1
|
Cao Z, Wang Y, Cheng SC, He N. Human endogenous retrovirus-H long terminal repeat-associating 2: an emerging immune checkpoint for cancer immunotherapy. J Leukoc Biol 2025; 117:qiae158. [PMID: 38973642 DOI: 10.1093/jleuko/qiae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024] Open
Abstract
Human endogenous retrovirus-H long terminal repeat-associating 2 (HHLA2), a member of the B7 family of co-signaling molecules, is aberrantly expressed in various human cancers and has emerged as a promising target for cancer immunotherapy. It exhibits a unique structure and tissue distribution pattern compared to other B7 family members, where its expression is regulated by the complex physiological and tumor microenvironment. HHLA2 plays a crucial but contradictory role in immune modulation and is thereby associated with heterogeneous prognostic implications across different cancer types. It interacts with two distinct receptors: transmembrane and immunoglobulin domain-containing 2 (TMIGD2), which is predominantly expressed on naïve T and natural killer (NK) cells to deliver co-stimulatory signals to T cells and NK cells, and killer cell immunoglobulin-like receptor, three immunoglobulin domains, and long cytoplasmic tail (KIR3DL3), which is prevalent on terminally differentiated T and CD56dim CD16+ NK cells to transmit inhibitory signals. The expression dynamics of these receptors on immune cells contribute to the maintenance of immune response homeostasis. Therapeutic strategies targeting the HHLA2 immune checkpoint aim to selectively inhibit the immunosuppressive HHLA2-KIR3DL3 pathway while preserving the HHLA2-TMIGD2 signaling. Several anti-HHLA2 and anti-KIR3DL3 antibodies are currently under investigation in early clinical trials, building upon encouraging results observed in humanized mouse models. Notably, the nonoverlapping expression of HHLA2 and PD-L1 in tumors suggests potential synergistic benefits of combining HHLA2-KIR3DL3-targeted therapies with PD-1/PD-L1 blockade or anti-CTLA-4 to augment antitumor activity.
Collapse
Affiliation(s)
- Zeya Cao
- Department of Biosciences, Adlai Nortye Biopharma Co., Ltd., No. 1008 Xiangwang Street, Hangzhou 311121, Zhejiang, China
| | - Youping Wang
- Department of Biosciences, Adlai Nortye Biopharma Co., Ltd., No. 1008 Xiangwang Street, Hangzhou 311121, Zhejiang, China
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, No. 422 Siming South Road, Xiamen 361102, Fujian, China
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, No. 422 Siming South Road, Xiamen 361102, Fujian, China
| | - Nanhai He
- Department of Biosciences, Adlai Nortye Biopharma Co., Ltd., No. 1008 Xiangwang Street, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
2
|
Quiniou SMA, Clark T, Bengtén E, Rast JP, Ohta Y, Flajnik M, Boudinot P. Extraordinary diversity of the CD28/CTLA4 family across jawed vertebrates. Front Immunol 2024; 15:1501934. [PMID: 39606244 PMCID: PMC11599192 DOI: 10.3389/fimmu.2024.1501934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Members of the CD28 family are critical for the control of immune cell activation. While CD28 and CTLA4 were previously identified in teleost fish, most members of the CD28 family have been described only in tetrapods. Using a comparative genomics approach, we found (co)orthologs of all members of the CD28 family both in Chondrichthyes and basal Osteichthyes groups, but not in Agnathans. Four additional members of the family were identified, which were present in both Chondrichthyes and Osteichthyes, some even in the tetrapod lineage but all of them absent in human. Herein, we extend the composition of the jawed vertebrate CD28 family to nine members: CD28, CTLA4, ICOS, CD28H, CD28HL1, CD28HL2, CD28HL3, CD28X and PD-1. Each of these genes had a single extracellular IgSF V domain, and conserved motifs in the V and the cytoplasmic domain. While a genomic cluster of three consecutive genes like CD28/CTLA4/ICOS was conserved across jawed vertebrates except in teleosts, the other members of the CD28 family were located on multiple chromosomes. Our findings show that these co-stimulatory/co-inhibitory receptors likely arose in early jawed vertebrates, and diversified when the Ig/TCR/MHC-based adaptive immunity emerged, heralding the advent of complex regulatory networks controlling lymphocyte activation.
Collapse
Affiliation(s)
| | - Thomas Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Eva Bengtén
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jonathan P. Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy−en−Josas, France
| |
Collapse
|
3
|
Flajnik MF. The Janus (dual) model of immunoglobulin isotype evolution: Conservation and plasticity are the defining paradigms. Immunol Rev 2024; 328:49-64. [PMID: 39223989 PMCID: PMC12010099 DOI: 10.1111/imr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Deng Y, Shi M, Yi L, Naveed Khan M, Xia Z, Li X. Eliminating a barrier: Aiming at VISTA, reversing MDSC-mediated T cell suppression in the tumor microenvironment. Heliyon 2024; 10:e37060. [PMID: 39286218 PMCID: PMC11402941 DOI: 10.1016/j.heliyon.2024.e37060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment by producing remarkable clinical outcomes for patients with various cancer types. However, only a subset of patients benefits from immunotherapeutic interventions due to the primary and acquired resistance to ICIs. Myeloid-derived suppressor cells (MDSCs) play a crucial role in creating an immunosuppressive tumor microenvironment (TME) and contribute to resistance to immunotherapy. V-domain Ig suppressor of T cell activation (VISTA), a negative immune checkpoint protein highly expressed on MDSCs, presents a promising target for overcoming resistance to current ICIs. This article provides an overview of the evidence supporting VISTA's role in regulating MDSCs in shaping the TME, thus offering insights into how to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yayuan Deng
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yi
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Western(Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, No. 28 Gaoxin Avenue, High-tech Zone, Chongqing, 401329, China
| |
Collapse
|
5
|
Zhou S, Wang Z, Zhao D, Fu Y, Zhang S, Wang Z, Zou X. HHLA2 deficiency inhibits pancreatic cancer progression and THP-1 macrophage M2 polarization via EGFR/MAPK/ERK and mTOR/AKT pathway. World J Surg Oncol 2024; 22:133. [PMID: 38762741 PMCID: PMC11102221 DOI: 10.1186/s12957-024-03409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Human endogenous retrovirus subfamily H long terminal repeat associating protein 2, (HHLA2), a member of B7 family, exhibits heightened expression in various malignant tumors. However, the exact functions of HHLA2 in pancreatic cancer (PC) remain incompletely elucidated. METHODS We initially conducted an analysis of the B7 family members' expression pattern in pancreatic tumor samples and adjacent normal tissues using The Cancer Genome Atlas (TCGA) database. Subsequently, immunohistochemistry, RT-qPCR and western blot methods were used to assess HHLA2 expression levels in PC tissues and cell lines. Furthermore, after silencing HHLA2 in PC cell lines, cell migration and proliferation of PC cells were detected by wound healing and CCK-8 assays, and cell invasion of PC cells was detected by transwell assays. We also investigated the regulation of epithelial-mesenchymal transition (EMT) markers and levels of EGFR, MEK, ERK1/2, mTOR and AKT via western blot analysis. Finally, the correlation between HHLA2 expression and immune infiltration was further explored. RESULTS Silencing of HHLA2 resulted in the inhibition of PC cell proliferation, migration and invasion, potentially through the suppression of the EGFR/MAPK/ERK and mTOR/AKT signaling pathway. Additionally, silencing HHLA2 led to the inhibition of M2-type polarization of tumor associated macrophages (TAMs). CONCLUSION The knockdown of HHLA2 was observed to inhibit the migration and invasion of PC cells through the regulation of the EMT process and EGFR/MAPK/ERK and mTOR/AKT pathway. Furthermore, silencing HHLA2 was found to modulate M2 polarization of TAMs. These finding suggest that HHLA2 could be a promising therapeutic target for Pancreatic cancer.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, No.321, Zhongshan Road, Nanjing, 210008, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dian Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, No.321, Zhongshan Road, Nanjing, 210008, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Road, Xuzhou, 221000, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, No.321, Zhongshan Road, Nanjing, 210008, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
6
|
Zhang D, Xie J, Sun F, Xu R, Liu W, Xu J, Huang X, Zhang G. Pharmacological suppression of HHLA2 glycosylation restores anti-tumor immunity in colorectal cancer. Cancer Lett 2024; 589:216819. [PMID: 38522775 DOI: 10.1016/j.canlet.2024.216819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Immunotherapy aimed at inhibiting the negative co-stimulatory molecule programmed cell death-ligand 1 (PD-L1) has limited effectiveness, with clinical response rates remaining below 10%-15%. Therefore, new immune checkpoints need to be explored. Our study focused on human endogenous retrovirus H long terminal repeat-associating protein 2 (HHLA2), a highly glycosylated member of the B7 family that is widely expressed in colorectal cancer. HHLA2 expression negatively correlates with the prognosis of colorectal cancer. Glycosylation of HHLA2, which is regulated by the glycosyltransferase STT3 oligosaccharyltransferase complex catalytic subunit A (STT3A), is crucial for protein stability and expression in cell membranes. Additionally, the binding of HHLA2 to the receptors killer cell immunoglobulin-like receptor, three immunoglobulin domains and long cytoplasmic tail 3 (KIR3DL3) and transmembrane and immunoglobulin (Ig) domain containing 2 (TMIGD2) is dependent on N-glycosylation. Moreover, N-glycosylation of HHLA2 promotes immune evasion in colorectal cancer by suppressing the immune response of NK cells. Notably, the STT3A inhibitor NGI-1 enhances the anti-tumor immune response of NK cells. Our findings provide new insights and a molecular basis for targeting HHLA2 in immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jinjing Xie
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | | | - Ruyan Xu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wenjun Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jia Xu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xue Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215000, China; Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou, 215000, China.
| |
Collapse
|
7
|
Quiniou SMA, Bengtén E, Boudinot P. Costimulatory receptors in the channel catfish: CD28 family members and their ligands. Immunogenetics 2024; 76:51-67. [PMID: 38197898 DOI: 10.1007/s00251-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.
Collapse
Affiliation(s)
| | - Eva Bengtén
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 39216, Jackson, MS, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 39216, Jackson, MS, USA
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
8
|
Janes ME, Kinlein A, Flajnik MF, Du Pasquier L, Ohta Y. Genomic view of the origins of cell-mediated immunity. Immunogenetics 2023; 75:479-493. [PMID: 37735270 PMCID: PMC11019866 DOI: 10.1007/s00251-023-01319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
NKp30 is an activating natural killer cell receptor (NKR) with a single-exon variable (VJ)-type immunoglobulin superfamily (IgSF) domain. Such VJ-IgSF domains predate the emergence of the antigen receptors (immunoglobulin and T cell receptor), which possess the same domain but undergo gene rearrangement. NCR3, the gene encoding NKp30, is present in jawed vertebrates from sharks to mammals; thus, unlike most NKR that are highly divergent among vertebrate taxa, NKp30 is uniquely conserved. We previously hypothesized that an ancestral NCR3 gene was encoded in the proto-major histocompatibility complex (MHC), the region where many immune-related genes have accumulated. Herein, we searched in silico databases to identify NCR3 paralogues and examined their genomic locations. We found a paralogue, NCR3H, in many vertebrates but was lost in mammals. Additionally, we identified a set of voltage-gated sodium channel beta (SCNB) genes as NCR3-distantly-related genes. Like NCR3, both NCR3H and SCNB proteins contain a single VJ-IgSF domain followed by a transmembrane region. These genes map to MHC paralogous regions, originally described in an invertebrate, along with genes encoding cell adhesion molecules involved in NK cell recognition networks. Other genes having no obvious relationship to immunity also map to these paralogous regions. These gene complexes were traced to several invertebrates, suggesting that the foundation of these cellular networks emerged before the genome-wide duplications in early gnathostome history. Here, we propose that this ancestral region was involved in cell-mediated immunity prior to the emergence of adaptive immunity and that NCR3 piggybacked onto this primordial complex, heralding the emergence of vertebrate NK cell/T cells.
Collapse
Affiliation(s)
- Morgan E Janes
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Allison Kinlein
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Louis Du Pasquier
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Chen H, Zhang Y, Shen Y, Jiang L, Zhang G, Zhang X, Xu Y, Fu F. Deficiency of N-linked glycosylation impairs immune function of B7-H6. Front Immunol 2023; 14:1255667. [PMID: 38035117 PMCID: PMC10684670 DOI: 10.3389/fimmu.2023.1255667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
B7-H6 is a novel immune checkpoint molecule that triggers NK cell cytotoxicity, but the role of N-glycosylation in B7-H6 is poorly understood. We here identified the existence of N-glycosylation of B7-H6 in different cell lines and exogenous expression cells by PNGase F digestion and tunicamycin blockage. Subsequently, we demonstrated that B7-H6 contains 6 functional N-linked glycosylation sites by single site mutation and electrophoresis. Phylogenetical and structural analysis revealed that N43 and N208 glycan are conserved in jawed vertebrates and may thus contribute more to the biological functions. We further demonstrated that N43 and N208 glycosylation are essential for B7-H6 to trigger NK cell activation. Mechanistically, we found that N43 and N208 glycan contributed to the stability and membrane expression of B7-H6 protein. Lack of N208 glycosylation led to membrane B7-H6 shedding, while N43 mutation resulted in impaired B7-H6/NKp30 binding affinity. Together, our findings highlight the significance of N-linked glycosylation in B7-H6 biological functions and suggest potential targets for modulating NK cell-mediated immunity.
Collapse
Affiliation(s)
- Hanqing Chen
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hematology, the First affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Jiang
- Suzhou Red Cross Blood Center, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Xu
- Department of Hematology, the First affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fengqing Fu
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Flajnik MF, Stanfield R, Pokidysheva EN, Boudko SP, Wilson I, Ohta Y. An Ancient MHC-Linked Gene Encodes a Nonrearranging Shark Antibody, UrIg, Convergent with IgG. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1042-1051. [PMID: 37540118 PMCID: PMC10530332 DOI: 10.4049/jimmunol.2300361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Gnathostome adaptive immunity is defined by the Ag receptors, Igs and TCRs, and the MHC. Cartilaginous fish are the oldest vertebrates with these adaptive hallmarks. We and others have unearthed nonrearranging Ag receptor-like genes in several vertebrates, some of which are encoded in the MHC or in MHC paralogous regions. One of these genes, named UrIg, was detected in the class III region of the shark MHC that encodes a protein with typical V and C domains such as those found in conventional Igs and TCRs. As no transmembrane region was detected in gene models or cDNAs, the protein does not appear to act as a receptor. Unlike some other shark Ig genes, the UrIg V region shows no evidence of RAG-mediated rearrangement, and thus it is likely related to other V genes that predated the invasion of the RAG transposon. The UrIg gene is present in all elasmobranchs and evolves conservatively, unlike Igs and TCRs. Also, unlike Ig/TCR, the gene is not expressed in secondary lymphoid tissues, but mainly in the liver. Recombinant forms of the molecule form disulfide-linked homodimers, which is the form also detected in many shark tissues by Western blotting. mAbs specific for UrIg identify the protein in the extracellular matrix of several shark tissues by immunohistochemistry. We propose that UrIg is related to the V gene invaded by the RAG transposon, consistent with the speculation of emergence of Ig/TCR within the MHC or proto-MHC.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD
| | - Robyn Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | - Ian Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD
| |
Collapse
|
11
|
Su Q, Du J, Xiong X, Xie X, Wang L. B7-H7: A potential target for cancer immunotherapy. Int Immunopharmacol 2023; 121:110403. [PMID: 37290327 DOI: 10.1016/j.intimp.2023.110403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Cancer immunotherapy enhances the body's immunity against tumors by mitigating immune escape. Compared with traditional chemotherapy, immunotherapy has the advantages of fewer drugs, a wider range of action and fewer side effects. B7-H7 (also known as HHLA2, B7y) is a member of the B7 family of costimulatory molecules that was discovered more than 20 years ago. B7-H7 is mostly expressed in organs such as the breast, intestine, gallbladder and placenta and is detected predominantly in monocytes/macrophages in the immune system. Its expression is upregulated after stimulation by inflammatory factors such as lipopolysaccharide and interferon-γ. B7-H7/transmembrane and immunoglobulin domain containing 2 (TMIGD2) and killer cell immunoglobulin-like receptor, three Ig domains and long cytoplasmic tail 3 (KIR3DL3)-B7-H7 are the two currently confirmed signaling pathways for B7-H7. An increasing number of studies have demonstrated that B7-H7 is widely present in a variety of human tumor tissues, especially in programmed cell death-1 (PD-L1)-negative human tumors. B7-H7 promotes tumor progression, disrupts T-cell-mediated antitumor immunity, and inhibits immune surveillance. B7-H7 also triggers tumor immune escape and is associated with clinical stage, depth of tumor infiltration, metastasis, prognosis, and survival related to different tumor types. Multiple studies have shown that B7-H7 is a promising immunotherapeutic target. Herein, review the current literature on the expression, regulation, receptors and function of B7-H7 and its regulation/function in tumors.
Collapse
Affiliation(s)
- Quanping Su
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jingyi Du
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; School of Cinical Medicine, Shandong First Medical Universiy & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Xingfang Xiong
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Hematology, Linyi People's Hospital, Linyi, Shandong Province, China.
| |
Collapse
|
12
|
Wcisel DJ, Dornburg A, McConnell SC, Hernandez KM, Andrade J, de Jong JLO, Litman GW, Yoder JA. A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish indicates a wide range of functions with complex relationships to mammalian receptors. Immunogenetics 2023; 75:53-69. [PMID: 35869336 PMCID: PMC9845131 DOI: 10.1007/s00251-022-01270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Multiple novel immunoglobulin-like transcripts (NILTs) have been identified from salmon, trout, and carp. NILTs typically encode activating or inhibitory transmembrane receptors with extracellular immunoglobulin (Ig) domains. Although predicted to provide immune recognition in ray-finned fish, we currently lack a definitive framework of NILT diversity, thereby limiting our predictions for their evolutionary origin and function. In order to better understand the diversity of NILTs and their possible roles in immune function, we identified five NILT loci in the Atlantic salmon (Salmo salar) genome, defined 86 NILT Ig domains within a 3-Mbp region of zebrafish (Danio rerio) chromosome 1, and described 41 NILT Ig domains as part of an alternative haplotype for this same genomic region. We then identified transcripts encoded by 43 different NILT genes which reflect an unprecedented diversity of Ig domain sequences and combinations for a family of non-recombining receptors within a single species. Zebrafish NILTs include a sole putative activating receptor but extensive inhibitory and secreted forms as well as membrane-bound forms with no known signaling motifs. These results reveal a higher level of genetic complexity, interindividual variation, and sequence diversity for NILTs than previously described, suggesting that this gene family likely plays multiple roles in host immunity.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, 28223, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Kyle M Hernandez
- Center for Translational Data Science and Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL, USA
- Current Affiliation: Kite Pharma, Santa Monica, 90404, CA, USA
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, 33701, FL, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA.
| |
Collapse
|
13
|
Mohammadi A, Najafi S, Amini M, Mansoori B, Baghbanzadeh A, Hoheisel JD, Baradaran B. The potential of B7-H6 as a therapeutic target in cancer immunotherapy. Life Sci 2022; 304:120709. [PMID: 35697295 DOI: 10.1016/j.lfs.2022.120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022]
Abstract
Immune checkpoints are vital molecules that regulate T-cell function by activation or inhibition. Among the immune checkpoint molecules, the B7-family proteins are significantly involved in the immune escape of tumor cells. By binding to inhibitory receptors, they can suppress T-cell-mediated immunity. B7-family proteins are found at various stages of tumor microenvironment formation and promote tumorigenesis and tumor progression. B7-H6 (encoded by gene NCR3LG1) is a prominent member of the family. It has unique immunogenic properties and is involved in natural killer (NK) cell immunosurveillance by binding to the NKp30 receptor. High B7-H6 expression in certain tumor types and shortage of or low expression in healthy cells - except in cases of inflammatory or microbial stimulation - have made the protein an attractive target of research activities in recent years. The avoidance of NK-mediated B7-H6 detection is a mechanism through which tumor cells escape immune surveillance. The stimulation of tumorigenesis occurs by suppressing caspase cascade initiation and anti-apoptosis activity stimulation via the STAT3 pathway. The B7-H6-NKp30 complex on the tumor membrane activates the NK cells and releases both tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). B7-H6 is highly expressed in a wide range of tumor cells, including glioma, hematologic malignant tumors, and breast cancer cells. Clinical examination of cancer patients indicated that the expression of B7-H6 is related to distant metastasis status and permits postoperative prognosis. Because of its unique properties, B7-H6 has a high potential be utilized as a biological marker for cancer diagnosis and prognosis, as well as a target for novel treatment options.
Collapse
Affiliation(s)
- Alaleh Mohammadi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Human endogenous retrovirus-H long terminal repeat-associating 2: The next immune checkpoint for antitumour therapy. EBioMedicine 2022; 79:103987. [PMID: 35439678 PMCID: PMC9035628 DOI: 10.1016/j.ebiom.2022.103987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Human endogenous retrovirus-H long terminal repeat-associating 2 (HHLA2) is a newly emerging immune checkpoint that belongs to B7 family. HHLA2 has a co-stimulatory receptor transmembrane and immunoglobulin domain containing 2 (TMIGD2) and a newly discovered co-inhibitory receptor killer cell Ig-like receptor, three Ig domains, and long cytoplasmic tail (KIR3DL3), which endows it with both immunostimulant and immunosuppression functions in cancer development. In this review, we summarize the HHLA2 expression profile in human cancers, its association with cancer prognosis and clinical features, and its dual roles in regulating cancer immune response through up-to-date literatures. Furthermore, we highlight that precision cancer immunotherapy through manipulating HHLA2-KIR3DL3/TMIGD2 interaction is a promising antitumour strategy.
Collapse
|
15
|
Lin YS, Hsieh SJ, Tsai KC, Cheng MH, Yang TW, Lin TY, Chang FL, Chiang CW, Chen WC, Huang HT, Lee YC. Blockade effect of avian-derived anti-VISTA antibodies on immunosuppressive responses. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2063951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yun-Shih Lin
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Shang-Ju Hsieh
- Division of Urology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hui Cheng
- Department of Laboratory Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Tz-Wen Yang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Fu-Ling Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Chen-Wei Chiang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wang-Chuan Chen
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Hsien-Te Huang
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Yu-Ching Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Zhang C, Wang F, Sun N, Zhang Z, Zhang G, Zhang Z, Luo Y, Che Y, Cheng H, Li J, He J. The combination of novel immune checkpoints HHLA2 and ICOSLG: A new system to predict survival and immune features in esophageal squamous cell carcinoma. Genes Dis 2022; 9:415-428. [PMID: 35224157 PMCID: PMC8843897 DOI: 10.1016/j.gendis.2020.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 08/14/2020] [Indexed: 12/09/2022] Open
Abstract
Studies on immune checkpoint inhibitors targeting B7-CD28 family pathways in esophageal squamous cell carcinoma (ESCC) have shown promising results. However, a comprehensive understanding of B7-CD28 family members in ESCC is still limited. This study aimed to construct a novel B7-CD28 family-based prognosis system to predict survival in patients with ESCC. We collected 179 cases from our previously published microarray data and 86 cases with qPCR data. Specifically, 119 microarray data (GSE53624) were used as a training set, whereas the remaining 60 microarray data (GSE53622), all 179 microarray data (GSE53625) and an independent cohort with 86 qPCR data were used for validation. The underlying mechanism and immune landscape of the system were also explored using bioinformatics and immunofluorescence. We examined 13 well-defined B7-CD28 family members and identified 2 genes (ICSOLG and HHLA2) with the greatest prognostic value. A system based on the combination HHLA2 and ICOSLG (B7-CD28 signature) was constructed to distinguish patients as high- or low-risk of an unfavorable outcome, which was further confirmed as an independent prognostic factor. As expected, the signature was well validated in the entire cohort and in the independent cohort, as well as in different clinical subgroups. The signature was found to be closely related to immune-specific biological processes and pathways. Additionally, high-risk group samples demonstrated high infiltration of Tregs and fibroblasts and distinctive immune checkpoint panels. Collectively, we built the first, practical B7-CD28 signature for ESCC that could independently identify high-risk patients. Such information may help inform immunotherapy-based treatment decisions for patients with ESCC.
Collapse
|
17
|
Dornburg A, Yoder JA. On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics 2022; 74:111-128. [PMID: 34981186 DOI: 10.1007/s00251-021-01232-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023]
Abstract
For over half a century, deciphering the origins of the genomic loci that form the jawed vertebrate adaptive immune response has been a major topic in comparative immunogenetics. Vertebrate adaptive immunity relies on an extensive and highly diverse repertoire of tandem arrays of variable (V), diversity (D), and joining (J) gene segments that recombine to produce different immunoglobulin (Ig) and T cell receptor (TCR) genes. The current consensus is that a recombination-activating gene (RAG)-like transposon invaded an exon of an ancient innate immune VJ-bearing receptor, giving rise to the extant diversity of Ig and TCR loci across jawed vertebrates. However, a model for the evolutionary relationships between extant non-recombining innate immune receptors and the V(D)J receptors of the jawed vertebrate adaptive immune system has only recently begun to come into focus. In this review, we provide an overview of non-recombining VJ genes, including CD8β, CD79b, natural cytotoxicity receptor 3 (NCR3/NKp30), putative remnants of an antigen receptor precursor (PRARPs), and the multigene family of signal-regulatory proteins (SIRPs), that play a wide range of roles in immune function. We then focus in detail on the VJ-containing novel immune-type receptors (NITRs) from ray-finned fishes, as recent work has indicated that these genes are at least 50 million years older than originally thought. We conclude by providing a conceptual model of the evolutionary origins and phylogenetic distribution of known VJ-containing innate immune receptors, highlighting opportunities for future comparative research that are empowered by this emerging evolutionary perspective.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
18
|
Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The Positive and Negative Immunoregulatory Role of B7 Family: Promising Novel Targets in Gastric Cancer Treatment. Int J Mol Sci 2021; 22:ijms221910719. [PMID: 34639059 PMCID: PMC8509619 DOI: 10.3390/ijms221910719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
19
|
Sun W, Li S, Tang G, Sun S, Luo Y, Bai R, Han L, Jiang X, Gao Y, Huang Z, Zhang J, Gong Y, Xie C. HHLA2 deficiency inhibits non-small cell lung cancer progression and THP-1 macrophage M2 polarization. Cancer Med 2021; 10:5256-5269. [PMID: 34152094 PMCID: PMC8335813 DOI: 10.1002/cam4.4081] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) is a member of B7 family, which is upregulated in multiple tumors. However, its exact functions in non-small cell lung cancer (NSCLC) have not been fully understood. This study aimed to investigate the biological roles of HHLA2 in human NSCLC and the relevant mechanisms. In addition, the effects of tumor cell-derived HHLA2 on tumor-associated macrophage (TAM) polarization were explored. METHODS NSCLC cell growth, migration, and invasion were assessed by colony formation and modified Boyden chamber assays. Cell cycle and the CD163+ TAMs were examined by flow cytometry. A co-culture model of THP-1 macrophages and NSCLC cells was conducted to investigate the impacts of tumor cell-derived HHLA2 on THP-1 macrophage polarization. Moreover, a xenograft nude mouse model was established to explore the effects of HHLA2 on tumorigenesis in vivo. RESULTS HHLA2 was upregulated in A549 and H1299 cells compared with the normal lung epithelial BEAS-2B cells. HHLA2 deficiency inhibited NSCLC cell proliferation, migration, invasion, and induced G0/G1 phase arrest partially via inhibiting EGFR/MAPK/ERK signaling pathway. Furthermore, HHLA2 knockdown inhibited M2 polarization of TAMs via downregulating IL-10. In addition, knockdown of HHLA2 inhibited tumor growth in vivo. CONCLUSION HHLA2 downregulation inhibited NSCLC growth and TAM M2 polarization. HHLA2 may serve as a therapeutic target and promising prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Rubio-Garrido M, Avendaño-Ortiz J, Ndarabu A, Rubio C, Reina G, López-Collazo E, Holguín Á. Dried Blood Specimens as an Alternative Specimen for Immune Response Monitoring During HIV Infection: A Proof of Concept and Simple Method in a Pediatric Cohort. Front Med (Lausanne) 2021; 8:678850. [PMID: 34211989 PMCID: PMC8239183 DOI: 10.3389/fmed.2021.678850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/07/2021] [Indexed: 01/23/2023] Open
Abstract
Programs to prevent mother-to-child HIV transmission do not reduce the number of infants exposed during pregnancy and breastfeeding. HIV-exposed but uninfected children (HEU) present higher risk of morbidity and mortality than HIV-unexposed and uninfected children (UU). In this line, the study of immune biomarkers in HIV could improve prediction of disease progression, allowing to diminish comorbidity risk. Dried blood specimens (DBS) are an alternative to serum for collecting and transporting samples in countries with limited infrastructure and especially interesting for groups such as pediatrics, where obtaining a high sample volume is challenging. This study explores the usefulness of DBS for immune profile monitoring in samples from 30 children under clinical follow-up in Kinshasa: 10 HIV-infected (HIV+), 10 HEU, and 10 UU. We have measured the gene expression levels of 12 immune and inflammatory markers (CD14, IL-6, TNFα, HVEM, B7.1, HIF-1α, Siglec-10, IRAK-M, CD163, B7H5, PD-L1, and Galectin-9) in DBS samples by reverse transcription of total RNA and RT-qPCR. Principal component analysis, Kruskal-Wallis test, and Mann-Whitney test were performed in order to study group differences. HIV+ children presented significantly higher levels of seven biomarkers (CD14, IL-6 HVEM, B7.1, Siglec-10, HIF-1α, and CD163) than the UU group. In HEU, we found seven biomarkers significantly elevated (CD14, IL-6, HVEM, B7.1, Siglec-10, HIF-1α, and IRAK-M) vs. UU. Six biomarkers (CD14, IL-6, HVEM, B7.1, Siglec-10, and HIF-1α) showed a significantly higher expression in both HIV+ and HEU vs. UU, with HVEM and CD14 being significantly overexpressed among HIV+ vs. HEU. Our data reveal the utility of DBS for immune response monitoring. Moreover, significant differences in specific biomarker expression across groups strongly suggest the effect of HIV infection and/or HIV exposure on these immune biomarkers' expressions.
Collapse
Affiliation(s)
- Marina Rubio-Garrido
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department, Ramón y Cajal University Hospital- Instituto Ramón y Cajal para la Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública - Red de Investigación Traslacional en Infectología Pediátrica (CIBERESP-RITIP), Madrid, Spain
| | - José Avendaño-Ortiz
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory and Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Carolina Rubio
- Tumor Immunology Laboratory and Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Eduardo López-Collazo
- Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.,Tumor Immunology Laboratory and Innate Immunity Group, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department, Ramón y Cajal University Hospital- Instituto Ramón y Cajal para la Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública - Red de Investigación Traslacional en Infectología Pediátrica (CIBERESP-RITIP), Madrid, Spain
| |
Collapse
|
21
|
Farrag MS, Ibrahim EM, El-Hadidy TA, Akl MF, Elsergany AR, Abdelwahab HW. Human Endogenous Retrovirus-H Long Terminal Repeat- Associating Protein 2 (HHLA2) is a Novel Immune Checkpoint Protein in Lung Cancer which Predicts Survival. Asian Pac J Cancer Prev 2021; 22:1883-1889. [PMID: 34181347 PMCID: PMC8418860 DOI: 10.31557/apjcp.2021.22.6.1883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022] Open
Abstract
ackground: Lung cancer is one of the most frequently diagnosed malignancies. Human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) is a recently discovered ligand of the B7 family. Blocking this immune checkpoint has become an important treatment option for lung cancer. METHODS The study includes 62 biopsy specimens either bronchoscopic or CT-guided biopsies diagnosed as lung cancer in Hospitals of Faculty of Medicine, Mansoura University, Egypt during the period from 2016 to 2020. Immunohistochemical Staining for HHLA2 and EGFR was performed. HHLA2 expression was assessed in different pathological types of lung Cancer, and it was correlated with other clinicopathologic parameters and patient prognosis. RESULTS We found a significant association between HHLA2 expression and metastasis. About 83% of patients presented with metastasis showed positive expression of HHLA2 compared to 44.4% in patients with no metastasis (p=0.02). Also, results show significant mild positive correlation between expression of HHLA2 and EGFR markers (p=0.045). The mean OS time in cases with positive HHLA2 expression was nearly half that of patients with negative expression of the markers. However, this difference was not statistically significant. But, PFS of patients was significantly lower among the group with positive expression of HHLA2 compared to the group with negative expression of HHLA2 (p= 0.01). CONCLUSIONS This study reports that recently discovered, HHLA2 is over expressed in lung cancer associating with higher stage. It is also correlated with EGFR overexpression. HHLA2 could serve as a predictor of progression and distant metastasis. Also, it has potential to be effective immune target in lung cancer immunotherapy such as checkpoint blockade and antibody-drug conjugate treatment. .
Collapse
Affiliation(s)
- Mayada Saad Farrag
- Department of Pathology, Faculty of Medicine, Port Said University, Port Said, Egypt.
| | - Eman Mohamad Ibrahim
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Tamer A El-Hadidy
- Department Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mohamed Farouk Akl
- Department of Clinical Oncology & Nuclear Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Alyaa R Elsergany
- Department Internal Medicine, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Heba Wagih Abdelwahab
- Department Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
22
|
Immune checkpoint molecules B7-H6 and PD-L1 co-pattern the tumor inflammatory microenvironment in human breast cancer. Sci Rep 2021; 11:7550. [PMID: 33824367 PMCID: PMC8024320 DOI: 10.1038/s41598-021-87216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 01/29/2023] Open
Abstract
B7-H6 and PD-L1 belong to the B7 family co-stimulatory molecules fine-tuning the immune response. The present work investigates the clinical effect of B7-H6 protein expression with PD-L1 status and the infiltration of natural killer cells as potential biomarkers in breast tumor inflammatory microenvironment. The expression levels of B7-H6 protein by cancer cells and immune infiltrating cells in human breast cancer tissues and evaluate their associations with PD-L1 expression, NK cell status, clinical pathological features and prognosis were explored. The immunohistochemistry labeling method was used to assess B7-H6 and PD-L1 proteins expression by cancer and immune cells. The associations between immune checkpoint, major clinical pathological variables and survival rates were analyzed. B7-H6 protein was depicted in both breast and immune cells. Results showed that Tumor B7-H6 expression is highly associated with Her-2 over expression. B7-H6 + immune cells are highly related to the Scarff–Bloom–Richardson grade and associated with PD-L1 expression and NK cells status. Survival analysis revealed a better prognosis in patients with low expression of B7-H6 by cancer cells. Conversely, B7-H6 + immune cells were significantly associated with longer survival. Findings strongly suggest an interaction between B7 molecules that contributes to a particular design of the inflammatory microenvironment. This may influence the efficiency of therapies based on antibodies blocking the PD-L1/PD1 pathway and can explain the detection of clinical benefits only in a fraction of patients treated with immune checkpoint inhibitors.
Collapse
|
23
|
Kinlein A, Janes ME, Kincer J, Almeida T, Matz H, Sui J, Criscitiello MF, Flajnik MF, Ohta Y. Analysis of shark NCR3 family genes reveals primordial features of vertebrate NKp30. Immunogenetics 2021; 73:333-348. [PMID: 33742259 DOI: 10.1007/s00251-021-01209-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells play major roles in innate immunity against viruses and cancer. Natural killer receptors (NKR) expressed by NK cells recognize foreign- or self-ligands on infected and transformed cells as well as healthy cells. NKR genes are the most rapidly evolving loci in vertebrates, and it is generally difficult to detect orthologues in different taxa. The unique exception is NKp30, an activating NKR in mammals that binds to the self-ligand B7H6. The NKp30-encoding gene, NCR3, has been found in most vertebrates including sharks, the oldest vertebrates with human-type adaptive immunity. NCR3 has a special, non-rearranging VJ-type immunoglobulin superfamily (IgSF) domain that predates the emergence of the rearranging antigen receptors. Herein we show that NCR3 loci are linked to the shark major histocompatibility complex (MHC), proving NCR3's primordial association with the MHC. We identified eight subtypes of differentially expressed highly divergent shark NCR3 family genes. Using in situ hybridization, we detected one subtype, NS344823, to be expressed by predominantly single cells outside of splenic B cell zones. The expression by non-B cells was also confirmed by PCR in peripheral blood lymphocytes. Surprisingly, high expression of NS344823 was detected in the thymic cortex, demonstrating NS344823 expression in developing T cells. Finally, we show for the first time that shark T cells are found as single cells or in small clusters in the splenic red pulp, also unassociated with the large B cell follicles we previously identified.
Collapse
Affiliation(s)
- Allison Kinlein
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Morgan E Janes
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jacob Kincer
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Tereza Almeida
- Centro de Investigacão Em Biodiversidade E Recursos Genéticos, CIBIO-InBIO, Campus Agrário de Vairão, Universidade Do Porto, Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal
| | - Hanover Matz
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jianxin Sui
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Ahangar NK, Hemmat N, Khalaj-Kondori M, Shadbad MA, Sabaie H, Mokhtarzadeh A, Alizadeh N, Derakhshani A, Baghbanzadeh A, Dolatkhah K, Silvestris N, Baradaran B. The Regulatory Cross-Talk between microRNAs and Novel Members of the B7 Family in Human Diseases: A Scoping Review. Int J Mol Sci 2021; 22:2652. [PMID: 33800752 PMCID: PMC7962059 DOI: 10.3390/ijms22052652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The members of the B7 family, as immune checkpoint molecules, can substantially regulate immune responses. Since microRNAs (miRs) can regulate gene expression post-transcriptionally, we conducted a scoping review to summarize and discuss the regulatory cross-talk between miRs and new B7 family immune checkpoint molecules, i.e., B7-H3, B7-H4, B7-H5, butyrophilin like 2 (BTNL2), B7-H6, B7-H7, and immunoglobulin like domain containing receptor 2 (ILDR2). The current study was performed using a six-stage methodology structure and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, Scopus, Cochrane, ProQuest, and Google Scholar were systematically searched to obtain the relevant records to 5 November 2020. Two authors independently reviewed the obtained records and extracted the desired data. After quantitative and qualitative analyses, we used bioinformatics approaches to extend our knowledge about the regulatory cross-talk between miRs and the abovementioned B7 family members. Twenty-seven articles were identified that fulfilled the inclusion criteria. Studies with different designs reported gene-miR regulatory axes in various cancer and non-cancer diseases. The regulatory cross-talk between the aforementioned B7 family molecules and miRs might provide valuable insights into the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Noora Karim Ahangar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (N.K.A.); (M.K.-K.)
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Katayoun Dolatkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| | - Nicola Silvestris
- IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (M.A.S.); (A.M.); (N.A.); (A.D.); (A.B.); (K.D.)
| |
Collapse
|
25
|
Byun JM, Cho HJ, Park HY, Lee DS, Choi IH, Kim YN, Jeong CH, Kim DH, Hwa Im D, Min BJ, Lee KB, Sung MS, Jeong DH. The clinical significance of HERV-H LTR -associating 2 expression in cervical adenocarcinoma. Medicine (Baltimore) 2021; 100:e23691. [PMID: 33429737 PMCID: PMC7793359 DOI: 10.1097/md.0000000000023691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/15/2020] [Indexed: 01/05/2023] Open
Abstract
HERV-H LTR -associating 2 (HHLA2) is a recently discovered member of the B7-family of immune checkpoint molecules that is overexpressed in several types of cancer. The aim of the present study was to investigate the expression of HHLA2 in cervical adenocarcinoma (AC) and the relationship between its expression and clinicopathological factors to assess its use as a potential marker for AC prognosis.This study included 76 patients diagnosed with cervical AC. Their resected specimens were obtained and a tissue microarray was constructed. Expression of HHLA2 was detected by the immunohistochemistry. Based on the follow-up data, correlation of HHLA2 expression and clinicopathological features, including overall survival (OS) and disease-free survival, was evaluated. Furthermore, we investigated the correlation between the expression of HHLA2 and programmed death ligand 1 (PD-L1).A total of 76 cases of invasive cervical AC were evaluated. High HHLA2 expression was detected in 62 cases (81.6%) and low HHLA2 expression was presented in 14 cases (18.4%). HHLA2 expression showed a significant negative correlation with lymph node metastasis (P = .011). Disease free survival was 75.0% and 49.0% in high-expression and the low expression group, respectively (P = .057). Although there was no statistical significance, an improved OS was observed in the high expression group (83.1% vs 64.9%, P = .479). Further, the expression of HHLA2 and PD-L1 correlated positively (P = .005). Thus, an improved OS was observed in the PD-L1 expression group (90.7% vs 66.2%, P = .037).High expression of HHLA2 is related to tumor progression and prognosis in patients with cervical AC. Therefore, HHLA2 may be a potential biomarker for predicting prognosis of cervical AC.
Collapse
Affiliation(s)
- Jung Mi Byun
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
- Paik Institute for Clinical Research, Inje University, College of Medicine
| | - Hwa Jin Cho
- Department of Pathology, Inje University, College of Medicine, Busan Paik Hospital
| | - Ha Young Park
- Department of Pathology, Inje University, College of Medicine, Busan Paik Hospital
| | - Dae Sim Lee
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
- Paik Institute for Clinical Research, Inje University, College of Medicine
| | - In Hak Choi
- Department of Microbiology and Immunology
- Innovative Therapeutics Research Institute (ITRI)
| | - Young Nam Kim
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
- Paik Institute for Clinical Research, Inje University, College of Medicine
| | - Chul Hoi Jeong
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Haeundae Paik Hospital, South Korea
| | - Da Hyun Kim
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Do Hwa Im
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Byoung Jin Min
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Kyung Bok Lee
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Moon Su Sung
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Dae Hoon Jeong
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
- Paik Institute for Clinical Research, Inje University, College of Medicine
| |
Collapse
|
26
|
Flem-Karlsen K, Fodstad Ø, Nunes-Xavier CE. B7-H3 Immune Checkpoint Protein in Human Cancer. Curr Med Chem 2020; 27:4062-4086. [PMID: 31099317 DOI: 10.2174/0929867326666190517115515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
B7-H3 belongs to the B7 family of immune checkpoint proteins, which are important regulators of the adaptive immune response and emerging key players in human cancer. B7-H3 is a transmembrane protein expressed on the surface of tumor cells, antigen presenting cells, natural killer cells, tumor endothelial cells, but can also be present in intra- and extracellular vesicles. Additionally, B7-H3 may be present as a circulating soluble isoform in serum and other body fluids. B7-H3 is overexpressed in a variety of tumor types, in correlation with poor prognosis. B7-H3 is a promising new immunotherapy target for anti-cancer immune response, as well as a potential biomarker. Besides its immunoregulatory role, B7-H3 has intrinsic pro-tumorigenic activities related to enhanced cell proliferation, migration, invasion, angiogenesis, metastatic capacity and anti-cancer drug resistance. B7-H3 has also been found to regulate key metabolic enzymes, promoting the high glycolytic capacity of cancer cells. B7-H3 receptors are still not identified, and little is known about the molecular mechanisms underlying B7-H3 functions. Here, we review the current knowledge on the involvement of B7-H3 in human cancer.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
27
|
Alpha-Fetoprotein Regulates the Expression of Immune-Related Proteins through the NF- κB (P65) Pathway in Hepatocellular Carcinoma Cells. JOURNAL OF ONCOLOGY 2020; 2020:9327512. [PMID: 32774373 PMCID: PMC7407027 DOI: 10.1155/2020/9327512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Background The prognosis of patients with hepatocellular carcinoma (HCC) is poor, with 60% to 70% of patients developing recurrence and metastasis within five years of radical resection. Alpha-fetoprotein (AFP) plays a significant role in predicting the recurrence and metastasis of HCC after surgery. However, its role in modulating tumor immunity has not been investigated. Our objective was to examine the effect of AFP on the expression of B7 family and activation of the NF-κB (P65) pathway in HCC. Methods We generated human hepatoma SMMC-7721 cell lines with or without recombinant AFP transfection (AFPup and control groups). Colony formation assay, Transwell invasion assay, and wound healing assay were used to detect the function of AFP. Liver cancer xenografts were made in BALB/c nude male mice (N = 6 per group). After 28 days of inoculation, the expression of immune genes in the HCC tissues, including PD-L (B7-H1), B7-H3, B7-H4, and P65, was evaluated by quantitative real-time PCR (qPCR) and western blot. In addition, immunofluorescence was used to determine the subcellular localization of the P65 protein, a key factor in the NF-κB pathway. An online HCC patients' dataset was also used to detect the connection between AFP and P65. Results Overexpression of AFP could enhance proliferation, invasion, and migration of HCC cells. Both qPCR and western blot results demonstrated that the expressions of PD-L1, B7-H4, and P65 were significantly higher in the AFP group compared to the controls (P < 0.05). Immunofluorescence results indicated that the majority of the P65 protein was located in the cytoplasm in the control group but was translocated to the nucleus in the AFPup group. The Spearman correlation coefficient confirms that AFP has a positive correlation with P65 in HCC patients (R = 0.33, P=0.05). Conclusion AFP could enhance proliferation, invasion, and migration in HCC cells. The upregulation of AFP would increase the PD-L1 and B7-H4 mRNA and protein expression in HCC tissues through the upregulation and activation of the P65 protein.
Collapse
|
28
|
Yang S, Yuan L, Wang Y, Zhu M, Wang J, Ke X. B7-H6 Promotes Cell Proliferation, Migration and Invasion of Non-Hodgkin Lymphoma via Ras/MEK/ERK Pathway Based on Quantitative Phosphoproteomics Data. Onco Targets Ther 2020; 13:5795-5805. [PMID: 32606790 PMCID: PMC7308182 DOI: 10.2147/ott.s257512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose B7 homologue 6 (B7-H6) has been found at an up-regulated level in multiple cancer cells and identified to be positively correlated with inferior clinical features. In non-Hodgkin lymphoma (NHL), however, the roles of B7-H6 and the underlying mechanism of action remain unclear. Through in vivo and in vitro experiments, the aim of this study was to explore the regulatory mechanism of B7-H6 in NHL in order to provide new therapeutic strategies that can potentially be applied in clinical practice. Methods The expression of B7-H6 in T-lymphoblastic lymphoma (TLBL), diffuse large B cell lymphoma (DLBCL) and lymph node reactive hyperplasia (LRH) tissues were compared by immunohistochemistry. A total of 10 NHL cell lines were screened by Western blot to evaluate the expression of B7-H6. The effects of B7-H6 knockdown on cell proliferation, migration and invasion of NHL cells were studied in vivo using a transplanted tumor mice model, and in vitro by Cell Counting Kit-8 (CCK-8) and Transwell assays. Quantitative phosphoproteomics was performed to identify the changes of protein phosphorylation and related pathways affected by B7-H6. The effects of B7-H6 on NHL were validated via B7-H6 overexpression and pathway inhibitor assays. Results The expression levels of B7-H6 in NHL cell lines, and TLBL and DLBCL tissues were significantly increased compared with those in the control groups. Inhibition of cell proliferation, migration and invasion was observed in Jurkat and Raji cells with B7-H6 knockdown. The ability of B7-H6 in promoting tumorigenesis was further validated by in vivo experiments. In addition, Ras and HIF-1 signaling pathways were shown to be significantly affected by B7-H6 through quantitative phosphorylation proteomics analysis. Ras/MEK/ERK pathway was verified to be significantly inhibited after B7-H6 knockdown by Western blot analysis. Strikingly, MEK inhibitor AZD8330 was found to have the ability to sufficiently inhibit Ras/MEK/ERK pathway, partially reverse cell proliferation and completely reverse cell migration and invasion induced by B7-H6. Conclusion B7-H6 promotes cell proliferation, migration and invasion in NHL via Ras/MEK/ERK pathway. Hence, B7-H6 or Ras/MEK/ERK pathway targeting may be used as potential therapeutics for treating NHL.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Lei Yuan
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Yanfang Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Mingxia Zhu
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, People's Republic of China
| |
Collapse
|
29
|
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K. Targeting B7‐1 in immunotherapy. Med Res Rev 2020; 40:654-682. [DOI: 10.1002/med.21632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Chen
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
| |
Collapse
|
30
|
Zhong C, Lang Q, Yu J, Wu S, Xu F, Tian Y. Phenotypical and potential functional characteristics of different immune cells expressing CD28H/B7-H5 and their relationship with cancer prognosis. Clin Exp Immunol 2020; 200:12-21. [PMID: 31901178 DOI: 10.1111/cei.13413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
CD28H and B7-H5 have been identified as receptor-ligand pairs in the B7/CD28 family, and have co-stimulatory activity in immune cells. Here, we have systematically reviewed the research reports concerning the CD28H/B7-H5 pathway. It was found that CD28H is mainly expressed in T cells and natural killer (NK) cells with naive and poorly differentiated properties, and repeated antigen stimulation leads to permanent loss of CD28H. In tumors, CD28H is mainly expressed in tissue-resident memory (TRM ) lymphocyte T cells, which is associated with improved tumor prognosis. B7-H5 is a ligand for CD28H and is widely expressed in tumor cells. B7-H5 expression is closely related to the prognosis of the tumor. Studies have shown that high expression of B7-H5 in tumor is related to a worse prognosis for lung cancer, osteosarcoma, oral squamous cell carcinoma (OSCC), breast carcinoma, human clear cell renal cell carcinoma (ccRCC), intrahepatic cholangiocarcinoma (ICC), bladder urothelial carcinoma (BUC) and colorectal cancer (CRC), but is associated with a better prognosis for pancreatic ductal adenocarcinoma (PDAC) and glioma. Controversial views exist in studies on gastric cancer prognosis.
Collapse
Affiliation(s)
- C Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Q Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - J Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - S Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - F Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Y Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Slater BT, Han X, Chen L, Xiong Y. Structural insight into T cell coinhibition by PD-1H (VISTA). Proc Natl Acad Sci U S A 2020; 117:1648-1657. [PMID: 31919279 PMCID: PMC6983362 DOI: 10.1073/pnas.1908711117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Programmed death-1 homolog (PD-1H), a CD28/B7 family molecule, coinhibits T cell activation and is an attractive immunotherapeutic target for cancer and inflammatory diseases. The molecular basis of its function, however, is unknown. Bioinformatic analyses indicated that PD-1H has a very long Ig variable region (IgV)-like domain and extraordinarily high histidine content, suggesting that unique structural features may contribute to coinhibitory mechanisms. Here we present the 1.9-Å crystal structure of the human PD-1H extracellular domain. It reveals an elongated CC' loop and a striking concentration of histidine residues, located in the complementarity-determining region-like proximal half of the molecule. We show that surface-exposed histidine clusters are essential for robust inhibition of T cell activation. PD-1H exhibits a noncanonical IgV-like topology including an extra "H" β-strand and "clamping" disulfide, absent in known IgV-like structures, that likely restricts its orientation on the cell surface differently from other IgV-like domains. These results provide important insight into a molecular basis of T cell coinhibition by PD-1H.
Collapse
Affiliation(s)
| | - Xue Han
- Department of Immunobiology, Yale University, New Haven, CT 06511
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, CT 06511;
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
32
|
Chapoval AI, Chapoval SP, Shcherbakova NS, Shcherbakov DN. Immune Checkpoints of the B7 Family. Part 2. Representatives of the B7 Family B7-H3, B7-H4, B7-H5, B7-H6, B7-H7, and ILDR2 and Their Receptors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Ohta Y, Kasahara M, O'Connor TD, Flajnik MF. Inferring the "Primordial Immune Complex": Origins of MHC Class I and Antigen Receptors Revealed by Comparative Genomics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1882-1896. [PMID: 31492741 PMCID: PMC6761025 DOI: 10.4049/jimmunol.1900597] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Comparative analyses suggest that the MHC was derived from a prevertebrate "primordial immune complex" (PIC). PIC duplicated twice in the well-studied two rounds of genome-wide duplications (2R) early in vertebrate evolution, generating four MHC paralogous regions (predominantly on human chromosomes [chr] 1, 6, 9, 19). Examining chiefly the amphibian Xenopus laevis, but also other vertebrates, we identified their MHC paralogues and mapped MHC class I, AgR, and "framework" genes. Most class I genes mapped to MHC paralogues, but a cluster of Xenopus MHC class Ib genes (xnc), which previously was mapped outside of the MHC paralogues, was surrounded by genes syntenic to mammalian CD1 genes, a region previously proposed as an MHC paralogue on human chr 1. Thus, this gene block is instead the result of a translocation that we call the translocated part of the MHC paralogous region (MHCtrans) Analyses of Xenopus class I genes, as well as MHCtrans, suggest that class I arose at 1R on the chr 6/19 ancestor. Of great interest are nonrearranging AgR-like genes mapping to three MHC paralogues; thus, PIC clearly contained several AgR precursor loci, predating MHC class I/II. However, all rearranging AgR genes were found on paralogues derived from the chr 19 precursor, suggesting that invasion of a variable (V) exon by the RAG transposon occurred after 2R. We propose models for the evolutionary history of MHC/TCR/Ig and speculate on the dichotomy between the jawless (lamprey and hagfish) and jawed vertebrate adaptive immune systems, as we found genes related to variable lymphocyte receptors also map to MHC paralogues.
Collapse
Affiliation(s)
- Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201; and
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
34
|
HHLA2 overexpression is a novel biomarker of malignant status and poor prognosis in gastric cancer. Hum Cell 2019; 33:116-122. [DOI: 10.1007/s13577-019-00280-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
|
35
|
Zhuang X, Long EO. CD28 Homolog Is a Strong Activator of Natural Killer Cells for Lysis of B7H7 + Tumor Cells. Cancer Immunol Res 2019; 7:939-951. [PMID: 31018957 DOI: 10.1158/2326-6066.cir-18-0733] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/23/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
The CD28-B7 family of receptor-ligand pairs regulates lymphocyte responses through costimulation and coinhibition. It includes checkpoint inhibitors, such as PD-1, which limit antitumor and antivirus T-cell responses. CD28 homolog (CD28H) and B7H7 have been identified as a receptor-ligand pair in this family, which has costimulatory activity in T cells. Here, we show that CD28H is expressed in primary natural killer (NK) cells and that it is a strong activator of NK cells through selective synergy with receptors NKp46 and 2B4 to induce degranulation, lysis of target cells, and production of proinflammatory cytokines. Expression of B7H7 on target cells enhanced both natural and antibody-dependent cellular cytotoxicity of NK cells. Mutation of tyrosine 192 on the CD28H cytoplasmic tail abolished NK-cell activation through CD28H. As B7H7 is broadly expressed in tumor tissues, we engineered a CD28H chimeric antigen receptor (CD28H-CAR) consisting of full-length CD28H fused to the cytoplasmic domain of T-cell receptor ζ chain. Remarkably, expression of CD28H-CAR in NK cells triggered lysis of B7H7+ HLA-E+ tumor cells by overriding inhibition by the HLA-E receptor NKG2A. The cytoplasmic domains of CD28H and of the ζ chain were both required for this activity. Thus, CD28H is a powerful activation receptor of NK cells that broadens their antitumor activity and holds promise as a component of NK-based CARs for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoxuan Zhuang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland.
| |
Collapse
|
36
|
The Expression Patterns and Associated Clinical Parameters of Human Endogenous Retrovirus-H Long Terminal Repeat-Associating Protein 2 and Transmembrane and Immunoglobulin Domain Containing 2 in Oral Squamous Cell Carcinoma. DISEASE MARKERS 2019; 2019:5421985. [PMID: 31089395 PMCID: PMC6476002 DOI: 10.1155/2019/5421985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) and transmembrane and immunoglobulin domain containing 2 (TMIGD2) are new immune checkpoint molecules of the B7:CD28 family; however, little research has been performed on these immune checkpoint molecules. In this study, we used oral squamous cells carcinoma (OSCC) tissue microarrays and immunohistochemistry methods to investigate the expression patterns of HHLA2 and TMIGD2 in OSCC. After comparing the HHLA2 and TMIGD2 expression levels in OSCC, dysplasia, and mucosa, we found increased HHLA2 expression in OSCC and dysplasia, while the TMIGD2 expression was decreased in OSCC and dysplasia. Using the Kaplan-Meier method and log-rank test, we found that higher HHLA2 or TMIGD2 expression levels in OSCC indicate poor prognosis. Furthermore, two-tailed Pearson's statistical analysis revealed that the HHLA2 expression levels in OSCC, dysplasia, and mucosa were positively correlated with the T cell immunoglobulin and mucin-domain containing-3 (TIM3), lymphocyte-activation gene 3 (LAG3), B7 homolog 3 protein (B7-H3), B7 homolog 4 protein (B7H4), and V-domain Ig suppressor of T cell activation (VISTA) levels, while the TMIGD2 expression levels in OSCC, dysplasia, and mucosa were inversely correlated with the TIM3, LAG3, and B7H3 levels. Our current study demonstrates that HHLA2 may serve as an immune target for OSCC therapy and that the TMIGD2 expression level in OSCC could forecast patient prognosis.
Collapse
|
37
|
Bjørnsen EG, Thiruchelvam-Kyle L, Hoelsbrekken SE, Henden C, Saether PC, Boysen P, Daws MR, Dissen E. B7H6 is a functional ligand for NKp30 in rat and cattle and determines NKp30 reactivity toward human cancer cell lines. Eur J Immunol 2018; 49:54-65. [PMID: 30512185 DOI: 10.1002/eji.201847746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
NK cells kill cancer cells and infected cells upon activation by cell surface receptors. Human NKp30 is an activating receptor expressed by all mature NK cells. The B7 family member B7H6 has been identified as one ligand for NKp30. Several alternative ligands have also been reported, and the field remains unsettled. To this end, we have identified full-length functional B7H6 orthologs in rat and cattle, demonstrated by phylogenetic analysis and transfection experiments. In cell-cell contact-dependent assays, chimeric NKp30 reporter cells responded strongly to B7H6 in rat and cattle. Likewise, rat NKp30 expressing target cells induced strong activation of B7H6 reporter cells. Together, these observations demonstrate that B7H6 is conserved as a functional ligand for NKp30 in mammalian species separated by more than 100 million years of evolution. B7H6 and NKp30 are pseudogenes in laboratory mice. The rat thus represents an attractive experimental animal model to study the NKp30-B7H6 interaction in vivo. B7H6 was widely expressed among human cancer cell lines, and the expression level correlated strongly with the activation of human NKp30 reporter cells. Furthermore, siRNA knockdown of B7H6 abolished NKp30 reporter responses, suggesting that B7H6 is the major functionally relevant expressed ligand for NKp30 on these cancer cell lines.
Collapse
Affiliation(s)
- Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sigurd E Hoelsbrekken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per C Saether
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
De la Cruz-Rosas A, Martínez-Tovar A, Ramos-Peñafiel C, Collazo-Jaloma J, Olarte-Carrillo I. Pattern of differential expression of costimulatory molecules in myeloma cell line MM1.R. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2018. [DOI: 10.1016/j.hgmx.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
39
|
Zhao Q, Hu F, Xiao Z, Li M, Wu X, Zhao Y, Wu Y, Yin J, Lin L, Zhang H, Zhang L, Cho CH, Shen J. Comprehensive molecular profiling of the B7 family in gastrointestinal cancer. Cell Prolif 2018; 51:e12468. [PMID: 29999557 DOI: 10.1111/cpr.12468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES B7 family has been identified as co-stimulatory or co-inhibitory molecules on T-cell response and plays an important role in tumour mortality and malignancy. In this study, the expression pattern of B7 family in gastrointestinal (GI) cancer was examined. Its upstream regulating mechanism, downstream targets and association with clinical parameters were also studied. MATERIALS AND METHODS The expression level of B7 members was analysed by FIREHOUSE. The gene mutation, DNA methylation, association with clinical parameters and downstream network of B7 members were analysed in cBioportal. The mutation frequency was analysed by Catalogue of Somatic Mutations in Cancer (COSMIC) analysis. The phylogenetic tree was constructed in MEGA7. The interaction protein domain analysis was performed by Pfam 31.0. RESULTS Differential expression of B7 family molecules was detected in different kinds of GI cancer. High-frequency gene alteration was found in tumour samples. There was negative correlation of promoter methylation and mRNA expression of B7 family members in tumour samples, suggesting the epigenetic basis of B7 family gene deregulation in GI cancer. The overexpression of B7-H1 in pancreatic cancer, B7-H5 in oesophageal cancer and B7-H6 in liver cancer were significantly associated with worse overall survival. Finally, by network analysis, we identified some potential interacting proteins for B7-1/2 and B7-H1/DC. CONCLUSIONS Overall, our study suggested that B7 member deregulation was strongly involved in GI cancer tumorigenesis.
Collapse
Affiliation(s)
- Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Fuyan Hu
- Department of Statistics, Faculty of Science, Wuhan University of Technology, Wuhan, Hubei, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
40
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
41
|
Zhang B, Sun J, Yao X, Li J, Tu Y, Yao F, Sun S. Knockdown of B7H6 inhibits tumor progression in triple-negative breast cancer. Oncol Lett 2018; 16:91-96. [PMID: 29963127 PMCID: PMC6019890 DOI: 10.3892/ol.2018.8689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/22/2018] [Indexed: 12/15/2022] Open
Abstract
The B7 family, the most common family of secondary signaling molecules, consists of eight cell-surface proteins, which regulate the T-cell mediated immune response by delivering co-inhibitory or co-stimulatory signals through their corresponding ligands. Among them, natural killer cell cytotoxicity receptor 3 ligand 1 (NCR3LG1, also known as B7H6) has been reported as a new member, and is involved in tumor progression of various types of human cancer. However, the role of B7H6 in triple-negative breast cancer (TNBC) remains unknown. In the present study, western blotting was performed to determine the protein expression levels of B7H6 in a normal mammary epithelial cell line (MCF-10A), non-TNBC breast cancer cell lines (MCF-7 and AU565) and TNBC cell lines (MDA-MB-231 and MDA-MB-468). B7H6 was knocked down using small interfering RNA, and an MTT assay was performed to determine proliferation ability, flow cytometry was used to analyze apoptosis, and Transwell and wound-healing assays were performed to measure migration ability. Expression of proliferation-associated proteins (SMAD family member 4 and β-catenin) and apoptosis-associated proteins (BCL2 associated X, BCL2 apoptosis regulator and caspase-3) were analyzed by western blotting. The results demonstrated that B7H6 was highly expressed in TNBC cells, and that knockdown of B7H6 inhibited cell proliferation and migration, and promoted apoptosis. Furthermore, the results revealed that proliferation and apoptosis-associated proteins were altered in the B7H6-knockdown MDA-MB-231 cells. In conclusion, the present study demonstrated that B7H6 may have significant roles in the regulation of cell proliferation, apoptosis and migration of TNBC cells.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jinzhong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoli Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
42
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
43
|
Shimonosono M, Arigami T, Yanagita S, Matsushita D, Uchikado Y, Kijima Y, Kurahara H, Kita Y, Mori S, Sasaki K, Omoto I, Maemura K, Uenosono Y, Ishigami S, Natsugoe S. The association of human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) expression with gastric cancer prognosis. Oncotarget 2018; 9:22069-22078. [PMID: 29774123 PMCID: PMC5955131 DOI: 10.18632/oncotarget.25179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Currently, immune checkpoint blockade against members of the B7/CD28 family is being used as a new molecular-targeted therapy, in patients with unresectable advanced or recurrent gastric cancer. Although human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) is a novel molecule of the B7/CD28 family, the clinical impact of its expression remains uncertain in gastric cancer. Consequently, we examined HHLA2 expression in blood specimens from patients with gastric cancer, and investigated the relationship between its expression and clinicopathological factors to assess its potential power as a prognostic blood predictor. Untreated peripheral blood specimens were obtained from 111 patients with gastric cancer and 20 healthy volunteers. HHLA2 mRNA expression levels were determined using quantitative RT-PCR assay. Blood specimens obtained from patients with gastric cancer had significantly lower copies of HHLA2 mRNA than those obtained from healthy volunteers (P < 0.0001). Furthermore, HHLA2 expression was significantly correlated with the depth of tumor invasion (P = 0.0331), distant metastasis (P < 0.0001), and stage of disease (P = 0.0032). The 5-year survival rate was significantly higher in patients with high HHLA2 expression compared with the patients with low expression (P = 0.0001). These findings demonstrate that assessment of HHLA2 expression levels in the blood could be utilized to predict tumor aggressiveness in patients with gastric cancer.
Collapse
Affiliation(s)
- Masataka Shimonosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Onco-Biological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shigehiro Yanagita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Daisuke Matsushita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuto Uchikado
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ken Sasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Itaru Omoto
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshikazu Uenosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sumiya Ishigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Onco-Biological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
44
|
Ni L, Dong C. New B7 Family Checkpoints in Human Cancers. Mol Cancer Ther 2018; 16:1203-1211. [PMID: 28679835 DOI: 10.1158/1535-7163.mct-16-0761] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/17/2017] [Accepted: 04/20/2017] [Indexed: 01/22/2023]
Abstract
T cells are the main effector cells in immune response against tumors. The activation of T cells is regulated by the innate immune system through positive and negative costimulatory molecules. Targeting immune checkpoint regulators such as programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) and CTL antigen 4 (CTLA-4) has achieved notable benefit in a variety of cancers, which leads to multiple clinical trials with antibodies targeting the other related B7/CD28 family members. Recently, five new B7 family ligands, B7-H3, B7-H4, B7-H5, B7-H6, and B7-H7, were identified. Here we review recent understanding of new B7 family checkpoint molecules as they have come to the front of cancer research with the concept that tumor cells exploit them to escape immune surveillance. The aim of this article is to address the structure and expression of the new B7 family molecules as well as their roles in controlling and suppressing immune responses of T cells as well as NK cells. We also discuss clinical significance and contribution of these checkpoint expressions in human cancers. Mol Cancer Ther; 16(7); 1203-11. ©2017 AACR.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
45
|
Zhu Z, Dong W. Overexpression of HHLA2, a member of the B7 family, is associated with worse survival in human colorectal carcinoma. Onco Targets Ther 2018; 11:1563-1570. [PMID: 29593422 PMCID: PMC5865557 DOI: 10.2147/ott.s160493] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal carcinoma (CRC) is one of the most common malignancies, and immunotherapy has opened a new field of cancer treatment in recent years. Generally, CRC does not benefit from immunotherapy. HHLA2, a member of the B7 family, is a novel immune checkpoint molecule, and the prognostic value of HHLA2 in CRC patients and the association between HHLA2 expression and clinicopathological characteristics remains unknown. Materials and methods This study included 63 patients diagnosed with CRC, and their resected specimens were obtained and constructed as a tissue microarray. Expression of HHLA2 and CD8 was detected by the double immunohistochemistry method. Based on follow-up data, correlations of HHLA2 expression and clinicopathological features, including overall survival, in CRC patients were evaluated. Results High HHLA2 expression was detected in CRC tumor tissues, compared to the adjacent noncancerous tissues. HHLA2 expression level was significantly related to the depth of invasion (P=0.044) and CD8+ T-cell infiltration status (P=0.016), and predicted high mortality rate (P=0.035). HHLA2 acted as an independent predictive factor in the overall survival of CRC patients (P=0.039, hazard ratio=2.162, 95% CI 1.041–3.084). Conclusion HHLA2 expression is upregulated in CRC patients, and HHLA2 is an independent prognostic factor of overall survival of CRC patients. High HHLA2 expression is closely correlated with CD8 T-cell infiltration status and can predict poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Ziwen Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
46
|
Cheng H, Borczuk A, Janakiram M, Ren X, Lin J, Assal A, Halmos B, Perez-Soler R, Zang X. Wide Expression and Significance of Alternative Immune Checkpoint Molecules, B7x and HHLA2, in PD-L1-Negative Human Lung Cancers. Clin Cancer Res 2018; 24:1954-1964. [PMID: 29374053 DOI: 10.1158/1078-0432.ccr-17-2924] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 01/31/2023]
Abstract
Purpose: Immunotherapy targeting the PD-1/PD-L1 pathway has changed the treatment landscape of non-small cell lung carcinoma (NSCLC). We demonstrated that HHLA2, a newly identified immune inhibitory molecule, was widely expressed in NSCLC. We now compared the expression and function of PD-L1 with alternative immune checkpoints, B7x and HHLA2.Experimental Design: Expression was examined in tissue microarrays consisting of 392 resected NSCLC tumors. Effects of PD-L1, B7x, and HHLA2 on human T-cell proliferation and cytokine production were investigated.Results: PD-L1 expression was identified in 25% and 31% of tumors in the discovery and validation cohorts and was associated with higher stage and lymph node involvement. The multivariate analysis showed that stage, TIL status, and lymph node involvement were independently associated with PD-L1 expression. B7x was expressed in 69% and 68%, whereas HHLA2 was positive in 61% and 64% of tumors in the two sets. The coexpression of PD-L1 with B7x or HHLA2 was infrequent, 6% and 3%. The majority (78%) of PD-L1-negative cases expressed B7x, HHLA2, or both. The triple-positive group had more TIL infiltration than the triple-negative group. B7x-Ig and HHLA2-Ig inhibited TCR-mediated proliferation of CD4 and CD8 T cells more robustly than PD-L1-Ig. All three significantly suppressed cytokine productions by T cells.Conclusions: The majority of PD-L1-negative lung cancers express alternative immune checkpoints. The roles of the B7x and HHLA2 pathway in mediating immune evasion in PD-L1-negative tumors deserve to be explored to provide the rationale for an effective immunotherapy strategy in these tumors. Clin Cancer Res; 24(8); 1954-64. ©2018 AACR.
Collapse
Affiliation(s)
- Haiying Cheng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York.
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Murali Janakiram
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Juan Lin
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Amer Assal
- Department of Medicine, Irving Cancer Research Center, Columbia University Medical Center, New York, New York
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Roman Perez-Soler
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Xingxing Zang
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
47
|
Reconstitution of a ligand-binding competent murine NKp30 receptor. Immunogenetics 2017; 70:185-194. [PMID: 28782088 DOI: 10.1007/s00251-017-1025-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
The activating natural cytotoxicity receptors on natural killer (NK) cells play a fundamental role in immunosurveillance of infections and cancer. Phylogenetic analyses showed that NKp30 is highly conserved in almost all jawed vertebrates and thus, represents one of the most ancient NK cell receptors. However, in contrast to other higher vertebrates, NKp30 is only a pseudogene in mouse, which contains two premature stop codons. To decipher the evolutionary role and biological function of NKp30 in mouse, we removed these premature stop codons and expressed the putative mouse NKp30 (mNKp30) protein as soluble Fc fusion construct and as full-length receptor on A5-GFP reporter cells. Interestingly, even though both NKp30 variants were expressed, maturation and targeting to the plasma membrane were impaired. Previous studies implicated that N-linked glycosylation is crucial for plasma membrane targeting and ligand binding of human NKp30. However, even though present in all other jawed vertebrates analyzed so far, these three N-linked glycosylation sites are missing in mouse NKp30. Interestingly, reconstitution of N-linked glycosylation enabled secretion of a mNKp30-Fc fusion protein which recognized a yet unknown ligand on the plasma membrane of mastocytoma cells. Based on these data, our study is the first to show expression and functional analysis of a mNKp30 protein suggesting that the mouse NKp30 pseudogene is the result of a species-specific loss of function.
Collapse
|
48
|
Nowak EC, Lines JL, Varn FS, Deng J, Sarde A, Mabaera R, Kuta A, Le Mercier I, Cheng C, Noelle RJ. Immunoregulatory functions of VISTA. Immunol Rev 2017; 276:66-79. [PMID: 28258694 PMCID: PMC5702497 DOI: 10.1111/imr.12525] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Utilization of negative checkpoint regulators (NCRs) for cancer immunotherapy has garnered significant interest with the completion of clinical trials demonstrating efficacy. While the results of monotherapy treatments are compelling, there is increasing emphasis on combination treatments in an effort to increase response rates to treatment. One of the most recently discovered NCRs is VISTA (V-domain Ig-containing Suppressor of T cell Activation). In this review, we describe the functions of this molecule in the context of cancer immunotherapy. We also discuss factors that may influence the use of anti-VISTA antibody in combination therapy and how genomic analysis may assist in providing indications for treatment.
Collapse
Affiliation(s)
- Elizabeth C. Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - J. Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Frederick S. Varn
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jie Deng
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aurelien Sarde
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anna Kuta
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Chao Cheng
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
49
|
Janakiram M, Shah UA, Liu W, Zhao A, Schoenberg MP, Zang X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol Rev 2017; 276:26-39. [PMID: 28258693 PMCID: PMC5338461 DOI: 10.1111/imr.12521] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022]
Abstract
The B7-CD28 family of ligands and receptors play important roles in T-cell co-stimulation and co-inhibition. Phylogenetically they can be divided into three groups. The recent discovery of the new molecules (B7-H3 [CD276], B7x [B7-H4/B7S1], and HHLA2 [B7H7/B7-H5]/TMIGD2 [IGPR-1/CD28H]) of the group III has expanded therapeutic possibilities for the treatment of human diseases. In this review, we describe the discovery, structure, and function of B7-H3, B7x, HHLA2, and TMIGD2 in immune regulation. We also discuss their roles in important pathological states such as cancers, autoimmune diseases, transplantation, and infection. Various immunotherapeutical approaches are emerging including antagonistic monoclonal antibodies and agonistic fusion proteins to inhibit or potentiate these molecules and pathways in cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Murali Janakiram
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Urvi A Shah
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weifeng Liu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Mark P Schoenberg
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
50
|
Cheng H, Janakiram M, Borczuk A, Lin J, Qiu W, Liu H, Chinai JM, Halmos B, Perez-Soler R, Zang X. HHLA2, a New Immune Checkpoint Member of the B7 Family, Is Widely Expressed in Human Lung Cancer and Associated with EGFR Mutational Status. Clin Cancer Res 2017; 23:825-832. [PMID: 27553831 PMCID: PMC5290088 DOI: 10.1158/1078-0432.ccr-15-3071] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE Immunotherapy with antibodies against B7/CD28 family members, including PD-1, PD-L1, and CTLA-4 has shifted the treatment paradigm for non-small cell lung carcinoma (NSCLC) with improved clinical outcome. HHLA2 is a newly discovered member of the family. By regulating T-cell function, HHLA2 could contribute to tumor immune suppression and thus be a novel target for cancer immunotherapy. There is limited information and critical need to characterize its expression profile and clinical significance in NSCLC. EXPERIMENTAL DESIGN We performed IHC with an HHLA2-specific antibody (clone 566.1) using tissue microarrays constructed from 679 NSCLC tumor tissues, including 392 cases in the discovery set and 287 cases in the validation cohort. We also studied clinicopathologic characteristics of these patients. RESULTS Overall, HHLA2 was not detected in most of normal lung tissue but expressed in 66% of NSCLC across different subtypes. In particular, EGFR-mutated NSCLC was significantly associated with higher tumor HHLA2 expression in both discovery (EGFR vs. WT: 76% vs. 53%, P = 0.01) and validation cohorts (89% vs. 69%, P = 0.01). In one of the two cohorts, HHLA2 expression was higher in lung adenocarcinoma as compared with squamous and large cell histology, non-Hispanic White versus Hispanics, and tumors with high tumor-infiltrating lymphocyte (TIL) density. In the multivariate analysis, EGFR mutation status and high TIL intensity were independently associated with HHLA2 expression in lung adenocarcinoma. CONCLUSIONS HHLA2 is widely expressed in NSCLC and is associated with EGFR mutation and high TILs in lung adenocarcinoma. It is potentially a novel target for lung cancer immunotherapy. Clin Cancer Res; 23(3); 825-32. ©2016 AACR.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Aged
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/immunology
- Carcinoma, Large Cell/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, erbB-1
- Humans
- Immunoglobulins/analysis
- Immunotherapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lymphatic Metastasis
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Middle Aged
- Molecular Targeted Therapy
- Mutation
- Neoplasm Proteins/analysis
- Racial Groups/genetics
- Retrospective Studies
- Tissue Array Analysis
Collapse
Affiliation(s)
- Haiying Cheng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York.
| | - Murali Janakiram
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Juan Lin
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Wanglong Qiu
- Irving Cancer Research Center, Columbia University Medical Center, New York, New York
| | - Huijie Liu
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Jordan M Chinai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Roman Perez-Soler
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York
| | - Xingxing Zang
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|