1
|
Smith LC, Crow RS, Franchi N, Schrankel CS. The echinoid complement system inferred from genome sequence searches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104584. [PMID: 36343741 DOI: 10.1016/j.dci.2022.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The vertebrate complement cascade is an essential host protection system that functions at the intersection of adaptive and innate immunity. However, it was originally assumed that complement was present only in vertebrates because it was activated by antibodies and functioned with adaptive immunity. Subsequently, the identification of the key component, SpC3, in sea urchins plus a wide range of other invertebrates significantly expanded the concepts of how complement functions. Because there are few reports on the echinoid complement system, an alternative approach to identify complement components in echinoderms is to search the deduced proteins encoded in the genomes. This approach identified known and putative members of the lectin and alternative activation pathways, but members of the terminal pathway are absent. Several types of complement receptors are encoded in the genomes. Complement regulatory proteins composed of complement control protein (CCP) modules are identified that may control the activation pathways and the convertases. Other regulatory proteins without CCP modules are also identified, however regulators of the terminal pathway are absent. The expansion of genes encoding proteins with Macpf domains is noteworthy because this domain is a signature of perforin and proteins in the terminal pathway. The results suggest that the major functions of the echinoid complement system are detection of foreign targets by the proteins that initiate the activation pathways resulting in opsonization by SpC3b fragments to augment phagocytosis and destruction of the foreign targets by the immune cells.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington DC, USA.
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA
| |
Collapse
|
2
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Mo Z, Jiang B, Lai X, Wu H, Luo X, Dan X, Li Y. Characterization and functional analysis of hybrid pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) complement C3 against Cryptocaryon irritans infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100032. [DOI: 10.1016/j.fsirep.2021.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
|
4
|
Wang Z, Liang X, Li G, Liufu B, Lin K, Li J, Wang J, Wang B. Molecular Characterization of Complement Component 3 (C3) in the Pearl Oyster Pinctada fucata Improves Our Understanding of the Primitive Complement System in Bivalve. Front Immunol 2021; 12:652805. [PMID: 33953719 PMCID: PMC8089394 DOI: 10.3389/fimmu.2021.652805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
As the central component in the complement system, complement component 3 (C3) plays essential roles in both the innate and adaptive immune responses. Here, a C3 gene (designated as pf-C3) was obtained from the pearl oyster Pinctada fucata by RT-PCR and rapid amplification of cDNA ends (RACE). The pf-C3 cDNA consists of 5,634 bp with an open reading frame (ORF) of 5,193 bp encoding a protein of 1,730 amino acids with a 19 residue signal peptide. The deduced pf-C3 protein possessed the characteristic structural features present in its homologs and contained the A2M_N_2, ANATO, A2M, A2M_comp, A2M_recep, and C345C domains, as well as the C3 convertase cleavage site, thioester motif, and conserved Cys, His, and Glu residues. Phylogenetic analysis revealed that pf-C3 is closely related to the C3s from other mollusks. Pf-C3 mRNA was expressed in all examined tissues including gill, digestive gland, adductor muscle, mantle and foot, while the highest expression was found in the digestive gland. Following the challenge with Vibrio alginolyticus, pf-C3 expression was significantly induced in hemocytes. Luciferase reporter assays indicated that pf-C3a could activate the NF-κB signal pathway in HEK293T cells. Further knockdown of pf-C3 by specific siRNA could significantly reduce the phagocytosis of V. alginolyticus by hemocytes in vitro. These results would help increase understanding of the function of C3 in the invertebrate immune system and therefore provide new insights into the roles of the primitive complement system in invertebrates.
Collapse
Affiliation(s)
- Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Xueru Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Guiying Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bai Liufu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Kaiqi Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jinfeng Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Jing Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
6
|
Parisi MG, Parrinello D, Stabili L, Cammarata M. Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans. BIOLOGY 2020; 9:E283. [PMID: 32932829 PMCID: PMC7563517 DOI: 10.3390/biology9090283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal's health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process. The cells play a fundamental role in immunity, as they display phagocytic activities and secrete mucus, which acts as a physicochemical barrier preventing or slowing down the proliferation of potential invaders. Finally, we describe the current state of knowledge of some immune effectors in Anthozoan species, including the potential role of toxins and the inflammatory response in the Mediterranean Anthozoan Anemonia viridis following injection of various foreign particles differing in type and dimensions, including pathogenetic bacteria.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Daniela Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
7
|
Hansen VL, Miller RD. Evidence for regulation of the complement system during pregnancy being ancient and conserved in mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103562. [PMID: 31785265 PMCID: PMC6937380 DOI: 10.1016/j.dci.2019.103562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Here we demonstrate that regulation of the Complement (C') components of the immune system is an ancient and conserved feature of mammalian pregnancy. Transcript levels were reduced for complement components C3 and C4 throughout pregnancy in a marsupial, Monodelphis domestica. Downstream C' component transcripts were significantly less abundant relative to non-pregnant controls at the start of pregnancy but increased during late pregnancy, in some cases peaking close to parturition. These results are consistent with observations in human pregnancy that deposition of C5 through C9 on fetal membranes is associated with labor and parturition. Complement regulators CD46 and CD59 are present at the fetomaternal interface during M. domestica pregnancy as well, implying regulation of C' effector mechanisms is necessary for maintenance of normal marsupial pregnancy. Collectively these results support regulating the complement system may have contributed to the transition from oviparity to viviparity in mammals over 165 million years ago.
Collapse
Affiliation(s)
- Victoria L Hansen
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
8
|
Xing Q, Wang J, Zhao Q, Liao H, Xun X, Yang Z, Huang X, Bao Z. Alternative splicing, spatiotemporal expression of TEP family genes in Yesso scallop (Patinopecten yessoensis) and their disparity in responses to ocean acidification. FISH & SHELLFISH IMMUNOLOGY 2019; 95:203-212. [PMID: 31610293 DOI: 10.1016/j.fsi.2019.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The complement system constitutes a highly sophisticated and powerful body defense machinery acting in the innate immunity of both vertebrates and invertebrates. As central components of the complement system, significant effects of thioester-containing protein (TEP) family members on immunity have been reported in most vertebrates and in some invertebrates, but the spatiotemporal expression and regulatory patterns of TEP family genes under environmental stress have been less widely investigated in scallops. In this study, expression profiling of TEP family members in the Yesso scallop Patinopecten yessoensis (designated PyTEPs) was performed at all developmental stages, in different healthy adult tissues, and in mantles during exposure to different levels of acidification (pH = 6.5 and 7.5) for different time points (3, 6, 12 and 24 h); this profiling was accomplished through in silico analysis of transcriptome and genome databases. Spatiotemporal expression patterns revealed that PyTEPs had specific functional differentiation in all stages of growth and development of the scallop. Expression analysis confirmed the inducible expression patterns of PyTEPs during exposure to acidification. Gene duplication and alternative splicing events simultaneously occurred in PyTEP1. Seven different cDNA variants of PyTEP1 (designated PyTEP1-A-PyTEP1-G) were identified in the scallop mantle transcriptome during acidic stress. These variants were produced by the alternative splicing of seven differentially transcribed exons (exons 18-24), which encode the highly variable central region. The responses to immune stress may have arisen through the gene duplication and alternative splicing of PyTEP1. The sequence diversity of PyTEP1 isoforms and their different expression profiles in response to ocean acidification (OA) suggested a mechanism used by scallops to differentiate and regulate PyTEP1 gene expression. Collectively, these results demonstrate the gene duplication and alternative splicing of TEP family genes and provide valuable resources for elucidating their versatile roles in bivalve innate immune responses to OA challenge.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Yantai Marine Economic Research Institute, Yantai, 264000, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
9
|
Ojha H, Ghosh P, Singh Panwar H, Shende R, Gondane A, Mande SC, Sahu A. Spatially conserved motifs in complement control protein domains determine functionality in regulators of complement activation-family proteins. Commun Biol 2019; 2:290. [PMID: 31396570 PMCID: PMC6683126 DOI: 10.1038/s42003-019-0529-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Regulation of complement activation in the host cells is mediated primarily by the regulators of complement activation (RCA) family proteins that are formed by tandemly repeating complement control protein (CCP) domains. Functional annotation of these proteins, however, is challenging as contiguous CCP domains are found in proteins with varied functions. Here, by employing an in silico approach, we identify five motifs which are conserved spatially in a specific order in the regulatory CCP domains of known RCA proteins. We report that the presence of these motifs in a specific pattern is sufficient to annotate regulatory domains in RCA proteins. We show that incorporation of the lost motif in the fourth long-homologous repeat (LHR-D) in complement receptor 1 regains its regulatory activity. Additionally, the motif pattern also helped annotate human polydom as a complement regulator. Thus, we propose that the motifs identified here are the determinants of functionality in RCA proteins.
Collapse
Affiliation(s)
- Hina Ojha
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University campus, Pune, 411007 India
| | - Payel Ghosh
- Bioinformatics Centre, S. P. Pune University, Pune, 411007 India
| | - Hemendra Singh Panwar
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University campus, Pune, 411007 India
| | - Rajashri Shende
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University campus, Pune, 411007 India
| | | | - Shekhar C. Mande
- Structural Biology Laboratory, National Centre for Cell Science, S. P. Pune University campus, Pune, 411007 India
- Present Address: Council of Scientific and Industrial Research (CSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001 India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, S. P. Pune University campus, Pune, 411007 India
| |
Collapse
|
10
|
Zárate-Potes A, Ocampo ID, Cadavid LF. The putative immune recognition repertoire of the model cnidarian Hydractinia symbiolongicarpus is large and diverse. Gene 2018; 684:104-117. [PMID: 30393111 DOI: 10.1016/j.gene.2018.10.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022]
Abstract
Immune recognition of molecular patterns from microorganisms or self-altered cells activate effector responses that neutralize and eliminate these potentially harmful agents. In virtually every metazoan group the process is carried out by pattern recognition receptors, typically constituted by immunoglobulin (Ig), leucine rich repeat (LRR), and/or lectin domains. In order to get insights into the ancestral immune recognition repertoire of animals, we have sequenced the transcriptome of bacterially challenged colonies of the model cnidarian Hydractinia symbiolongicarpus using the Illumina platform. Over 116,000 assembled contigs were annotated by sequence similarity, domain architecture, and functionally. From these, a subset of 315 unique transcripts was predicted as the putative immune recognition repertoire of H. symbiolongicarpus. Interestingly, canonical Toll-like receptors (TLR) were not predicted, nor any transmembrane protein with the Toll/interleukine-1 receptor (TIR) domain. Yet, a variety of predicted proteins with transmembrane domains associated with LRR ectodomains were identified, as well as homologs of the key transduction factor NF-kB, and its associated regulatory proteins. This also has been documented in Hydra, and suggests that recognition and signaling initiation has been decoupled in the TLR system of hydrozoans. In contrast, both canonical and non-canonical NOD-like receptors were identified in H. symbiolongicarpus, showing a higher diversity than the TLR system and perhaps a wider functional landscape. The collection of Ig-like containing putative immune recognition molecules was diverse, and included at least 26 unique membrane-bound predicted proteins and 88 cytoplasmic/secreted predicted molecules. In addition, 25 and 5 transcripts encoding the Ig-like containing allorecognition determinants ALR1 and ALR2, respectively, were identified. Sequence and phylogenetic analyses suggested the presence of various transcriptionally active alr loci, and the action of recombination-based mechanisms diversifying them. Transcripts encoding at least six lectin families with putative roles in immune recognition were found, including 19 unique C-type lectins and 21 unique rhamnose-binding lectins. Other predicted immune recognition receptors included scavenger receptors from three families, lipopolysaccharide-binding proteins, cell-adhesion molecules and thioester-bond containing proteins. This analysis demonstrated that the putative immune recognition repertoire of H. symbiolongicarpus is large and diverse.
Collapse
Affiliation(s)
- Alejandra Zárate-Potes
- Departamento de Biología, Universidad Nacional de Colombia, Cr. 30 # 45-08, Bogotá, Colombia
| | - Iván D Ocampo
- Departamento de Biología, Universidad Nacional de Colombia, Cr. 30 # 45-08, Bogotá, Colombia; Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 # 62-00, Cali, Colombia
| | - Luis F Cadavid
- Instituto of Genética, Universidad Nacional de Colombia, Cr. 30 # 45-08, Bogotá, Colombia.
| |
Collapse
|
11
|
Liao H, Wang J, Xun X, Zhao L, Yang Z, Zhu X, Xing Q, Huang X, Bao Z. Identification and characterization of TEP family genes in Yesso scallop (Patinopecten yessoensis) and their diverse expression patterns in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2018; 79:327-339. [PMID: 29803664 DOI: 10.1016/j.fsi.2018.05.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Thioester-containing protein (TEP) family members are characterized by their unique intrachain β-cysteinyl-γ-glutamyl thioesters, and they play important roles in innate immune responses. Although significant effects of TEP members on immunity have been reported in most vertebrates, as well as certain invertebrates, the complete TEP family has not been systematically characterized in scallops. In this study, five TEP family genes (PyC3, PyA2M, PyTEP1, PyTEP2 and PyCD109) were identified from Yesso scallop (Patinopecten yessoensis) through whole-genome scanning, including one pair of tandem duplications located on the same scaffold. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the five genes (PyTEPs). The vast distribution of PyTEPs in TEP subfamilies confirmed that the Yesso scallop contains relatively comprehensive types of TEP members in evolution. The expression profiles of PyTEPs were determined in hemocytes after bacterial infection with gram-positive (Micrococcus luteus) and gram-negative (Vibrio anguillarum) using quantitative real-time PCR (qRT-PCR). Expression analysis revealed that the PyTEP genes exhibited disparate expression patterns in response to the infection by gram bacteria. A majority of PyTEP genes were overexpressed after bacterial stimulation at most time points, especially the notable elevation displayed by duplicated genes after V. anguillarum challenge. Interestingly, at different infection times, PyTEP1 and PyTEP2 shared analogous expression patterns, as did PyC3 and PyCD109. Taken together, these results help to characterize gene duplication and the evolutionary origin of PyTEPs and supplied valuable resources for elucidating their versatile roles in bivalve innate immune responses to bacterial pathogen challenges.
Collapse
Affiliation(s)
- Huan Liao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaogang Xun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Liang Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zujing Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xinghai Zhu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Qiang Xing
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xiaoting Huang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
12
|
Chen Y, Xu K, Li J, Wang X, Ye Y, Qi P. Molecular characterization of complement component 3 (C3) in Mytilus coruscus improves our understanding of bivalve complement system. FISH & SHELLFISH IMMUNOLOGY 2018; 76:41-47. [PMID: 29486351 DOI: 10.1016/j.fsi.2018.02.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Complement component 3 (C3) plays a central role in the complement system whose activation is essential for all the important functions performed by this system. Here, a novel C3 gene, termed Mc-C3, was identified from thick shell mussel (Mytilus coruscus). The deduced Mc-C3 protein possessed the characteristic structure features present in its homologs and contained the A2M_N_2, ANATO, A2M, A2M_comp, A2M_recep, and C345C domains, as well as the C3 convertase cleavage site, thioester motif, and conserved Cys, His, and Glu residues. Mc-C3 gene constitutively expressed in all examined tissues and predominantly expressed in immune-related tissues such as gills, hemocytes and hepatopancreas. After stimulation with lipopolysaccharide or Cu2+, the expression of Mc-C3 was significantly induced in gills. Further luciferase reporter assays showed the ability for activation of NF-κB signaling transduction of Mc-C3a. Taken together, these results show that C3 may play an essential role in the immune defense of M. coruscus. The present data therefore provide a more detailed insight into the functional activities of the bivalve complement system.
Collapse
Affiliation(s)
- Yongxia Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Kaida Xu
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Key Laboratory of Sustainable Utilization of Technology Research, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316021, China
| | - Jiji Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - XiaoYan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Yingying Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.
| |
Collapse
|
13
|
van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives. MICROBIOME 2018; 6:64. [PMID: 29609655 PMCID: PMC5880021 DOI: 10.1186/s40168-018-0431-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. Finally, we present our perspectives on how the field of octocoral research should move forward, and the recognition that these organisms may be suitable model organisms to study coral-microbe symbioses.
Collapse
Affiliation(s)
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco
| | | |
Collapse
|
14
|
Cui Y, Wei Z, Shen Y, Li C, Shao Y, Zhang W, Zhao X. A novel C1q-domain-containing protein from razor clam Sinonovacula constricta mediates G-bacterial agglutination as a pattern recognition receptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:166-174. [PMID: 29100917 DOI: 10.1016/j.dci.2017.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Complement component 1q (C1q) with a characteristic C1q globular domain is an important pattern recognition molecule in the classical complement systems and plays a major role in the crosslinking between innate immunity and specific immunity in vertebrates. In this study, a homologous gene encoding typically C1q domains was obtained from the razor clam Sinonovacula constricta (designated ScC1qDC) by rapid amplification of the cDNA end. The full-length cDNA of ScC1qDC was 1225 bp in length with a 5'UTR of 258 bp, a 3'UTR of 223 bp, and an open reading frame of 744 bp encoding a polypeptide of 247 amino acids containing a typical C1q globular domain. The mRNA transcripts of ScC1qDC were constitutively transcribed in all examined tissues with higher expression in the hepatopancreas. Time-course expression analysis indicated that ScC1qDC was significantly up-regulated both in hepatopancreas and gills after Vibrio parahaemolyticus challenge. The recombinant ScC1qDC (rScC1qDC) displayed high binding activities to various pathogen-associated molecular patterns, including LPS, PGN, and MAN. Recombinant ScC1qDC showed no agglutinating activity to Gram-positive bacterium of Micrococcus luteus but showed obvious activities towards all the three examined Gram-negative bacteria. All our results indicated that ScC1qDC might be served as a pattern recognition receptor and promoted Gram-negative bacteria agglutination during the pathogen challenge.
Collapse
Affiliation(s)
- Yi Cui
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhixin Wei
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yaoyao Shen
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
15
|
Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity - a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2017; 180:782-798. [PMID: 29265338 DOI: 10.1111/bjh.15062] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coagulation and innate immunity are linked evolutionary processes that orchestrate the host defence against invading pathogens and injury. The complement system is integral to innate immunity and shares numerous interactions with components of the haemostatic pathway, helping to maintain physiological equilibrium. The term 'immunothrombosis' was introduced in 2013 to embrace this process, and has become an area of much recent interest. What is less apparent in the literature however is an appreciation of the clinical manifestations of the coagulation-complement interaction and the consequences of dysregulation of either system, as seen in many inflammatory and thrombotic disease states, such as sepsis, trauma, atherosclerosis, antiphospholipid syndrome (APS), paroxysmal nocturnal haemoglobinuria (PNH) and some thrombotic microangiopathies to name a few. The growing appreciation of this immunothrombotic phenomenon will foster the drive for novel therapies in these disease states, including anticoagulants as immunomodulators and targeted molecular therapies.
Collapse
Affiliation(s)
- Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Zoe K McQuilten
- Transfusion Research Unit and Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Vic., Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
16
|
Peng M, Niu D, Chen Z, Lan T, Dong Z, Tran TN, Li J. Expression of a novel complement C3 gene in the razor clam Sinonovacula constricta and its role in innate immune response and hemolysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:184-192. [PMID: 28377201 DOI: 10.1016/j.dci.2017.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Complement component 3 (C3) is a core component of the complement system, and directly participates in immune regulation and immune defense. Isoforms of C3 have been reported in several species of vertebrate, but invertebrates, and more specifically clams, have been less well studied. An isoform of C3, named ScC3-2, was identified in Sinonovacula constricta (Chinese razor clam). ScC3-2 included eight conserved regions, a thioester bond and two predicted junction sites (α-β and α-γ). The gene was expressed in the liver, gill, foot, hemolymph, mantle, gonad and siphon tissues. The gene was significantly upregulated in umbo larvae, suggesting that initial larval immunity may develop in umbo larvae. Moreover, the ScC3-2 mRNA expression patterns after challenge with Vibrio parahemolyticus and Micrococcus lysodeikticus exhibited an obvious upregulation at 8 h in the hemolymph and at 4 h in the liver, respectively. Furthermore, ScC3-2 showed effective membrane rupture of heterologous rabbit erythrocytes. The ScC3-2 protein was located on the surface of the cells during the process of hemolysis. After a comparative analysis, we suggest that the major structure and function of ScC3 and ScC3-2 are analogous. Our findings suggest that ScC3-2 plays an important immune function, and an intricate complement response may exist in S. constricta.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Zhiyi Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyi Lan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Thi-Nga Tran
- Research Institute for Aquaculture No.1, Dinh Bang, Tu Son, Bac Ninh, Viet Nam
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
17
|
Nonaka MI, Terado T, Kimura H, Nonaka M. Evolutionary analysis of two complement C4 genes: Ancient duplication and conservation during jawed vertebrate evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:1-11. [PMID: 27840295 DOI: 10.1016/j.dci.2016.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
The complement C4 is a thioester-containing protein, and a histidine (H) residue catalyzes the cleavage of the thioester to allow covalent binding to carbohydrates on target cells. Some mammalian and teleost species possess an additional isotype where the catalytic H is replaced by an aspartic acid (D), which binds preferentially to proteins. We found the two C4 isotypes in many other jawed vertebrates, including sharks and birds/reptiles. Phylogenetic analysis suggested that C4 gene duplication occurred in the early days of the jawed vertebrate evolution. The D-type C4 of bony fish except for mammals formed a cluster, termed D-lineage. The D-lineage genes were located in a syntenic region outside MHC, and evolved conservatively. Mammals lost the D-lineage before speciation, but D-type C4 was regenerated by recent gene duplication in some mammalian species or groups. Dual C4 molecules with different substrate specificities would have contributed to development of the antibody-dependent classical pathway.
Collapse
Affiliation(s)
- Mayumi I Nonaka
- Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Tokio Terado
- Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Kimura
- Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Masaru Nonaka
- Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Peng M, Niu D, Wang F, Chen Z, Li J. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta. FISH & SHELLFISH IMMUNOLOGY 2016; 55:223-232. [PMID: 27231190 DOI: 10.1016/j.fsi.2016.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Fei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyi Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
19
|
Myamoto DT, Pidde-Queiroz G, Pedroso A, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. Characterization of the gene encoding component C3 of the complement system from the spider Loxosceles laeta venom glands: Phylogenetic implications. Immunobiology 2016; 221:953-63. [PMID: 27259372 DOI: 10.1016/j.imbio.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 01/02/2023]
Abstract
A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3.
Collapse
Affiliation(s)
- D T Myamoto
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - G Pidde-Queiroz
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - A Pedroso
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - C W van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - D V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
20
|
Poole AZ, Kitchen SA, Weis VM. The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida. Front Microbiol 2016; 7:519. [PMID: 27148208 PMCID: PMC4840205 DOI: 10.3389/fmicb.2016.00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense against pathogens, little is known about their role in managing beneficial microbes. The purpose of this study was to (1) characterize complement pathway genes in the symbiotic sea anemone Aiptasia pallida, (2) investigate the evolution of complement genes in invertebrates, and (3) examine the potential dual role of complement genes Factor B and MASP in the onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge using qPCR based studies. The results demonstrate that A. pallida has multiple Factor B genes (Ap_Bf-1, Ap_Bf-2a, and Ap_Bf-2b) and one MASP gene (Ap_MASP). Phylogenetic analysis indicates that the evolutionary history of complement genes is complex, and there have been many gene duplications or gene loss events, even within members of the same phylum. Gene expression analyses revealed a potential role for complement in both onset and maintenance of cnidarian-dinoflagellate symbiosis and immune challenge. Specifically, Ap_Bf-1 and Ap_MASP are significantly upregulated in the light at the onset of symbiosis and in response to challenge with the pathogen Serratia marcescens suggesting that they play a role in the initial recognition of both beneficial and harmful microbes. Ap_Bf-2b in contrast, was generally downregulated during the onset and maintenance of symbiosis and in response to challenge with S. marcescens. Therefore, the exact role of Ap_Bf-2b in response to microbes remains unclear, but the results suggest that the presence of microbes leads to repressed expression. Together, these results indicate functional divergence between Ap_Bf-1 and Ap_Bf-2b, and that Ap_Bf-1 and Ap_MASP may be functioning together in an ancestral hybrid of the lectin and alternative complement pathways. Overall, this study provides information on the role of the complement system in a basal metazoan and its role in host-microbe interactions.
Collapse
Affiliation(s)
- Angela Z Poole
- Department of Integrative Biology, Oregon State UniversityCorvallis, OR, USA; Department of Biology, Western Oregon UniverstiyMonmouth, OR, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| |
Collapse
|
21
|
Molecular Characterization and Expression Analyses of the Complement Component C8α, C8β and C9 Genes in Yellow Catfish (Pelteobagrus fulvidraco) after the Aeromonas hydrophila Challenge. Int J Mol Sci 2016; 17:345. [PMID: 27005612 PMCID: PMC4813206 DOI: 10.3390/ijms17030345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022] Open
Abstract
The complement components C8α, C8β and C9 have important roles in the innate immune system against invading microorganisms. Partial cDNA sequences of the Pf_C8α, Pf_C8β and Pf_C9 genes (Pf: abbreviation of Pelteobagrusfulvidraco) were cloned from yellow catfish. The Pf_C8α, Pf_C8β and Pf_C9 genes showed the greatest amino acid similarity to C8α (54%) and C8β (62%) of zebrafish and to C9 (52%) of grass carp, respectively. Ontogenetic expression analyses using real-time quantitative PCR suggested that the three genes may play crucial roles during embryonic and early larval development. The mRNA expressions of the three genes were all at the highest levels in liver tissue, and at lower or much lower levels in 16 other tissues, demonstrating that the liver is the primary site for the protein synthesis of Pf_C8α, Pf_C8β and Pf_C9. Injection of Aeromonashydrophila led to up-regulation of the three genes in the spleen, head kidney, kidney, liver and blood tissues, indicating that the three genes may contribute to the host’s defense against invading pathogenic microbes. An increased understanding of the functions of the Pf_C8α, Pf_C8β and Pf_C9 genes in the innate immunity of yellow catfish will help enhance production of this valuable freshwater species.
Collapse
|
22
|
Ainsworth TD, Knack B, Ukani L, Seneca F, Weiss Y, Leggat W. In situ hybridisation detects pro-apoptotic gene expression of a Bcl-2 family member in white syndrome-affected coral. DISEASES OF AQUATIC ORGANISMS 2015; 117:155-163. [PMID: 26648107 DOI: 10.3354/dao02882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
White syndrome has been described as one of the most prolific diseases on the Great Barrier Reef. Previously, apoptotic cell death has been described as the mechanism driving the characteristic rapid tissue loss associated with this disease, but the molecular mechanisms controlling apoptotic cell death in coral disease have yet to be investigated. In situ methods were used to study the expression patterns of 2 distinct regulators of apoptosis in Acropora hyacinthus tissues undergoing white syndrome and apoptotic cell death. Apoptotic genes within the Bcl-2 family were not localized in apparently healthy coral tissues. However, a Bcl-2 family member (bax-like) was found to localize to cells and tissues affected by white syndrome and those with morphological evidence for apoptosis. A potential up-regulation of pro-apoptotic or bax-like gene expression in tissues with apoptotic cell death adjacent to disease lesions is consistent with apoptosis being the primary cause of rapid tissue loss in coral affected by white syndrome. Pro-apoptotic (bax-like) expression in desmocytes and the basal tissue layer, the calicodermis, distant from the disease lesion suggests that apoptosis may also underlie the sloughing of healthy tissues associated with the characteristic, rapid spread of tissue loss, evident of this disease. This study also shows that in situ hybridisation is an effective tool for studying gene expression in adult corals, and wider application of these methods should allow a better understanding of many aspects of coral biology and disease pathology.
Collapse
Affiliation(s)
- T D Ainsworth
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Ocampo ID, Zárate-Potes A, Pizarro V, Rojas CA, Vera NE, Cadavid LF. The immunotranscriptome of the Caribbean reef-building coral Pseudodiploria strigosa. Immunogenetics 2015; 67:515-30. [PMID: 26123975 DOI: 10.1007/s00251-015-0854-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
The viability of coral reefs worldwide has been seriously compromised in the last few decades due in part to the emergence of coral diseases of infectious nature. Despite important efforts to understand the etiology and the contribution of environmental factors associated to coral diseases, the mechanisms of immune response in corals are just beginning to be studied systematically. In this study, we analyzed the set of conserved immune response genes of the Caribbean reef-building coral Pseudodiploria strigosa by Illumina-based transcriptome sequencing and annotation of healthy colonies challenged with whole live Gram-positive and Gram-negative bacteria. Searching the annotated transcriptome with immune-related terms yielded a total of 2782 transcripts predicted to encode conserved immune-related proteins that were classified into three modules: (a) the immune recognition module, containing a wide diversity of putative pattern recognition receptors including leucine-rich repeat-containing proteins, immunoglobulin superfamily receptors, representatives of various lectin families, and scavenger receptors; (b) the intracellular signaling module, containing components from the Toll-like receptor, transforming growth factor, MAPK, and apoptosis signaling pathways; and (3) the effector module, including the C3 and factor B complement components, a variety of proteases and protease inhibitors, and the melanization-inducing phenoloxidase. P. strigosa displays a highly variable and diverse immune recognition repertoire that has likely contributed to its resilience to coral diseases.
Collapse
Affiliation(s)
- Iván D Ocampo
- Departamento de Biología, Universidad Nacional de Colombia, Cr 30 No. 45-08, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
24
|
Hirano M. Evolution of vertebrate adaptive immunity: immune cells and tissues, and AID/APOBEC cytidine deaminases. Bioessays 2015. [PMID: 26212221 DOI: 10.1002/bies.201400178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All surviving jawed vertebrate representatives achieve diversity in immunoglobulin-based B and T cell receptors for antigen recognition through recombinatorial rearrangement of V(D)J segments. However, the extant jawless vertebrates, lampreys and hagfish, instead generate three types of variable lymphocyte receptors (VLRs) through a template-mediated combinatorial assembly of different leucine-rich repeat (LRR) sequences. The clonally diverse VLRB receptors are expressed by B-like lymphocytes, while the VLRA and VLRC receptors are expressed by lymphocyte lineages that resemble αβ and γδ T lymphocytes, respectively. These findings suggest that three basic types of lymphocytes, one B-like and two T-like, are an essential feature of vertebrate adaptive immunity. Around 500 million years ago, a common ancestor of jawed and jawless vertebrates evolved a genetic program for the development of prototypic lymphoid cells as a foundation for an adaptive immune system. This acquisition preceded the convergent evolution of alternative types of clonally diverse receptors for antigens in all vertebrates, as reviewed in this article.
Collapse
Affiliation(s)
- Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
25
|
Xue Z, Li H, Wang X, Li X, Liu Y, Sun J, Liu C. A review of the immune molecules in the sea cucumber. FISH & SHELLFISH IMMUNOLOGY 2015; 44:1-11. [PMID: 25655326 DOI: 10.1016/j.fsi.2015.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
It is very important to identify and characterize the immune-related genes that respond to pathogens. Until recently, only some of the immune-related genes in sea cucumbers had been characterized. Their expression patterns after pathogen challenges have been analyzed via expressed sequence tag libraries, microarray studies and proteomic approaches. These genes include lectins, antimicrobial peptides, lysozyme, enzymes, clotting protein, pattern recognition proteins, Toll receptors, complement C3 and other humoral factors that might participate in the innate immune system of sea cucumbers. Although the participation of some of these immune molecules in the sea cucumber's innate immune defense against invading pathogens has been demonstrated, the functions of many of the molecules remain unclear. This review focuses on the discovery and functional characterization of the immune-related molecules from the sea cucumber for the first time and provides new insights into the immune mechanisms of the sea cucumber, which opens new possibilities for developing drugs for novel anti-bacterial and antiviral applications in fisheries.
Collapse
Affiliation(s)
- Zhuang Xue
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Hui Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xia Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jing Sun
- Liaoning Province Academy of Analytic Science, Shenyang 110015, China
| | - Cenjie Liu
- Dalian Institute of Product Quality Supervision & Inspection, Dalian 116023, China
| |
Collapse
|
26
|
Salazar KA, Joffe NR, Dinguirard N, Houde P, Castillo MG. Transcriptome analysis of the white body of the squid Euprymna tasmanica with emphasis on immune and hematopoietic gene discovery. PLoS One 2015; 10:e0119949. [PMID: 25775132 PMCID: PMC4361686 DOI: 10.1371/journal.pone.0119949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/27/2015] [Indexed: 02/07/2023] Open
Abstract
In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica's sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue.
Collapse
Affiliation(s)
- Karla A. Salazar
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nina R. Joffe
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nathalie Dinguirard
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Maria G. Castillo
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
27
|
Wang H, Qi P, Guo B, Li J, He J, Wu C, Gul Y. Molecular characterization and expression analysis of a complement component C3 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2015; 42:272-279. [PMID: 25463300 DOI: 10.1016/j.fsi.2014.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
The complement system has been discovered in invertebrates and vertebrates, and plays a crucial role in the innate defense against common pathogens. Complement component 3 is a key molecule in the complement system, whose activation is essential for all the important functions performed by this system. In this study, the complete C3 cDNA sequence was isolated from the large yellow croaker (Larimichthys crocea), which was high similarity to other complement C3. We reported the primary sequence, tissue expression profile, polypeptide domain architecture and phylogenetic analysis of L. crocea complement component C3 (L.c-C3) gene. Its open reading frame (ORF) is 4962 bp and encodes for 1653 amino acids with a putative signal peptide of 23 amino acid residues. The deduced amino acid sequence showed that L.c-C3 has conserved residues and domains known to be crucial for C3 function. Phylogenetic analysis showed that L. crocea was closely related to Miichthys miiuy. The mRNA expressions of L.c-C3 was detectable at different tissues. L.c-C3 was expressed in a wide range of adult tissues, it showed highest expression in the liver. But the different developmental stages from fertilized egg to newborn larvae of the large yellow croaker the highest expression levels of L.c-C3 gene were not found. Bacterial challenge experiments showed that the levels of L.c-C3 mRNA expression were up-regulated in the liver, spleen and brain of adult large yellow croaker respectively. The results showed that L.c-C3 mRNA expression in the large yellow croaker is influenced by bacterial stress and L.c-C3 might play an important role in immunity mechanisms. This study will further increase our understanding of the function of L.c-C3 and molecular mechanism of innate immunity in teleosts.
Collapse
Affiliation(s)
- Hailing Wang
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Pengzhi Qi
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Baoying Guo
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China.
| | - Jiji Li
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Jianyu He
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China
| | - Changwen Wu
- National Engineering Research Center of Maricultural Facilities of China, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316004, PR China.
| | - Yasmeen Gul
- Department of Zoology and Fisheries, University of Agriculture Faisalabad, 38040, Pakistan
| |
Collapse
|
28
|
Ocampo ID, Cadavid Gutierrez LF. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS. ACTA BIOLÓGICA COLOMBIANA 2014. [DOI: 10.15446/abc.v20n2.46728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
29
|
Menzel LP, Tondo C, Stein B, Bigger CH. Histology and ultrastructure of the coenenchyme of the octocoral Swiftia exserta, a model organism for innate immunity/graft rejection. ZOOLOGY 2014; 118:115-24. [PMID: 25596959 DOI: 10.1016/j.zool.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022]
Abstract
The octocoral Swiftia exserta has been utilized extensively in our laboratory to study innate immune reactions in Cnidaria such as wound healing, auto- and allo-graft reactions, and for some classical "foreign body" phagocytosis experiments. All of these reactions occur in the coenenchyme of the animal, the colonial tissue surrounding the axial skeleton in which the polyps are embedded, and do not rely on nematocysts or directly involve the polyps. In order to better understand some of the cellular reactions occurring in the coenenchyme, the present study employed several cytochemical methods (periodic acid-Schiff reaction, Mallory's aniline blue collagen stain, and Gomori's trichrome stain) and correlated the observed structures with electron microscopy (both scanning and transmission). Eight types of cells were apparent in the coenenchyme of S. exserta, exclusive of gastrodermal tissue: (i) epithelial ectoderm cells, (ii) oblong granular cells, (iii) granular amoebocytes, (iv) morula-like cells, (v) mesogleal cells, (vi) sclerocytes, (vii) axial epithelial cells, and (viii) cnidocytes with mostly atrichous isorhiza nematocysts. Several novel organizational features are now apparent from transmission electron micrographs: the ectoderm consists of a single layer of flat epithelial cells, the cell types of the mesoglea extend from beneath the thin ectoderm throughout the mesogleal cell cords, the organization of the solenia gastroderm consists of a single layer of cells, and two nematocyst types have been found. A new interpretation of the cellular architecture of S. exserta, and more broadly, octocoral biology is now possible.
Collapse
Affiliation(s)
- L P Menzel
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| | - C Tondo
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - B Stein
- Indiana Molecular Biology Institute, Indiana University, Myers Hall 040, 915 E. Third Street, Bloomington, IN 47405, USA
| | - C H Bigger
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| |
Collapse
|
30
|
Franchi N, Ballarin L. Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:430-438. [PMID: 24877658 DOI: 10.1016/j.dci.2014.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
The complement system is a fundamental effector mechanism of the innate immunity in both vertebrates and invertebrates. The comprehension of its roots in the evolution is a useful step to understand how the main complement-related proteins had changed in order to adapt to new environmental conditions and life-cycles or, in the case of vertebrates, to interact with the adaptive immunity. Data on organisms evolutionary close to vertebrates, such as tunicates, are of primary importance for a better understanding of the changes in immune responses associated with the invertebrate-vertebrate transition. Here we report on the characterization of C3 and Bf transcripts from the colonial ascidian Botryllus schlosseri (BsC3 and BsBf, respectively), a reliable model organism for immunobiological research, and present a comparative analysis of amino acid sequences of C3s and Bfs suggesting that, in deuterostomes, the structure of these proteins remained largely unchanged. We also present new data on the cells responsible of the expression of BsC3 and BsBf showing that cytotoxic immunocytes are the sole cells where the relative transcripts can be found. Finally, using the C3 specific inhibitor compstatin, we demonstrate the opsonic role of BsC3 in accordance with the idea that promotion of phagocytosis is one of the main function of C3 in metazoans.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy.
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100 Padova, Italy
| |
Collapse
|
31
|
Vidal-Dupiol J, Dheilly NM, Rondon R, Grunau C, Cosseau C, Smith KM, Freitag M, Adjeroud M, Mitta G. Thermal stress triggers broad Pocillopora damicornis transcriptomic remodeling, while Vibrio coralliilyticus infection induces a more targeted immuno-suppression response. PLoS One 2014; 9:e107672. [PMID: 25259845 PMCID: PMC4178034 DOI: 10.1371/journal.pone.0107672] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022] Open
Abstract
Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host.
Collapse
Affiliation(s)
- Jeremie Vidal-Dupiol
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- * E-mail:
| | - Nolwenn M. Dheilly
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Rodolfo Rondon
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Reponse Immunitaire des Macroorganismes et Environnement, Ecologie des Systèmes Marins côtiers, UMR 5119 CNRS-Ifremer-UM2, Montpellier, France
| | - Christoph Grunau
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Céline Cosseau
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Mehdi Adjeroud
- Institut de Recherche pour le Développement, Unité 227 CoRéUs2 “Biocomplexité des écosystèmes coralliens de l’Indo-Pacifique”, Laboratoire d’excellence CORAIL, Banyuls-sur-Mer, France
| | - Guillaume Mitta
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| |
Collapse
|
32
|
Zhang S, Cui P. Complement system in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:3-10. [PMID: 24462834 DOI: 10.1016/j.dci.2014.01.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish is recently emerging as a model species for the study of immunology and human diseases. Complement system is the humoral backbone of the innate immune defense, and our knowledge as such in zebrafish has dramatically increased in the recent years. This review summarizes the current research progress of zebrafish complement system. The global searching for complement components in genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in zebrafish. Interestingly, zebrafish complement components also display some distinctive features, such as prominent levels of extrahepatic expression and isotypic diversity of the complement components. Future studies should focus on the following issues that would be of special importance for understanding the physiological role of complement components in zebrafish: conclusive identification of complement genes, especially those with isotypic diversity; analysis and elucidation of function and mechanism of complement components; modulation of innate and adaptive immune response by complement system; and unconventional roles of complement-triggered pathways.
Collapse
Affiliation(s)
- Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China.
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, China
| |
Collapse
|
33
|
Wang S, Wang R, Xu T. The evolutionary analysis on complement genes reveals that fishes C3 and C9 experience different evolutionary patterns. FISH & SHELLFISH IMMUNOLOGY 2013; 35:2040-2045. [PMID: 24184007 DOI: 10.1016/j.fsi.2013.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
Complement is a humoral factor of innate immunity and plays an essential role in altering the host of the presence of potential pathogens and clearing of invading microorganisms. The third complement component (C3) not only is regarded as the crossing of the three pathways of complement activation, but also serves one of the bridges linking innate and acquired immunity. The nine complement component (C9) can combine with C5b, C6, C7 and C8 to form MAC which bounds to the surface of microorganisms to kill them. The evidence of evolution on C3 genes which have multiple functions and plays central role in innate immunity was documented in our previous study. Now we were interested in the evolution of C9 genes which were the terminal complement components. For these reasons, we want to explore the evolutionary patterns of C9 and whether C3 and C9 experience different evolutionary patterns. In our study, we used the sliding window method to separately calculate the values of ω among fishes and mammals of C3 and C9 codons. In order to detect the positive selection sites, we used the maximum likelihood (ML) method to study the evolutionary pattern on C3 and C9 genes. Positive selection sites were detected in mammalian C9 genes and no positive selection sites were detected in fishes C9 genes. However, no positive selection sites were detected in mammalian C3 genes and positive selection sites were detected in fishes C3 genes. The result indicated that C3 and C9 had different evolutionary patterns on mammals and fishes. In conclusion, different living environments lead to different evolutionary patterns on C3 and C9 in mammals and fishes. Besides, different complement components may have different evolutionary patterns on mammals and fishes.
Collapse
Affiliation(s)
- Shanchen Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | | | | |
Collapse
|
34
|
Wang Y, Zhang M, Wang C, Ye B, Hua Z. Molecular cloning of the alpha subunit of complement component C8 (CpC8α) of whitespotted bamboo shark (Chiloscyllium plagiosum). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1993-2000. [PMID: 24076167 DOI: 10.1016/j.fsi.2013.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
Complement-mediated cytolysis is the important effect of immune response, which results from the assembly of terminal complement components (C5b-9). Among them, α subunit of C8 (C8α) is the first protein that traverses the lipid bilayer, and then initiates the recruitment of C9 molecules to form pore on target membranes. In this article, a full-length cDNA of C8α (CpC8α) is identified from the whitespotted bamboo shark (Chiloscyllium plagiosum) by RACE. The CpC8α cDNA is 2183 bp in length, encoding a protein of 591 amino acids. The deduced CpC8α exhibits 89%, 49% and 44% identity with nurse shark, frog and human orthologs, respectively. Sequence alignment indicates that the C8α is well conserved during the evolution process from sharks to mammals, with the same modular architecture as well as the identical cysteine composition in the mature protein. Phylogenetic analysis places CpC8α and nurse shark C8α in cartilaginous fish clade, in parallel with the teleost taxa, to form the C8α cluster with higher vertebrates. Hydrophobicity analysis also indicates a similar hydrophobicity of CpC8α to mammals. Finally, expression analysis revealed CpC8α transcripts were constitutively highly expressed in shark liver, with much less expression in other tissues. The well conserved structure and properties suggests an analogous function of CpC8α to mammalian C8α, though it remains to be confirmed by further study.
Collapse
Affiliation(s)
- Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | |
Collapse
|
35
|
Gao Z, Li M, Wu J, Zhang S. Interplay between invertebrate C3a with vertebrate macrophages: functional characterization of immune activities of amphioxus C3a. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1249-1259. [PMID: 23954696 DOI: 10.1016/j.fsi.2013.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Our current knowledge of the structure and function of C3a comes from the study of vertebrate C3a anaphylatoxins, virtually nothing is known about the structure and function of C3a molecules in invertebrates. Here we demonstrated that C3a from the invertebrate chordate Branchiostoma japonicum, BjC3a, was similar to vertebrate C3a possessing potential antibacterial activity, as revealed by sequence analysis and computational modeling. The antibacterial activity of BjC3a was definitely confirmed by both antibacterial assay and TEM observation showing that recombinant BjC3a was directly bactericidal. Additionally, recombinant BjC3a, like vertebrate C3a, was capable of inducing sea bass macrophage migration and enhancing macrophage phagocytosis and respiratory burst response. Moreover, recombinant BjC3a-desArg (generated by removal of the C-terminal arginine), like mammalian C3a-desArg, retained the immunological activities of BjC3a such as antibacterial and respiratory burst-stimulating activities, indicating that the immunological functions of C3a-desArg were conserved throughout chordate evolution. Altogether, our findings show that invertebrate (amphioxus) BjC3a is able to interact with vertebrate (sea bass) macrophages and mediate immune activities, suggesting the emergence of the inflammatory pathway of the complement system similar to that of vertebrates in the basal chordate amphioxus.
Collapse
Affiliation(s)
- Zhan Gao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
36
|
Wang Y, Xu S, Su Y, Ye B, Hua Z. Molecular characterization and expression analysis of complement component C9 gene in the whitespotted bambooshark, Chiloscyllium plagiosum. FISH & SHELLFISH IMMUNOLOGY 2013; 35:599-606. [PMID: 23684808 DOI: 10.1016/j.fsi.2013.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Complement system is known as highly sophisticated immune defense mechanism for antigen recognition as well as effector functions. Activation of the terminal pathway of the complement system leads to the assembly of terminal complement complexes (C5b-9), which induces the characteristic complement-mediated cytolysis. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. In this article, a full-length cDNA of C9 (CpC9) is identified from cartilaginous species, the whitespotted bambooshark, Chiloscyllium plagiosum by RACE. The CpC9 cDNA is 2263 bp in length, encoding a protein of 603 amino acids, which shares 42% and 43% identity with human and Xenopus C9 respectively. Through sequence alignment and comparative analysis, the CpC9 protein was found well conserved, with the typical modular architecture in TCCs and nearly unanimous cysteine composition from fish to mammal. Phylogenetic analysis places it in a clade with C9 orthologs in higher vertebrate and as a sister taxa to the Xenopus. Expression analysis revealed that CpC9 is constitutively highly expressed in shark liver, with much less or even undetectable expression in other tissues; demonstrating liver is the primary tissue for C9synthesis. To sum up, the structural conservation and distinctive phylogenetics might indicate the potentially vital role of CpC9 in shark immune response, though it remains to be confirmed by further study.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, No. 22 Hankou Rd, Gulou District, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
37
|
Brown T, Bourne D, Rodriguez-Lanetty M. Transcriptional activation of c3 and hsp70 as part of the immune response of Acropora millepora to bacterial challenges. PLoS One 2013; 8:e67246. [PMID: 23861754 PMCID: PMC3701546 DOI: 10.1371/journal.pone.0067246] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022] Open
Abstract
The impact of disease outbreaks on coral physiology represents an increasing concern for the fitness and resilience of reef ecosystems. Predicting the tolerance of corals to disease relies on an understanding of the coral immune response to pathogenic interactions. This study explored the transcriptional response of two putative immune genes (c3 and c-type lectin) and one stress response gene (hsp70) in the reef building coral, Acropora millepora challenged for 48 hours with bacterial strains, Vibrio coralliilyticus and Alteromonas sp. at concentrations of 10(6) cells ml(-1). Coral fragments challenged with V. coralliilyticus appeared healthy while fragments challenged with Alteromonas sp. showed signs of tissue lesions after 48 hr. Coral-associated bacterial community profiles assessed using denaturing gradient gel electrophoresis changed after challenge by both bacterial strains with the Alteromonas sp. treatment demonstrating the greatest community shift. Transcriptional profiles of c3 and hsp70 increased at 24 hours and correlated with disease signs in the Alteromonas sp. treatment. The expression of hsp70 also showed a significant increase in V. coralliilyticus inoculated corals at 24 h suggesting that even in the absence of disease signs, the microbial inoculum activated a stress response in the coral. C-type lectin did not show a response to any of the bacterial treatments. Increase in gene expression of c3 and hsp70 in corals showing signs of disease indicates their potential involvement in immune and stress response to microbial challenges.
Collapse
Affiliation(s)
- Tanya Brown
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - David Bourne
- Australia Institute of Marine Sciences, Townsville, Queensland, Australia
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
38
|
Determining the population frequency of the CFHR3/CFHR1 deletion at 1q32. PLoS One 2013; 8:e60352. [PMID: 23613724 PMCID: PMC3629053 DOI: 10.1371/journal.pone.0060352] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/25/2013] [Indexed: 01/04/2023] Open
Abstract
In this study we have used multiplex ligation-dependent probe amplification (MLPA) to measure the copy number of CFHR3 and CFHR1 in DNA samples from 238 individuals from the UK and 439 individuals from the HGDP-CEPH Human Genome Diversity Cell Line Panel. We have then calculated the allele frequency and frequency of homozygosity for the copy number polymorphism represented by the CFHR3/CFHR1 deletion. There was a highly significant difference between geographical locations in both the allele frequency (X2 = 127.7, DF = 11, P-value = 4.97x10-22) and frequency of homozygosity (X2 = 142.3, DF = 22, P-value = 1.33x10-19). The highest frequency for the deleted allele (54.7%) was seen in DNA samples from Nigeria and the lowest (0%) in samples from South America and Japan. The observed frequencies in conjunction with the known association of the deletion with AMD, SLE and IgA nephropathy is in keeping with differences in the prevalence of these diseases in African and European Americans. This emphasises the importance of identifying copy number polymorphism in disease.
Collapse
|
39
|
Wickramaarachchi WDN, Whang I, Wan Q, Bathige SDNK, De Zoysa M, Lim BS, Yeo SY, Park MA, Lee J. Genomic characterization and expression analysis of complement component 8α and 8β in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:279-292. [PMID: 23059376 DOI: 10.1016/j.dci.2012.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
The complement component 8α and 8β are glycoproteins that mediate formation of the membrane attack complex (MAC) on the surface of target cells. Full-length complement C8α (Rb-C8α) and C8β (Rb-C8β) sequences were identified from a cDNA library of rock bream (Oplegnathus fasciatus), and their genomic sequences were obtained by screening and sequencing of a bacterial artificial chromosome (BAC) genomic DNA library of rock bream. The Rb-C8α gene contains 64bp of 5'-UTR, open reading frame (ORF) of 1794bp, which encodes a polypeptide of 598 amino acids, 212bp of 3'-UTR. The Rb-C8β gene contains 5'-UTR of 27bp, open reading frame (ORF) of 1761bp, which encodes a polypeptide of 587 amino acids, 3'-UTR of 164bp. Rb-C8α consists of 11 exons interrupted by 10 introns and Rb-C8β consists of 12 exons interrupted by 11 introns. Sequence analysis revealed that both Rb-C8α and Rb-C8β contain thrombospondin type-1, a low-density lipoprotein receptor domain class A, membrane attack complex/perforin (MACPF) domain and epidermal growth factor like domain. The promoter regions of both genes contain important putative transcription factor binding sites including those for NF-κB, SP-1, C/EBP, AP-1, and OCT-1. Rb-C8α and Rb-C8β showed the highest amino acid identity of 62% and 83% to rainbow trout C8α and Japanese flounder C8β respectively. Quantitative real-time PCR analysis confirmed that Rb-C8α and Rb-C8β were constitutively expressed in all examined tissues, isolated from healthy rock bream, with highest expression occurring in liver. Pathogen challenge, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus led to up regulation of Rb-C8α and Rb-C8β in liver. Positive regulations upon bacterial and viral challenges, and high degree of evolutionary relationship to respective orthologues, confirmed that Rb-C8α and Rb-C8β important immune genes, likely involved in the complement system lytic pathway of rock bream.
Collapse
Affiliation(s)
- W D Niroshana Wickramaarachchi
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhu LY, Nie L, Zhu G, Xiang LX, Shao JZ. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:39-62. [PMID: 22504163 DOI: 10.1016/j.dci.2012.04.001] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/18/2012] [Accepted: 04/05/2012] [Indexed: 05/31/2023]
Abstract
Fish is considered to be an important model in comparative immunology studies because it is a representative population of lower vertebrates serving as an essential link to early vertebrate evolution. Fish immune-relevant genes have received considerable attention due to its role in improving understanding of both fish immunology and the evolution of immune systems. In this review, we discuss the current understanding of teleost immune-relevant genes for both innate and adaptive immunity, including pattern recognition receptors, antimicrobial peptides, complement molecules, lectins, interferons and signaling factors, inflammatory cytokines, chemokines, adaptive immunity relevant cytokines and negative regulators, major histocompatibility complexes, immunoglobulins, and costimulatory molecules. The implications of these factors on the evolutionary history of immune systems were discussed and a perspective outline of innate and adaptive immunity of teleost fish was described. This review may provide clues on the evolution of the essential defense system in vertebrates.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Wickramaarachchi WDN, Wan Q, Lee Y, Lim BS, De Zoysa M, Oh MJ, Jung SJ, Kim HC, Whang I, Lee J. Genomic characterization and expression analysis of complement component 9 in rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2012; 33:707-717. [PMID: 22796422 DOI: 10.1016/j.fsi.2012.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/29/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
The complement component 9 (C9) is a single-chain glycoprotein that mediates formation of the membrane attack complex (MAC) on the surface of target cells. Full-length C9 sequence was identified from a cDNA library of rock bream (Oplegnathus fasciatus), and its genomic sequence was obtained by screening and sequencing of a bacterial artificial chromosome (BAC) genomic DNA library of rock bream. The rock bream complement component 9 (Rb-C9) gene contains 11 exons and 10 introns and is composed of a 1782 bp complete open reading frame (ORF) that encodes a polypeptide of 593 amino acids. Sequence analysis revealed that the Rb-C9 protein contains two thrombospondin type-1domains, a low-density lipoprotein receptor domain class A, a membrane attack complex & perforin (MACPF) domain, and an epidermal growth factor (EGF)-like domain. Important putative transcription factor binding sites, including those for NF-κB, SP-1, C/EBP, AP-1 and OCT-1, were found in the 5' flanking region. Phylogenetic analysis revealed a close proximity of Rb-C9 with the orthologues in puffer fish, and Japanese flounder. Quantitative real-time RT-PCR analysis confirmed that Rb-C9 was constitutively expressed in all the examined tissues isolated from healthy rock bream, with highest expression occurring in liver. Pathogen challenge, including Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide endotoxin and rock bream iridovirus led to up-regulation of Rb-C9 in liver but no change in peripheral blood cells. The observed response to bacterial and viral challenges and high degree of evolutionary relationship to respective orthologues, confirmed that Rb-C9 is an important immune gene, likely involved in the complement system lytic pathway of rock bream.
Collapse
|
42
|
Palmer CV, Traylor-Knowles N. Towards an integrated network of coral immune mechanisms. Proc Biol Sci 2012; 279:4106-14. [PMID: 22896649 DOI: 10.1098/rspb.2012.1477] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts.
Collapse
Affiliation(s)
- C V Palmer
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| | | |
Collapse
|
43
|
Puill-Stephan E, Seneca FO, Miller DJ, van Oppen MJH, Willis BL. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora. PLoS One 2012; 7:e39099. [PMID: 22792163 PMCID: PMC3391189 DOI: 10.1371/journal.pone.0039099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/18/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. METHODOLOGY/PRINCIPAL FINDINGS Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. CONCLUSIONS/SIGNIFICANCE Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further clarify emerging evidence of a complex innate immunity system in corals.
Collapse
Affiliation(s)
- Eneour Puill-Stephan
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Laboratoire Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, Brest, France
| | - François O. Seneca
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Biological Sciences, Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - David J. Miller
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Madeleine J. H. van Oppen
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Bette L. Willis
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
44
|
Meng F, Sun Y, Liu X, Wang J, Xu T, Wang R. Analysis of C3 suggests three periods of positive selection events and different evolutionary patterns between fish and mammals. PLoS One 2012; 7:e37489. [PMID: 22624039 PMCID: PMC3356312 DOI: 10.1371/journal.pone.0037489] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022] Open
Abstract
Background The third complement component (C3) is a central protein of the complement system conserved from fish to mammals. It also showed distinct characteristics in different animal groups. Striking features of the fish complement system were unveiled, including prominent levels of extrahepatic expression and isotypic diversity of the complement components. The evidences of the involvement of complement system in the enhancement of B and T cell responses found in mammals indicated that the complement system also serves as a bridge between the innate and adaptive responses. For the reasons mentioned above, it is interesting to explore the evolutionary process of C3 genes and to investigate whether the huge differences between aquatic and terrestrial environments affected the C3 evolution between fish and mammals. Methodology/Principal Findings Analysis revealed that these two groups of animals had experienced different evolution patterns. The mammalian C3 genes were under purifying selection pressure while the positive selection pressure was detected in fish C3 genes. Three periods of positive selection events of C3 genes were also detected. Two happened on the ancestral lineages to all vertebrates and mammals, respectively, one happened on early period of fish evolutionary history. Conclusions/Significance Three periods of positive selection events had happened on C3 genes during history and the fish and mammals C3 genes experience different evolutionary patterns for their distinct living environments.
Collapse
Affiliation(s)
| | | | | | | | - Tianjun Xu
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, China
- * E-mail: (TX); (RW)
| | - Rixin Wang
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, China
- * E-mail: (TX); (RW)
| |
Collapse
|
45
|
Philipp EER, Kraemer L, Melzner F, Poustka AJ, Thieme S, Findeisen U, Schreiber S, Rosenstiel P. Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS One 2012; 7:e33091. [PMID: 22448234 PMCID: PMC3308963 DOI: 10.1371/journal.pone.0033091] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/09/2012] [Indexed: 11/18/2022] Open
Abstract
The marine mussel Mytilus edulis and its closely related sister species are distributed world-wide and play an important role in coastal ecology and economy. The diversification in different species and their hybrids, broad ecological distribution, as well as the filter feeding mode of life has made this genus an attractive model to investigate physiological and molecular adaptations and responses to various biotic and abiotic environmental factors. In the present study we investigated the immune system of Mytilus, which may contribute to the ecological plasticity of this species. We generated a large Mytilus transcriptome database from different tissues of immune challenged and stress treated individuals from the Baltic Sea using 454 pyrosequencing. Phylogenetic comparison of orthologous groups of 23 species demonstrated the basal position of lophotrochozoans within protostomes. The investigation of immune related transcripts revealed a complex repertoire of innate recognition receptors and downstream pathway members including transcripts for 27 toll-like receptors and 524 C1q domain containing transcripts. NOD-like receptors on the other hand were absent. We also found evidence for sophisticated TNF, autophagy and apoptosis systems as well as for cytokines. Gill tissue and hemocytes showed highest expression of putative immune related contigs and are promising tissues for further functional studies. Our results partly contrast with findings of a less complex immune repertoire in ecdysozoan and other lophotrochozoan protostomes. We show that bivalves are interesting candidates to investigate the evolution of the immune system from basal metazoans to deuterostomes and protostomes and provide a basis for future molecular work directed to immune system functioning in Mytilus.
Collapse
Affiliation(s)
- Eva E R Philipp
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rinkevich B. Neglected biological features in cnidarians self-nonself recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:46-59. [PMID: 22399373 DOI: 10.1007/978-1-4614-1680-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cnidarian taxa, currently of the most morphologically simplest extant metazoans, exhibit many salient properties of innate immunity that are shared by most Animalia. One hallmark constituent of immunity exhibit by most cnidarians is histocompatibility, marked by wide spectrum of allogeneic and xenogeneic effector arms, progressing into tissue fusions or inflammatory rejections. Scientific propensity on cnidarians immunity, while discussing historecognition as the ground for immunity in these organisms, concentrates on host-parasitic and disease oriented studies, or focuses on genome approaches that search for gene homologies with the vertebrates. Above tendency for mixing up between historecognition and host-parasitic/disease, highlights a serious obstacle for the progress in our understanding of cnidarian immunobiology. Here I critically overview four 'forgotten' cnidarian immune features, namely, specificity, immunological memory, allogeneic maturation and natural chimerism, presenting insights into perspectives that are prerequisite for any discussion on cnidarian evolution. It is evident that cnidarian historecognition embraces elements that the traditional field of vertebrate immunology has never encountered (i.e., variety of cytotoxic outcomes, different types of effector mechanisms, chimerism, etc.). Also, cnidarian immune features dictating that different individuals within the same species seem to respond differently to the same immunological challenge, is far from that recorded in the vertebrates' adaptive immunity. While above features may be connected to host-parasitic and disease phenomena and effector arms, they clearly attest to their unique critical roles in shaping cnidarians historecognition, calling for improved distinction between historecognition and host-response/ disease disciplines. The research on cnidarians immunity still suffers from the lack of accepted synthesis of what historecognition is or does. Mounting of an immune response against conspecifics or xenogeneic organisms should therefore be clearly demarcated from other paths of immunity, till cnidarian innate immunity as a whole is expounded.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel-Shikmona, Haifa, Israel.
| |
Collapse
|
47
|
Nakao M, Tsujikura M, Ichiki S, Vo TK, Somamoto T. The complement system in teleost fish: progress of post-homolog-hunting researches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1296-1308. [PMID: 21414344 DOI: 10.1016/j.dci.2011.03.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/05/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Studies on the complement system of bony fish are now finishing a stage of homologue-hunting identification of the components, unveiling existence of almost all the orthologues of mammalian complement components in teleost. Genomic and transcriptomic data for several teleost species have contributed much for the homologue-hunting research progress. Only an exception is identification of orthologues of mammalian complement regulatory proteins and complement receptors. It is of particular interest that teleost complement components often exist as multiple isoforms with possible functional divergence. This review summarizes research progress of teleost complement system following the molecular identification and sequence analysis of the components. The findings of extensive expression analyses of the complement components with special emphasis of their prominent extrahepatic expression, acute-phase response to immunostimulation and various microbial infections, and ontogenic development including maternal transfer are discussed to infer teleost-specific functions of the complement system. Importance of the protein level characterization of the complement components is also emphasized, especially for understanding of the isotypic diversity of the components, a unique feature of teleost complement system.
Collapse
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
48
|
Huang H, Huang S, Yu Y, Yuan S, Li R, Wang X, Zhao H, Yu Y, Li J, Yang M, Xu L, Chen S, Xu A. Functional characterization of a ficolin-mediated complement pathway in amphioxus. J Biol Chem 2011; 286:36739-36748. [PMID: 21832079 PMCID: PMC3196118 DOI: 10.1074/jbc.m111.245944] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/20/2011] [Indexed: 12/28/2022] Open
Abstract
The ficolin-mediated complement pathway plays an important role in vertebrate immunity, but it is not clear whether this pathway exists in invertebrates. Here we identified homologs of ficolin pathway components from the cephalochordate amphioxus and investigated whether they had been co-opted into a functional ficolin pathway. Four of these homologs, ficolin FCN1, serine protease MASP1 and MASP3, and complement component C3, were highly expressed in mucosal tissues and gonads, and were significantly up-regulated following bacterial infection. Recombinant FCN1 could induce hemagglutination, discriminate among sugar components, and specifically recognize and aggregate several bacteria (especially gram-positive strains) without showing bactericidal activity. This suggested that FCN1 is a dedicated pattern-recognition receptor. Recombinant serine protease MASP1/3 formed complexes with recombinant FCN1 and facilitated the activation of native C3 protein in amphioxus humoral fluid, in which C3 acted as an immune effector. We conclude that amphioxus have developed a functional ficolin-complement pathway. Because ficolin pathway components have not been reported in non-chordate species, our findings supported the idea that this pathway may represent a chordate-specific innovation in the evolution of the complement system.
Collapse
Affiliation(s)
- Huiqing Huang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shengfeng Huang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Yingcai Yu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shaochun Yuan
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Rui Li
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Xin Wang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Hongchen Zhao
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Yanhong Yu
- the Institute of Reproductive Immunology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun Li
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Manyi Yang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Liqun Xu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shangwu Chen
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Anlong Xu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| |
Collapse
|
49
|
Zhou Z, Sun D, Yang A, Dong Y, Chen Z, Wang X, Guan X, Jiang B, Wang B. Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus). FISH & SHELLFISH IMMUNOLOGY 2011; 31:540-547. [PMID: 21752342 DOI: 10.1016/j.fsi.2011.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
The complement system has been discovered in invertebrates and vertebrates, and plays a crucial role in the innate defense against common pathogens. As a central component in the complement system, complement component 3 (C3) is an intermediary between innate and adaptive immune system. In this study, a new isoform of C3 in the sea cucumber Apostichopus japonicus, termed AjC3-2 was identified. Its open reading frame (ORF) is 5085 bp and encodes for 1695 amino acids with a putative signal peptide of 20 amino acid residues. The mature protein molecular weight of AjC3-2 was 187.72 kDa. It has a conserved thioester site and a linker R(689)RRR(692) where AjC3-2 is splitted into β and α chain during posttranslational modification. The expression patterns of two distinct sea cucumber C3 genes, AjC3-2 and AjC3, were similar. During the different development stages from unfertilized egg to juvenile of the sea cucumber, the highest expression levels of AjC3-2 and AjC3 genes were both found in late auricularia. In the adult, the highest expression of these two genes was observed in the coelomocytes and followed by the body wall. AjC3-2 and AjC3 genes expression increased significantly at 6 h after the LPS challenge. These results indicated that these two C3 genes play a pivotal role in immune responses to the bacterial infection in sea cucumber.
Collapse
Affiliation(s)
- Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mauri I, Roher N, MacKenzie S, Romero A, Manchado M, Balasch JC, Béjar J, Alvarez MC, Tort L. Molecular cloning and characterization of European seabass (Dicentrarchus labrax) and Gilthead seabream (Sparus aurata) complement component C3. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1310-1322. [PMID: 21421056 DOI: 10.1016/j.fsi.2011.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 05/30/2023]
Abstract
We present the complete C3 cDNA sequence of Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) and its molecular characterization with a descriptive analysis of their structural elements. We obtained one sequence for Gilthead seabream (gsbC3) which encodes a predicted protein of 1656 amino acids, and two sequences for European seabass (esbC3_1 and esbC3_2) which encode two predicted proteins of 1654 and 1587 amino acids respectively. All sequences present the characteristic structural features of C3 but interestingly esbC3_2 lacks the anaphylotoxin domain and the cysteine residue responsible for thiolester bond formation. Moreover, we have detected and quantified (by real-time PCR-based absolute quantification) specific isoform expression in European seabass depending on pathogen and density conditions in vivo. In addition, we have analyzed the tissue distribution pattern of European seabass and Gilthead seabream C3 genes under crowding stress and under pathological challenges in vivo, and we have observed that crowding and infection status provoke changes in expression levels, tissue expression pattern and C3 isoform expression balance.
Collapse
Affiliation(s)
- I Mauri
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, O8193 Cerdanyola, Catalunya, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|