fungi, viruses, cyanobacteria and bacterial strains within the Bacillus and Pseudomonas genera. There is some evidence for correlations between sponge disease and environmental factors such as climate change and urban/agricultural runoff. This review summarizes the occurrence of sponge disease, describes the syndromes identified thus far, explores potential linkages with environmental change and proposes a strategy for future research towards better management of sponge disease outbreaks.
Collapse
Affiliation(s)
- Nicole S Webster
- Australian Institute of Marine Science, PMB 3, Townsville Mail Centre, Qld 4810, Australia.
| |
Collapse
|
29
|
Wilkesman JG, Schröder HC. Analysis of serine proteases from marine sponges by 2-D zymography. Electrophoresis 2007; 28:429-36. [PMID: 17195259 DOI: 10.1002/elps.200600332] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteolytic activities isolated from the marine demosponges Geodia cydonium and Suberites domuncula were analyzed by 2-D zymography, a technique that combines IEF and zymography. After purification, a 200 kDa proteolytically active protein band was obtained from G. cydonium when analyzed in gelatin copolymerized 1-D zymograms. The enzymatic activity was quantified using alpha-N-benzoyl-D-arginine p-nitroanilide (BAPNA) as a substrate and corresponded to a serine protease. The protease activity was resistant to urea and SDS. DTT and 2-mercaptoethanol (2-ME) did not significantly change the protease activity, but induced a shift in molecular mass of the proteolytic band to lower M(r) values as detected by zymography. Under mild denaturing conditions, lower M(r) bands (<200 kDa) were identified in 1-D zymograms, suggesting that the protease is composed of subunits which retain the catalytic activity. After 2-D zymography, the protease from G. cydonium revealed a pI of 8.0 and an M(r) shift from 200 to 66 kDa. To contrast these results, a cytosolic sample from S. domuncula was analyzed. The proteolytic activity of this sponge after 2-D zymography corresponded to an M(r) of 40 kDa and a pI of 4.0. The biological function of both sponge proteases is not yet known. This study demonstrates that mild denaturing conditions required for IEF may alter the interpretation of the 2-D zymography, and care must be taken during sample preparation.
Collapse
Affiliation(s)
- Jeff G Wilkesman
- Departamento de Química, Facultad de Ciencias y Tecnología, Universidad de Carabobo, Valencia, Venezuela.
| | | |
Collapse
|
30
|
Dunn SR, Phillips WS, Spatafora JW, Green DR, Weis VM. Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution. J Mol Evol 2006; 63:95-107. [PMID: 16770683 DOI: 10.1007/s00239-005-0236-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 02/12/2006] [Indexed: 10/24/2022]
Abstract
Key insight into the complexities of apoptosis may be gained from the study of its evolution in lower metazoans. In this study we describe two genes from a cnidarian, Aiptasia pallida, that are homologous to key genes in the apoptotic pathway from vertebrates. The first is a novel ancient caspase, acasp, that displays attributes of both initiator and executioner caspases and includes a caspase recruitment domain (CARD). The second, a Bcl-2 family member, abhp, contains a BH1 and BH2 domain and shares structural characteristics and phylogenetic affinity with a group of antiapoptotic Bcl-2s including A1 and Bcl-2L10. The breadth of occurrence of other invertebrate homologues across the phylogenetic trees of both genes suggests that the complexity of apoptotic pathways is an ancient trait that predates the evolution of vertebrates and higher invertebrates such as nematodes and flies. This paves the way for establishing new lower metazoan model systems for the study of apoptosis.
Collapse
Affiliation(s)
- Simon R Dunn
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
31
|
Wiens M, Belikov SI, Kaluzhnaya OV, Schröder HC, Hamer B, Perovic-Ottstadt S, Borejko A, Luthringer B, Müller IM, Müller WEG. Axial (apical-basal) expression of pro-apoptotic and pro-survival genes in the lake baikal demosponge Lubomirskia baicalensis. DNA Cell Biol 2006; 25:152-64. [PMID: 16569194 DOI: 10.1089/dna.2006.25.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like in all other Metazoa, also in sponges (Porifera) proliferation, differentiation, and death of cells are controlled by apoptotic processes, thus allowing the establishment of a Bauplan (body plan). The demosponge Lubomirskia baicalensis from the Lake Baikal is especially suitable to assess the role of the apoptotic molecules, since its grade of construction is highly elaborated into an encrusting base and branches composed of modules lined up along the apical-basal axis. The four cDNAs, ALG-2, BAK, MA-3, and Bcl-2, were isolated from this sponge species. The expression levels of these genes follow characteristic gradients. While the proapoptotic genes are highly expressed at the base of the branches and comparably low at the top, the pro-survival gene follows an opposite gradient. Parallel with the tuned expression of these genes, the activities of the apoptosis-executing enzymes caspase-8 (IETDase activity) and caspase-3 (DEVDase activity) are lowest at the top of the branch and highest at their base. This characteristic expression/activity pattern of the genes/enzymes, which had been determined in a few specimens, collected from an unpolluted, natural site, appears reversed in specimens collected from an anthropogenically polluted site. These findings indicate the involvement of apoptotic proteins in the axis formation (branches) in L. baicalensis.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wiens M, Müller WE. Cell death in Porifera: molecular players in the game of apoptotic cell death in living fossils. CAN J ZOOL 2006. [DOI: 10.1139/z05-165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis represents the morphological manifestation of programmed cell death and, paradoxically at first sight, it is a prerequisite for metazoan life. Thus, apoptosis is responsible for the demise of cells during many physiological processes. It is also accountable for the death of cells following exposure to countless stimuli. Therefore, it is obvious that apoptosis must be regulated by a complex network of various molecular signaling pathways. Research during the past 20 years has led to the identification of major functional groups of molecules involved in apoptotic pathways. These include members of the Bcl-2 superfamily, members of the TNF family, caspases, and their activators. Yet, the evolutionary conservation of those elements of the apoptotic machinery was only established from nematode to man. Sponges (phylum Porifera) are characterized by a remarkable regeneration capacity and longevity. Furthermore, they represent the phylogenetically oldest still extant metazoan taxon. Thus, research on these living fossils opens a window to the past, to the dawn of metazoan life. It allows us to trace the evolution of programmed cell death and its core components. This review summarizes the key findings and concepts which have emerged from studies of apoptosis in Porifera.
Collapse
|
33
|
Abstract
This review provides an overview of the evolutionary path to the mammalian heart from the beginnings of life (about four billion years ago ) to the present. Essential tools for cellular homeostasis and for extracting and burning energy are still in use and essentially unchanged since the appearance of the eukaryotes. The primitive coelom, characteristic of early multicellular organisms ( approximately 800 million years ago), is lined by endoderm and is a passive receptacle for gas exchange, feeding, and sexual reproduction. The cells around this structure express genes homologous to NKX2.5/tinman, and gradual specialization of this "gastroderm" results in the appearance of mesoderm in the phylum Bilateria, which will produce the first primitive cardiac myocytes. Investment of the coelom by these mesodermal cells forms a "gastrovascular" structure. Further evolution of this structure in the bilaterian branches Ecdysoa (Drosophila) and Deuterostoma (amphioxus) culminate in a peristaltic tubular heart, without valves, without blood vessels or blood, but featuring a single layer of contracting mesoderm. The appearance of Chordata and subsequently the vertebrates is accompanied by a rapid structural diversification of this primitive linear heart: looping, unidirectional circulation, an enclosed vasculature, and the conduction system. A later innovation is the parallel circulation to the lungs, followed by the appearance of septa and the four-chambered heart in reptiles, birds, and mammals. With differentiation of the cardiac chambers, regional specialization of the proteins in the cardiac myocyte can be detected in the teleost fish and amphibians. In mammals, growth constraints are placed on the heart, presumably to accommodate the constraints of the body plan and the thoracic cavity, and adult cardiac myocytes lose the ability to re-enter the cell cycle on demand. Mammalian cardiac myocyte innervation betrays the ancient link between the heart, the gut, and reproduction: the vagus nerve controlling heart rate emanates from centers in the central nervous system regulating feeding and affective behavior.
Collapse
Affiliation(s)
- Nanette H Bishopric
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida 33101, USA.
| |
Collapse
|
34
|
Aouacheria A, Brunet F, Gouy M. Phylogenomics of Life-Or-Death Switches in Multicellular Animals: Bcl-2, BH3-Only, and BNip Families of Apoptotic Regulators. Mol Biol Evol 2005; 22:2395-416. [PMID: 16093567 DOI: 10.1093/molbev/msi234] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this report, we conducted a comprehensive survey of Bcl-2 family members, a divergent group of proteins that regulate programmed cell death by an evolutionarily conserved mechanism. Using comparative sequence analysis, we found novel sequences in mammals, nonmammalian vertebrates, and in a number of invertebrates. We then asked what conclusions could be drawn from phyletic distribution, intron/exon structures, sequence/structure relationships, and phylogenetic analyses within the updated Bcl-2 family. First, multidomain members having a sequence pattern consistent with the conservation of the Bcl-X(L)/Bax/Bid topology appear to be restricted to multicellular animals and may share a common ancestry. Next, BNip proteins, which were originally identified based on their ability to bind to E1B 19K/Bcl-2 proteins, form three independent monophyletic branches with different evolutionary history. Lastly, a set of Bcl-2 homology 3-only proteins with unrelated secondary structures seems to have evolved after the origin of Metazoa and exhibits diverse expansion after speciation during vertebrate evolution.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
35
|
Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG. Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem 2005; 280:27949-59. [PMID: 15923643 DOI: 10.1074/jbc.m504049200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sponges (phylum Porifera) are the phylogenetically oldest metazoa; as filter feeders, they are abundantly exposed to marine microorganisms. Here we present data indicating that the demosponge Suberites domuncula is provided with a recognition system for gram-negative bacteria. The lipopolysaccharide (LPS)-interacting protein was identified as a receptor on the sponge cell surface, which recognizes the bacterial endotoxin LPS. The cDNA was isolated, and the protein (Mr 49,937) was expressed. During binding to LPS, the protein dimerizes and interacts with MyD88, which was also identified and cloned. The sponge MyD88 (Mr 28,441) is composed of two protein interaction domains, a Toll/interleukin-1 receptor domain (found in MyD88 and in Toll-like receptors) and a death domain (present in MyD88 and interleukin-1 receptor-associated kinase). Northern blot experiments and in situ hybridization studies showed that after LPS treatment, the level of the LPS-interacting protein remains unchanged, whereas MyD88 is strongly up-regulated. A perforin-like molecule (Mr 74,171), the macrophage-expressed protein, was identified as an executing molecule of this pathway. This gene is highly expressed after LPS treatment, especially at the surfaces of the animals. The recombinant protein possesses biological activity and eliminates gram-negative bacteria; it is inactive against gram-positive bacteria. These data indicate that S. domuncula is provided with an innate immune system against gram-negative bacteria; the ligand LPS (a pathogen-associated molecular pattern) is recognized by the pattern recognition receptor (LPS-interacting protein), which interacts with MyD88. A signal transduction is established, which results in an elevated expression of MyD88 as well as of the macrophage-expressed protein as an executing protein.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/chemistry
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Cross-Linking Reagents/pharmacology
- DNA, Complementary/metabolism
- Dimerization
- Fluorescein-5-isothiocyanate/pharmacology
- Gene Library
- Immunohistochemistry
- Immunoprecipitation
- In Situ Hybridization
- Ligands
- Lipopolysaccharides/chemistry
- Macrophages/metabolism
- Membrane Glycoproteins/chemistry
- Models, Biological
- Molecular Sequence Data
- Myeloid Differentiation Factor 88
- Perforin
- Phylogeny
- Pore Forming Cytotoxic Proteins
- Protein Binding
- Protein Structure, Tertiary
- RNA/chemistry
- Receptors, Immunologic/chemistry
- Recombinant Proteins/chemistry
- Sequence Homology, Amino Acid
- Signal Transduction
- Suberites/immunology
- Suberites/metabolism
- Suberites/microbiology
- Up-Regulation
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Müller WEG, Batel R, Müller IM, Schröder HC. Cultural heritage: porifera (sponges), a taxon successfully progressing paleontology, biology, biochemistry, biotechnology and biomedicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 546:325-58. [PMID: 15584385 DOI: 10.1007/978-1-4757-4820-8_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany.
| | | | | | | |
Collapse
|
37
|
Adell T, Gamulin V, Perović-Ottstadt S, Wiens M, Korzhev M, Müller IM, Müller WEG. Evolution of metazoan cell junction proteins: the scaffold protein MAGI and the transmembrane receptor tetraspanin in the demosponge Suberites domuncula. J Mol Evol 2005; 59:41-50. [PMID: 15383906 DOI: 10.1007/s00239-004-2602-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 01/12/2004] [Indexed: 11/26/2022]
Abstract
Until recently the positioning of the sponges (phylum Porifera) within the metazoan systematics was hampered by the lack of molecular evidence for the existence of junctional structures in the surface cell layers. In this study two genes related to the tight junctions are characterized from the demosponge Suberites domuncula: tetraspanin (SDTM4SF), a cell surface receptor, and MAGI (SDMAGI), a MAGUK (membrane-associated guanylate kinase homologue) protein. Especially the MAGI protein is known in other metazoan animal phyla to exist exclusively in tight junctions. The characteristic domains of MAGI proteins (six PDZ domains, two WW domains, and a truncated guanylate kinase motif) are conserved in the sponge protein. The functional analysis of SDMAGI done by in situ hybridization shows its expression in the surface epithelial layers (exopinacoderm and endopinacoderm). Northern blot studies reveal that expression of SDMAGI and SDTM4SF increases after formation of the pinacoderm layer in the animals as well as in primmorphs. These results support earlier notions that sponges contain junctional structures. We conclude that sponges contain epithelia whose cells are organized by cell junctions.
Collapse
Affiliation(s)
- Teresa Adell
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Scheckhuber C. Report on the 14th Annual Meeting of the German Society for Geriatric Research. ACTA ACUST UNITED AC 2005; 2005:pe1. [PMID: 15635087 DOI: 10.1126/sageke.2005.1.pe1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Members of the German Society for Geriatric Research (Deutsche Gesellschaft für Alternsforschung) and various invited speakers met in Karlsruhe, Germany, in November 2004 to discuss new findings and exchange views on intriguing problems in the broad field of aging research. This report summarizes some of the diverse topics that arose at the meeting, including diapause in insects, mitochondrial morphology in fungi, the production of reactive oxygen species, neurogenesis, and age-dependent changes of the cardiac system in mammals.
Collapse
Affiliation(s)
- Christian Scheckhuber
- Department of Molecular and Developmental Biology and Biotechnology, Botanic Institute, J. W. Goethe University, Marie-Curie-Strasse 9, 60439 Frankfurt, Germany.
| |
Collapse
|
39
|
Wiens M, Perović-Ottstadt S, Müller IM, Müller WEG. Allograft rejection in the mixed cell reaction system of the demosponge Suberites domuncula is controlled by differential expression of apoptotic genes. Immunogenetics 2004; 56:597-610. [PMID: 15517243 DOI: 10.1007/s00251-004-0718-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 07/27/2004] [Indexed: 11/29/2022]
Abstract
Until recently, the lack of molecular probes hampered the determination of the expression of pro-apoptotic and anti-apoptotic genes in sponge. In an approach to solve this problem, the present study describes a variety of cDNAs from the demosponge Suberites domuncula, coding for proteins that are characteristic for the initiation of apoptosis (caspase, MA3, ALG-2 protein), for the prevention of programmed cells death (2 Bcl-2 homology proteins, FAIM-related polypeptide, and DAD-1-related protein), and for morphogenetic processes (retinoid X receptor). They were used as probes to monitor the expression levels in vitro in the allogeneic mixed sponge cell reaction (MSCR) system. In the allogeneic MSCR, two-cell aggregates (primmorphs) from genetically different animals of the same species were positioned next to each other. After approximately 8 days in culture, one of the primmorphs underwent apoptotic death, while the second remained alive. The expression levels of the aforementioned genes were determined by Northern blotting and by in situ hybridization. These experiments revealed that in the apoptotic primmorph, the characteristic apoptotic genes were expressed, while in the non-apoptotic aggregates the cell-survival genes are highly upregulated. Interestingly, the transcript levels of retinoid X receptor were higher in apoptotic primmorphs than in the non-apoptotic aggregate in the assay. Our data show for the first time that in the in vitro MSCR system, allogeneic recognition led to apoptotic cell death in one partner, while the other one survived. We suggest that this process is controlled by a differential expression of the pro-apoptotic and pro-survival genes studied here.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | | | | | | |
Collapse
|
40
|
Lanave C, Santamaria M, Saccone C. Comparative genomics: the evolutionary history of the Bcl-2 family. Gene 2004; 333:71-9. [PMID: 15177682 DOI: 10.1016/j.gene.2004.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Revised: 12/27/2003] [Accepted: 02/10/2004] [Indexed: 12/19/2022]
Abstract
The Bcl-2 family is a huge family composed of various members, occurring in all animals, which are key regulators of apoptosis, the cell death program critical for cell survival and development, tissue homeostasis, and protection against pathogens. The members of the Bcl-2 family can be divided into pro-apoptotic and anti-apoptotic proteins. A delicate balance between these members exists in each cell and the regulations of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Bcl-2 family proteins are characterized by distinct domains. All members possess at least one of the four motifs known as Bcl-2 homology domains (BH1 to BH4). Most pro-survival members which can inhibit apoptosis facing a wide variety of cytotoxic insults, contain at least BH1 and BH2 domains; those most similar to Bcl-2 have all four BH domains. All the pro-apoptosis family members possess BH3 domain which is the central domain. For the first time, a global phylogenetic analysis of all Bcl-2 family members is presented here. We have analyzed the genes known so far that have a different composition of the functional domains BH1, BH2, BH3 and BH4. The analyses were performed both on complete sequences (124 sites analyzed) and on single domains. We present the results obtained using both approaches. We have also analyzed the amino acid profile and the degree of conservation of the BH3 domains of pro- and anti-apoptotic proteins. The results of our phylogenetic analyses show that a clear-cut clustering into pro- and anti-apoptotic products, reproducible with different evolutionary methods, could also be obtained by analyzing restricted areas such as the BH1 and BH2 domains. It is noteworthy that even when the analysis is performed only on the BH3 domain, we have two clear-cut clusters. The evolutionary analysis of gene family members is a valuable tool to predict their functions and guide experimental assays to validate predictions. Once the functions of all the components are known, it will be possible to study the process in a holistic way.
Collapse
Affiliation(s)
- Cecilia Lanave
- ITB-CNR, Milano, Bioinformatics and Genomics Section of Bari, Bari, Italy
| | | | | |
Collapse
|
41
|
Hwang JS, Kobayashi C, Agata K, Ikeo K, Gojobori T. Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay. Gene 2004; 333:15-25. [PMID: 15177676 DOI: 10.1016/j.gene.2004.02.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 08/27/2003] [Accepted: 02/05/2004] [Indexed: 11/26/2022]
Abstract
Apoptosis is a tightly organized cell death process that plays a crucial role in metazoan development, but it has not yet been revealed whether apoptotic events are involved in the process of regeneration. Here, we tried to detect apoptotic cells during planarian regeneration using the TdT-mediated dUTP nick-end labeling (TUNEL) assay as well as the expression of apoptosis-related genes. Three novel cDNAs were isolated from a planarian cDNA library and shown to be closely related to other metazoan caspases at the amino acid sequence level. One of these cDNAs, Caspase-like gene 3 (DjClg3), was expressed primarily in apoptotic cells by double detections with the TUNEL assay. Whole mount in situ studies indicated that DjClg3 was expressed in the cells of the mesenchymal space and also around the pharynx of the intact body. Its expression in the regenerating head piece was seen in the blastema and less significantly in the brain, while in the regenerating tail piece, DjClg3 expression was detected uniformly throughout the entire region. In parallel experiments, we performed in situ TUNEL assays to localize the regions where cell death occurred during regeneration and comparable results to the DjClg3 expression patterns were obtained. This is the first report to show that planarians have apoptosis-related genes and the results suggest that the apoptotic mechanism probably takes place to a large extent in normal intact worms as well as during their regeneration. We hypothesize that the presence of apoptosis in planarians may have a role in controlling cell numbers, eliminating unnecessary tissues or cells and remodeling the old tissues of regenerating body parts.
Collapse
Affiliation(s)
- Jung Shan Hwang
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
42
|
Müller WEG, Grebenjuk VA, Thakur NL, Thakur AN, Batel R, Krasko A, Müller IM, Breter HJ. Oxygen-controlled bacterial growth in the sponge Suberites domuncula: toward a molecular understanding of the symbiotic relationships between sponge and bacteria. Appl Environ Microbiol 2004; 70:2332-41. [PMID: 15066829 PMCID: PMC383090 DOI: 10.1128/aem.70.4.2332-2341.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sponges (phylum Porifera), known to be the richest producers among the metazoans of bioactive secondary metabolites, are assumed to live in a symbiotic relationship with microorganisms, especially bacteria. Until now, the molecular basis of the mutual symbiosis, the exchange of metabolites for the benefit of the other partner, has not been understood. We show with the demosponge Suberites domuncula as a model that the sponge expresses under optimal aeration conditions the enzyme tyrosinase, which synthesizes diphenols from monophenolic compounds. The cDNA isolated was used as a probe to determine the steady-state level of gene expression. The gene expression level parallels the level of specific activity in sponge tissue, indicating that without aeration the tyrosinase level drops drastically; this effect is reversible. The SB2 bacterium isolated from the sponge surface grew well in M9 minimal salt medium supplemented with the dihydroxylated aromatic compound protocatechuate; this carbon source supported growth more than did glucose. From the SB2 bacterium the protocatechuate gene cluster was cloned and sequenced. This cluster comprises all genes coding for enzymes involved in the conversion of protocatechuate to acetyl coenzyme A. Expression is strongly induced if the bacteria are cultivated on M9-protocatechuate medium; the genes pcaQ (encoding the putative transcriptional activator of the pca operon) and pcaDC were used for quantitative PCR analyses. We conclude that metabolites, in this case diphenols, which might be produced by the sponge S. domuncula are utilized by the sponge surface-associated bacterium for energy generation. This rationale will help to further uncover the symbiotic pathways between sponges and their associated "nonculturable" microorganisms; our approach is flanked by the establishment of an EST (expressed sequence tags) database in our laboratory.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wiens M, Mangoni A, D'Esposito M, Fattorusso E, Korchagina N, Schröder HC, Grebenjuk VA, Krasko A, Batel R, Müller IM, Müller WEG. The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges. J Mol Evol 2004; 57 Suppl 1:S60-75. [PMID: 15008404 DOI: 10.1007/s00239-003-0008-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular data on development/differentiation and on comparative genomics allow insights into the genetic basis of the evolution of a bodyplan. Sponges (phylum Porifera) are animals that are the (still extant) stem group with the hypothetical Urmetazoa as the earliest common ancestor of all metazoans; they possess the basic features of the characteristic metazoan bodyplan also valid for the animals of the crown taxa. Here we describe three homeobox genes from the demosponge Suberites domuncula whose deduced proteins (HOXa1_SUBDO, HOXb1_SUBDO, HOXc1_SUBDO) are to be grouped with the Antennapedia class of homeoproteins (subclasses TIx-Hox11 and NK-2). In addition, a cDNA encoding a LIM/homeobox protein has been isolated which comprises high sequence similarity to the related LIM homeodomain (HD) proteins in its LIM as well as in its HD domains. To elucidate the potential function of these proteins in the sponge a new in vitro system was developed. Primmorphs which are formed from dissociated cells were grown on a homologous galectin matrix. This galectin cDNA was cloned and the recombinant protein was used for the preparation of the matrix. The galectin/polylysine matrix induced in primmorphs the formation of channels, one major morphogenetic process in sponges. Under such conditions the expression of the gene encoding the LIM/homeobox protein is strongly upregulated, while the expression of the other homeobox genes remains unchanged or is even downregulated. Competition experiments with galactosylceramides isolated from S. domuncula were performed. They revealed that a beta-galactosylceramide, named Sdgal-1, prevented the expression of the LIM gene on the galectin matrix, while Sdgal-2, a diglycosylceramide having a terminal alpha-glycosidically linked galactose, caused no effect on the formation of channels in primmorphs or on LIM expression. This study demonstrates for the first time that an extracellular matrix molecule, galectin, induces a morphogenetic process in sponges which is very likely caused by a LIM/homeobox protein. Furthermore, a new model is introduced (galectin-caused channel formation in sponge primmorphs) to investigate basic pathways, thus allowing new insights into the functional molecular evolution of Metazoa.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM. Bauplan of Urmetazoa: Basis for Genetic Complexity of Metazoa. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:53-92. [PMID: 15219781 DOI: 10.1016/s0074-7696(04)35002-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sponges were first grouped to the animal-plants or plant-animals then to the Zoophyta or Mesozoa and finally to the Parazoa. Only after the application of molecular biological techniques was it possible to place the Porifera monophyletically with the other metazoan phyla, justifying a unification of all multicellular animals to only one kingdom, the Metazoa. The first strong support came from the discovery that cell-cell and cell-matrix adhesion molecules that were cloned from sponges and were subsequently expressed share a high DNA sequence and protein function similarity with the corresponding molecules of other metazoans. Besides these evolutionary novelties for Metazoa, sponges also have morphogens and transcription factors in common with other metazoan phyla. Surprisingly, even those elements exist in Porifera, which are characteristic for pattern and axis formation. Recent studies showed that epithelial layers of sponges are sealed against the extracellular milieu through tight-junction proteins. The cell culture system from sponges, the primmorphs, was suitable for understanding morphogenetic events. Finally, stem cell marker genes were isolated, which underscored that sponge cells have the capacity to differentiate. In the relatively short period of time, approximately 200 million years, the basic pathways had to be established that allowed the transition for multicellular organisms to a colonial system through the formation of adhesion molecules; based on the development of a complex immune system and the apoptotic machinery of an integrated system, the Urmetazoa, which evolved approximately 800 million years ago, could be reached. Hence, the Bauplan of the hypothetical Urmetazoa can now be constructed according to genomic regulatory systems similar to those found in higher Metazoa. These data caused a paradigmatic change; the Porifera are complex and simple but by far not primitive.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Berry S. Endosymbiosis and the design of eukaryotic electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:57-72. [PMID: 14507427 DOI: 10.1016/s0005-2728(03)00084-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.
Collapse
Affiliation(s)
- Stephan Berry
- Plant Biochemistry, Faculty of Biology, Ruhr-University-Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
46
|
Wiens M, Krasko A, Perovic S, Müller WEG. Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:179-89. [PMID: 12581862 DOI: 10.1016/s0167-4889(02)00388-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sponges (phylum Porifera) represent the phylogenetically oldest metazoan phylum. These animals have complex cell adhesion and powerful immune systems which allow the formation of a distinct body plan. Consequently, an apoptotic machinery has to be predicted that allows sponges to eliminate unwanted cells accumulating during development. With the marine sponge Geodia cydonium, it is shown that allografts of these animals undergo apoptosis as demonstrated by apoptotic DNA fragmentation. Extracts from allografts contain an enzymic activity characteristic for caspases; as substrate to determine the cleavage activity, Ac-DEVD-AMC was applied. cDNAs encoding predicted caspase-3-related proteins were isolated; they comprise the characteristic structure known from caspases of other metazoan phyla. The two cDNAs are assumed to originate from one gene by alternative splicing; the longer form comprises a caspase recruitment domain (CARD), whereas the shorter one is missing CARD. The expression of sponge caspase genes is up-regulated during allograft rejection. In vivo incubation experiments with Ac-DEVD-CHO (a caspase-3 inhibitor) showed a reduction of apoptotic DNA fragmentation, whereas Ac-LEHD-CHO (an inhibitor of caspase-9) caused no effect. It is concluded, that for the establishment of the metazoan body plan, both the adhesion molecules and the apoptotic molecules (described here) were essential prerequisites.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | | | | | | |
Collapse
|
47
|
Müller WEG, Müller IM. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 37:1-33. [PMID: 15825638 DOI: 10.1007/978-3-642-55519-0_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sponges [phylum Porifera] form the basis of the metazoan kingdom and represent the evolutionary earliest phylum still extant. Hence, as living fossils, they are the taxon closest related to the hypothetical ancestor of all Metazoa, the Urmetazoa. Until recently, it was still unclear whether sponges are provided with a defined body plan. Only after the cloning, expression and functional studies of characteristic metazoan genes, could it be demonstrated that these animals comprise the structural elements which allow the sponge cells to organize themselves according to a body plan. Adhesion molecules involved in cell-cell and cell-matrix interactions have been identified. Among the cell-cell adhesion molecules the aggregation factor (AF) is the prominent particle. It is composed of a core protein that is associated with the adhesion molecules, a 36 kDa as well as a 86 kDa polypeptide. A galectin functions as a linker of the AF to the cell-membrane-associated receptor, the aggregation receptor (AR). The most important extracellular matrix molecules are collagen- and fibronectin-like molecules. These proteins interact with the cell-membrane receptors, the integrins. In addition, a neuronal receptor has been identified, which--together with the identified neuroactive molecules--indicate the existence of a primordial neuronal network already in Porifera. The primmorph system, aggregated cells that retain the capacity to proliferate and differentiate, has been used to demonstrate that a homeobox-containing gene, Iroquois, is expressed during canal formation in primmorphs. The formation of a body plan in sponges is supported by skeletal elements, the spicules, which are composed in Demospongiae as well as in Hexactinellida of amorphous, noncrystalline silica. In Demospongiae the spicule formation is under enzymic control of silicatein. Already at least one morphogen has been identified in sponges, myotrophin, which is likely to be involved in the axis formation. Taken together, these elements support the recent conclusions that sponges are not merely nonorganized cell aggregates, but already complex animals provided with a defined body plan.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | |
Collapse
|
48
|
Schröder HC, Brümmer F, Fattorusso E, Aiello A, Menna M, de Rosa S, Batel R, Müller WEG. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 37:163-97. [PMID: 15825644 DOI: 10.1007/978-3-642-55519-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sponges [phylum Porifera] are a rich source for the isolation of biologically active and pharmacologically valuable compounds with a high potential to become effective drugs for therapeutic use. However, until now, only one compound has been introduced into clinics because of the limited amounts of starting material available for extraction. To overcome this serious problem in line with the rules for a sustainable use of marine resources, the following routes can be pursued; first, chemical synthesis, second, cultivation of sponges in the sea (mariculture), third, growth of sponge specimens in a bioreactor, and fourth, cultivation of sponge cells in vitro in a bioreactor. The main efforts to follow the latter strategy have been undertaken with the marine sponge Suberites domuncula. This species produces compounds that affect neuronal cells, such as quinolinic acid, a well-known neurotoxin, and phospholipids. A sponge cell culture was established after finding that single sponge cells require cell-cell contact in order to retain their telomerase activity, one prerequisite for continuous cell proliferation. The sponge cell culture system, the primmorphs, comprises proliferating cells that have the potency to differentiate. While improving the medium it was found that, besides growth factors, certain ions (e.g. silicate and iron) are essential. In the presence of silicate several genes required for the formation of the extracellular matrix are expressed (silicatein, collagen and myotrophin). Fe3+ is essential for the synthesis of the spicules, and causes an increased expression of the ferritin-, septin- and scavenger receptor genes. Furthermore, high water current is required for growth and canal formation in the primmorphs. The primmorph system has already been successfully used for the production of pharmacologically useful, bioactive compounds, such as avarol or (2'-5')oligoadenylates. Future strategies to improve the sponge cell culture are discussed; these include the elucidation of those genes which control the proliferation phase and the morphogenesis phase, two developmental phases which the cells in primmorphs undergo. In addition, immortalization of sponge cells by transfection with genomic DNA appears to be a promising way, since recent studies underscore the applicability of this technique for sponges.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Müller WEG, Wiens M, Müller IM, Schröder HC. The Chemokine Networks in Sponges: Potential Roles in Morphogenesis, Immunity and Stem Cell Formation. INVERTEBRATE CYTOKINES AND THE PHYLOGENY OF IMMUNITY 2003; 34:103-43. [PMID: 14979666 DOI: 10.1007/978-3-642-18670-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Porifera (sponges) are now well accepted as the phylum which branched off first from the common ancestor of all metazoans, the Urmetazoa. The transition to the Metazoa became possible because during this phase, cell-cell as well as cell-matrix adhesion molecules evolved which allowed the formation of a colonial stage of animals. The next prerequisite for the evolution to the Urmetazoa was the establishment of an effective immune system which, flanked by apoptosis, allowed the formation of a first level of individuation. In sponges (with the model Suberites domuncula and Geodia cydonium), the main mediators of the immune responses are the chemokines. Since sponges lack a vascular system and consequently blood cells (in the narrow sense), we have used the term chemokines (in a broad sense) to highlight that the complex network of intercellular mediators initiates besides differentiation processes also cell movement. In the present review, the cDNAs encoding the following chemokines were described and the roles of their deduced proteins during self-self and nonself recognition outlined: the allograft inflammatory factor, the glutathione peroxidase, the endothelial-monocyte-activating polypeptide, the pre-B-cell colony-enhancing factor and the myotrophin as well as an enzyme, the (2-5)A synthetase, which is involved in cytokine response in vertebrates. A further step required to reach the evolutionary step of the integrated stage of the Urmetazoa was the acquisition of a stem cell system. In this review, first markers for stem cells (mesenchymal stem cell-like protein) as well as for chemokines involved in the maintenance of stem cells (noggin and glia maturation factor) are described at the molecular level, and a first functional analysis is approached. Taken together, it is outlined that the chemokine network was essential for the establishment of metazoans, which evolved approximately 600 to 800 million years ago.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | |
Collapse
|
50
|
Chambon JP, Soule J, Pomies P, Fort P, Sahuquet A, Alexandre D, Mangeat PH, Baghdiguian S. Tail regression in Ciona intestinalis (Prochordate) involves a Caspase-dependent apoptosis event associated with ERK activation. Development 2002; 129:3105-14. [PMID: 12070086 DOI: 10.1242/dev.129.13.3105] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two apoptotic events take place during embryonic development of Ciona intestinalis. The first concerns extra-embryonic cells and precedes hatching. The second controls tail regression at metamorphosis, occurs through a polarized wave originating from tail extremity, and is caspase dependent. This was shown by: (1) in vivo incorporation of a fluorescent marker of caspase activation in different cell types of the tail; (2) detection of an activated form of caspase 3-like protein by western blotting; and (3) failure of 30% of larvae to undergo metamorphosis after treatment of fertilized eggs with a pan-caspase inhibitor. In addition, Ciona embryos express a single ERK protein, specifically phosphorylated at metamorphosis. ERK activation was shown to be located in cells of the tail. Addition of MEK inhibitor in the culture medium prevented ERK activation and metamorphosis. In silico analysis of Ciona genome pointed to 15 caspases with high homology with humans, and a single ERK gene with high homology to both mammalian ERK1 and ERK2. It is concluded that the sequence of events leading to metamorphosis includes ERK phosphorylation followed by caspase-dependent apoptosis and tail regression.
Movies available on-line
Collapse
Affiliation(s)
- Jean-Philippe Chambon
- UMR 5539 Centre National de la Recherche Scientifique, Dynamique Moléculaire des Interactions Membranaires, Université Montpellier II place E. Bataillon 34095 Montpellier cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|