1
|
Spormann C, Dorn T, Schwaiger S, Sdunnus S, Koschella A, Kählig H, Heinze T, Lindhorst TK, Wrodnigg TM. Lectin-mediated adhesion: Testing of tailor-made cellulose derivatives with ConA and live E. coli bacteria. Bioorg Med Chem 2025; 127:118236. [PMID: 40367915 DOI: 10.1016/j.bmc.2025.118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Due to the high exigence for treatment of bacterial infections, anti-adhesion therapy has emerged as an alternative method in an era of antibiotic resistance. Here, we have conjugated azido-functionalized cellulose with specific carbohydrate ligands (mannose and glucose, respectively) via copper-catalyzed azide-alkyne click chemistry (CuAAC) resulting in homo- and hetero-glycosylated cellulose derivatives with a DS > 0.9. The new materials, CellulMan and CellulManGlc, were evaluated as potential anti-adhesive reagents with type 1-fimbriated E. coli bacteria and additionally with the plant lectin Concanavalin A (ConA). We have determined the adhesion properties of the new glycopolymers as well as their agglutination behavior in an in-depth study combining two- and three-dimensional assays. The tested synthetic glycopolymers differ in their biological behavior as lectin ligands depending on the respective glycodecoration. In particular, CellulMan shows a remarkably low minimal effective concentration cmin ≤ 2 pg/mL as adhesive material with E. coli. Overall, the assays demonstrate that glyco-modified cellulose serves as an excellent antiadhesive as well as adhesive surface material for both type 1 fimbriated E. coli and ConA, being superior to natural polysaccharides.
Collapse
Affiliation(s)
- Carina Spormann
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany.
| | - Tobias Dorn
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010 Graz, Austria
| | - Stefan Schwaiger
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010 Graz, Austria
| | - Sönke Sdunnus
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany
| | - Andreas Koschella
- Friedrich Schiller University of Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, 07743 Jena, Germany
| | - Hanspeter Kählig
- University of Vienna, Department of Organic Chemistry, NMR Center, Währinger Straße 38, 1190 Vienna, Austria
| | - Thomas Heinze
- Friedrich Schiller University of Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, 07743 Jena, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 3-4, 24098 Kiel, Germany.
| | - Tanja M Wrodnigg
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, 8010 Graz, Austria.
| |
Collapse
|
2
|
Sun Y, Liang Y, Li K, Zhang L, Zhong R, Chen L, Zhang H. Fermentation and exogenous enzymes can increase ileal, hindgut, and total tract energy digestibility of palm kernel cake in growing pigs. Arch Anim Nutr 2025; 79:14-26. [PMID: 40079531 DOI: 10.1080/1745039x.2025.2467762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/07/2025] [Indexed: 03/15/2025]
Abstract
This study assessed how fermentation and exogenous enzymes affect nutrient digestibility and energy values of palm kernel cake (PKC) in growing pigs. Eighteen pigs were fed six diets: a basal diet, PKC (100 or 200 g/kg), fermented PKC (FPKC; 100 or 200 g/kg), or enzymolysis PKC (EPKC; 100 g/kg). Chromium oxide was used to determine digestibility coefficients. Results showed that PKC inclusion linearly reduced apparent total tract digestibility (ATTD) of dry matter (DM), crude protein (CP), and gross energy (GE), while fermentation or enzymatic hydrolysis mitigated these effects. The regression-estimated digestible energy (DE) values were 11.39 MJ/kg DM for PKC and 12.84 MJ/kg DM for FPKC; metabolisable energy (ME) values were 11.03 and 12.60 MJ/kg DM, respectively. Hindgut fermentation contributed 5.42 MJ/kg DM (PKC) and 4.11 MJ/kg DM (FPKC). Fermentation and enzymatic treatments improved PKC energy utilisation, suggesting their potential as cost-effective alternatives in pig diets.
Collapse
Affiliation(s)
- Yaowei Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuxiang Liang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lianhua Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Prattico C, Gonzalez E, Dridi L, Jazestani S, Low KE, Abbott DW, Maurice CF, Castagner B. Identification of novel fructo-oligosaccharide bacterial consumers by pulse metatranscriptomics in a human stool sample. mSphere 2025; 10:e0066824. [PMID: 39699190 PMCID: PMC11774028 DOI: 10.1128/msphere.00668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Dietary fibers influence the composition of the human gut microbiota and directly contribute to its downstream effects on host health. As more research supports the use of glycans as prebiotics for therapeutic applications, the need to identify the gut bacteria that metabolize glycans of interest increases. Fructo-oligosaccharide (FOS) is a common diet-derived glycan that is fermented by the gut microbiota and has been used as a prebiotic. Despite being well studied, we do not yet have a complete picture of all FOS-consuming gut bacterial taxa. To identify new bacterial consumers, we used a short exposure of microbial communities in a stool sample to FOS or galactomannan as the sole carbon source to induce glycan metabolism genes. We then performed metatranscriptomics, paired with whole metagenomic sequencing, and 16S amplicon sequencing. The short incubation was sufficient to cause induction of genes involved in carbohydrate metabolism, like carbohydrate-active enzymes (CAZymes), including glycoside hydrolase family 32 genes, which hydrolyze fructan polysaccharides like FOS and inulin. Interestingly, FOS metabolism transcripts were notably overexpressed in Blautia species not previously reported to be fructan consumers. We therefore validated the ability of different Blautia species to ferment fructans by monitoring their growth and fermentation in defined media. This pulse metatranscriptomics approach is a useful method to find novel consumers of prebiotics and increase our understanding of prebiotic metabolism by CAZymes in the gut microbiota. IMPORTANCE Complex carbohydrates are key contributors to the composition of the human gut microbiota and play an essential role in the microbiota's effects on host health. Understanding which bacteria consume complex carbohydrates, or glycans, provides a mechanistic link between dietary prebiotics and their beneficial health effects, an essential step for their therapeutic application. Here, we used a pulse metatranscriptomics pipeline to identify bacterial consumers based on glycan metabolism induction in a human stool sample. We identified novel consumers of fructo-oligosaccharide among Blautia species, expanding our understanding of this well-known glycan. Our approach can be applied to identify consumers of understudied glycans and expand our prebiotic repertoire. It can also be used to study prebiotic glycans directly in stool samples in distinct patient populations to help delineate the prebiotic mechanism.
Collapse
Affiliation(s)
- Catherine Prattico
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Lharbi Dridi
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Shiva Jazestani
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Kristin E. Low
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada
| | - Bastien Castagner
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Espinheira R, Barrett K, Lange L, Sant’Ana da Silva A, Meyer AS. Discovery and Characterization of Mannan-Specialized GH5 Endo-1,4-β-mannanases: a Strategy for Açaí ( Euterpe oleracea Mart.) Seeds Upgrading. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:625-634. [PMID: 39680639 PMCID: PMC11726631 DOI: 10.1021/acs.jafc.4c07018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
The pulp of açaí palm fruits (Euterpe oleracea Mart.) is a valuable export commodity in Brazil. Its production generates 1.6 million tons/year of açaí seeds, a resource largely wasted. The seeds consist mainly of linear β-mannan, offering potential for prebiotic β-mannan-derived oligomers and mannose production. However, the crystalline structures of β-mannan hinder enzymatic hydrolysis. This study aimed to discover and characterize fungal enzymes targeting açaí seed β-mannan using a palm β-mannanase (EgMan5A) as a guide. Recombinant expression, enzyme optimization, kinetics, substrate specificity, and structural modeling were performed. The two fungal enzymes, JaMan5A and SlMan5A, were found to be specific for unsubstituted mannan, showing no activity toward galacto- and glucomannan. Among them, SlMan5A showed the highest activity on açaí seed β-mannan (∼24 U/mg) and other unsubstituted mannan substrates, likely due to its greater thermal robustness. These results provide valuable insights into β-mannan specificity contributing to the sustainable valorization of açaí seeds.
Collapse
Affiliation(s)
- Roberta
P. Espinheira
- Divisão
de Catálise, Biocatálise e Processos Químicos, Instituto Nacional de Tecnologia, Av. Venezuela 82, Rio de Janeiro 20081-312 ,Brazil
- Programa
de Pós-graduação em Bioquímica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909 ,Brazil
| | - Kristian Barrett
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, So̷ltofts Plads 221, 2800 Kgs Lyngby, Denmark
| | - Lene Lange
- LL
BioEconomy, Research & Advisory, Karensgade 5, 2500 Copenhagen, Denmark
| | - Ayla Sant’Ana da Silva
- Divisão
de Catálise, Biocatálise e Processos Químicos, Instituto Nacional de Tecnologia, Av. Venezuela 82, Rio de Janeiro 20081-312 ,Brazil
- Programa
de Pós-graduação em Bioquímica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909 ,Brazil
| | - Anne S. Meyer
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, So̷ltofts Plads 221, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
5
|
Lin Y, Zhang L, Tang W, Ren J, Mo Y, Guo X, Lin L, Ding Y. Synergistic cryoprotective effects of mannan oligosaccharides and curdlan on the grass carp surimi. Food Chem X 2025; 25:102250. [PMID: 39974524 PMCID: PMC11838123 DOI: 10.1016/j.fochx.2025.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
The cryoprotective effects of mannan oligosaccharides (MOS) and curdlan (CU) on the quality of grass carp surimi after freeze-thaw cycles (FTCs) were assessed using the response surface methodology. The optimal contents of MOS (6.79 %, w/w) and CU (0.45 %, w/w) produced minimum thawing losses and the highest gel strength of surimi after five times FTCs. MOS, CU, and their mixture demonstrated cryoprotective effects on grass carp surimi. Compared to MOS or CU alone, MOS-CU displayed synergistic cryoprotective effects, as evidenced by the better prevention of thawing losses of surimi, the superior retardation of the aggregation and denaturation of MP, the amelioration of the gel strength and WHC of surimi gel. Moreover, the MOS-CU mixture demonstrated cryoprotective effects equivalent to those of commercial cryoprotectant on grass carp surimi from zero to five times FTCs and even outperformed CC after seven times FTCs.
Collapse
Affiliation(s)
- Yanxin Lin
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lingzhi Zhang
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wanting Tang
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Ren
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yijie Mo
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiao Guo
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuqin Ding
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Forsberg Z, Tuveng TR, Eijsink VGH. A modular enzyme with combined hemicellulose-removing and LPMO activity increases cellulose accessibility in softwood. FEBS J 2025; 292:75-93. [PMID: 39190632 PMCID: PMC11705215 DOI: 10.1111/febs.17250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Because of the association with other complex polysaccharides, extracting and utilizing cellulose from lignocellulosic materials requires the combined action of a broad range of carbohydrate-active enzymes, including multiple glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The interplay between these enzymes and the way in which Nature orchestrates their co-existence and combined action are topics of great scientific and industrial interest. To gain more insight into these issues, we have studied the lignocellulose-degrading abilities of an enzyme from Caldibacillus cellulovorans (CcLPMO10-Man5), comprising an LPMO domain, a GH5 mannanase domain and two family 3 carbohydrate-binding modules (CBM3). Using a natural softwood substrate, we show that this enzyme promotes cellulase activity, i.e., saccharification of cellulose, both by removing mannan covering the cellulose and by oxidatively breaking up the cellulose structure. Synergy with CcLPMO10-Man5 was most pronounced for two tested cellobiohydrolases, whereas effects were smaller for a tested endoglucanase, which is in line with the notion that cellobiohydrolases and LPMOs attack the same crystalline regions of the cellulose, whereas endoglucanases attack semi-crystalline and amorphous regions. Importantly, the LPMO domain of CcLPMO10-Man5 is incapable of accessing the softwood cellulose in absence of the mannanase domain. Considering that LPMOs not bound to a substrate are sensitive to autocatalytic inactivation, this intramolecular synergy provides a perfect rationale for the evolution of modular enzymes such as CcLPMO10-Man5. The intramolecular coupling of the LPMO with a mannanase and two CBMs ensures that the LPMO is directed to areas where mannans are removed and cellulose thus becomes available.
Collapse
Affiliation(s)
- Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Tina R. Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
7
|
Tian Y, Gu M, Chen D, Dong Q, Wang Y, Sun W, Kong X. Causal Associations Between the Gut Microbiota and Hypertension-Related Traits Through Mendelian Randomization: A Cross-Sectional Cohort Study. J Clin Hypertens (Greenwich) 2025; 27:e14925. [PMID: 39468693 PMCID: PMC11771804 DOI: 10.1111/jch.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Previous studies have suggested a link between the gut microbiome and hypertension-related traits like blood pressure. However, these reports are often limited by weak causal evidence. This study investigates the potential causal association between gut microbiota and hypertension-related traits using Mendelian randomization with summary data from genome-wide association studies. The inverse-variance weighted method revealed that the Clostridium innocuum group (Odds ratio [OR]: 1.0047, 95% confidence interval [CI]: 1.0004-1.0090, p = 0.0336), Eubacterium fissicatena group (OR: 1.0047, 95% CI: 1.0005-1.0088, p = 0.0266), Lachnospiraceae FCS020 group (OR: 1.0063, 95% CI: 1.0004-1.0122, p = 0.0361), and Olsenella (OR: 1.0044, 95% CI: 1.0001-1.0088, p = 0.0430) were associated with an increased risk of hypertension. Conversely, Flavonifractor (OR: 0.9901, 95% CI: 0.9821-0.9982, p = 0.0166), Parabacteroides (OR: 0.9874, 95% CI: 0.9776-0.9972, p = 0.0121), and Senegalimassilia (OR: 0.9907, 95% CI: 0.9842-0.9974, p = 0.0063) were associated with a decreased risk of hypertension. External validation with the Guangdong Gut Microbiome Project confirmed a negative correlation between Parabacteroides and hypertension, potentially through metabolic pathways. These findings provide further evidence supporting the hypothesis that microbes and their metabolites play a role in blood pressure regulation.
Collapse
Affiliation(s)
- Yunfan Tian
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingxia Gu
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Dazhong Chen
- Department of pharmacy920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Quanbin Dong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yifeng Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei Sun
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiangqing Kong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Kim DG, Lee CM, Lee YS, Yoon SH, Kim SY. Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens. Int J Mol Sci 2024; 26:216. [PMID: 39796082 PMCID: PMC11720594 DOI: 10.3390/ijms26010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
The black soldier fly, Hermetia illucens, is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from H. illucens. Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity. Sequence analysis of the fosmid revealed a novel mannan-degrading gene, ManEM6, composed of 1185 base pairs encoding 394 amino acids, with a deduced 20-amino-acid N-terminal signal peptide sequence. The conceptual translation of ManEM6 exhibited the highest identity (78%) to endo-1,4-β-mannosidase from Dysgonomonas mossii. Phylogenetic and domain analyses indicated that ManEM6 encodes a novel mannanase with a glycoside hydrolase family 26 domain. The recombinant protein rManEM6 showed its highest activity at 40 °C and pH 7.0, and it remained stable in the range of pH 5-10.0. rManEM6 hydrolyzed substrates with β-1,4-glycosidic mannoses, showing maximum enzymatic activity toward locust bean gum galactomannan, while it did not hydrolyze p-nitrophenyl-β-pyranosides, demonstrating endo-form mannosidase activity. rManEM6 was highly stable under stringent conditions, including those of polar organic solvents, as well as reducing and denaturing reagents. Therefore, ManEM6 may be an attractive candidate for the degradation of mannan under high-organic-solvent and protein-denaturing processes in the food and feed industries.
Collapse
Affiliation(s)
- Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Chang-Muk Lee
- Technology Services Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Seok Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| | - Sang-Hong Yoon
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| | - Su-Yeon Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (Y.-S.L.); (S.-H.Y.); (S.-Y.K.)
| |
Collapse
|
9
|
Ishida K, Penner M, Fukushima K, Yoshimi Y, Wilson LFL, Echevarría-Poza A, Yu L, Dupree P. Convergent Emergence of Glucomannan β-Galactosyltransferase Activity in Asterids and Rosids. PLANT & CELL PHYSIOLOGY 2024; 65:2030-2039. [PMID: 39392710 DOI: 10.1093/pcp/pcae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
β-Galactoglucomannan (β-GGM) is a primary cell wall polysaccharide in rosids and asterids. The β-GGM polymer has a backbone of repeating β-(1,4)-glucosyl and mannosyl residues, usually with mono-α-(1,6)-galactosyl substitution or β-(1,2)-galactosyl α-galactosyl disaccharide side chains on the mannosyl residues. Mannan β-galactosyltransferases (MBGTs) are therefore required for β-GGM synthesis. The single MBGT identified so far, AtMBGT1, lies in glycosyltransferase family 47A subclade VII and was identified in Arabidopsis. However, despite the presence of β-GGM, an orthologous gene is absent in tomato (Solanum lycopersicum), a model asterid. In this study, we screened candidate MBGT genes from the tomato genome, functionally tested the activities of encoded proteins and identified the tomato MBGT (SlMBGT1) in GT47A-III. Interestingly therefore, AtMBGT1 and SlMBGT1 are located in different GT47A subclades. Furthermore, phylogenetic and glucomannan structural analysis from different species raised the possibility that various asterids possess conserved MBGTs in an asterid-specific subclade of GT47A-III, indicating that MBGT activity has been acquired convergently among asterids and rosids. The present study highlights the promiscuous emergence of donor and acceptor preference in GT47A enzymes. The independent acquisition of the activity also suggests an adaptive advantage for eudicots to acquire β-GGM β-galactosylation and hence also suggests that the disaccharide side chains are important for β-GGM function.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Matthew Penner
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Kenji Fukushima
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yoshihisa Yoshimi
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Louis F L Wilson
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22903, USA
| | - Alberto Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
10
|
Zu H, Yan X, Wu J, Zhao J, Mayo KH, Zhou Y, Cui L, Cheng H, Sun L. Application of an α-galactosidase from Bacteroides fragilis on structural analysis of raffinose family oligosaccharides. Carbohydr Polym 2024; 346:122661. [PMID: 39245515 DOI: 10.1016/j.carbpol.2024.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Raffinose family oligosaccharides (RFOs) have diverse structures and exhibit various biological activities. When using RFOs as prebiotics, their structures need to be identified. If we first knew whether an RFO was classical or non-classical, structural identification would become much easier. Here, we cloned and expressed an α-galactosidase (BF0224) from Bacteroides fragilis which showed strict specificity for hydrolyzing α-Gal-(1 → 6)-Gal linkages in RFOs. BF0224 efficiently distinguished classical from non-classical RFOs by identifying the resulting hydrolyzed oligo- and mono-saccharides with HPAEC-PAD-MS. Using this strategy, we identified a non-classical RFO from Pseudostellaria heterophylla (Miquel) Pax with DP6 (termed PHO-6), as well as a classical RFO from Lycopus lucidus Turcz. with DP7 (termed LTO-7). To characterize these RFO structures, we employed four other commercial or reported α-galactosidases in combination with NMR and methylation analysis. Using this approach, we elucidated the accurate chemical structure of PHO-6 and LTO-7. Our study provides an efficient analytical approach to structurally analyze RFOs. This enzyme-based strategy also can be applied to structural analysis of other glycans.
Collapse
Affiliation(s)
- Heyang Zu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Xuecui Yan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Jing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Jingying Zhao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China.
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
11
|
Sacakli P, Ramay MS, Ahsan U, Gebes ES, Harijaona JA, Fickler A, Shastak Y, Calik A. Effect of dietary β-mannanase supplementation on growth performance and nutrient retention in broiler chickens fed corn-soybean meal-based diets with low energy and amino acid density. Poult Sci 2024; 103:104475. [PMID: 39510008 PMCID: PMC11577199 DOI: 10.1016/j.psj.2024.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The present study was conducted to evaluate the effect of two different β-mannanases on growth performance and nutrient retention of broiler chickens fed a diet with low energy and amino acid density. A total of 312 one-day-old male broiler chickens (Ross 308) were placed in floor pens and fed a standard starter diet for 16 days. They were then randomly moved to stainless steel cages and distributed into three groups, with 13 replicates of 8 chickens each. The control group received a corn-soybean meal-based grower diet with reduced metabolizable energy by ∼100 kcal/kg and a 10-12% reduction of digestible amino acids (lysine, methionine, and threonine). Titanium oxide was added at 0.5% of diet as an indigestible marker. The other groups were fed the same diet supplemented with either β-mannanase A derived from Thermothelomyces thermophilus (100 g β-mannanase/MT grower diet) or β-mannanase B derived from Paenibacillus lentus (350 g β-mannanase/MT grower diet). The trial lasted for 7 days from d 17 to d 23, comprising 4 days of acclimatization followed by 3 days of sample collection. Final body weight (d 23), body weight gain (d 17-23), and feed intake (d 17-23) of broiler chickens did not differ among the groups. However, both β-mannanases significantly improved the feed conversion ratio during d 17-23 (P = 0.039) and nitrogen retention (P = 0.028) in broiler chickens compared to the control group. Moreover, dietary supplementation with β-mannanase A significantly increased dry matter retention (P = 0.050), organic matter retention (P = 0.028), and nitrogen-corrected apparent metabolizable energy (AMEn; P = 0.033) compared to the control group. In conclusion, supplemental β-mannanase, regardless of the product, improved the growth performance of broiler chickens by improving nutrient retention and dietary AMEn.
Collapse
Affiliation(s)
- Pinar Sacakli
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye
| | - Muhammad Shazaib Ramay
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Türkiye; Center for Agriculture, Livestock and Food Research, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Türkiye
| | - Emre Sunay Gebes
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye
| | - Josoa André Harijaona
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye
| | | | | | - Ali Calik
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye.
| |
Collapse
|
12
|
Zhang C, Pi X, Li X, Huo J, Wang W. Edible herbal source-derived polysaccharides as potential prebiotics: Composition, structure, gut microbiota regulation, and its related health effects. Food Chem 2024; 458:140267. [PMID: 38968717 DOI: 10.1016/j.foodchem.2024.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Recently, with changes in dietary patterns, there has been increased interest in the concept of food and medicine homology, which can help prevent disease development. This has led to a growing focus on the development of functional health foods derived from edible herbal sources. Polysaccharides, found in many edible herbal sources, are gaining popularity as natural ingredients in the production of functional food products. The gut microbiota can effectively utilize most edible herbal polysaccharides (EHPs) and produce beneficial metabolites; therefore, the prebiotic potential of EHPs is gradually being recognized. In this review, we comprehensively discuss the structural features and characterization of EHPs to promote gut microbiota regulation as well as the structure-activity relationship between EHPs and gut microbiota. As prebiotics, intestinal microbiota can use EHPs to indirectly produce metabolites such as short-chain fatty acids to promote overall health; on the other hand, different EHP structures possess some degree of selectivity on gut microbiota regulation. Moreover, we evaluate the functionality and mechanism underlying EHPs in terms of anticancer activity, antimetabolic diseases, anti-inflammatory activity, and anti-neuropsychiatric diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiuwei Li
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036
| | - Jinhai Huo
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036.
| | - Weiming Wang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036.
| |
Collapse
|
13
|
Gao H, Shi D, Yin C, Fan X, Cheng X, Qiao X, Liu C, Hu G, Yao F, Qiu J, Yu W. A highly branched glucomannan from the fruiting body of Schizophyllum commune: Structural characteristics and antitumor properties analysis. Int J Biol Macromol 2024; 282:137460. [PMID: 39528189 DOI: 10.1016/j.ijbiomac.2024.137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, a highly branched glucomannan (SCP-1) from Schizophyllum commune fruiting body with good solubility was isolated, and its structural characteristics and antitumor properties were analyzed. The monosaccharides of SCP-1 were fucose, glucosamine hydrochloride, galactose, glucose and mannose with a relative molar ratio of 14:6:210:593:177, and the molecular weight (Mw) of SCP-1 was 15.1 kDa. SCP-1 showed a rough and dense surface, and it was aggregated to particles in distilled water, though it might have triple-helix conformation. The main backbone chain of SCP-1 was →[3)-β-D-Glcp-(1]3→3)-β-D-Glcp-(1→2)-α-D-Manp-(1→2)-α-D-Manp-(1→3)-α-D-Glcp-(1→ and three sides chains including α-D-Glcp-(1→[6)-β-D-Glcp-(1]2→, α-D-Glcp-(1→3)-α-D-Manp-(1→ and α-D-Glcp-(1→[6)-α-D-Galp-(1]3→ were linked with 1,6-glycosidic bond, which was significantly different with the schizophyllan isolated from the mycelia of S. commune. SCP-1 could significantly inhibit the growth of A549 cells, the inhibition rate reached 41.62 % and the percentage of cells in S phase increased from 27.17 % to 56.40 % (400 μg/mL, 48 h). Moreover, SCP-1 could induce cell apoptosis and the total apoptosis rate reached 28.13 %. SCP-1 exerted apoptosis inducing effect probably by reducing the expression ratio of Bcl-2/Bax and the p-PI3K, p-Akt and p-mTOR expression level. The results showed that SCP-1 might have the potential to act as an antitumor agent for lung cancer therapy.
Collapse
Affiliation(s)
- Hong Gao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Defang Shi
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Chaomin Yin
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China.
| | - Xiuzhi Fan
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Xianbo Cheng
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xin Qiao
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Chunyou Liu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzho 545006, China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fen Yao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Jianhui Qiu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Wei Yu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China.
| |
Collapse
|
14
|
Massironi A, Freire De Moura Pereira P, Verotta L, Jiménez-Quero A, Marzorati S. Green strategies for the valorization of industrial medicinal residues of Serenoa repens small (saw palmetto) as source of bioactive compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122843. [PMID: 39418714 DOI: 10.1016/j.jenvman.2024.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Serenoa repens is a medicinal plant well-known for its therapeutic potential in treating various urological disorders and prevention of prostatic cancer. However, the extraction process in the pharmaceutical industry leads to the generation of plant residues, typically discarded, wasting valuable resources. In this study, we aimed to explore a series of green extraction strategies to effectively valorize the residues of Serenoa repens fruits. Initially, we employed supercritical CO2 (1.2% yield on dry biomass) on the discarded biomass to identify and quantify residual fatty acids and polyprenols (1.6% of the extract dry weight), a class of unsaturated isoprenoid alcohols with promising biomedical applications. Subsequently, subcritical water extraction was utilized on the exhausted biomass to extract polar compounds. An increase in the extraction yield was observed with the rise in processing temperature up to 180 °C (yields were found higher than 26%). Phenolic compounds and carbohydrate macromolecules profiles were affected by the increased hydrolytic conditions. Polar extracts exhibited robust bioactivities, demonstrating significant antioxidant activity and antimicrobial efficacy against Gram-positive and Gram-negative bacteria strains. Extracts obtained at 180 °C demonstrated the highest efficacy. Furthermore, in vitro assessment of mannans-rich fraction provided a new perspective of potential applications in the cosmeceuticals field. Results underscore the potential of the sustainable extraction biorefinery for the residue of this medicinal plant and demonstrate that, harnessing these bioactive compounds, new sustainable and eco-friendly approaches for its complete utilization can be offered, thereby promoting near-zero waste practices and contributing to a more sustainable future.
Collapse
Affiliation(s)
- Alessio Massironi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Pamela Freire De Moura Pereira
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96, Gothenburg, Sweden; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Amparo Jiménez-Quero
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96, Gothenburg, Sweden; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| |
Collapse
|
15
|
Adeshina I, Paray BA, Bhat EA, Sherzada S, Fawole OO, Bawa DJ, da Cruz TP, Tiamiyu LO. Dietary β-Mannanase Affects the Growth, Antioxidant, and Immunes Responses of African Catfish, Clarias gariepinus, and Its Challenge Against Aeromonas hydrophila Infection. AQUACULTURE NUTRITION 2024; 2024:5263495. [PMID: 39555532 PMCID: PMC11535281 DOI: 10.1155/2024/5263495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024]
Abstract
One of the most farmed fishes is the African catfish, Clarias gariepinus. Its production has increased by 20% annually on average during the last 20 years, but the occurrence of fish diseases, especially bacterial such as Aeromonas hydrophila infections, is hindering its activities. Also, the incorporation of plant-derived substances in aquafeeds is limited since they frequently contain different antinutritional factors, like nonstarch polysaccharides (NSPs). However, supplementing fish diets with β-mannanase could increase growth, antioxidants, and immunity. Despite the advantage of β-mannanase, its effects on growth, digestive enzymes, antioxidants, and immunity in African catfish need to be elucidated. This study examined the effects of dietary β-mannanase on the growth performance, liver enzymes, antioxidant profiles, immunity, and protection of African catfish, C. gariepinus, against A. hydrophila infection. Five isonitrogenous diets were prepared to have 400 g/kg crude protein and supplemented with β-mannanase at 0, 1500, 3000, 4500, or 6000 thermostable endo, 1,4-β-mannanase units (TMUs)/kg diet and fed to 300 juveniles of the African catfish, C. gariepinus (mean weight 12.1 ± 0.1 g) for 12 weeks. Then, 10 fish from each tank received an intraperitoneal injection of 0.1 mL of A. hydrophila (5.0 × 105 CFU/mL) and observed for 14 days. Results showed dietary β-mannanase levels considerably improved growth performance but did not affect fish survival. Also, amylase, protease, and lipase levels were significantly promoted in the fish fed with β-mannanase-fortified diets than the control group (p < 0.05). Enhanced gut villi and intestinal absorption areas, haematlogical profiles, and liver enzymes but reduced gut viscosity were observed in fish-fed β-mannanase-fortified diets (p < 0.05). In a dose-dependent order, including β-mannanase in the meals of African catfish raised the levels of glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutamate cysteine ligase (GCL) activities and decreased the malondialdehyde (MDA) values in African catfish (p < 0.05). Also, fish immunity was greatly (p < 0.05) enhanced due to supplementation of the diet with β-mannanase. In addition, fish-fed diets comprising 6000 TMU β-mannanase/kg diet showed the lowest rates of fish mortality (7.5%) (p < 0.05). Therefore, feeding African catfish, Clarias gariepinus, β-mannanase enhanced growth performance, increased activity of digestive enzymes, gut morphology, enhanced generation of short-chain fatty acids, digesta potential of hydrogen (pH), and improved antioxidant profiles and immunity at the optimum dose of 5800 TMU/kg diet. Additionally, β-mannanase protected African catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Ibrahim Adeshina
- School of Aquaculture, National University of Agriculture, Port Nove, Benin
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Eijaz Ahmed Bhat
- Microbiology/Molecular Physiology of Prokaryotes, Institute of Biology II, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - Shahid Sherzada
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Olaolu O. Fawole
- Department of Fisheries and Aquaculture, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Dalhatu J. Bawa
- Department of Forestry and Fisheries, Kebbi State University of Science and Technology Aliero, Lagos, Nigeria
| | - Thais Pereira da Cruz
- Animal Science Graduate Degree Program, State University of Maringa, Maringa, PR, Brazil
| | - Lateef O. Tiamiyu
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
16
|
Liao G, Sun E, Kana EBG, Huang H, Sanusi IA, Qu P, Jin H, Liu J, Shuai L. Renewable hemicellulose-based materials for value-added applications. Carbohydr Polym 2024; 341:122351. [PMID: 38876719 DOI: 10.1016/j.carbpol.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.
Collapse
Affiliation(s)
- Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Enhui Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa; School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - E B Gueguim Kana
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Hongying Huang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Isaac A Sanusi
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Ping Qu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Liu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Shuai
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China..
| |
Collapse
|
17
|
Peesapati S, Jagannathareddy DK, Roy D. Mechanical Stretching of Nature Inspired Linear and Branched Polysaccharide Motifs through Steered Molecular Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:6114-6126. [PMID: 39214612 DOI: 10.1021/acsabm.4c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A variety of 10 polysaccharide motifs comprising naturally inspired sequences of monosaccharide building blocks are studied to understand the inter-relation between their structural and mechanical behaviors. Equilibrium and steered molecular dynamics (SMD) simulations are employed to investigate the stress-strain relationships and the associated conformational flips of the pyranose moieties along the polysaccharide chains. The presence of a variety of glycosidic linkages connecting the diverse monosaccharide units along with chain-branching in some cases induce wide diversity in the carbohydrate-Ramachandran plots of the glycosidic dihedrals. Similar variations are observed in the Cremer-Pople ring puckering patterns across the polysaccharide variants. The work further provides a comparison between the experimentally obtained atomic force microscopic data of mechanical stretching for some polysaccharides with the stress-strain curves generated from our SMD simulations. Out of all the systems studied, pectin having an axial-axial orientation of the glycosidic linkage showed maximum stretching potential, while acetan-M, with an equatorial-equatorial disposition of the glycosidic bond, stretched the least. The experimental Young's modulus of the corresponding natural polysaccharides could be reasonably compared to the values obtained from our simulation models. Force distribution analysis is done to understand the propagation of punctual stress in the polysaccharides under SMD conditions. Changes in local electrophilicity or nucleophilicity of atomic centers in puckered pyranose rings are estimated through the condensed Fukui functions. All of this information can help understand the physical behavior and chemical reactivity of complex polysaccharides in a complicated milieu of electronic and steric effects experienced by them.
Collapse
Affiliation(s)
- Sruthi Peesapati
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Dinesh Kumar Jagannathareddy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
18
|
Xin D, Yin H, Ran G. Efficient production of High-Purity manno-oligosaccharides from guar gum by citric acid and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2024; 401:130719. [PMID: 38642662 DOI: 10.1016/j.biortech.2024.130719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Currently, the production of manno-oligosaccharides (MOS) from guar gum faces challenges of low oligosaccharide enzymatic hydrolysis yield and complicated steps in separation and purification. In this work, a potential strategy to address these issues was explored. By combining citric acid pretreatment (300 mM, 130 °C, 1 h) with β-mannanase hydrolysis, an impressive MOS yield of 61.8 % from guar gum (10 %, w/v) was achieved. The key success lay in the optimizing conditions that completely degraded other galactomannans into monosaccharides, which could be easily removable through Saccharomyces cerevisiae fermentation (without additional nutrients). Following ion exchange chromatography for desalination, and concluding with spray drying, 4.57 g of solid MOS with a purity of 90 % was obtained from 10 g of guar gum. This method offers a streamlined and effective pathway for obtaining high-yield and high-purity MOS from guar gum by combining citric acid pretreatment and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Donglin Xin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Hong Yin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China.
| |
Collapse
|
19
|
Chen L, Ma J, Xu W, Shen F, Yang Z, Sonne C, Dietz R, Li L, Jie X, Li L, Yan G, Zhang X. Comparative transcriptome and methylome of polar bears, giant and red pandas reveal diet-driven adaptive evolution. Evol Appl 2024; 17:e13731. [PMID: 38894980 PMCID: PMC11183199 DOI: 10.1111/eva.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Epigenetic regulation plays an important role in the evolution of species adaptations, yet little information is available on the epigenetic mechanisms underlying the adaptive evolution of bamboo-eating in both giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens). To investigate the potential contribution of epigenetic to the adaptive evolution of bamboo-eating in giant and red pandas, we performed hepatic comparative transcriptome and methylome analyses between bamboo-eating pandas and carnivorous polar bears (Ursus maritimus). We found that genes involved in carbohydrate, lipid, amino acid, and protein metabolism showed significant differences in methylation and expression levels between the two panda species and polar bears. Clustering analysis of gene expression revealed that giant pandas did not form a sister group with the more closely related polar bears, suggesting that the expression pattern of genes in livers of giant pandas and red pandas have evolved convergently driven by their similar diets. Compared to polar bears, some key genes involved in carbohydrate metabolism and biological oxidation and cholesterol synthesis showed hypomethylation and higher expression in giant and red pandas, while genes involved in fat digestion and absorption, fatty acid metabolism, lysine degradation, resistance to lipid peroxidation and detoxification showed hypermethylation and low expression. Our study elucidates the special nutrient utilization mechanism of giant pandas and red pandas and provides some insights into the molecular mechanism of their adaptive evolution of bamboo feeding. This has important implications for the breeding and conservation of giant pandas and red pandas.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Jinnan Ma
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- College of Continuing EducationYunnan Normal UniversityKunmingChina
| | - Wencai Xu
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered WildlifeChengdu Research Base of Giant Panda BreedingChengduChina
| | | | - Christian Sonne
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Rune Dietz
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Linzhu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiaodie Jie
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Lu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Guoqiang Yan
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiuyue Zhang
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
20
|
Song X, Li J, Chang Y, Mei X, Luan J, Jiang X, Xue C. The Discovery of a Multidomain Mannanase Containing Dual-Catalytic Domain of the Same Activity: Biochemical Properties and Synergistic Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10451-10458. [PMID: 38632679 DOI: 10.1021/acs.jafc.3c09611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In recent years, the wide application of mannan has driven the demand for the exploration of mannanase. As one of the main components of hemicellulose, mannan is an important polysaccharide that ruminants need to degrade and utilize, making rumen a rich source of mannanases. In this study, gene mining of mannanases was performed using bioinformatics, and potential dual-catalytic domain mannanases were heterologously expressed to analyze their properties. The hydrolysis pattern and enzymatic products were identified by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). A dual-catalytic domain mannanase Man26/5 with the same function as the substrate was successfully mined from the genome of cattle rumen microbiota. Compared to the single-catalytic domain, its higher thermal stability (≤50 °C) and catalytic efficiency confirm the synergistic effect between the two catalytic domains. It exhibited a unique "crab-like" structure where the CBM located in the middle is responsible for binding, and the catalytic domains at both ends are responsible for cutting. The exploration of its multidomain structure and synergistic patterns could provide a reference for the artificial construction and molecular modification of enzymes.
Collapse
Affiliation(s)
- Xiao Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jiajing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xuanwei Mei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jiayi Luan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xiaoxiao Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
21
|
Steimann T, Heite Z, Germer A, Blank LM, Büchs J, Mann M, Magnus JB. Understanding exopolysaccharide byproduct formation in Komagataella phaffii fermentation processes for recombinant protein production. Microb Cell Fact 2024; 23:131. [PMID: 38711081 DOI: 10.1186/s12934-024-02403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.
Collapse
Affiliation(s)
- Thomas Steimann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Zoe Heite
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Andrea Germer
- iAMB-Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB-Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Marcel Mann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Barsett Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
22
|
Wu Z, Zhang R, Wang J, Li T, Zhang G, Zhang C, Ye H, Zeng X. Characteristics of exopolysaccharides from Paecilomyces hepiali and their simulated digestion and fermentation in vitro by human intestinal microbiota. Int J Biol Macromol 2024; 266:131198. [PMID: 38552700 DOI: 10.1016/j.ijbiomac.2024.131198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The metabolic process of polysaccharides in gastrointestinal digestions and the effects of the resulting carbohydrates on the composition of gut microbes are important to explore their prebiotic properties. Therefore, the purpose of this study was to investigate the simulated digestion and fecal fermentation in vitro of three fractions (PHEPSs-1, PHEPSs-2 and PHEPSs-3) purified from the crude exopolysaccharides of Paecilomyces hepiali HN1 (PHEPSs) and to explore the potential prebiotic mechanisms. The three purified fractions were characterized by HPLC, UV, FT-IR, SEM and AFM, and they were all of galactoglucomannan family with molecular weight of 178, 232 and 119 kDa, respectively. They could resist the simulated gastrointestinal digestions, but they were metabolized in fecal fermentation in vitro. Furthermore, the mannose in PHEPSs showed a higher utilization rate than that of glucose or galactose. The proliferation effects of PHEPSs on Bifidobacterium and Lactobacillus were weaker significantly than those of fructooligosaccharides before 12 h of fecal fermentation, but stronger after 24 h of fecal fermentation. Meanwhile, higher levels of short-chain fatty acids were found in PHEPSs groups when the fecal fermentation extended to 36 h. Therefore, PHEPSs are expected to have a potent gut healthy activity and can be explored as functional food ingredients.
Collapse
Affiliation(s)
- Zhongwei Wu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Rongxian Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Jie Wang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Tenglong Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Guang Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Chaohui Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China; Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang 453003, China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Wang P, Pei X, Zhou W, Zhao Y, Gu P, Li Y, Gao J. Research and application progress of microbial β-mannanases: a mini-review. World J Microbiol Biotechnol 2024; 40:169. [PMID: 38630389 DOI: 10.1007/s11274-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. β-Mannanase is the principal mannan-degrading enzyme, which breaks down the β-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of β-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial β-mannanases are reviewed, the future research directions for microbial β-mannanases are also outlined.
Collapse
Affiliation(s)
- Ping Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Xiaohui Pei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, PR China
| | - Weiqiang Zhou
- Weili Biotechnology (Shandong) Co., Ltd, Taian, 271400, PR China
| | - Yue Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, 273399, PR China.
| |
Collapse
|
24
|
Narrowe AB, Lemons JMS, Mahalak KK, Firrman J, den Abbeele PV, Baudot A, Deyaert S, Li Y, Yu L(L, Liu L. Targeted remodeling of the human gut microbiome using Juemingzi ( Senna seed extracts). Front Cell Infect Microbiol 2024; 14:1296619. [PMID: 38638830 PMCID: PMC11024242 DOI: 10.3389/fcimb.2024.1296619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
The genus Senna contains globally distributed plant species of which the leaves, roots, and seeds have multiple traditional medicinal and nutritional uses. Notable chemical compounds derived from Senna spp. include sennosides and emodin which have been tested for antimicrobial effects in addition to their known laxative functions. However, studies of the effects of the combined chemical components on intact human gut microbiome communities are lacking. This study evaluated the effects of Juemingzi (Senna sp.) extract on the human gut microbiome using SIFR® (Systemic Intestinal Fermentation Research) technology. After a 48-hour human fecal incubation, we measured total bacterial cell density and fermentation products including pH, gas production and concentrations of short chain fatty acids (SCFAs). The initial and post-incubation microbial community structure and functional potential were characterized using shotgun metagenomic sequencing. Juemingzi (Senna seed) extracts displayed strong, taxon-specific anti-microbial effects as indicated by significant reductions in cell density (40%) and intra-sample community diversity. Members of the Bacteroidota were nearly eliminated over the 48-hour incubation. While generally part of a healthy gut microbiome, specific species of Bacteroides can be pathogenic. The active persistence of the members of the Enterobacteriaceae and selected Actinomycetota despite the reduction in overall cell numbers was demonstrated by increased fermentative outputs including high concentrations of gas and acetate with correspondingly reduced pH. These large-scale shifts in microbial community structure indicate the need for further evaluation of dosages and potential administration with prebiotic or synbiotic supplements. Overall, the very specific effects of these extracts may offer the potential for targeted antimicrobial uses or as a tool in the targeted remodeling of the gut microbiome.
Collapse
Affiliation(s)
- Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Johanna M. S. Lemons
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | | | | | | | - Yanfang Li
- Department of Nutrition and Food Science, The University of Maryland, College, Park, MD, United States
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science, The University of Maryland, College, Park, MD, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
25
|
Zhang R, Li B, Zhao Y, Zhu Y, Li L. An essential role for mannan degradation in both cell growth and secondary cell wall formation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1407-1420. [PMID: 37978883 DOI: 10.1093/jxb/erad463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
Coordination of secondary cell wall deposition and cell expansion during plant growth is required for cell development, particularly in vascular tissues. Yet the fundamental coordination process has received little attention. We observed that the Arabidopsis endo-1,4-mannanase gene, AtMAN6, is involved in the formation of cell walls in vascular tissues. In the inflorescence stem, the man6 mutant had smaller vessel cells with thicker secondary cell walls and shorter fiber cells. Elongation growth was reduced in the root, and secondary cell wall deposition in vessel cells occurred early. Overexpression of AtMAN6 resulted in the inverse phenotypes of the man6 mutant. AtMAN6 was discovered on the plasma membrane and was specifically expressed in vessel cells during its early development. The AtMAN6 protein degraded galactoglucomannan to produce oligosaccharides, which caused secondary cell wall deposition in vessel and fiber cells to be suppressed. Transcriptome analysis revealed that the expression of genes involved in the regulation of secondary cell wall synthesis was changed in both man6 mutant and AtMAN6 overexpression plants. AtMAN6's C-terminal cysteine repeat motif (CCRM) was found to facilitate homodimerization and is required for its activity. According to the findings, the oligosaccharides produced by AtMAN6 hydrolysis may act as a signal to mediate this coordination between cell growth and secondary cell wall deposition.
Collapse
Affiliation(s)
- Rui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yunjun Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
26
|
Teli S, Deshmukh K, Khan T, Suvarna V. Recent Advances in Biomedical Applications of Mannans and Xylans. Curr Drug Targets 2024; 25:261-277. [PMID: 38375843 DOI: 10.2174/0113894501285058240203094846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Plant-based phytochemicals, including flavonoids, alkaloids, tannins, saponins, and other metabolites, have attracted considerable attention due to their central role in synthesizing nanomaterials with various biomedical applications. Hemicelluloses are the second most abundant among naturally occurring heteropolymers, accounting for one-third of all plant constituents. In particular, xylans, mannans, and arabinoxylans are structured polysaccharides derived from hemicellulose. Mannans and xylans are characterized by their linear configuration of β-1,4-linked mannose and xylose units, respectively. At the same time, arabinoxylan is a copolymer of arabinose and xylose found predominantly in secondary cell walls of seeds, dicotyledons, grasses, and cereal tissues. Their widespread use in tissue engineering, drug delivery, and gene delivery is based on their properties, such as cell adhesiveness, cost-effectiveness, high biocompatibility, biodegradability, and low immunogenicity. Moreover, it can be easily functionalized, which expands their potential applications and provides them with structural diversity. This review comprehensively addresses recent advances in the field of biomedical applications. It explores the potential prospects for exploiting the capabilities of mannans and xylans in drug delivery, gene delivery, and tissue engineering.
Collapse
Affiliation(s)
- Shriya Teli
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Kajal Deshmukh
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| |
Collapse
|
27
|
Franková L, Fry SC. Chara — a living sister to the land plants with pivotal enzymic toolkit for mannan and xylan remodelling. PHYSIOLOGIA PLANTARUM 2024; 176. [PMCID: PMC10962555 DOI: 10.1111/ppl.14134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/09/2023] [Indexed: 02/04/2025]
Abstract
AbstractLand‐plant transglycosylases ‘cut‐and‐paste’ cell‐wall polysaccharides by endo‐transglycosylation (transglycanases) and exo‐transglycosylation (transglycosidases). Such enzymes may remodel the wall, adjusting extensibility and adhesion. Charophytes have cell‐wall polysaccharides that broadly resemble, but appreciably differ from land‐plants'. We investigated whether Chara vulgaris has wall‐restructuring enzymes mirroring those of land‐plants.Wall enzymes extracted from Chara were assayed in vitro for transglycosylase activities on various donor substrates — β‐(1→4)‐glucan‐based [xyloglucan and mixed‐linkage glucans (MLGs)], β‐(1→4)‐xylans and β‐(1→4)‐mannans — plus related acceptor substrates (tritium‐labelled oligosaccharides, XXXGol, Xyl6‐ol and Man6‐ol), thus 12 donor:acceptor permutations. Also, fluorescent oligosaccharides were incubated in situ with Chara, revealing endogenous enzyme action on endogenous (potentially novel) polysaccharides.Chara enzymes acted on the glucan‐based polysaccharides with [3H]XXXGol as acceptor substrate, demonstrating ‘glucan:glucan‐type’ transglucanases. Such activities were unexpected because Chara lacks biochemically detectable xyloglucan and MLG. With xylans as donor and [3H]Xyl6‐ol (but not [3H]Man6‐ol) as acceptor, high trans‐β‐xylanase activity was detected. With mannans as donor and either [3H]Man6‐ol or [3H]Xyl6‐ol as acceptor, we detected high levels of both mannan:mannan homo‐trans‐β‐mannanase and mannan:xylan hetero‐trans‐β‐mannanase activity, showing that Chara can not only ‘cut/paste’ these hemicelluloses by homo‐transglycosylation but also hetero‐transglycosylate them, forming mannan→xylan (but not xylan→mannan) hybrid hemicelluloses. In in‐situ assays, Chara walls attached endogenous polysaccharides to exogenous sulphorhodamine‐labelled Man6‐ol, indicating transglycanase (possibly trans‐mannanase) action on endogenous polysaccharides.In conclusion, cell‐wall transglycosylases, comparable to but different from those of land‐plants, pre‐dated the divergence of the Charophyceae from its sister clade (Coleochaetophyceae/Zygnematophyceae/land‐plants). Thus, the ability to ‘cut/paste’ wall polysaccharides is an evolutionarily ancient streptophytic trait.
Collapse
Affiliation(s)
- Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences The University of Edinburgh Edinburgh UK
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences The University of Edinburgh Edinburgh UK
| |
Collapse
|
28
|
Liu S, Xu M, Chen B, Li F, Deng Y, Zhang Y, Lin G, Chen D, Geng Y, Ou Y, Huang X. The potential mechanism of concentrated mannan-oligosaccharide promoting goldfish's (Carassius auratus Linnaeus) resistance to Ichthyophthirius multifiliis invasion. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109290. [PMID: 38104695 DOI: 10.1016/j.fsi.2023.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Because of the low host specificity, Ichthyophthirius multifiliis (Ich) can widely cause white spot disease in aquatic animals, which is extremely difficult to treat. Prior research has demonstrated a considerable impact of concentrated mannan-oligosaccharide (cMOS) on the prevention of white spot disease in goldfish, but the specific mechanism is still unknown. In this study, transcriptome sequencing, histological analysis, immunofluorescence analysis, phagocytosis activity assay and qRT-PCR assay were used to systematically reveal the potential mechanism of cMOS in supporting the resistance of goldfish (Carrasius auratus) to Ich invasion. According to the transcriptome analysis, the gill tissue of goldfish receiving the cMOS diet showed greater expression of mannose-receptor (MRC) related genes, higher phagocytosis activity, up-regulated expression of phagocytosis-related genes and inflammatory-related genes compared with the control, indicating that cMOS can have an effect on phagocytosis and non-specific immunity of goldfish. After the Ich challenge, transcriptome analysis revealed that cMOS fed goldfish displayed a higher level of phagocytic response, whereas non-cMOS fed goldfish displayed a greater inflammatory reaction. Besides, after Ich infection, cMOS-fed goldfish displayed greater phagocytosis activity, a stronger MRC positive signal, higher expression of genes associated with phagocytosis (ABCB2, C3, MRC), and lower expression of genes associated with inflammation (IL-1β, IL-17, IL-8, TNF-α, NFKB). In conclusion, our experimental results suggest that cMOS may support phagocytosis by binding to MRC on the macrophage cell membrane and change the non-specific immunity of goldfish by stimulating cytokine expression. The results of this study provide new insights for the mechanism of cMOS on parasitic infection, and also suggest phagocytosis-related pathways may be potential targets for prevention of Ich infection.
Collapse
Affiliation(s)
- Senyue Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ming Xu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Yufan Zhang
- Beijing Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
29
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
30
|
Zamorski R, Baba K, Noda T, Sawada R, Miyata K, Itoh T, Kaku H, Shibuya N. Variety-dependent accumulation of glucomannan in the starchy endosperm and aleurone cell walls of rice grains and its possible genetic basis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:321-336. [PMID: 38434111 PMCID: PMC10905567 DOI: 10.5511/plantbiotechnology.23.0809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 03/05/2024]
Abstract
Plant cell wall plays important roles in the regulation of plant growth/development and affects the quality of plant-derived food and industrial materials. On the other hand, genetic variability of cell wall structure within a plant species has not been well understood. Here we show that the endosperm cell walls, including both starchy endosperm and aleurone layer, of rice grains with various genetic backgrounds are clearly classified into two groups depending on the presence/absence of β-1,4-linked glucomannan. All-or-none distribution of the glucomannan accumulation among rice varieties is very different from the varietal differences of arabinoxylan content in wheat and barley, which showed continuous distributions. Immunoelectron microscopic observation suggested that the glucomannan was synthesized in the early stage of endosperm development, but the synthesis was down-regulated during the secondary thickening process associated with the differentiation of aleurone layer. Significant amount of glucomannan in the cell walls of the glucomannan-positive varieties, i.e., 10% or more of the starchy endosperm cell walls, and its close association with the cellulose microfibril suggested possible effects on the physicochemical/biochemical properties of these cell walls. Comparative genomic analysis indicated the presence of striking differences between OsCslA12 genes of glucomannan-positive and negative rice varieties, Kitaake and Nipponbare, which seems to explain the all-or-none glucomannan cell wall trait in the rice varieties. Identification of the gene responsible for the glucomannan accumulation could lead the way to clarify the effect of the accumulation of glucomannan on the agronomic traits of rice by using genetic approaches.
Collapse
Affiliation(s)
- Ryszard Zamorski
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Faculty of Agriculture and Biotechnology, University of Science and Technology, Bydgoszcz 85-796, Poland
| | - Kei’ichi Baba
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takahiro Noda
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Hokkaido Agricultural Research Center, NARO, Memuro, Hokkaido 082-0081, Japan
| | - Rimpei Sawada
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Plant Biotechnology Laboratory, Life Science Institute, Mitsui Toatsu Chemicals Inc., Mobara, Chiba 297-0017, Japan
| | - Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takao Itoh
- Wood Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hanae Kaku
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Shibuya
- National Institute of Agrobiological Resources, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8634, Japan
- National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8642, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
31
|
Carvalho CL, Andretta I, Galli GM, Bastos Stefanello T, Camargo NDOT, Mendes RE, Pelisser G, Balamuralikrishnan B, Melchior R, Kipper M. Dietary supplementation with β-mannanase and probiotics as a strategy to improve laying hen performance and egg quality. Front Vet Sci 2023; 10:1229485. [PMID: 38116507 PMCID: PMC10728292 DOI: 10.3389/fvets.2023.1229485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
The objective of this study was to assess the impact of β-mannanase and probiotic on the performance, serum biochemistry, gut morphometric traits, and fresh egg quality of laying hens. A total of 120 cages, housing light-weight laying hens (36 weeks old), were randomly assigned to four different treatments. These treatments included a control group fed non-supplemented diets; diets supplemented with 300 g/ton of beta-mannanase; diets supplemented with 50 g/ton of probiotic; or diets containing both 300 g/ton of β-mannanase and 50 g/ton of probiotics. The trial spanned a duration of 26 weeks and was divided into three productive phases, each lasting 28 days. The inclusion of β-mannanase resulted in a significant improvement in the laying rate by 11% (p < 0.05) compared to the control treatment. Similarly, the addition of probiotics also enhanced the laying rate by 7% (p < 0.05), as well as the supplementation with combined additives (11.5%). Combined additives showed an increase in egg masses, and additive association improved by 13.9% (p < 0.001) in contrast to the control treatment. Overall, β-mannanase and combined additives used during the supplementation period resulted in improvements in the weight of fresh eggs. These benefits were observed after a period of 14 weeks without supplementation (p < 0.05). Furthermore, significant differences were observed in the serum biochemistry and egg masses of birds that were fed diets containing both additives (β-mannanase + probiotics) compared to the control group. Parameters such as uric acid, total cholesterol, and triglycerides displayed notable variations. The villi height: crypt depth showed differences with combined additives (β-mannanase + probiotics). The β-mannanase improved specific gravity, yolk height, length, and pH, and yolk color traits compared to the control treatment. The use of probiotics helped to improve yolk height, pH, and color score. Besides, combined additives (β-mannanase + probiotics) improve yolk height, length, weight, pH, and better traits in yolk color. Hence, incorporating β-mannanase and probiotics into laying hen diets proves to be a highly effective strategy for enhancing laying rate and overall health status, while simultaneously elevating certain quality attributes of fresh eggs.
Collapse
Affiliation(s)
- Camila Lopes Carvalho
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ines Andretta
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Miotto Galli
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Bastos Stefanello
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Giovanna Pelisser
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense, Concórdia, Brazil
| | | | - Raquel Melchior
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
32
|
Lu H, Xue M, Nie X, Luo H, Tan Z, Yang X, Shi H, Li X, Wang T. Glycoside hydrolases in the biodegradation of lignocellulosic biomass. 3 Biotech 2023; 13:402. [PMID: 37982085 PMCID: PMC10654287 DOI: 10.1007/s13205-023-03819-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/21/2023] Open
Abstract
Lignocellulose is a plentiful and intricate biomass substance made up of cellulose, hemicellulose, and lignin. Cellulose and hemicellulose are polysaccharides characterized by different compositions and degrees of polymerization. As renewable resources, their applications are eco-friendly and can help reduce reliance on petrochemical resources. This review aims to illustrate cellulose, hemicellulose, and their structures and hydrolytic enzymes. To obtain desirable enzyme sources for the high hydrolysis of lignocellulose, highly stable, efficient and thermophilic enzyme sources, and new technologies, such as rational design and machine learning, have been introduced in detail. Generally, the efficient biodegradation of abundant natural biomass into fermentable sugars or other intermediates has great potential in practical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03819-1.
Collapse
Affiliation(s)
- Honglin Lu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Maoyuan Xue
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Hongzheng Luo
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Zhongbiao Tan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xiao Yang
- Department of Poultry Science, The University of Georgia, Athens, GA 30602 USA
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
33
|
Jang KB, Zhao Y, Kim YI, Pasquetti T, Kim SW. Effects of bacterial β-mannanase on apparent total tract digestibility of nutrients in various feedstuffs fed to growing pigs. Anim Biosci 2023; 36:1700-1708. [PMID: 37592382 PMCID: PMC10623040 DOI: 10.5713/ab.23.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE The objective of this study was to determine the effects of β-mannanase on metabolizable energy (ME) and apparent total tract digestibility (ATTD) of protein in various feedstuffs including barley, copra meal, corn, corn distillers dried grains with solubles (DDGS), palm kernel meal, sorghum, and soybean meal. METHODS A basal diet was formulated with 94.8% corn and 0.77% amino acids, minerals, and vitamins and test diets replacing corn-basal diets with barley, corn DDGS, sorghum, soybean meal, or wheat (50%, respectively) and copra meal or palm kernel meal (30%, respectively). The basal diet and test diets were evaluated by using triplicated or quadruplicated 2×2 Latin square designs consisting of 2 diets and 2 periods with a total of 54 barrows at 20.6±0.6 kg (9 wk of age). Dietary treatments were levels of β-mannanase supplementation (0 or 800 U/kg of feed). Fecal and urine samples were collected for 4 d following a 4-d adaptation period. The ME and ATTD of crude protein (CP) in feedstuffs were calculated by a difference procedure. Data were analyzed using Proc general linear model of SAS. RESULTS Supplementation of β-mannanase improved (p<0.05) ME of barley (10.4%), palm kernel meal (12.4%), sorghum (6.0%), and soybean meal (2.9%) fed to growing pigs. Supplementation of β-mannanase increased (p<0.05) ATTD of CP in palm kernel meal (8.8%) and tended to increase (p = 0.061) ATTD of CP in copra meal (18.0%) fed to growing pigs. CONCLUSION This study indicates that various factors such as the structure and the amount of β-mannans, water binding capacity, and the level of resistant starch vary among feedstuffs and the efficacy of supplemental β-mannanase may be influenced by these factors.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Yan Zhao
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Young Ihn Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Tiago Pasquetti
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| |
Collapse
|
34
|
Wang J, Ke S, Strappe P, Ning M, Zhou Z. Structurally Orientated Rheological and Gut Microbiota Fermentation Property of Mannans Polysaccharides and Oligosaccharides. Foods 2023; 12:4002. [PMID: 37959121 PMCID: PMC10649220 DOI: 10.3390/foods12214002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/15/2023] Open
Abstract
Three mannan polysaccharides and their oligosaccharides were investigated in terms of physicochemical characteristics and effects on gut microbiota. Oligosaccharides from guar gum had the fastest fermentation kinetics for SCFAs generation at the initial stage, while the locust bean of both polymers and oligosaccharides demonstrated the lowest SCFAs through the whole fermentation process. In contrast, konjac gum steadily increased SCFAs and reached its maximum level at 24 h fermentation, indicating its fermentation character may be associated with its rheological properties. Compared to their corresponding polysaccharides, all the oligosaccharides demonstrated a faster fermentation kinetics, followed by an enriched abundance of propionate-producing bacterial Prevotella and a decreased abundance of Megamonas and Collinsella. Meanwhile, oligosaccharides reduced the Firmicutes/Bacteroidota ratio as well as the abundance of Bacteroidetes and Escherichia-Shigella. The fermentation of konjac substrate significantly promoted the abundance of butyrate-producing bacterial Faecalibacterium. In contrast, although the fermentation of locust bean and guar gum substrates benefited Bifidobacterium abundance due to their similar structure and monosaccharides composition, the fermentation of locust bean gum led to greater Bifidobacterium than the others, which may be associated with its higher mannose composition in the molecules. Interestingly, the partial hydrolysis of the three polysaccharides slightly reduced their prebiotic function.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, The Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China; (J.W.); (M.N.)
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Sheng Ke
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Padraig Strappe
- Curtin Health Innovation Research Institute (CHIRI), Curtin Medical School, Curtin University, Bentley, WA 6102, Australia;
| | - Ming Ning
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, The Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China; (J.W.); (M.N.)
| | - Zhongkai Zhou
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, The Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China; (J.W.); (M.N.)
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga, NSW 2678, Australia
| |
Collapse
|
35
|
Dementiev A, Lillington SP, Jin S, Kim Y, Jedrzejczak R, Michalska K, Joachimiak A, O'Malley MA. Structure and enzymatic characterization of CelD endoglucanase from the anaerobic fungus Piromyces finnis. Appl Microbiol Biotechnol 2023; 107:5999-6011. [PMID: 37548665 PMCID: PMC10485095 DOI: 10.1007/s00253-023-12684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Anaerobic fungi found in the guts of large herbivores are prolific biomass degraders whose genomes harbor a wealth of carbohydrate-active enzymes (CAZymes), of which only a handful are structurally or biochemically characterized. Here, we report the structure and kinetic rate parameters for a glycoside hydrolase (GH) family 5 subfamily 4 enzyme (CelD) from Piromyces finnis, a modular, cellulosome-incorporated endoglucanase that possesses three GH5 domains followed by two C-terminal fungal dockerin domains (double dockerin). We present the crystal structures of an apo wild-type CelD GH5 catalytic domain and its inactive E154A mutant in complex with cellotriose at 2.5 and 1.8 Å resolution, respectively, finding the CelD GH5 catalytic domain adopts the (β/α)8-barrel fold common to many GH5 enzymes. Structural superimposition of the apo wild-type structure with the E154A mutant-cellotriose complex supports a catalytic mechanism in which the E154 carboxylate side chain acts as an acid/base and E278 acts as a complementary nucleophile. Further analysis of the cellotriose binding pocket highlights a binding groove lined with conserved aromatic amino acids that when docked with larger cellulose oligomers is capable of binding seven glucose units and accommodating branched glucan substrates. Activity analyses confirm P. finnis CelD can hydrolyze mixed linkage glucan and xyloglucan, as well as carboxymethylcellulose (CMC). Measured kinetic parameters show the P. finnis CelD GH5 catalytic domain has CMC endoglucanase activity comparable to other fungal endoglucanases with kcat = 6.0 ± 0.6 s-1 and Km = 7.6 ± 2.1 g/L CMC. Enzyme kinetics were unperturbed by the addition or removal of the native C-terminal dockerin domains as well as the addition of a non-native N-terminal dockerin, suggesting strict modularity among the domains of CelD. KEY POINTS: • Anaerobic fungi host a wealth of industrially useful enzymes but are understudied. • P. finnis CelD has endoglucanase activity and structure common to GH5_4 enzymes. • CelD's kinetics do not change with domain fusion, exhibiting high modularity.
Collapse
Affiliation(s)
- Alexey Dementiev
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Stephen P Lillington
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Shiyan Jin
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Youngchang Kim
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Robert Jedrzejczak
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Karolina Michalska
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA.
- Biological Engineering Program, University of California, Santa Barbara, CA, USA.
- Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA.
| |
Collapse
|
36
|
Cheng X, Du X, Liang Y, Degen AA, Wu X, Ji K, Gao Q, Xin G, Cong H, Yang G. Effect of grape pomace supplement on growth performance, gastrointestinal microbiota, and methane production in Tan lambs. Front Microbiol 2023; 14:1264840. [PMID: 37840727 PMCID: PMC10569316 DOI: 10.3389/fmicb.2023.1264840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Grape pomace (GP), a by-product in wine production, is nutritious and can be used as a feed ingredient for ruminants; however, its role in shaping sheep gastrointestinal tract (GIT) microbiota is unclear. We conducted a controlled trial using a randomized block design with 10 Tan lambs fed a control diet (CD) and 10 Tan lambs fed a pelleted diet containing 8% GP (dry matter basis) for 46 days. Rumen, jejunum, cecum, and colon bacterial and archaeal composition were identified by 16S rRNA gene sequencing. Dry matter intake (DMI) was greater (p < 0.05) in the GP than CD group; however, there was no difference in average daily gain (ADG, p < 0.05) and feed conversion ratio (FCR, p < 0.05) between the two groups. The GP group had a greater abundance of Prevotella 1 and Prevotella 7 in the rumen; of Sharpe, Ruminococcaceae 2, and [Ruminococcus] gauvreauii group in the jejunum; of Ruminococcaceae UCG-014 and Romboutsia in the cecum, and Prevotella UCG-001 in the colon; but lesser Rikenellaceae RC9 gut group in the rumen and cecum, and Ruminococcaceae UCG-005 and Ruminococcaceae UCG-010 in the colon than the CD group. The pathways of carbohydrate metabolism, such as L-rhamnose degradation in the rumen, starch and glycogen degradation in the jejunum, galactose degradation in the cecum, and mixed acid fermentation and mannan degradation in the colon were up-graded; whereas, the pathways of tricarboxylic acid (TCA) cycle VIII, and pyruvate fermentation to acetone in the rumen and colon were down-graded with GP. The archaeal incomplete reductive TCA cycle was enriched in the rumen, jejunum, and colon; whereas, the methanogenesis from H2 and CO2, the cofactors of methanogenesis, including coenzyme M, coenzyme B, and factor 420 biosynthesis were decreased in the colon. The study concluded that a diet including GP at 8% DM did not affect ADG or FCR in Tan lambs. However, there were some potential benefits, such as enhancing propionate production by microbiota and pathways in the GIT, promoting B-vitamin production in the rumen, facilitating starch degradation and amino acid biosynthesis in the jejunum, and reducing methanogenesis in the colon.
Collapse
Affiliation(s)
- Xindong Cheng
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Du
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Liang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Xiukun Wu
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Kaixi Ji
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxian Gao
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Haitao Cong
- Shandong Huakun Rural Revitalization Institute Co., Ltd., Jinan, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Yellow River Estuary Tan Sheep Institute of Industrial Technology, Dongying, China
| |
Collapse
|
37
|
Mafa MS, Malgas S. Towards an understanding of the enzymatic degradation of complex plant mannan structures. World J Microbiol Biotechnol 2023; 39:302. [PMID: 37688610 PMCID: PMC10492685 DOI: 10.1007/s11274-023-03753-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Plant cell walls are composed of a heterogeneous mixture of polysaccharides that require several different enzymes to degrade. These enzymes are important for a variety of biotechnological processes, from biofuel production to food processing. Several classical mannanolytic enzyme functions of glycoside hydrolases (GH), such as β-mannanase, β-mannosidase and α-galactosidase activities, are helpful for efficient mannan hydrolysis. In this light, we bring three enzymes into the model of mannan degradation that have received little or no attention. By linking their three-dimensional structures and substrate specificities, we have predicted the interactions and cooperativity of these novel enzymes with classical mannanolytic enzymes for efficient mannan hydrolysis. The novel exo-β-1,4-mannobiohydrolases are indispensable for the production of mannobiose from the terminal ends of mannans, this product being the preferred product for short-chain mannooligosaccharides (MOS)-specific β-mannosidases. Second, the side-chain cleaving enzymes, acetyl mannan esterases (AcME), remove acetyl decorations on mannan that would have hindered backbone cleaving enzymes, while the backbone cleaving enzymes liberate MOS, which are preferred substrates of the debranching and sidechain cleaving enzymes. The nonhydrolytic expansins and swollenins disrupt the crystalline regions of the biomass, improving their accessibility for AcME and GH activities. Finally, lytic polysaccharide monooxygenases have also been implicated in promoting the degradation of lignocellulosic biomass or mannan degradation by classical mannanolytic enzymes, possibly by disrupting adsorbed mannan residues. Modelling effective enzymatic mannan degradation has implications for improving the saccharification of biomass for the synthesis of value-added and upcycling of lignocellulosic wastes.
Collapse
Affiliation(s)
- Mpho Stephen Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, 0028 South Africa
| |
Collapse
|
38
|
Zheng F, Basit A, Zhang Z, Zhuang H, Chen J, Zhang J. Improved production of recombinant β-mannanase (TaMan5) in Pichia pastoris and its synergistic degradation of lignocellulosic biomass. Front Bioeng Biotechnol 2023; 11:1244772. [PMID: 37744260 PMCID: PMC10513448 DOI: 10.3389/fbioe.2023.1244772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Mannan, a highly abundant and cost-effective natural resource, holds great potential for the generation of high-value compounds such as bioactive polysaccharides and biofuels. In this study, we successfully enhanced the expression of constructed GH5 β-mannanase (TaMan5) from Trichoderma asperellum ND-1 by employing propeptide in Pichia pastoris. By replacing the α-factor with propeptide (MGNRALNSMKFFKSQALALLAATSAVA), TaMan5 activity was significantly increased from 67.5 to 91.7 U/mL. It retained higher activity in the presence of 20% ethanol and 15% NaCl. When incubated with a high concentration of mannotriose or mannotetraose, the transglycosylation action of TaMan5 can be detected, yielding the corresponding production of mannotetraose or mannooligosaccharides. Moreover, the unique mechanism whereby TaMan5 catalyzes the degradation of mannan into mannobiose involves the transglycosylation of mannose to mannotriose or mannotetraose as a substrate to produce a mannotetraose or mannopentose intermediate, respectively. Additionally, the production of soluble sugars from lignocellulose is a crucial step in bioethanol development, and it is noteworthy that TaMan5 could synergistically yield fermentable sugars from corn stover and bagasse. These findings offered valuable insights and strategies for enhancing β-mannanase expression and efficient conversion of lignocellulosic biomass, providing cost-effective and sustainable approaches for high-value biomolecule and biofuel production.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Zhiyue Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Huan Zhuang
- Department of ENT and Head and Neck Surgery, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
39
|
Tian D, Qiao Y, Peng Q, Zhang Y, Gong Y, Shi L, Xiong X, He M, Xu X, Shi B. A Poly-D-Mannose Synthesized by a One-Pot Method Exhibits Anti-Biofilm, Antioxidant, and Anti-Inflammatory Properties In Vitro. Antioxidants (Basel) 2023; 12:1579. [PMID: 37627574 PMCID: PMC10451989 DOI: 10.3390/antiox12081579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/18/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, D-mannose was used to synthesize poly-D-mannose using a one-pot method. The molecular weight, degree of branching, monosaccharide composition, total sugar content, and infrared spectrum were determined. In addition, we evaluated the safety and bioactivity of poly-D-mannose including anti-pathogen biofilm, antioxidant, and anti-inflammatory activity. The results showed that poly-D-mannose was a mixture of four components with different molecular weights. The molecular weight of the first three components was larger than 410,000 Da, and that of the fourth was 3884 Da. The branching degree of poly-D-mannose was 0.53. The total sugar content was 97.70%, and the monosaccharide was composed only of mannose. The infrared spectra showed that poly-D-mannose possessed characteristic groups of polysaccharides. Poly-D-mannose showed no cytotoxicity or hemolytic activity at the concentration range from 0.125 mg/mL to 8 mg/mL. In addition, poly-D-mannose had the best inhibition effect on Salmonella typhimurium at the concentration of 2 mg/mL (68.0% ± 3.9%). The inhibition effect on Escherichia coli O157:H7 was not obvious, and the biofilm was reduced by 37.6% ± 2.9% at 2 mg/mL. For Staphylococcus aureus and Bacillus cereus, poly-D-mannose had no effect on biofilms at low concentration; however, 2 mg/mL of poly-D-mannose showed inhibition rates of 33.7% ± 6.4% and 47.5% ± 4%, respectively. Poly-D-mannose showed different scavenging ability on free radicals. It showed the best scavenging effect on DPPH, with the highest scavenging rate of 74.0% ± 2.8%, followed by hydroxyl radicals, with the scavenging rate of 36.5% ± 1.6%; the scavenging rates of superoxide anion radicals and ABTS radicals were the lowest, at only 10.1% ± 2.1% and 16.3% ± 0.9%, respectively. In lipopolysaccharide (LPS)-stimulated macrophages, poly-D-mannose decreased the secretion of nitric oxide (NO) and reactive oxygen species (ROS), and down-regulated the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Therefore, it can be concluded that poly-D-mannose prepared in this research is safe and has certain biological activity. Meanwhile, it provides a new idea for the development of novel prebiotics for food and feed industries or active ingredients used for pharmaceutical production in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.T.); (Y.Q.); (Q.P.); (Y.Z.); (Y.G.); (L.S.); (X.X.); (M.H.)
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.T.); (Y.Q.); (Q.P.); (Y.Z.); (Y.G.); (L.S.); (X.X.); (M.H.)
| |
Collapse
|
40
|
Jomrit J, Suhardi S, Summpunn P. Effects of Signal Peptide and Chaperone Co-Expression on Heterologous Protein Production in Escherichia coli. Molecules 2023; 28:5594. [PMID: 37513466 PMCID: PMC10384211 DOI: 10.3390/molecules28145594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Various host systems have been employed to increase the yield of recombinant proteins. However, some recombinant proteins were successfully produced at high yields but with no functional activities. To achieve both high protein yield and high activities, molecular biological strategies have been continuously developed. This work describes the effect of signal peptide (SP) and co-expression of molecular chaperones on the production of active recombinant protein in Escherichia coli. Extracellular enzymes from Bacillus subtilis, including β-1,4-xylanase, β-1,4-glucanase, and β-mannanase constructed with and without their signal peptides and intracellular enzymes from Pseudomonas stutzeri ST201, including benzoylformate decarboxylase (BFDC), benzaldehyde dehydrogenase (BADH), and d-phenylglycine aminotransferase (d-PhgAT) were cloned and overexpressed in E. coli BL21(DE3). Co-expression of molecular chaperones with all enzymes studied was also investigated. Yields of β-1,4-xylanase (Xyn), β-1,4-glucanase (Cel), and β-mannanase (Man), when constructed without their N-terminal signal peptides, increased 1112.61-, 1.75-, and 1.12-fold, respectively, compared to those of spXyn, spCel, and spMan, when constructed with their signal peptides. For the natural intracellular enzymes, the chaperones, GroEL-GroES complex, increased yields of active BFDC, BADH, and d-PhgAT, up to 1.31-, 4.94- and 37.93-fold, respectively, and also increased yields of Man and Xyn up to 1.53- and 3.46-fold, respectively, while other chaperones including DnaK-DnaJ-GrpE and Trigger factor (Tf) showed variable effects with these enzymes. This study successfully cloned and overexpressed extracellular and intracellular enzymes in E. coli BL21(DE3). When the signal peptide regions of the secretory enzymes were removed, yields of active enzymes were higher than those with intact signal peptides. In addition, a higher yield of active enzymes was obtained, in general, when these enzymes were co-expressed with appropriate chaperones. Therefore, E. coli can produce cytoplasmic and secretory enzymes effectively if only the enzyme coding sequence without its signal peptide is used and appropriate chaperones are co-expressed to assist in correct folding.
Collapse
Affiliation(s)
- Juntratip Jomrit
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Suhardi Suhardi
- Department of Animal Science, Faculty of Agriculture, Mulawarman University, Samarinda 75123, Indonesia
| | - Pijug Summpunn
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
41
|
Costa DA, Williams TC, do Vale LHF, Filho EX. Characterization of mannanases from Clonostachys byssicola involved in the breakdown of lignocellulosic substrates. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
42
|
Chou MH, Chen YH, Cheng MT, Chiang HC, Chen HW, Wang CW. Potential of methacrylated acemannan for exerting antioxidant-, cell proliferation-, and cell migration-inducing activities in vitro. BMC Complement Med Ther 2023; 23:204. [PMID: 37340378 DOI: 10.1186/s12906-023-04022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Acemannan is an acetylated polysaccharide of Aloe vera extract with antimicrobial, antitumor, antiviral, and antioxidant activities. This study aims to optimize the synthesis of acemannan from methacrylate powder using a simple method and characterize it for potential use as a wound-healing agent. METHODS Acemannan was purified from methacrylated acemannan and characterized using high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), and 1H-nuclear magnetic resonance (NMR). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed to investigate the antioxidant activity of acemannan and its effects on cell proliferation and oxidative stress damage, respectively. Further, a migration assay was conducted to determine the wound healing properties of acemannan. RESULTS We successfully optimized the synthesis of acemannan from methacrylate powder using a simple method. Our results demonstrated that methacrylated acemannan was identified as a polysaccharide with an acetylation degree similar to that in A. vera, with the FTIR revealing peaks at 1739.94 cm-1 (C = O stretching vibration), 1370 cm-1 (deformation of the H-C-OH bonds), and 1370 cm-1 (C-O-C asymmetric stretching vibration); 1H NMR showed an acetylation degree of 1.202. The DPPH results showed the highest antioxidant activity of acemannan with a 45% radical clearance rate, compared to malvidin, CoQ10, and water. Moreover, 2000 µg/mL acemannan showed the most optimal concentration for inducing cell proliferation, while 5 µg/mL acemannan induced the highest cell migration after 3 h. In addition, MTT assay findings showed that after 24 h, acemannan treatment successfully recovered cell damage due to H2O2 pre-treatment. CONCLUSION Our study provides a suitable technique for effective acemannan production and presents acemannan as a potential agent for use in accelerating wound healing through its antioxidant properties, as well as cell proliferation- and migration-inducing activities.
Collapse
Affiliation(s)
- Meng-Han Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC)
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
- School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC)
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan (ROC)
- Xinwu Branch, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
| | - Hung-Chi Chiang
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
| | - Hou-Wen Chen
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC).
| | - Ching-Wei Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC).
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC).
| |
Collapse
|
43
|
Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J. Biochemical analyses of a novel acidophilic GH5 β-mannanase from Trichoderma asperellum ND-1 and its application in mannooligosaccharides production from galactomannans. Front Microbiol 2023; 14:1191553. [PMID: 37362936 PMCID: PMC10288326 DOI: 10.3389/fmicb.2023.1191553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, an acidophilic GH5 β-mannanase (TaMan5) from Trichoderma asperellum ND-1 was efficiently expressed in Pichia pastoris (a 2.0-fold increase, 67.5 ± 1.95 U/mL). TaMan5 displayed the highest specificity toward locust bean gum (Km = 1.34 mg/mL, Vmax = 749.14 μmol/min/mg) at pH 4.0 and 65°C. Furthermore, TaMan5 displayed remarkable tolerance to acidic environments, retaining over 80% of its original activity at pH 3.0-5.0. The activity of TaMan5 was remarkably decreased by Cu2+, Mn2+, and SDS, while Fe2+/Fe3+ improved the enzyme activity. A thin-layer chromatography (TLC) analysis of the action model showed that TaMan5 could rapidly degrade mannan/MOS into mannobiose without mannose via hydrolysis action as well as transglycosylation. Site-directed mutagenesis results suggested that Glu205, Glu313, and Asp357 of TaMan5 are crucial catalytic residues, with Asp152 playing an auxiliary function. Additionally, TaMan5 and commercial α-galactosidase displayed a remarkable synergistic effect on the degradation of galactomannans. This study provided a novel β-mannanase with ideal characteristics and can be considered a potential candidate for the production of bioactive polysaccharide mannobiose.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Huan Zhuang
- Department of ENT and Head and Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
44
|
Ma Y, Han L, Raza SHA, Gui L, Zhang X, Hou S, Sun S, Yuan Z, Wang Z, Yang B, Hassan MM, Alghsham RS, Al Abdulmonem W, Alkhalil SS. Exploring the effects of palm kernel meal feeding on the meat quality and rumen microorganisms of Qinghai Tibetan sheep. Food Sci Nutr 2023; 11:3516-3534. [PMID: 37324863 PMCID: PMC10261763 DOI: 10.1002/fsn3.3340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 10/03/2023] Open
Abstract
Palm kernel meal (PKM) has been shown to be a high-quality protein source in ruminant feeds. This study focused on the effects of feed, supplemented with different amounts of PKM (ZL-0 as blank group, and ZL-15, ZL-18, and ZL-21 as treatment group), on the quality and flavor profile of Tibetan sheep meat. Furthermore, the deposition of beneficial metabolites in Tibetan sheep and the composition of rumen microorganisms on underlying regulatory mechanisms of meat quality were studied based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry as well as 16S rDNA sequencing. The results of the study showed that Tibetan sheep in the ZL-18 group exhibited superior eating quality and flavor profile while depositing more protein and fat relative to the other groups. The ZL-18 group also changed significantly in terms of the concentration and metabolic pathways of meat metabolites, as revealed by metabolomics. Metabolomics and correlation analyses finally showed that PKM feed mainly affected carbohydrate metabolism in muscle, which in turn affects meat pH, tenderness, and flavor. In addition, 18% of PKM increased the abundance of Christensenellaceae R-7 group, Ruminococcaceae UCG-013, Lachnospiraceae UCG-002, and Family XIII AD3011 group in the rumen but decreased the abundance of Prevotella 1; the above bacteria groups regulate meat quality by regulating rumen metabolites (succinic acid, DL-glutamic acid, etc.). Overall, the addition of PKM may improve the quality and flavor of the meat by affecting muscle metabolism and microorganisms in the rumen.
Collapse
Affiliation(s)
- Ying Ma
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation‐Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry ProductsSouth China Agricultural UniversityGuangzhou510642China
- College of Animal Science and Technology, Northwest A&F UniversityYangling712100ShaanxiPeople's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Xue Zhang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Mohamed M. Hassan
- Department of BiologyCollege of Science, Taif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Ruqaih S. Alghsham
- Department of PathologyCollege of Medicine, Qassim UniversityQassimSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of PathologyCollege of Medicine, Qassim UniversityP.O. Box 6655Buraidah51452Kingdom of Saudi Arabia
| | - Samia S. Alkhalil
- Department of Clinical Laboratory SciencesCollege of Applied Medical Sciences, Shaqra UniversityAlquwayiyahRiyadhSaudi Arabia
| |
Collapse
|
45
|
Ferreira da Silva Y, Alencastro FS, de Souza ND, Oliveira RN, Simao RA. Investigating the origin of laser-induced fluorescence in mannan-rich Phytelephas macrocarpa seeds before and after thermal aging. Carbohydr Polym 2023; 308:120632. [PMID: 36813334 DOI: 10.1016/j.carbpol.2023.120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Natural polysaccharides, e.g., starch, cellulose and sodium alginate have been highlighted as unconventional chromophores owing to their chain structures containing clustered electron-rich groups and the rigidification imposed by inter/intramolecular interactions. On account of the abundant hydroxyl groups and dense packing of low-substituted (< 5 %) mannan chains, we have investigated the laser-induced fluorescence of mannan-rich vegetable ivory seeds (Phytelephas macrocarpa), both in the native state and after thermal aging. The untreated material emitted fluorescence at 580 nm (yellow-orange) when excited at 532 nm (green). This luminescence is intrinsic to the polysaccharide matrix abundant in crystalline homomannan, as demonstrated by lignocellulosic analyses, fluorescence microscopy, NMR, Raman, FTIR and XRD. Thermal aging at 140 °C and above intensified the yellow-orange fluorescence and caused the material to fluoresce when excited by a near-infrared laser (785 nm). In view of the clustering-triggered emission mechanism, the fluorescence of the untreated material can be attributed to hydroxyl clusters and the conformational rigidification in mannan I crystals. On the other hand, thermal aging caused dehydration and oxidative degradation of mannan chains, inducing the substitution of hydroxyl groups by carbonyls. These physicochemical changes may have affected cluster formation and increased conformational rigidification, enhancing fluorescence emission.
Collapse
Affiliation(s)
- Yuri Ferreira da Silva
- Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, P.O. Box: 68505, 21945-970 Rio de Janeiro, RJ, Brazil.
| | - Felipe Sampaio Alencastro
- Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, P.O. Box: 68505, 21945-970 Rio de Janeiro, RJ, Brazil.
| | - Natália Dias de Souza
- Department of Forest Products, Federal Rural University of Rio de Janeiro, Km 7 BR 465, 23890-000 Seropédica, RJ, Brazil
| | - Renata Nunes Oliveira
- Department of Chemical Engineering, Federal Rural University of Rio de Janeiro, Km 7 BR 465, 23890-000 Seropédica, RJ, Brazil
| | - Renata Antoun Simao
- Department of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, P.O. Box: 68505, 21945-970 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
46
|
Panwar D, Shubhashini A, Kapoor M. Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnol Adv 2023; 66:108166. [PMID: 37121556 DOI: 10.1016/j.biotechadv.2023.108166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research. Among various glycans, mannans represent an integral component of the human diet. Apart from their health effects, the diverse and complex mannan structures bears molecular signatures that alter the expression of specific gene clusters in selected Bacteroidota and Bacillota species. Both the phyla possess variable and sophisticated loci of mannan recognition proteins, hydrolytic enzymes, transporters, and other metabolic proteins to sense, capture and utilize mannans as an energy source. The current review summarizes mannan structural diversity, and strategies adopted by select species of the HGM bacteria to forage mannans by focusing primarily on glycoside hydrolases and their effects on host health and metabolism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
47
|
Sun Z, Pan X, Li X, Jiang L, Hu P, Wang Y, Ye Y, Wu P, Zhao B, Xu J, Kong M, Pu Y, Zhao M, Hu J, Wang J, Chen G, Yuan C, Yu Y, Gao X, Zhao F, Pan A, Zheng Y. The Gut Microbiome Dynamically Associates with Host Glucose Metabolism throughout Pregnancy: Longitudinal Findings from a Matched Case-Control Study of Gestational Diabetes Mellitus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205289. [PMID: 36683149 PMCID: PMC10074094 DOI: 10.1002/advs.202205289] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Though gut microbiome disturbance may be involved in the etiology of gestational diabetes mellitus (GDM), data on the gut microbiome's dynamic change during pregnancy and associations with gestational glucose metabolism are still inadequate. In this prospective study comprising 120 pairs of GDM patients and matched pregnant controls, a decrease in the diversity of gut microbial species and changes in the microbial community composition with advancing gestation are found in controls, while no such trends are observed in GDM patients. Multivariable analysis identifies 10 GDM-related species (e.g., Alistipes putredinis), and the integrated associations of these species with glycemic traits are modified by habitual intake of fiber-rich plant foods. In addition, the microbial metabolic potentials related to fiber fermentation (e.g., mannan degradation pathways) and their key enzymes consistently emerge as associated with both GDM status and glycemic traits. Microbial features especially those involved in fiber fermentation, provide an incremental predictive value in a prediction model with established risk factors of GDM. These data suggest that the gut microbiome remodeling with advancing gestation is different in GDM patients compared with controls, and dietary fiber fermentation contributes to the influence of gut microbiome on gestational glycemic regulation.
Collapse
Affiliation(s)
- Zhonghan Sun
- State Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologyFudan UniversityShanghaiChina
| | - Xiong‐Fei Pan
- Section of Epidemiology and Population HealthMinistry of Education Key Laboratory of Birth Defects and Related Diseases of Women and ChildrenWest China Second University Hospital & West China Biomedical Big Data CenterWest China HospitalSichuan University; Shuangliu Institute of Women's and Children's HealthShuangliu Maternal and Child Health HospitalChengduSichuanChina
| | - Xiao Li
- State Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologyFudan UniversityShanghaiChina
| | - Limiao Jiang
- Department of Epidemiology & BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology)Ministry of EducationWuhanHubeiChina
| | - Ping Hu
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology)Ministry of EducationWuhanHubeiChina
| | - Yi Wang
- Department of Epidemiology & BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology)Ministry of EducationWuhanHubeiChina
| | - Yi Ye
- Department of Epidemiology & BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology)Ministry of EducationWuhanHubeiChina
| | - Ping Wu
- Department of Epidemiology & BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology)Ministry of EducationWuhanHubeiChina
| | - Bin Zhao
- Antenatal Care ClinicsShuangliu Maternal and Child Health HospitalChengduChina
| | - Jianguo Xu
- Department of Clinical LaboratoriesShuangliu Maternal and Child Health HospitalChengduChina
| | - Mengmeng Kong
- State Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologyFudan UniversityShanghaiChina
| | - Yanni Pu
- State Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologyFudan UniversityShanghaiChina
| | - Manying Zhao
- State Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologyFudan UniversityShanghaiChina
| | - Jianying Hu
- State Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
- Ministry of Education Key Laboratory of Contemporary AnthropologyFudan UniversityShanghaiChina
| | - Jinfeng Wang
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| | - Guo‐Chong Chen
- Department of Nutrition and Food HygieneSchool of Public HealthSoochow UniversitySuzhouChina
| | - Changzheng Yuan
- School of Public HealthZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yongfu Yu
- School of Public HealthFudan UniversityShanghaiChina
| | - Xiang Gao
- School of Public HealthFudan UniversityShanghaiChina
| | - Fangqing Zhao
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| | - An Pan
- Department of Epidemiology & BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Environment & Health (Huazhong University of Science and Technology)Ministry of EducationWuhanHubeiChina
| | - Yan Zheng
- State Key Laboratory of Genetic EngineeringSchool of Life Sciences and Human Phenome InstituteFudan UniversityShanghaiChina
- School of Public HealthFudan UniversityShanghaiChina
| |
Collapse
|
48
|
Gao J, Zheng H, Wang X, Li Y. Characterization of a novel GH26 β-mannanase from Paenibacillus polymyxa and its application in the production of mannooligosaccharides. Enzyme Microb Technol 2023; 165:110197. [PMID: 36680817 DOI: 10.1016/j.enzmictec.2023.110197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
A novel glycoside hydrolase family 26 β-mannanase gene ppman26a was cloned from Paenibacillus polymyxa KF-1. The full-length enzyme PpMan26A and its truncated products CBM35pp (aa 35-328) and PpMan26A-Δ205 (aa 206-656) were overexpressed in Escherichia coli. PpMan26A hydrolyzed locust bean gum, guar gum, konjac gum and ivory nut mannan, with the highest specific activity toward konjac gum. The Km and kcat values for konjac gum were 2.13 mg/mL and 416.66 s-1, respectively. The oligosaccharides fraction obtained from the hydrolysis of konjac gum by PpMan26A was analyzed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometer (MALDI-TOF-MS). The degradation products were mainly mannooligosaccharides with a degree of polymerization of 3-8. CBM35pp exerted strong binding activity toward mannans but without β-mannanase activity. PpMan26A-Δ205, with the deletion of the N-terminal CBM domain, showed lower substrate binding capacity, resulting in reduced enzymatic activity and thermostability. This study complements our understanding of GH26 β-mannanases and expands the potential industrial application of PpMan26A.
Collapse
Affiliation(s)
- Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China.
| | - Haolei Zheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Xiaoqian Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
49
|
Stephens Z, Wilson LFL, Zimmer J. Diverse mechanisms of polysaccharide biosynthesis, assembly and secretion across kingdoms. Curr Opin Struct Biol 2023; 79:102564. [PMID: 36870276 DOI: 10.1016/j.sbi.2023.102564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 03/06/2023]
Abstract
Polysaccharides are essential biopolymers produced in all kingdoms of life. On the cell surface, they represent versatile architectural components, forming protective capsules and coats, cell walls, or adhesives. Extracellular polysaccharide (EPS) biosynthesis mechanisms differ based on the cellular localization of polymer assembly. Some polysaccharides are first synthesized in the cytosol and then extruded by ATP powered transporters [1]. In other cases, the polymers are assembled outside the cell [2], synthesized and secreted in a single step [3], or deposited on the cell surface via vesicular trafficking [4]. This review focuses on recent insights into the biosynthesis, secretion, and assembly of EPS in microbes, plants and vertebrates. We focus on comparing the sites of biosynthesis, secretion mechanisms, and higher-order EPS assemblies.
Collapse
Affiliation(s)
- Zachery Stephens
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Louis F L Wilson
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Jochen Zimmer
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA.
| |
Collapse
|
50
|
Novak JK, Gardner JG. Galactomannan utilization by Cellvibrio japonicus relies on a single essential α-galactosidase encoded by the aga27A gene. Mol Microbiol 2023; 119:312-325. [PMID: 36604822 DOI: 10.1111/mmi.15024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Plant mannans are a component of lignocellulose that can have diverse compositions in terms of its backbone and side-chain substitutions. Consequently, the degradation of mannan substrates requires a cadre of enzymes for complete reduction to substituent monosaccharides that can include mannose, galactose, and/or glucose. One bacterium that possesses this suite of enzymes is the Gram-negative saprophyte Cellvibrio japonicus, which has 10 predicted mannanases from the Glycoside Hydrolase (GH) families 5, 26, and 27. Here we describe a systems biology approach to identify and characterize the essential mannan-degrading components in this bacterium. The transcriptomic analysis uncovered significant changes in gene expression for most mannanases, as well as many genes that encode carbohydrate active enzymes (CAZymes) when mannan was actively being degraded. A comprehensive mutational analysis characterized 54 CAZyme-encoding genes in the context of mannan utilization. Growth analysis of the mutant strains found that the man26C, aga27A, and man5D genes, which encode a mannobiohydrolase, α-galactosidase, and mannosidase, respectively, were important for the deconstruction of galactomannan, with Aga27A being essential. Our updated model of mannan degradation in C. japonicus proposes that the removal of galactose sidechains from substituted mannans constitutes a crucial step for the complete degradation of this hemicellulose.
Collapse
Affiliation(s)
- Jessica K Novak
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|