1
|
Ma J, Cain KD. Maternal effects on offspring immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110261. [PMID: 40057251 DOI: 10.1016/j.fsi.2025.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The aquaculture industry faces many challenges, particularly concerning disease-related mortality during early life stages. Disease impacts at this stage can disrupt seed stock availability and potentially affect industry supply chains. Enhancing immunocompetence in aquaculture species is crucial for sustainable and cost-effective production, with potential benefits including increased survival and reduced dependence on therapeutics such as antibiotics. Maternal immunity involving the transfer of immune factors from adult female broodstock to eggs and/or embryos can play a critical role in protecting vulnerable offspring against pathogens until their immune system becomes immunocompetent. This review summarizes the current understanding of maternal immunity in fish and provides insights into the factors influencing its impact on offspring of different fish species and their immune responses. In specific cases, maternal immunity can be targeted and enhanced to offer practical applications for aquaculture disease management and enhanced production. Understanding and optimizing maternal transfer of immunity in aquaculture holds significant potential for improving fish health and reducing disease impact.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA; Manchester Research Station, Northwest Fisheries Science Center, NOAA - Fisheries, Port Orchard, WA, 98366, USA.
| |
Collapse
|
2
|
Huang K, Wang R, Hu G, Zhou W, Li W, Zou H, Wang G, Li M. Immune response of Rhinogobio ventralis to Ichthyophthirius multifiliis infection: Insights from histopathological and real-time gene expression analyses. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109801. [PMID: 39096983 DOI: 10.1016/j.fsi.2024.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Ichthyophthirius multifiliis is a parasite that poses a considerable threat to aquaculture and the ornamental fish industry, but with limited effective treatment options available. This study employed RT-qPCR to detect and analyze the expression changes of partial toll-like receptor (TLR) genes (TLR1 and TLR21), adapter protein and signal transduction molecule genes (MyD88, TRIF, NF-κB, IRAK4, and IRF3), and cytokines (IL-6, IL-8, IL-13, CXC-α and CXCR1), as well as complement C3, in the skin, gill, fin, liver, head kidney and spleen of Rhinogobio ventralis under different infection conditions. Additionally, tissue sections and scanning electron microscopy were utilized to observe the pathological changes in the gills and fins of R. ventralis after infection with I. multifiliis. The expression patterns of TLR-related DEGs (differentially expressed genes) in diseased wild fish were analyzed, revealing upregulation of TLR1, TLR21, MyD88, NF-κB, IRAK4, TRIF, IRF3, IL-6, IL-8, IL-13, CXC-α, CXCR1, and C3 genes in various tissues, indicating that these genes may be involved in the immune response of R. ventralis to I. multifiliis infection. To further analyze the gene expression of sampled from the field, an artificial infection model of R. ventralis was established under laboratory conditions, with additional sampling from the skin and fins. These genes continued to show varying degrees of upregulation, but the results were not entirely consistent with those from Wudongde samples, which may be due to the more complex environment in the wild or differences in the degree of I. multifiliis infection in wild fish. The infection of I. multifiliis caused severe damage to the gills and fins of R. ventralis, characterized by extensive secretions on the gill and fin surfaces, with the presence of attached I. multifiliis trophonts, including damage and loss of gill filaments, swollen gill lamellae, and deformed gill plates, as well as cell proliferation and necrosis of gill epithelial cells. This study sheds light on the role of the TLR signaling pathway in resisting I. multifiliis infection and its associated histopathological changes in R. ventralis, providing valuable insights for the prevention and treatment of I. multifiliis infection in R. ventralis.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runqiu Wang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Guangran Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weitian Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guitang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Buchmann K, Karami AM, Duan Y. The early ontogenetic development of immune cells and organs in teleosts. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109371. [PMID: 38232790 DOI: 10.1016/j.fsi.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Fully developed teleosts possess a highly developed immune system comprising both innate and adaptive elements, but when hatching from the egg, the yolksac larva is still at an ontogenetically incomplete stage with regard to physiological, including immunological, functions. The immune system in these young fish stages is far less developed when compared to the youngs appearing from reptile and avian eggs and from most mammals at parturition. In those vertebrate groups the early ontogenetic development of the fetus is highly protected. The lack of a fully developed immune system in yolksac larvae of fish is critical, because this stage encounters a potentially hostile and infectious aquatic environment. The strong selective pressure on the immune system of the yolksac larva and the youngest fry stages explains the existence of a multi-facetted innate system, which is protecting the young fish stages against viral, bacterial and parasitic infections. The sequential development of immune cells and organs depends on host species and its environmental setting. However, a strong armament comprising innate cells (neutrophilic granulocytes, macrophages) and molecules (receptors, lectins, complement, AMPs and constitutively expressed immunoglobulins) protect the earliest stages. The adaptive immune elements, including T-cells and B-cells, occur gradually in headkidney, spleen, thymus, tonsils, bursa equivalent (if present) and mucosa associated lymphoid cells. A functional protective response following immunization occur later.
Collapse
Affiliation(s)
- Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Asma M Karami
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Yajiao Duan
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
5
|
Etayo A, Bjørgen H, Koppang EO, Lie KK, Bjelland RM, Hordvik I, Øvergård AC, Sæle Ø. The ontogeny of lymphoid organs and IgM + B-cells in ballan wrasse (Labrus bergylta) reveals a potential site for extrarenal B-cell lymphopoiesis: The pancreas. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109273. [PMID: 38072139 DOI: 10.1016/j.fsi.2023.109273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Vaccination of farmed fish is the most effective prophylactic measure against contagious diseases but requires specific knowledge on when the adaptive immune system is fully developed. The present work describes kidney and spleen morphogenesis as well as B-cell development in the ballan wrasse (Labrus bergylta). The kidney was present at hatching (0 days pot hatching, dph) but was not lymphoid before larvae was 50-60 dph (stage 5), containing abundant Igμ+ cells. The spleen anlage was first observed in larvae at 20-30 dph and was later populated with B-cells. Unexpectedly, we found strong RAG1 signal together with abundant Igμ+ and IgM + cells in the exocrine pancreas of larvae from when the kidney was lymphoid and onwards, suggesting that B-cell lymphopoiesis occurs not only in the head kidney (HK) but also in pancreatic tissue. In this agastric fish, the pancreas is diffused along the intestine and the early presence of IgM+ B-cells in pancreatic tissue might have a role in maintain immune homeostasis in the peritoneal cavity, making a substantial contribution to early protection. IgM-secreting cells in HK indicate the presence of systemic IgM at stage 5, before the first IgM+ cells were identified in mucosal sites. This work together with our previous study on T-cell development in this species indicates that although T- and B-cells start to develop around the same time, B-cells migrate to mucosal tissues ahead of T-cells. This early migration likely involves the production of natural antibodies, contributing significantly to early protection. Moreover, a diet composed of barnacle nauplii did not result in an earlier onset of B-cell lymphopoiesis, as seen in the previous study analysing T-cell development. Nevertheless, components for adaptive immunity indicating putative immunocompetence is likely achieved in early juveniles (>100 dph). Additionally, maternal transfer of IgM to the offspring is also described. These findings provide important insights into the development of the immune system in ballan wrasse and lay the foundation for optimizing prophylactic strategies in the future. Furthermore, this work adds valuable information to broaden the knowledge on the immune system in lower vertebrates.
Collapse
Affiliation(s)
- Angela Etayo
- Institute of Marine Research, Bergen, Norway; Fish Health group, Department of Biological Sciences, University of Bergen, Norway.
| | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Erling O Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kai K Lie
- Institute of Marine Research, Bergen, Norway
| | - Reidun M Bjelland
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Ivar Hordvik
- Fish Health group, Department of Biological Sciences, University of Bergen, Norway
| | | | | |
Collapse
|
6
|
Ma J, Trushenski JT, Jones EM, Bruce TJ, McKenney DG, Kurath G, Cain KD. Characterization of maternal immunity following vaccination of broodstock against IHNV or Flavobacterium psychrophilum in rainbow trout (Oncorhynchusmykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108749. [PMID: 37062435 DOI: 10.1016/j.fsi.2023.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/22/2023]
Abstract
Infectious hematopoietic necrosis (IHN) is a significant viral disease affecting salmonids, whereas Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD), remains one of the most significant bacterial pathogens of salmonids. We explored maternal immunity in the context of IHN and BCWD management in rainbow trout (Oncorhynchus mykiss) aquaculture. Two experimental trials were conducted where different groups of female broodstock were immunized prior to spawning with an IHNV DNA vaccine or a live attenuated F. psychrophilum (Fp B.17-ILM) vaccine alone, or in combination. Progeny were challenged with either a low or high dose of IHNV at 13 days post hatch (dph) and 32 dph or challenged with F. psychrophilum at 13 dph. Mortality following a low-dose IHNV challenge at 13 dph was significantly lower in progeny from vaccinated broodstock vs. unvaccinated broodstock, but no significant differences were observed at 32 dph. Mortality due to BCWD was also significantly reduced in 13 dph fry that originated from broodstock immunized with the Fp B.17-ILM vaccine. After vaccination broodstock developed specific or neutralizing antibodies respectively to F. psychrophilum and IHNV; however, antibody titers in eggs and fry were undetectable. In the eggs and fry mRNA transcripts of the complement components C3 and C5 were detected at much higher levels in progeny from vaccinated broodstock and showed a significantly increased and rapid response post-challenge compared with unvaccinated broodstock. After challenges pro-inflammatory cytokine expression was immediately and considerably elevated in the fry from vaccinated broodstock vs. unvaccinated broodstock, whereas adaptive immune genes were elevated to a lesser degree. Results suggest that maternal transfer of innate and adaptive factors at the transcript level occurred because development of lymphomyeloid organs is not complete in such young fry. In addition to documenting maternally derived immunity in teleosts, this study demonstrates that broodstock vaccination can confer some degree of protection to progeny against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | | | - Evan M Jones
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Timothy J Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA; School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Doug G McKenney
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
7
|
Liu Y, Ma S, Lv W, Shi H, Qiu G, Chang H, Lu S, Wang D, Wang C, Han S, Liu H. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, blood metabolites, and the intestinal health of juvenile rainbow trout ( Oncorhynchus mykiss). Front Immunol 2022; 13:1079677. [PMID: 36618404 PMCID: PMC9811179 DOI: 10.3389/fimmu.2022.1079677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cottonseed protein concentrate (CPC) is a potential non-food protein source for fishmeal replacement in fish feed. However, a high inclusion level of CPC in diets may have adverse effects on the metabolism and health of carnivorous fish. This study aimed to investigate CPC as a fishmeal alternative in the diet of rainbow trout Oncorhynchus mykiss based on growth performance, blood metabolites, and intestinal health. Five isonitrogenous (46% crude protein) and isolipidic (16% crude lipid) diets were formulated: a control diet (30% fishmeal) and four experimental diets with substitution of fishmeal by CPC at 25%, 50%, 75%, and 100%. A total of 600 fish (mean body weight 11.24g) were hand-fed the five formulated diets to apparent satiation for eight weeks. The results showed no adverse effects on growth performance when 75% dietary fishmeal was replaced by CPC. However, reduced growth and feed intake were observed in rainbow trout fed a fishmeal-free diet based on CPC (CPC100%). Changes in serum metabolites were also observed in CPC100% compared with the control group, including an increase in alanine aminotransferase (ALT), a decrease in alkaline phosphatase (ALP), alterations in free amino acids, and reductions in cholesterol metabolism. In addition, the CPC-based diet resulted in reduced intestinal trypsin, decreased villus height and width in the distal intestine, upregulated mRNA expression levels of inflammatory cytokines in the intestine, and impaired gut microbiota with reduced bacterial diversity and decreased abundance of Bacillaceae compared with the control group. The findings suggest that the optimum substitution rate of dietary fishmeal by CPC for rainbow trout should be less than 75%.
Collapse
Affiliation(s)
- Yang Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Shuwei Ma
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Weihua Lv
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Honghe Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Animal Science and Technology College of Northeast Agricultural University, Harbin, China
| | - Guangwen Qiu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Animal Science and Technology College of Northeast Agricultural University, Harbin, China
| | - Hongmiao Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shaoxia Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Di Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Changan Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shicheng Han
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Hongbai Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| |
Collapse
|
8
|
Complement C3 Regulates Inflammatory Response and Monocyte/Macrophage Phagocytosis of Streptococcus agalactiae in a Teleost Fish. Int J Mol Sci 2022; 23:ijms232415586. [PMID: 36555227 PMCID: PMC9779060 DOI: 10.3390/ijms232415586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
The complement system is composed of a complex protein network and is pivotal to innate immunity. Complement 3 (C3) is a critical protein in the complement cascade and participates in complement activation and immune defense. In this study, C3 from Nile tilapia (Oreochromis niloticus) was cloned and its function in resisting pathogen infection was characterized. The full length of OnC3 open reading frame is 4974 bp, encoding 1657 aa, and the predicted protein mass weight is 185.93 kDa. The OnC3 amino acid sequence contains macroglobulin domains. The expression pattern of OnC3 mRNA in the tissues of healthy fish was detected, with the highest in the liver and the lowest in the muscle. After challenged with Streptococcus agalactiae and Aeromonas hydrophila, the expression of OnC3 mRNA was significantly up-regulated in the liver, spleen, and head kidney. Further, the recombinant OnC3 protein alleviated the inflammatory response and pathological damage of tissues after infected with S. agalactiae. Moreover, the OnC3 promoted the phagocytosis of monocytes/macrophages to S. agalactiae. The data obtained in this study provide a theoretical reference for in-depth understanding of C3 in host defense against bacterial infection and the immunomodulatory roles in teleost fish.
Collapse
|
9
|
Zhao Y, Hao Q, Zhang Q, Yang Y, Ran C, Xu Q, Wu C, Liu W, Li S, Zhang Z, Zhou Z. Nuclease treatment enhanced the ameliorative effect of yeast culture on epidermal mucus, hepatic lipid metabolism, inflammation response and gut microbiota in high-fat diet-fed zebrafish. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1182-1191. [PMID: 36403702 DOI: 10.1016/j.fsi.2022.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
As a functional feed additive, yeast cultures are rich in nucleotides, and adding extra nuclease can significantly increase the content of nucleotides in yeast culture. In this experiment, the effects on growth, epidermal mucus, liver and intestinal health of zebrafish were evaluated by supplementing the yeast culture or nuclease-treated yeast culture with a high-fat diet (HFD). One-month-old zebrafish were fed four diets: normal diet (NORM), HFD, yeast culture diet (YC), and nuclease-treated yeast culture diet (YC (N)) for three weeks. Results showed that the complement 4 activity of the epidermal mucus in YC (N) group was significantly higher than those in HFD and YC groups (P < 0.05). The YC and YC (N) significantly reduced the content of hepatic triglyceride caused by HFD (P < 0.05). Moreover, compared with the YC group, the YC (N) significantly increased the expression of lipolysis genes, such as PPARα, PGC1α, ACOX3 (P < 0.05). Compared with the YC group, the YC (N) group significantly increased the expression of liver pro-inflammatory factors TNFα, IL-6, IL-1β and anti-inflammatory factors TGFβ, IL-10 (P < 0.05). The diet YC and YC (N) significantly improved the height of the intestinal villus (P < 0.05). Compared with the HFD group, the YC (N) group significantly increased the expression of intestinal pro-inflammatory factors TNFα, IL-6 and anti-inflammatory factors TGFβ, IL-10 (P < 0.05). The YC (N) group significantly decreased the abundance of intestinal Proteobacteria and Acinetobacter, and increased the abundance of intestinal Actinobacteria, Mycobacterium and Rhodobacter (P < 0.05). In conclusion, compared with the supplement of yeast culture, nuclease treated yeast culture can further alleviate the adverse effects of HFD on liver and intestinal health, and be used as feed additives for the nutritional and immune regulation of fish.
Collapse
Affiliation(s)
- Yajie Zhao
- College of Life Science, Huzhou University, Huzhou, China; China -Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Hao
- China -Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China; Norway-China Joint Lab on Fish Gut Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Qingshuang Zhang
- China -Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiyou Xu
- College of Life Science, Huzhou University, Huzhou, China
| | - Chenglong Wu
- College of Life Science, Huzhou University, Huzhou, China
| | - Wenshu Liu
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, Jiangxi, China
| | - Siming Li
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, Jiangxi, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- College of Life Science, Huzhou University, Huzhou, China; China -Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
10
|
Wu M, Jia BB, Li MF. Complement C3 and Activated Fragment C3a Are Involved in Complement Activation and Anti-Bacterial Immunity. Front Immunol 2022; 13:813173. [PMID: 35281048 PMCID: PMC8913944 DOI: 10.3389/fimmu.2022.813173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
In the complement system, C3 is a central component in complement activation, immune defense and immune regulation. In all pathways of complement activation, the pivotal step is conversion of the component C3 to C3b and C3a, which is responsible to eliminate the pathogen and opsonization. In this study, we examined the immunological properties of C3 and its activated fragment C3a from Japanese flounder (Paralichthys olivaceus) (PoC3 and PoC3a), a teleost species with important economic value. PoC3 is composed of 1655 amino acid residues, contains the six domains and highly conserved GCGEQ sequence of the C3 family. We found that PoC3 expression occurred in nine different tissues and was upregulated by bacterial challenge. In serum, PoC3 was able to bind to a broad-spectrum of bacteria, and purified native PoC3 could directly kill specific pathogen. When PoC3 expression in Japanese flounder was knocked down by siRNA, serum complement activity was significantly decreased, and bacterial replication in fish tissues was significantly increased. Recombinant PoC3a (rPoC3a) exhibited apparent binding capacities to bacteria and Japanese flounder peripheral blood leukocytes (PBL) and induce chemotaxis of PBL. Japanese flounder administered rPoC3a exhibited enhanced resistance against bacterial infection. Taken together, these results indicate that PoC3 is likely a key factor of complement activation, and PoC3 and PoC3a are required for optimal defense against bacterial infection in teleost.
Collapse
Affiliation(s)
- Meng Wu
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bei-bei Jia
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mo-fei Li
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Mo-fei Li,
| |
Collapse
|
11
|
Shen M, Jiang Z, Zhang K, Li C, Liu F, Hu Y, Zheng S, Zheng R. Transcriptome analysis of grass carp (Ctenopharyngodon idella) and Holland's spinibarbel (Spinibarbus hollandi) infected with Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2022; 121:305-315. [PMID: 35031476 DOI: 10.1016/j.fsi.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Ichthyophthirius multifiliis is a protozoan ciliate that causes white spot disease (also known as ichthyophthiriasis) in freshwater fish. Holland's spinibarbel (Spinibarbus hollandi) was less susceptible to white spot disease than grass carp (Ctenopharyngodon Idella). In this study, grass carp and Holland's spinibarbel are infected by I. multifiliis and the amount of infection is 10,000 theronts per fish. All grass carp died within 12 days after infection, and the survival rate of Holland's spinibarbel was more than 80%. In order to study the difference in sensitivity of these two fish species to I. multifiliis, transcriptome analysis was conducted using gill, skin, liver, spleen and head kidney of Holland's spinibarbel and grass carp at 48 h post-infection with I. multifiliis. A total of 489,296,696 clean reads were obtained by sequencing. A total of 105 significantly up-regulated immune-related genes were obtained by Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis in grass carp. Cluster of differentiation 40 (CD40), cluster of differentiation 80 (CD 80), tumor necrosis factor-alpha (TNF-α), toll-like receptor 4 (TLR-4), interleukin 1 beta (IL-1β) and other inflammatory-related genes in grass carp were enriched in the cytokine-cytokine receptor interaction pathway and toll-like receptor pathway. In Holland's spinibarbel, a total of 46 significantly up-regulated immune-related genes were obtained by GO classification and KEGG pathway enrichment analysis. Immune-related genes, such as Immunoglobin heavy chain (IgH), cathepsin S (CTSS), complement C1q A chain (C1qA), complement component 3 (C3) and complement component (C9) were enriched in phagosome pathway, lysosome pathway and complement and coagulation concatenation pathway. C3 was significantly up-regulated in gill and head kidney. Fluorescence in situ hybridization (FISH) showed that the C3 gene was highly expressed in gill tissue of Holland's spinibarbel infected with I. multifiliis. A small amount of C3 gene was expressed in the gill arch of grass carp after infected with I. multifiliis. In conclusion, the severe inflammatory response in vivo after infecting grass carp with I. multifiliis might be the main cause of the death of grass carp. The extrahepatic expression of the gene of Holland's spinibarbel might play an important role in the immune defense against I. multifiliis.
Collapse
Affiliation(s)
- Minghao Shen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zeyuan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Kai Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Chenyang Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Fangling Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yibing Hu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shanjian Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Rongquan Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China; Xinzhi College, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
12
|
Mo Z, Jiang B, Lai X, Wu H, Luo X, Dan X, Li Y. Characterization and functional analysis of hybrid pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) complement C3 against Cryptocaryon irritans infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100032. [DOI: 10.1016/j.fsirep.2021.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
|
13
|
β-glucan as a promising food additive and immunostimulant in aquaculture industry. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
The use of antibiotics in aquatic feed reduces the incidence of disease and enhances growth performance, although it presents harmful effects, such as development of resistant bacteria and accumulation in the natural environment. A variety of immune stimulants including probiotics, prebiotics, synbiotics, phytobiotics, organic acids, nucleotides, antioxidants, microalgae, yeast and enzymes have been used in the aquaculture industry. In recent decades, much attention has been paid on finding a variety of immunostimulants with lower cost which also affect specific and non-specific immunity and improve fish resistance against a wide range of pathogens. These stimulants strengthen the fish’s immune system by increasing the number of phagocytes, lysozyme activity and level of immunoglobulin. The use of immune stimulants as an effective tool to overcome diseases and strengthen the immune system of farmed species, leads to the promotion of cellular and humoral defense mechanisms and increases resistance to infectious diseases. Among these immunostimulants used in aquaculture, β-glucans are of particular importance. Glucans are complex polysaccharide compounds extracted from the cell wall of yeasts and fungi. These compounds can stimulate fish growth, survival, and immune function. Therefore, this review discusses the role and importance of β-glucan as a food additive in aquaculture and examines the impact of these compounds on the growth performance, immunity and biochemical parameters of farmed species.
Collapse
|
14
|
Functional Identification of Complement Factor D and Analysis of Its Expression during GCRV Infection in Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2021; 22:ijms222112011. [PMID: 34769442 PMCID: PMC8584590 DOI: 10.3390/ijms222112011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Complement factor D (Df) is a serine protease well known for activating the alternative pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df in the AP and against pathogen infection are far from clear. In the present study, we cloned and characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues representing the catalytic triad and three conserved binding sites in the substrate specificity pocket. Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf and its distinct expression patterns after GCRV infection, which provide a key basis for studying the roles of Df and AP during GCRV infection in the grass carp C. idella.
Collapse
|
15
|
Effects of dietary pomegranate peel meal on the growth performance, blood indices, and innate immune response of rainbow trout (Oncorhynchus mykiss). ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The present study aimed at evaluating the influences of pomegranate peel meal on the growth performance, hematology, and blood biochemistry of rainbow trout. Fish were fed 5 varying levels of pomegranate peel meal (0%, 1%, 2 %, 3%, and 4%) for 60 days. The obtained results showed that weight gain was significantly higher in fish fed at the rate of 1% than the other groups, while specific growth rate (SGR) was significantly increased in fish fed 1% and followed by the ration of 2% (P<0.05). SGR of fish fed at the rate of 4% revealed the lowest value among the groups (P<0.05). However, feed conversion ratio displayed the lowest values in fish fed at the rate of 1% or 2%, while the highest value was observed in fish fed at the rate of 4% (P<0.05). The survival rate was increased by the rate of 1% in relation to the control without differences with the other groups (P<0.05). Red blood cells were significantly higher in fish fed at the rate of 0%, 1%, and 2% than fish fed at the rate of 3% and 4%. Hematocrit and hemoglobin levels were increased by feeding pomegranate meal at the rate of 1% compared to the other groups, while fish fed the control diet displayed higher Hb and HCT levels than fish fed at the rate of 2%, 3%, and 4% (P<0.05). White blood cells displayed significant differences among the groups and increased by increasing the level of pomegranate meal in the diet. The blood total protein was decreased in fish fed 2%, 3%, and 4% compared to fish fed at the rate of 0% and 1% of pomegranate meal. The glucose value displayed the highest level in fish fed at the rate of 3% of pomegranate meal compared to the other groups. The triglycerides were reduced by pomegranate meal at the rate of 2% than 3% and 4% without differences with the control and 1%. The blood total cholesterol was reduced in fish fed at the rate of 1% of pomegranate meal compared to the other groups (P<0.05). The blood IgM and complement components (C3 and C4) were increased by increasing the supplementation level of pomegranate meal with the highest value in fish fed at the rate of 3% (P<0.05). In conclusion, dietary pomegranate meal at the rate of 1% is recommended for enhancing the growth rate and health status of rainbow trout.
Collapse
|
16
|
Roh H, Kim A, Kim N, Lee Y, Kim DH. Multi-Omics Analysis Provides Novel Insight into Immuno-Physiological Pathways and Development of Thermal Resistance in Rainbow Trout Exposed to Acute Thermal Stress. Int J Mol Sci 2020; 21:E9198. [PMID: 33276666 PMCID: PMC7731343 DOI: 10.3390/ijms21239198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, poikilothermic animals such as fish have increasingly been exposed to stressful high-temperature environments due to global warming. However, systemic changes in fish under thermal stress are not fully understood yet at both the transcriptome and proteome level. Therefore, the objective of this study was to investigate the immuno-physiological responses of fish under extreme thermal stress through integrated multi-omics analysis. Trout were exposed to acute thermal stress by raising water temperature from 15 to 25 °C within 30 min. Head-kidney and plasma samples were collected and used for RNA sequencing and two-dimensional gel electrophoresis. Gene enrichment analysis was performed: differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified to interpret the multi-omics results and identify the relevant biological processes through pathway analysis. Thousands of DEGs and 49 DEPs were identified in fish exposed to thermal stress. Most of these genes and proteins were highly linked to DNA replication, protein processing in the endoplasmic reticulum, cell signaling and structure, glycolysis activation, complement-associated hemolysis, processing of released free hemoglobin, and thrombosis and hypertension/vasoconstriction. Notably, we found that immune disorders mediated by the complement system may trigger hemolysis in thermally stressed fish, which could have serious consequences such as ferroptosis and thrombosis. However, antagonistic activities that decrease cell-free hemoglobin, heme, and iron might be involved in alleviating the side effects of thermally induced immuno-physiological disorders. These factors may represent the major thermal resistance traits that allow fish to overcome extreme thermal stress. Our findings, based on integration of multi-omics data from transcriptomics and proteomics analyses, provide novel insight into the pathogenesis of acute thermal stress and temperature-linked epizootics.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (H.R.); (N.K.); (Y.L.)
| | - Ahran Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, Korea;
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (H.R.); (N.K.); (Y.L.)
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (H.R.); (N.K.); (Y.L.)
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan 48513, Korea; (H.R.); (N.K.); (Y.L.)
| |
Collapse
|
17
|
Johnson SL, Borziak K, Kleffmann T, Rosengrave P, Dorus S, Gemmell NJ. Ovarian fluid proteome variation associates with sperm swimming speed in an externally fertilizing fish. J Evol Biol 2020; 33:1783-1794. [PMID: 33034086 PMCID: PMC7719593 DOI: 10.1111/jeb.13717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
Sperm velocity is a key trait that predicts the outcome of sperm competition. By promoting or impeding sperm velocity, females can control fertilization via postcopulatory cryptic female choice. In Chinook salmon, ovarian fluid (OF), which surrounds the ova, mediates sperm velocity according to male and female identity, biasing the outcome of sperm competition towards males with faster sperm. Past investigations have revealed proteome variation in OF, but the specific components of OF that differentially mediate sperm velocity have yet to be characterized. Here we use quantitative proteomics to investigate whether OF protein composition explains variation in sperm velocity and fertilization success. We found that OF proteomes from six females robustly clustered into two groups and that these groups are distinguished by the abundance of a restricted set of proteins significantly associated with sperm velocity. Exposure of sperm to OF from females in group I had faster sperm compared to sperm exposed to the OF of group II females. Overall, OF proteins that distinguished between these groups were enriched for vitellogenin and calcium ion interactions. Our findings suggest that these proteins may form the functional basis for cryptic female choice via the biochemical and physiological mediation of sperm velocity.
Collapse
Affiliation(s)
- Sheri L. Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Kirill Borziak
- Biology Department, Center for Reproductive Evolution, Syracuse University, Syracuse, NY, USA
| | - Torsten Kleffmann
- Department of Biochemistry, Centre for Protein Research, University of Otago, Dunedin, New Zealand
| | - Patrice Rosengrave
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- AgResearch, Biocontrol and Biosecurity, Christchurch, New Zealand
| | - Steve Dorus
- Biology Department, Center for Reproductive Evolution, Syracuse University, Syracuse, NY, USA
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Lin J, Ning J, Lu X, Chen M, Cao W, Wang C. Transcriptomic analysis and expression of C-type lectins in response to Vibrio parahaemolyticus challenge in Scapharca subcrenata. FISH & SHELLFISH IMMUNOLOGY 2020; 106:365-373. [PMID: 32800981 DOI: 10.1016/j.fsi.2020.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Little information is available on innate immune defense mechanisms of Scapharca subcrenata. C-type lectins (CTLs) are not only pattern recognition proteins that can bind pathogen-associated molecular patterns, but also crucial maternally-derived immune factors in mollusc egg. In this study, the comparative transcriptome analysis of Vibrio parahaemolyticus-infected and untreated hepatopancreas were performed to identify the key genes involved in maternal transfer of immunity. A total of 3514 and 9327 differentially expressed genes (DEGs) were identified at 6 and 48 h post challenge compared to control groups. Gene Ontology and Cluster of Orthologous Groups analysis showed that most DEGs were classified under regulation of signal transduction, regulation of the metabolic process of carbohydrates and secondary metabolites, while the processes of posttranscriptional modification and protein translation were inhibited manifestly. The DEGs were most enriched in pathways related to lysosome, phagosome and EMC-receptor interaction. Among the DEGs, 191 maternal immune-related genes that could provide developing embryos a better protection against pathogen infection were identified according to previous studies. Additionally, five CTLs (designated as SsCTL1-5) identified from the DEGs were cloned, and their expression patterns in different tissues and post immune stimulation were analyzed. These findings would be beneficial for understanding the innate immune defense mechanisms of S. subcrenata.
Collapse
Affiliation(s)
- Jiliang Lin
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Junhao Ning
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xia Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Min Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Weian Cao
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunde Wang
- Qingdao Agricultural University, Qingdao, 266109, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
19
|
Tsutsui S, Matsui S, Nakamura O. Serum amyloid P-component/C-reactive proteins in fugu (Takifugu rubripes) egg with binding ability to disease-causing bacteria by carbohydrate-recognition. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103748. [PMID: 32442442 DOI: 10.1016/j.dci.2020.103748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Two galactose-binding proteins were purified from the eggs of Takifugu rubripes by affinity chromatography. These proteins were detected at 26 and 23 kDa under reducing and at 40 and 45 kDa under non-reducing conditions at SDS-PAGE. The peptide sequences from both proteins matched to short-type pentraxin. The 26-kDa lectin was glycosylated, while the other one was not, indicating that these could be glycoforms of pentraxin. Messenger RNA of pentraxin was detected in eggs and embryos at 1-cell stage, was undetectable till blastula, and finally detected again after gastrula, suggesting that the mRNAs in eggs and 1-cell embryos were maternal in origin, and autologous transcription of the gene occurred after blastula. Since they bind to pathogenic bacteria, egg pentraxins may have immunological functions during embryogenesis. This is the first study to show the presence of short-type pentraxin in fish eggs and the diversity of fish egg lectins.
Collapse
Affiliation(s)
- Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| | - Shintaro Matsui
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
20
|
Hua XT, Fan K, Zhang Z, Li X, Xia Y, Liu PF, Liu Y. Characterization and expression analysis of the C8α and C9 terminal complement components from pufferfish (Takifugu rubripes). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103634. [PMID: 32004542 DOI: 10.1016/j.dci.2020.103634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
C8α and C9 mediate the membrane attack complex formation and bacterial lysis and are important components in the complement system. The cDNA sequences of the C8α and C9 genes were cloned from Takifugu rubripes. The full-length cDNA of Tr-C8α was 1893 bp and included a 5'-UTR of 69 bp and 3'-UTR of 83 bp. The full-length cDNA of Tr-C9 was 2083 bp and included a 5'-UTR of 72 bp and 3'-UTR of 250 bp. The expression of Tr-C8α and Tr-C9 was detected in newly fertilized eggs of T. rubripes. The expression of these two genes was at a higher level in the liver than in other tissues tested. After lipopolysaccharide (LPS) challenge, the gene expression of Tr-C8α and Tr-C9 increased more significantly in the liver. With these combined results, we further understood how Tr-C8α and Tr-C9 function in the innate immunity of pufferfish. Our findings could deepen the understanding of immune regulation in pufferfish.
Collapse
Affiliation(s)
- Xin-Tong Hua
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Kunpeng Fan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Zhiqiang Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Xiaohao Li
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| |
Collapse
|
21
|
Tran HB, Rizky PN, McDaniel Padgett SR, Lee YH, Chaung HC, Cheng TC. Molecular characterization of cobia (Rachycentron canadum) CD4 homologues revealed the first evidence of soluble CD4 in fish. FISH & SHELLFISH IMMUNOLOGY 2020; 99:239-242. [PMID: 32058099 DOI: 10.1016/j.fsi.2020.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The co-receptor CD4 plays an important role in distinguishing between helper T-cell (Th) and cytotoxic T lymphocyte (CTL). In the present study, we investigated the molecular features of CD4-2 cDNA to facilitate understanding of their roles in cobia (Rachycentron canadum). Two CD4-2 molecules have been identified and exhibited 16.10% amino acids identity with each other. The cDNA of CD4-2A consists of a 993 bp ORF encoding 330 aa with long intracytoplasmic tail containing conserved protein tyrosine kinase p56Lck binding (C-X-C) motif, a transmembrane region, and two extracellular Ig-like (Ig-like) domains are predicted. Comparatively, the cDNA of cobia CD4-2B consists of a 990 bp ORF encoding 329 aa without a transmembrane domain as well as C-X-C motif, and three Ig-like domains are present. Homology comparison showed that the CD4-2A aa sequence of cobia showed high similarity and similar structural features to CD4-2 from other species, while the deduced CD4-2B protein shares higher structural similarity to CD4-1 group. Phylogenetic analysis indicated that cobia CD4-2A was closer with CD4-2 molecules in other fish species, distant from the clade formed by fish CD4-1 and mammalian CD4 sequences. However, cobia CD4-2B grouped with other known teleost CD4-1 sequences. The expression pattern of CD4-2A and CD4-2B mRNA during the embryonic development followed the trend of an initial increase after fertilized, providing evidence of maternal transfer of CD4-2 homologues to the developing cobia embryos and larvae. All of these results are useful for better understanding of cell-mediated immunity of cobia.
Collapse
Affiliation(s)
- Hung Bao Tran
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| | - Putri Nurhanida Rizky
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Polytechnic of Marine and Fisheries Sidoarjo, Department of Aquaculture, East Java, 61253, Indonesia
| | - Stanley Rob McDaniel Padgett
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Yen-Hung Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Taiwan
| | - Hso-Chi Chaung
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Ta-Chih Cheng
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
22
|
Arya P, Pradhan P, Paria A, Sharma R, Verma DK, Ravindra, Rathore G, Sood N. Ontogeny and tissue-specific expression of immune-relevant genes in Catla catla (Hamilton). Gene Expr Patterns 2019; 34:119071. [DOI: 10.1016/j.gep.2019.119071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 01/29/2023]
|
23
|
Chettri JK, Al-Jubury A, Hansen MB, Lihme A, Dalsgaard I, Buchmann K, Heegaard PMH. Protective effect of in-feed specific IgM towards Yersinia ruckeri in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2019; 93:934-939. [PMID: 31404633 DOI: 10.1016/j.fsi.2019.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Tightened regulations and an environmentally friendly approaches in fish production have greatly reduced the use of antibiotics but green solutions are continuously being explored. The use of functional feed may have a potential in the aquaculture sector in securing biomass and minimizing the loss from disease. In the present study, we tested the concept that blood from the fish slaughterhouse can be used for mass purification of specific antibodies which subsequently can be used for feeding fish and thereby confer protection against diseases. IgM was purified from serum from Yersinia ruckeri vaccinated rainbow trout and an IgM sandwich ELISA was developed for quantification of rainbow trout IgM. The purified IgM was encapsulated in alginate microparticles and top-coated in fish feed. IgM re-extracted from the alginate microparticles was shown to retain high reactivity towards Y. ruckeri antigens indicating that its bioactivity remained intact after encapsulation. IgM release from the alginate microparticles was only observed at high pH (pH 8.2) and minimal at low pH, indicating protection of IgM at low pH in the fish stomach during passage. In a feeding - challenge experiment (feeding 1 week before Y. ruckeri challenge and for two weeks following challenge), a statistically non-significant 10% lower mortality was observed in the high dose (400 μg IgM/fish/day fed over 3 weeks) group.
Collapse
Affiliation(s)
- Jiwan K Chettri
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark; Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Allan Lihme
- Lihme Protein Solutions, Kongens, Lyngby, Denmark
| | - Inger Dalsgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter M H Heegaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark.
| |
Collapse
|
24
|
Krishnan R, Kurcheti PP, Mushtaq Z, K J, Naik T V. Interferon-regulatory factors, IRF3 and IRF7 in Asian seabass, Lates calcarifer: Characterization, ontogeny and transcriptional modulation upon challenge with nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2019; 89:468-476. [PMID: 30940578 DOI: 10.1016/j.fsi.2019.03.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Interferon regulatory factor (IRF) 3 and IRF7 are key regulators of type I interferon (IFN) gene expression for the antiviral immune response. In the present study, interferon regulatory factor 3 and 7 from Asian seabass, namely AsIRF3 and AsIRF7 were cloned and characterized. The full-length cDNA sequence of IRF3 and IRF7 consisted of 2965 and 2343 bp respectively. AsIRF3 and AsIRF7 were true orthologes of vertebrate IRF3/7 and showed similar domain organization, with an N-terminal DBD which consisted five tryptophan residues in IRF3 and four in IRF7, a C-terminal IRF3 domain and a serine rich region. Both IRF3 and 7 constitutively expressed during the ontogenesis and in all tissues of healthy fish. The expression of both genes was up-regulated following NNV challenge with obvious transcript abundance in brain heart and kidney. Ectopic expression of AsIRF3 and AsIRF7 displayed activation of ISRE/NF-κB promoters and modulation of interferon, ISGs and pro-inflammatory cytokine gene expression. These observations indicated that IRF3 and IRF7 play an important role in Asian seabass's antiviral defense and the RIG-IRF-IFN axis is conserved in the species.
Collapse
Affiliation(s)
- Rahul Krishnan
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India; Present Address: Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Pani Prasad Kurcheti
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India.
| | - Zahoor Mushtaq
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Jeena K
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Vismai Naik T
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| |
Collapse
|
25
|
Meng X, Shen Y, Wang S, Xu X, Dang Y, Zhang M, Li L, Zhang J, Wang R, Li J. Complement component 3 (C3): An important role in grass carp (Ctenopharyngodon idella) experimentally exposed to Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2019; 88:189-197. [PMID: 30826411 DOI: 10.1016/j.fsi.2019.02.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Complement is traditionally recognized as part of the innate immune system, defending the host against the invasion of foreign pathogens. In complement system, C3 (complement component 3) is a central component. Therefore, research into C3 can help us better understand the functions of fish complement system. In this study, we detected the grass carp C3 (gcC3) mRNA expression in all sample tissues from healthy grass carp, which was highest in the liver, followed by the heart and the spleen, and lowest in the muscle, head kidney, trunk kidney, blood and intestine. After infection with Aeromonas hydrophila, gcC3 mRNA expression levels were significantly upregulated in the gill, liver, spleen, intestine, trunk kidney and head kidney. Interestingly, C3 protein levels were downregulated and subsequently upregulated in the liver and serum. Histologically, C3 protein at 24 h pi was over expressed in necrotic liver sites, and the liver index (LI) at this point was significantly higher than that of the control. These findings are indicated that C3 plays an important role in the immune response of grass carp after A. hydrophila infection, and C3 protein may play an assistant role in repairing liver tissues from A. hydrophila injury.
Collapse
Affiliation(s)
- Xinzhan Meng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Shentong Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yunfei Dang
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo, PR China
| | - Meng Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiahua Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Rongquan Wang
- Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources, Suzhou Shenhang Eco-technology Development Limited Company, Suzhou, PR China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
26
|
Meng F, Zhang Y, Zhou J, Li M, Shi G, Wang R. Do the toll-like receptors and complement systems play equally important roles in freshwater adapted Dolly Varden char (Salvelinus malma)? FISH & SHELLFISH IMMUNOLOGY 2019; 86:581-598. [PMID: 30266607 DOI: 10.1016/j.fsi.2018.09.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Unlike the normal anadromous lifestyle, Chinese native Dolly Varden char (Salvelinus malma) is locked in land and lives in fresh water lifetime. To explore the effect of freshwater adaption on its immune system, we constructed a pooled cDNA library of hepatopancreas and spleen of Chinese freshwater Dolly Varden char (S. malma). A total of 27,829 unigenes were generated from 31,233 high-quality transcripts and 17,670 complete open reading frames (ORF) were identified. Totally 25,809 unigenes were successfully annotated and it classified more native than adaptive immunity-associated genes, and more genes involved in toll-like receptor signal pathway than those in complement and coagulation cascades (51 vs 3), implying the relative more important role of toll-like receptors than the complement system under bacterial injection for the freshwater Dolly Varden char. These huge different numbers of TLR and complement system identified in freshwater Dolly Varden char probably caused by distinct evolution pressure patterns between fish TLR and complement system, representative by TLR3 and TLR5 as well as C4 and C6, respectively, which were under purifying and positively selecting pressure, respectively. Further seawater adaptation experiment and the comparison study with our library will no doubt be helpful to elucidate the effect of freshwater adaption of Chinese native Dolly Varden char on its immune system.
Collapse
Affiliation(s)
- Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuanyuan Zhang
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jianbo Zhou
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Ge Shi
- College of Marine Science, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
27
|
Fu YW, Zhu CK, Zhang QZ, Hou TL. Molecular characterization, expression analysis, and ontogeny of complement component C9 in southern catfish (Silurus meridionalis). FISH & SHELLFISH IMMUNOLOGY 2019; 86:449-458. [PMID: 30508672 DOI: 10.1016/j.fsi.2018.11.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/07/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The complement system plays an important role in host defense against invading microorganisms. Complement component C9 is the last component that is involved in the formation of the membrane attack complex (MAC) on the surface of target cells. In the present study, the full length C9 cDNA sequence of 1984 bp with an open reading frame (ORF) of 1809 bp was cloned from southern catfish (Silurus meridionalis). The deduced amino acid sequence showed similarity with other teleost fish. The mRNA expression of C9 was detected in the liver, spleen, stomach, intestine, and head kidney, with highest levels detected in the liver. The mRNA of C9 was first detected in the yolk syncytial layer at 34 h post fertilization (hpf) with whole mount in situ hybridization, followed by the liver at 36 h post hatching (hph). The mRNA expression of C9 was upregulated significantly in the liver, spleen, and intestine following the injection with Aeromonas hydrophila, suggesting that C9 played an important role in defense against invading pathogens in southern catfish. Therefore, these results provide important information to understand the functions of C9 during fish early development in fish.
Collapse
Affiliation(s)
- Yao-Wu Fu
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Cheng-Ke Zhu
- College of Animal Science, Southwest University Rongchang Campus, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, People's Republic of China
| | - Qi-Zhong Zhang
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China.
| | - Ting-Long Hou
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
28
|
Ning J, Liu Y, Gao F, Liu H, Cui Z. Characterization and functional analysis of a novel gC1qR in the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:970-978. [PMID: 30395995 DOI: 10.1016/j.fsi.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
The receptor for the globular head of complement component C1q, gC1qR, is a multifunctional and multiligand binding protein with a crucial role in host defense. In the present study, a full-length cDNA sequence of a gC1qR homolog (PtgC1qR) in Portunus trituberculatus was identified. PtgC1qR was a 268-amino-acid polypeptide with a conserved MAM33 domain and a mitochondrial targeting sequence in the first 56 amino acids. The transcripts of PtgC1qR were detected in all examined tissues with the highest level detected in the hepatopancreas. Compared with other early embryonic stages, PtgC1qR was highly expressed in the fertilized eggs and embryos at the cleavage stage, which suggest PtgC1qR may be a maternal gene. The transcripts of PtgC1qR in hemocytes exhibited time-dependent response expression pattern after challenged with bacteria (Vibrio alginolyticus, Micrococcus luteus) and fungi (Pichia pastoris). Moreover, the recombinant PtgC1qR (rPtgC1qR) exhibited strong antibacterial activity and microbial-binding activity, suggesting its crucial role in immune defense and recognition. Further phenoloxidase (PO) assay showed that rPtgC1qR could suppress the crab PO activity in vitro in a dose-dependent manner, and it could result in nearly 100% inhibition of PO activity under the concentration of 11.65 μM. Knockdown of PtgC1qR could significantly enhance the expression of serine protease related genes (PtSP1-3 and PtSPH), proPO-associated genes (PtproPO and PtPPAF) and C3-like genes (Ptα2M1 and PtTEP). However, the phagocytosis related genes (PtMyosin, PtRab5 and PtArp) and Ptα2M2 were significantly down-regulated in the PtgC1qR silenced crabs. These findings together demonstrate that PtgC1qR might function in crab immune response via its antibacterial activity, immune recognition or regulating the proPO system, complement pathway and phagocytosis.
Collapse
Affiliation(s)
- Junhao Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Fengtao Gao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hourong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoxia Cui
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
29
|
Fu YW, Zhu CK, Zhang QZ. Molecular characterization and expression analysis of complement component C3 in southern catfish (Silurus meridionalis) and a whole mount in situ hybridization study on its ontogeny. FISH & SHELLFISH IMMUNOLOGY 2019; 84:865-875. [PMID: 30389643 DOI: 10.1016/j.fsi.2018.10.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
The complement system plays an important role in protecting fish against attack by pathogens early in life. Complement component C3 is a central component in the complement system. The present work aimed to clone the full length C3 cDNA sequence of southern catfish (Silurus meridionalis), detect the tissue expression patterns of C3, investigate the ontogeny of C3 in embryo and larva, and assess the expression of C3 in response to pathogen infection. The full length C3 cDNA sequence of 5157 bp with an open reading frame (ORF) of 4938 bp was cloned from southern catfish. The deduced amino acid sequence showed similarity with other teleost fish. The mRNA expression of C3 was detected in liver, spleen, stomach, intestine, and head kidney with RT-PCR and in situ hybridization. Whole mount in situ hybridization results revealed that C3 was first expressed in the yolk syncytial layer at 34 h post fertilization (hpf), followed by the liver at 36 h post hatching (hph). When challenged with Aeromonas hydrophila, the transcripts of C3 showed a significant up-regulation in liver and spleen at 24 h. The results suggested that complement C3 played a key role in defense against invading pathogens in the early development stages of southern catfish. Therefore, these results provide important information to understand the functions of C3 during fish early development in Siluriformes.
Collapse
Affiliation(s)
- Yao-Wu Fu
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601, Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Cheng-Ke Zhu
- College of Animal Science, Southwest University Rongchang Campus, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, People's Republic of China
| | - Qi-Zhong Zhang
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601, Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
30
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
31
|
Consumption of carotenoids not increased by bacterial infection in brown trout embryos (Salmo trutta). PLoS One 2018; 13:e0198834. [PMID: 29897970 PMCID: PMC5999266 DOI: 10.1371/journal.pone.0198834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/25/2018] [Indexed: 02/02/2023] Open
Abstract
Carotenoids are organic pigment molecules that play important roles in signalling, control of oxidative stress, and immunity. Fish allocate carotenoids to their eggs, which gives them the typical yellow to red colouration and supports their resistance against microbial infections. However, it is still unclear whether carotenoids act mainly as a shield against infection or are used up during the embryos' immune defence. We investigated this question with experimental families produced from wild-caught brown trout (Salmo trutta). Singly raised embryos were either exposed to the bacterial pathogen Pseudomonas fluorescens or sham-treated at one of two stages during their development. A previous study on these experimental families reported positive effects of egg carotenoids on embryo growth and resistance against the infection. Here, we quantified carotenoid consumption, i.e. the active metabolization of carotenoids into compounds that are not other carotenoid types, in these infected and sham-infected maternal sib groups. We found that carotenoid contents mostly decreased during embryogenesis. However, these decreases were neither linked to the virulence induced by the pathogen nor dependent on the time point of infection. We conclude that egg carotenoids are not significantly used up by the embryos' immune defence.
Collapse
|
32
|
Krishnan R, Girish Babu P, Jeena K, Tripathi G, Pani Prasad K. Molecular characterization, ontogeny and expression profiling of mitochondrial antiviral signaling adapter, MAVS from Asian seabass Lates calcarifer, Bloch (1790). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:175-185. [PMID: 29100916 DOI: 10.1016/j.dci.2017.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS), an innate immune signaling adapter coordinates the signals received from two independent cytosolic pathogen recognition receptors (RIG-1 and MDA5) to induce antiviral genes. In the present study the MAVS gene of Lates calcarifer (LcMAVS) was cloned and characterized. The complete cDNA sequence of LcMAVS was 3160 bp and encodes a poly peptide of 577 amino acids. Structural analysis of LcMAVS revealed an N-terminal CARD-like domain, central proline-rich domain and a C-terminal transmembrane domain. Phylogenetic analysis indicated that LcMAVS exhibited the closest relationship to P. olivaceous MAVS. LcMAVS was ubiquitously expressed in all tested tissues of healthy fish viz., brain, gill, heart, liver, spleen, kidney and intestine, with highest transcript level in spleen. The mRNA transcript level of LcMAVS in different developmental stages showed constitutive expression in all the stages tested suggesting the maternal transfer of the gene. Significant up regulation in MAVS expression was observed post nervous necrosis virus (NNV) challenge in vivo in all the selected tissues. Further, time course analysis showed that LcMAVS transcripts significantly increased in the brain and spleen tissues after NNV infection. These findings provide useful information for further elucidating the function of LcMAVS in antiviral innate immune response against NNV in Asian seabass.
Collapse
Affiliation(s)
- Rahul Krishnan
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - P Girish Babu
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - K Jeena
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Gayathri Tripathi
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Kurcheti Pani Prasad
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| |
Collapse
|
33
|
Xu Y, Yu Y, Zhang X, Huang Z, Li H, Dong S, Liu Y, Dong F, Xu Z. Molecular characterization and expression analysis of complement component 3 in dojo loach (Misgurnus anguillicaudatus). FISH & SHELLFISH IMMUNOLOGY 2018; 72:484-493. [PMID: 29155029 DOI: 10.1016/j.fsi.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The complement component 3 (C3) is a central component of complement system. All three pathways converge at formation of C3 convertases and share the terminal pathways of membrane attack complex (MAC) formation. In this study, three isoforms of C3 were discovered in Misgurnus anguillicaudatus, named "C3-1", "C3-2" and "C3-3", respectively. The full-length of C3-1 cDNA sequence was firstly identified and analyzed from dojo loach (Misgurnus anguillicaudatus). The Ma-C3-1 cDNA sequence comprised of 4509 bp encoding 1454 amino acids with a putative signal peptide of 20 amino acid residues. The deduced amino acid sequence showed that Ma-C3-1 has conserved residues and domain, which are known to be crucial for C3 function. Interestingly, an amino acid substitution of the highly conserved GCGEQ was discovered in Ma-C3-1. Phylogenetic analysis showed that Ma-C3-1 was closely related to Cyprinidae. The mRNA expression levels of three isoforms of C3 were detected in kidney, eye, spleen, gonad, heart, fin ray, gut, muscle, brain, gill, skin, blood and liver. The expression of Ma-C3-1 and Ma-C3-3 were mainly detected in liver, followed by spleen, gonad. However, the high expression of Ma-C3-2 was found in kidney, followed by blood and gonad. The morphological changes of gill and skin, and the expression pattern of these three isoforms C3 molecular following the infection with Aeromonas hydrophila were investigated. The mRNA expression levels of three C3 isoforms were up-regulated in the gill, skin, liver and spleen after infection with A.hydrophila. Similarly, challenge experiments resulted in significant up-regulated expression of other complement-relevant genes in gill, liver and skin, such as C4, C5, C8b, especially at 24 h and 36 h. These results suggest that complement system might play an important role not only in liver, but also in the mucosal tissues as gill and skin of teleost fish.
Collapse
Affiliation(s)
- Yongsheng Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huili Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yangzhou Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
34
|
de Bruijn I, Liu Y, Wiegertjes GF, Raaijmakers JM. Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol 2017; 94:4675208. [DOI: 10.1093/femsec/fix161] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
| | - Yiying Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen 6708WD, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
- Institute of Biology (IBL), Leiden University, Sylviusweg 72, Leiden 2333 BE, Leiden, The Netherlands
| |
Collapse
|
35
|
Liu Z, Wang L, Zhou Z, Liu Y, Dong M, Wang W, Song X, Wang M, Gao Q, Song L. Transcriptomic analysis of oyster Crassostrea gigas larvae illustrates the response patterns regulated by catecholaminergic system upon acute heat and bacterial stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:52-60. [PMID: 28283443 DOI: 10.1016/j.dci.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Bacterial infection and heat stress, as two major environmental threats of marine molluscs, could affect larval development and dramatically promote mortality of oysters. In the present study, next-generation sequencing, together with determinations of mRNA expression and measurements of enzyme activities, were employed to understand the response patterns of oyster larvae under acute heat and bacterial stress. After RNA-seq, a total of 9472 differentially expressed genes including 4895 significantly up-regulated ones and 4577 significantly down-regulated ones were obtained from 12 transcriptome libraries. GO overrepresentation analysis of the up-regulated genes revealed that the neuroendocrine immunomodulation pathway was activated after acute heat and bacterial stimulation, in which the catecholaminergic regulation played an important role. GO overrepresentation analysis of the down-regulated genes suggested that the immune capacity of Crassostrea gigas larvae was suppressed under stress, which was further validated since superoxide dismutase (SOD) and phenoloxidase (PO) activities in the total protein extract of larvae decreased dramatically after stress. Moreover, the shell formation of trochophore was inhibited and severe mortality was caused after acute heat and bacterial stress. These results collectively indicated that acute heat and bacterial stress could significantly inhibit larval development and suppress immune response of oyster C. gigas larvae. And the neuroendocrine immunomodulation, especially the catecholaminergic regulation, played an indispensable role in the stress response of molluscan larvae.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qiang Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
36
|
Wilkins LGE, Marques da Cunha L, Glauser G, Vallat A, Wedekind C. Environmental stress linked to consumption of maternally derived carotenoids in brown trout embryos ( Salmo trutta). Ecol Evol 2017; 7:5082-5093. [PMID: 28770048 PMCID: PMC5528241 DOI: 10.1002/ece3.3076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/29/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
The yellow, orange, or red colors of salmonid eggs are due to maternally derived carotenoids whose functions are not sufficiently understood yet. Here, we studied the significance of naturally acquired carotenoids as maternal environmental effects during embryo development in brown trout (Salmo trutta). We collected eggs from wild females, quantified their egg carotenoid content, fertilized them in vitro in full‐factorial breeding blocks to separate maternal from paternal effects, and raised 3,278 embryos singly at various stress conditions until hatching. We found significant sire effects that revealed additive genetic variance for embryo survival and hatching time. Dam effects were 5.4 times larger than these sire effects, indicating that maternal environmental effects play an important role in determining embryo stress tolerance. Of the eight pigment molecules that we targeted, only astaxanthin, zeaxanthin (that both affected egg redness), and lutein were detected above our confidence thresholds. No strong link could be observed between carotenoid content in unfertilized eggs and embryo mortality or hatching timing. However, the consumption of carotenoids during our stress treatment was negatively correlated to embryo survival among sib groups and explained about 14% of the maternal environmental variance. We conclude that maternally derived carotenoids play a role in the ability of embryos to cope with environmental stress, but that the initial susceptibility to the organic pollution was mainly determined by other factors.
Collapse
Affiliation(s)
- Laetitia G E Wilkins
- Department of Ecology and Evolution Biophore, University of Lausanne Lausanne Switzerland.,Department of Environmental Sciences Policy & Management University of California Berkeley CA USA
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution Biophore, University of Lausanne Lausanne Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry University of Neuchâtel Neuchâtel Switzerland
| | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry University of Neuchâtel Neuchâtel Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution Biophore, University of Lausanne Lausanne Switzerland
| |
Collapse
|
37
|
Qin C, Shao T, Zhao D, Duan H, Wen Z, Yuan D, Li H, Qi Z. Effect of ammonia-N and pathogen challenge on complement component 8α and 8β expression in the darkbarbel catfish Pelteobagrus vachellii. FISH & SHELLFISH IMMUNOLOGY 2017; 62:107-115. [PMID: 28027983 DOI: 10.1016/j.fsi.2016.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
The complement components C8α and C8β mediate the formation of the membrane attack complex (MAC) to resist pathogenic bacteria and play important roles in innate immunity. Full-length complement C8α (Pv-C8α) and C8β (Pv-C8β) cDNA were identified in the darkbarbel catfish Pelteobagrus vachellii, and their mRNA expression levels were analyzed after ammonia-N and pathogen treatment. The Pv-C8α gene contained 1983 bp, including a 1794-bp open reading frame (ORF) encoding 598 amino acids. The Pv-C8β gene contained 1952 bp, including a 1761-bp ORF encoding 587 amino acids. Pv-C8α and Pv-C8β had the highest amino acid identity with rainbow trout Oncorhynchus mykiss C8α (62%) and Japanese flounder Paralichthys olivaceus C8β (83%), respectively. Sequence analysis indicated that both Pv-C8α and Pv-C8β contained a thrombospondin type-1 (TSP1) domain, a low-density lipoprotein receptor class A (LDLR-A) domain, a membrane attack complex/perforin (MACPF) domain and an epidermal growth factor-like (EGF-like) domain. In addition, Pv-C8α and Pv-C8β were mainly distributed in the liver, head kidney, spleen, and eggs. Under ammonia-N stress, the Pv-C8α and Pv-C8β mRNA levels significantly decreased (P < 0.05), with minimum levels, respectively, attained at 24 and 48 h in the liver, 48 and 24 h in the head kidney, and 24 and 24 h in the spleen. After Aeromonas hydrophila challenge, the Pv-C8α and Pv-C8β mRNA levels significantly increased (P < 0.05), with maximum levels, respectively, attained at 48 and 24 h in the liver, 24 and 48 h in the head kidney, and 48 and 48 h in the spleen. The present study indicated that Pv-C8α and Pv-C8β exhibited important immune responses to infection and that ammonia-N in water decreased the immune responses of Pv-C8α and Pv-C8β.
Collapse
Affiliation(s)
- Chuanjie Qin
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China.
| | - Ting Shao
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China; College of Life Science, Sichuan Normal University, Chengdu 610101, PR China
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Jiangxi 330031, PR China
| | - Huiguo Duan
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Zhengyong Wen
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Dengyue Yuan
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Huatao Li
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| | - Zemin Qi
- College of Life Science, Neijiang Normal University, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang 641000, PR China
| |
Collapse
|
38
|
Beemelmanns A, Roth O. Grandparental immune priming in the pipefish Syngnathus typhle. BMC Evol Biol 2017; 17:44. [PMID: 28173760 PMCID: PMC5297188 DOI: 10.1186/s12862-017-0885-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background Phenotypic changes in response to environmental influences can persist from one generation into the next. In many systems parental parasite experience influences offspring immune responses, known as transgenerational immune priming (TGIP). TGIP in vertebrates is mainly maternal and short-term, supporting the adaptive immune system of the offspring during its maturation. However, if fathers and offspring have a close physical connection, evolution of additional paternal immune priming can be adaptive. Biparental TGIP may result in maximized immunological protection. Here, we investigate multigenerational biparental TGIP in the sex-role reversed pipefish Syngnathus typhle by exposing grandparents to an immune challenge with heat-killed bacteria and assessing gene expression (44 target genes) of the F2-generation. Results Grandparental immune challenge induced gene expression of immune genes in one-week-old grandoffspring. Similarly, genes mediating epigenetic regulation including DNA-methylation and histone modifications were involved in grandparental immune priming. While grand-maternal impact was strong on genes of the complement component system, grand-paternal exposure changed expression patterns of genes mediating innate immune defense. Conclusion In a system with male pregnancy, grandparents influenced the immune system of their grandoffspring in a sex-specific manner, demonstrating multigenerational biparental TGIP. The involvement of epigenetic effects suggests that TGIP via the paternal line may not be limited to the pipefish system that displays male pregnancy. While the benefits and costs of grandparental TGIP depend on the temporal heterogeneity of environmental conditions, multigenerational TGIP may affect host-parasite coevolution by dampening the amplitude of Red Queen Dynamics. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0885-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Evolutionary Ecology of Marine Fishes, Helmholtz-Centre for Ocean Research Kiel (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Olivia Roth
- Evolutionary Ecology of Marine Fishes, Helmholtz-Centre for Ocean Research Kiel (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany.
| |
Collapse
|
39
|
Salger SA, Reading BJ, Noga EJ. Tissue localization of piscidin host-defense peptides during striped bass (Morone saxatilis) development. FISH & SHELLFISH IMMUNOLOGY 2017; 61:173-180. [PMID: 28034834 DOI: 10.1016/j.fsi.2016.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Infectious diseases are a major cause of larval mortality in finfish aquaculture. Understanding ontogeny of the fish immune system and thus developmental timing of protective immune tissues and cells, may help to decrease serious losses of larval fishes when they are particularly vulnerable to infection. One component of the innate immune system of fishes is the host-defense peptides, which include the piscidins. Piscidins are small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and protozoan pathogens. We describe for the first time the cellular and tissue localization of three different piscidins (1, 3, and 4) during striped bass (Morone saxatilis) larval ontogeny using immunofluorescent histochemistry. From 16 days post hatch to 12 months of age, piscidin staining was observed in cells of the epithelial tissues of gill, digestive tract, and skin, mainly in mast cells. Staining was also seen in presumptive hematopoietic cells in the head kidney. The three piscidins showed variable cellular and tissue staining patterns, possibly relating to differences in tissue susceptibility or pathogen specificity. This furthers our observation that the piscidins are not a monolithic family of antimicrobials, but that different AMPs have different (more specialized) functions. Furthermore, no immunofluorescent staining of piscidins was observed in post-vitellogenic oocytes, embryos, or larvae from hatch to 14 days post hatch, indicating that this critical component of the innate immune system is inactive in pre-hatch and young larval striped bass.
Collapse
Affiliation(s)
- Scott A Salger
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States.
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Edward J Noga
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
40
|
Schulze TT, Ali JM, Bartlett ML, McFarland MM, Clement EJ, Won HI, Sanford AG, Monzingo EB, Martens MC, Hemsley RM, Kumar S, Gouin N, Kolok AS, Davis PH. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome. J Genomics 2016; 4:29-41. [PMID: 27672404 PMCID: PMC5033730 DOI: 10.7150/jgen.16885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included.
Collapse
Affiliation(s)
- Thomas T Schulze
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center, Omaha, NE, 68198-6805, United States
| | - Maggie L Bartlett
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Madalyn M McFarland
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Emalie J Clement
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Harim I Won
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Austin G Sanford
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Elyssa B Monzingo
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Matthew C Martens
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Ryan M Hemsley
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Sidharta Kumar
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, La Serena, Chile;; Centro de Estudios Avanzados en Zonas Aridas, La Serena, Chile;; Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - Alan S Kolok
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA;; Center for Environmental Health and Toxicology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| |
Collapse
|
41
|
Santana PA, Guzmán F, Forero JC, Luna OF, Mercado L. Hepcidin, Cathelicidin-1 and IL-8 as immunological markers of responsiveness in early developmental stages of rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:48-57. [PMID: 27106706 DOI: 10.1016/j.dci.2016.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
During the early developmental stage of salmonids, high mortality occurs largely as a result of pathogens. These cause low immune competence in fry, producing disease, decreasing production and finally leading to economic losses. Therefore, the aim of this study was to characterise the developmental stages in which rainbow trout acquires immune response capability when challenged with LPS from Pseudomona aeruginosa for 8 h, studying the hepcidin, cathelicidin-1 and IL-8. Total RNA was extracted from fry at 34, 42, 56 and 66 days post hatching (dph). Hepcidin and cathelicidin-1 transcripts were detected only at days 34 and 42, whereas the IL-8 transcript was detected from day 34 to day 66. To analyse the protein expression in the fry, polyclonal anti-peptide antibodies were generated in rabbit. These three immune sera demonstrated the ability to recognise the whole molecule in biological samples. Immunofluorescence showed that skin, gills and intestine mainly responded to the LPS challenge, indicating that these portals of pathogen entry are capturing LPS. This study constitutes a valuable approach, since it has the potential to identify molecules with biological activity that can be used to evaluate the status of fry in culture.
Collapse
Affiliation(s)
- Paula A Santana
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Juan C Forero
- Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Omar F Luna
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
42
|
Songe MM, Willems A, Sarowar MN, Rajan K, Evensen Ø, Drynan K, Skaar I, van West P. A thicker chorion gives ova of Atlantic salmon (Salmo salar L.) the upper hand against Saprolegnia infections. JOURNAL OF FISH DISEASES 2016; 39:879-888. [PMID: 26644366 DOI: 10.1111/jfd.12421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Since the ban of malachite green in the fish farming industry, finding alternative ways of controlling Saprolegnia infections has become of utmost importance. Much effort has been made to elucidate the mechanisms by which Saprolegnia invades fish eggs. Little is known about the defence mechanisms of the hosts, making some eggs more prone to infection than others. One clue might lie in the composition of the eggs. As the immune system in the embryos is not developed yet, the difference in infection levels could be explained by factors influenced by the mother herself, by either transferring passive immunity, influencing the physical aspects of the eggs or both. One of the physical aspects that could be influenced by the female is the chorion, the extracellular coat surrounding the fish egg, which is in fact the first major barrier to be overcome by Saprolegnia spp. Our results suggest that a thicker chorion in eggs from Atlantic salmon gives a better protection against Saprolegnia spp. In addition to the identification of differences in sensitivity of eggs in a fish farm set-up, we were able to confirm these results in a laboratory-controlled challenge experiment.
Collapse
Affiliation(s)
- M M Songe
- Norwegian Veterinary Institute, Oslo, Norway
| | - A Willems
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - M N Sarowar
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - K Rajan
- Landcatch Natural Selection Ltd, Ormsary Fish Farm, Lochgilphead, Argyll, UK
| | - Ø Evensen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - K Drynan
- Landcatch Natural Selection Ltd, Ormsary Fish Farm, Lochgilphead, Argyll, UK
| | - I Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| | - P van West
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
43
|
Pathirana A, Diao M, Huang S, Zuo L, Liang Y. Alpha 2 macroglobulin is a maternally-derived immune factor in amphioxus embryos: New evidence for defense roles of maternal immune components in invertebrate chordate. FISH & SHELLFISH IMMUNOLOGY 2016; 50:21-26. [PMID: 26796816 DOI: 10.1016/j.fsi.2015.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
In fish, a series of maternal derived immune components have been identified in their eggs or embryos at very early stages, which are proposed to provide protections to themselves against pathogenic attacks from hostile environment. The phenomenon of maternal immunity has been also recorded in several invertebrate species, however, so far, very limited information about the maternal immune molecules are available. In this study, it was demonstrated maternal alpha2 macroglobulin (A2m) protein, an important innate immune factor, exists in the fertilized eggs of amphioxus Branchiostoma japonicum, an invertebrate chordate. Maternal mRNA of A2m was also detected in amphioxus embryos at very early developing stages. In addition, it was recorded that the egg lysate prepared from the newly fertilized eggs can inhibit the growth of both Gram-negative bacterium Escherichia coli and Gram-positive bacterium Staphylococcus aureus in a concentration dependent manner. The bacteriostatic activity can be reduced notably after precipitated A2m with anti-A2m antibody. Thus maternal A2m is partly attributed to the bacteriostatic activity. It was further demonstrated that recombinant A2m can bind to E. coli cells directly. All these points come to a result that A2m is a maternal immune factor existing in eggs of invertebrate chordate, which may be involved in defense their embryos against harmful microbes' attacks.
Collapse
Affiliation(s)
- Anjalika Pathirana
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Mingyue Diao
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Shibo Huang
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Lingling Zuo
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Yujun Liang
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
44
|
Wilkins LGE, Rogivue A, Schütz F, Fumagalli L, Wedekind C. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures. Sci Rep 2015; 5:17084. [PMID: 26611640 PMCID: PMC4661462 DOI: 10.1038/srep17084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/23/2015] [Indexed: 11/09/2022] Open
Abstract
The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.
Collapse
Affiliation(s)
- Laetitia G E Wilkins
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aude Rogivue
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.,WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, Génopode, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Génopode, 1015 Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Xiang J, Li X, Chen Y, Lu Y, Yu M, Chen X, Zhang W, Zeng Y, Sun L, Chen S, Sha Z. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:199-209. [PMID: 26148855 DOI: 10.1016/j.dci.2015.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/30/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Complement factor I (Cfi) is a soluble serine protease which plays a crucial role in the modulation of complement cascades. In the presence of substrate modulating cofactors (such as complement factor H, C4bp, CR1, etc), Cfi cleaves and inactivates C3b and C4b, thereby controlling the complement-mediated processes. In this study, we sequenced and characterized Cfi gene from Cynoglossus Semilaevis (designated as CsCfi) for the first time. The full-length cDNA of CsCfi was 2230 bp in length, including a 98 bp 5'-untranslated region (UTR), a 164 bp 3'-UTR and a 1968 bp open reading frame (ORF). It encoded a polypeptide of 656 amino acids, with a molecular mass of 72.28 kDa and an isoelectric point of 7.71. A signal peptide was defined at N-terminus, resulting in a 626-residue mature protein. Multiple sequence alignment revealed that Cfi proteins were well conserved with the typical modular architecture and identical active sites throughout the vertebrates, which suggested the conserved function of Cfi. Phylogenetic analysis indicated that CsCfi and the homologous Cfi sequences from teleosts clustered into a clade, separating from another clade from the cartilaginous fish and other vertebrates. Tissue expression profile analysis by quantitative real-time PCR (qRT-PCR) showed that CsCfi mRNA constitutively expressed in all tested tissues, with the predominant expression in liver and the lowest in stomach. Temporal expression levels of CsCfi after challenging with Vibrio anguillarum showed different expression patterns in intestine, spleen, skin, blood, head kidney and liver. The recombinant CsCfi (rCsCfi) protein showed broad-spectrum antimicrobial activities against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and Shewanella putrefaciens. The research revealed that CsCfi plays an important role in C. Semilaevis immunity.
Collapse
Affiliation(s)
- Jinsong Xiang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xihong Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, National Lab for Ocean Science and Technology, Qingdao 266235, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yang Lu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Mengjun Yu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xuejie Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenting Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yan Zeng
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Luming Sun
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Colleage of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, National Lab for Ocean Science and Technology, Qingdao 266235, China
| | - Zhenxia Sha
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
46
|
Wilkins LGE, Clark ES, Farinelli L, Wedekind C, Fumagalli L. Embryonic gene expression of Coregonus palaea (whitefish) under pathogen stress as analyzed by high-throughput RNA-sequencing. FISH & SHELLFISH IMMUNOLOGY 2015; 47:130-140. [PMID: 26340848 DOI: 10.1016/j.fsi.2015.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Most fishes produce free-living embryos that are exposed to environmental stressors immediately following fertilization, including pathogenic microorganisms. Initial immune protection of embryos involves the chorion, as a protective barrier, and maternally-allocated antimicrobial compounds. At later developmental stages, host-genetic effects influence susceptibility and tolerance, suggesting a direct interaction between embryo genes and pathogens. So far, only a few host genes could be identified that correlate with embryonic survival under pathogen stress in salmonids. Here, we utilized high-throughput RNA-sequencing in order to describe the transcriptional response of a non-model fish, the Alpine whitefish Coregonus palaea, to infection, both in terms of host genes that are likely manipulated by the pathogen, and those involved in an early putative immune response. Embryos were produced in vitro, raised individually, and exposed at the late-eyed stage to a virulent strain of the opportunistic fish pathogen Pseudomonas fluorescens. The pseudomonad increased embryonic mortality and affected gene expression substantially. For example, essential, upregulated metabolic pathways in embryos under pathogen stress included ion binding pathways, aminoacyl-tRNA-biosynthesis, and the production of arginine and proline, most probably mediated by the pathogen for its proliferation. Most prominently downregulated transcripts comprised the biosynthesis of unsaturated fatty acids, the citrate cycle, and various isoforms of b-cell transcription factors. These factors have been shown to play a significant role in host blood cell differentiation and renewal. With regard to specific immune functions, differentially expressed transcripts mapped to the complement cascade, MHC class I and II, TNF-alpha, and T-cell differentiation proteins. The results of this study reveal insights into how P. fluorescens impairs the development of whitefish embryos and set a foundation for future studies investigating host pathogen interactions in fish embryos.
Collapse
Affiliation(s)
- Laetitia G E Wilkins
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emily S Clark
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luca Fumagalli
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Disparate developmental patterns of immune responses to bacterial and viral infections in fish. Sci Rep 2015; 5:15458. [PMID: 26487553 PMCID: PMC4614352 DOI: 10.1038/srep15458] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/24/2015] [Indexed: 12/26/2022] Open
Abstract
During early stages of development vertebrates rely on an immature immune system to fight pathogens, but in non mammalian species few studies have taken an in-depth analysis of the transition from reliance on innate immune mechanisms to the appearance of adaptive immunity. Using rainbow trout as a model we characterized responses to two natural pathogens of this species, the Gram negative bacterium Aeromonas salmonicida and the virus VHSV, using microarray analysis at four early life history stages; eyed egg, post hatch, first feeding and three weeks post first feeding when adaptive immunity starts to be effective. All stages responded to both infections, but the complexity of the response increased with developmental stage. The response to virus showed a clear interferon response only from first feeding. In contrast, bacterial infection induced a marked response from early stages, with modulation of inflammatory, antimicrobial peptide and complement genes across all developmental stages. Whilst the viral and bacterial responses were distinct, there were modulated genes in common, mainly of general inflammatory molecules. This work provides a first platform to explore the development of fish immunity to infection, and to compare the age-dependent changes (from embryo to adults) across vertebrates.
Collapse
|
48
|
Makesh M, Sudheesh PS, Cain KD. Systemic and mucosal immune response of rainbow trout to immunization with an attenuated Flavobacterium psychrophilum vaccine strain by different routes. FISH & SHELLFISH IMMUNOLOGY 2015; 44:156-163. [PMID: 25687393 DOI: 10.1016/j.fsi.2015.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Teleosts possess three immunoglobulin (Ig) heavy chain isotypes viz., IgM, IgT and IgD and all three isotypes are reported in rainbow trout. The expression of these Ig isotypes in response to different immunization routes was investigated and results provide a better understanding of the role these Igs in different tissues. Rainbow trout (Oncorhynchus mykiss) were immunized with an attenuated Flavobacterium psychrophilum strain, 259-93-B.17 grown under iron limiting conditions, by intraperitoneal, anal intubation and immersion routes. Serum, gill mucus, skin mucus and intestinal mucus samples were collected at 0, 3, 7, 14, 28, 42 and 56 days post immunization by sacrificing four fish from each treatment group and the unimmunized control group, and the IgM levels were estimated by an enzyme linked immunosorbent assay (ELISA). In addition, blood, gill, skin and intestinal tissue samples were collected for Ig gene expression studies. The secretory IgM, IgD and IgT gene expression levels in these tissues were estimated by reverse transcription quantitative real time PCR (RT-qPCR). Levels of IgM in serum, gill and skin mucus increased significantly by 28 days after immunization in the intraperitoneally immunized group, while no significant increase in IgM level was observed in fish groups immunized by other routes. Secretory IgD and IgT expression levels were significantly upregulated in gills of fish immunized by the immersion route. Similarly, secretory IgT and IgD were upregulated in intestines of fish immunized by anal intubation route. The results confirm mucosal association of IgT and suggest that IgD may also be specialized in mucosal immunity and contribute to immediate protection to the fish at mucosal surfaces.
Collapse
Affiliation(s)
- M Makesh
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844-1136, USA; Aquatic Environment and Health Management Division, Central Institute of Fisheries Education, Versova, Mumbai 400061, India.
| | - Ponnerassery S Sudheesh
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844-1136, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844-1136, USA
| |
Collapse
|
49
|
Huang Q, Chen Y, Chi Y, Lin Y, Zhang H, Fang C, Dong S. Immunotoxic effects of perfluorooctane sulfonate and di(2-ethylhexyl) phthalate on the marine fish Oryzias melastigma. FISH & SHELLFISH IMMUNOLOGY 2015; 44:302-306. [PMID: 25687394 DOI: 10.1016/j.fsi.2015.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and di(2-ethylhexyl) phthalate (DEHP) have both been reported to induce adverse effects including immunotoxicity. Despite the widespread presence of these two chemicals in estuaries and seawater, their health effects on marine fish have received little attention. Oryzias melastigma is a potential marine fish model for immunological studies. In the present study, immune-related genes in O. melastigma were enriched at the transcriptome level. Three-month-old fish were exposed to PFOS and DEHP (single or combined) for one week. The liver index-hepatosomatic index (HSI) of the fish was higher in the PFOS-exposed group and combined group than in the control group. This result indicates that PFOS might lead to liver toxicity. The mRNA level of interleukin-1 beta (IL1β) was upregulated after exposure. For catalase (CAT), glutathione peroxidase (GPx) and cluster of differentiation 3 (CD3), single exposure did not affect mRNA levels, but the combined exposure did significantly alter the expression of these genes. In all, our study provides a useful reference for immunotoxicological studies with O. melastigma; it also highlights the importance of assessing the combined effects of pollutant mixtures when determining the risk to aquatic organisms.
Collapse
Affiliation(s)
- Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Universidad Tecnica de Manabi, Portoviejo, Ecuador.
| | - Yajie Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yulang Chi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yi Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Huanteng Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Chao Fang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Sijun Dong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
50
|
Liu Y, de Bruijn I, Jack ALH, Drynan K, van den Berg AH, Thoen E, Sandoval-Sierra V, Skaar I, van West P, Diéguez-Uribeondo J, van der Voort M, Mendes R, Mazzola M, Raaijmakers JM. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. THE ISME JOURNAL 2014; 8:2002-14. [PMID: 24671087 PMCID: PMC4184010 DOI: 10.1038/ismej.2014.44] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 12/18/2022]
Abstract
Animals and plants are increasingly suffering from diseases caused by fungi and oomycetes. These emerging pathogens are now recognized as a global threat to biodiversity and food security. Among oomycetes, Saprolegnia species cause significant declines in fish and amphibian populations. Fish eggs have an immature adaptive immune system and depend on nonspecific innate defences to ward off pathogens. Here, meta-taxonomic analyses revealed that Atlantic salmon eggs are home to diverse fungal, oomycete and bacterial communities. Although virulent Saprolegnia isolates were found in all salmon egg samples, a low incidence of Saprolegniosis was strongly correlated with a high richness and abundance of specific commensal Actinobacteria, with the genus Frondihabitans (Microbacteriaceae) effectively inhibiting attachment of Saprolegniato salmon eggs. These results highlight that fundamental insights into microbial landscapes of fish eggs may provide new sustainable means to mitigate emerging diseases.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Allison LH Jack
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Prescott College, Environmental Studies Program, Prescott, AZ, USA
| | | | - Albert H van den Berg
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Even Thoen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Ida Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Menno van der Voort
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, Brazil
| | | | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|