1
|
Guo Y, Chen A, Liu K, Ji C. Structural insights and functional characterization of a novel β-glucosidase derived from Thermotoga profunda. Biochem Biophys Res Commun 2024; 732:150405. [PMID: 39033552 DOI: 10.1016/j.bbrc.2024.150405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
β-Glucosidase is a crucial cellulase, as its activity determines the efficiency of cellulose hydrolysis into glucose. This study addresses the functional and structural characteristics of Thermotoga profunda β-glucosidase (Tp-BGL). Tp-BGL exhibited a Km of 0.3798 mM for p-nitrophenyl-β-d-glucopyranoside (pNPGlc) and 4.44 mM for cellobiose, with kcat/Km of 1211.16 and 4.18 s-1 mM-1, respectively. In addition, Tp-BGL showed significant pH adaptability and thermal stability, with a Tm of 85.7 °C and retaining >90 % of its activity after incubation at 80 °C for 90 min. The crystal structure of Tp-BGL was resolved at 1.95 Å resolution, and reveals a typical TIM barrel structure. Comparative structural analysis highlighted that the major distinction between Tp-BGL and the other glucosidases lies in their loop regions.
Collapse
Affiliation(s)
- Yanchao Guo
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Anke Chen
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Kelin Liu
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Chaoneng Ji
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
2
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Lara AR, Kunert F, Vandenbroucke V, Taymaz-Nikerel H, Martínez LM, Sigala JC, Delvigne F, Gosset G, Büchs J. Transport-controlled growth decoupling for self-induced protein expression with a glycerol-repressible genetic circuit. Biotechnol Bioeng 2024; 121:1789-1802. [PMID: 38470342 DOI: 10.1002/bit.28697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Decoupling cell formation from recombinant protein synthesis is a potent strategy to intensify bioprocesses. Escherichia coli strains with mutations in the glucose uptake components lack catabolite repression, display low growth rate, no overflow metabolism, and high recombinant protein yields. Fast growth rates were promoted by the simultaneous consumption of glucose and glycerol, and this was followed by a phase of slow growth, when only glucose remained in the medium. A glycerol-repressible genetic circuit was designed to autonomously induce recombinant protein expression. The engineered strain bearing the genetic circuit was cultured in 3.9 g L-1 glycerol + 18 g L-1 glucose in microbioreactors with online oxygen transfer rate monitoring. The growth was fast during the simultaneous consumption of both carbon sources (C-sources), while expression of the recombinant protein was low. When glycerol was depleted, the growth rate decreased, and the specific fluorescence reached values 17% higher than those obtained with a strong constitutive promoter. Despite the relatively high amount of C-source used, no oxygen limitation was observed. The proposed approach eliminates the need for the substrate feeding or inducers addition and is set as a simple batch culture while mimicking fed-batch performance.
Collapse
Affiliation(s)
- Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Flavio Kunert
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Vincent Vandenbroucke
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
| | - Luz María Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Guillermo Gosset
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jochen Büchs
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Castillo-Corujo A, Uchida Y, Saaranen MJ, Ruddock LW. Escherichia coli Cytoplasmic Expression of Disulfide-Bonded Proteins: Side-by-Side Comparison between Two Competing Strategies. J Microbiol Biotechnol 2024; 34:1126-1134. [PMID: 38563095 PMCID: PMC11180911 DOI: 10.4014/jmb.2311.11025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The production of disulfide bond-containing recombinant proteins in Escherichia coli has traditionally been done by either refolding from inclusion bodies or by targeting the protein to the periplasm. However, both approaches have limitations. Two broad strategies were developed to allow the production of proteins with disulfide bonds in the cytoplasm of E. coli: i) engineered strains with deletions in the disulfide reduction pathways, e.g. SHuffle, and ii) the co-expression of oxidative folding catalysts, e.g. CyDisCo. However, to our knowledge, the relative effectiveness of these strategies has not been properly evaluated. Here, we systematically compare the purified yields of 14 different proteins of interest (POI) that contain disulfide bonds in their native state when expressed in both systems. We also compared the effects of different background strains, commonly used promoters, and two media types: defined and rich autoinduction. In rich autoinduction media, POI which can be produced in a soluble (non-native) state without a system for disulfide bond formation were produced in higher purified yields from SHuffle, whereas all other proteins were produced in higher purified yields using CyDisCo. In chemically defined media, purified yields were at least 10x higher in all cases using CyDisCo. In addition, the quality of the three POI tested was superior when produced using CyDisCo.
Collapse
Affiliation(s)
- Angel Castillo-Corujo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Yuko Uchida
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Mirva J. Saaranen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Lloyd W. Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| |
Collapse
|
5
|
Handayani CV, Laksmi FA, Andriani A, Nuryana I, Mubarik NR, Agustriana E, Dewi KS, Purnawan A. Expression of soluble moloney murine leukemia virus-reverse transcriptase in Escherichia coli BL21 star (DE3) using autoinduction system. Mol Biol Rep 2024; 51:628. [PMID: 38717629 DOI: 10.1007/s11033-024-09583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
Autoinduction systems in Escherichia coli can control the production of proteins without the addition of a particular inducer. In the present study, we optimized the heterologous expression of Moloney Murine Leukemia Virus derived Reverse Transcriptase (MMLV-RT) in E. coli. Among 4 autoinduction media, media Imperial College resulted the highest MMLV-RT overexpression in E. coli BL21 Star (DE3) with incubation time 96 h. The enzyme was produced most optimum in soluble fraction of lysate cells. The MMLV-RT was then purified using the Immobilized Metal Affinity Chromatography method and had specific activity of 629.4 U/mg. The system resulted lower specific activity and longer incubation of the enzyme than a classical Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction system. However, the autoinduction resulted higher yield of the enzyme than the conventional induction (27.8%). Techno Economic Analysis revealed that this method could produce MMLV-RT using autoinduction at half the cost of MMLV-RT production by IPTG-induction. Bioprocessing techniques are necessary to conduct to obtain higher quality of MMLV-RT under autoinduction system.
Collapse
Affiliation(s)
- Christina Vivid Handayani
- Research Center for Applied Microbiology, National Agency for Research and Innovation, Jl. Raya Bogor, Km. 46, Cibinong, Bogor, 16911, Indonesia
- Biotechnology Program, Graduate School, IPB University, Bogor, Indonesia
| | - Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Agency for Research and Innovation, Jl. Raya Bogor, Km. 46, Cibinong, Bogor, 16911, Indonesia.
| | - Ade Andriani
- Research Center for Applied Microbiology, National Agency for Research and Innovation, Jl. Raya Bogor, Km. 46, Cibinong, Bogor, 16911, Indonesia.
| | - Isa Nuryana
- Research Center for Applied Microbiology, National Agency for Research and Innovation, Jl. Raya Bogor, Km. 46, Cibinong, Bogor, 16911, Indonesia
| | - Nisa Rachmania Mubarik
- Department of Biology, Faculty of Mathematic and Natural Science, IPB University, Bogor, Indonesia
| | - Eva Agustriana
- Research Center for Applied Microbiology, National Agency for Research and Innovation, Jl. Raya Bogor, Km. 46, Cibinong, Bogor, 16911, Indonesia
| | - Kartika Sari Dewi
- Research Center for Genetic Engineering, National Agency for Research and Innovation, Jl. Raya Bogor, Km. 46, Cibinong, Bogor, 16911, Indonesia
| | - Awan Purnawan
- Research Center for Applied Microbiology, National Agency for Research and Innovation, Jl. Raya Bogor, Km. 46, Cibinong, Bogor, 16911, Indonesia
| |
Collapse
|
6
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Tungekar AA, Ruddock LW. Design of an alternate antibody fragment format that can be produced in the cytoplasm of Escherichia coli. Sci Rep 2023; 13:14188. [PMID: 37648872 PMCID: PMC10469194 DOI: 10.1038/s41598-023-41525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
With increased accessibility and tissue penetration, smaller antibody formats such as antibody fragments (Fab) and single chain variable fragments (scFv) show potential as effective and low-cost choices to full-length antibodies. These formats derived from the modular architecture of antibodies could prove to be game changers for certain therapeutic and diagnostic applications. Microbial hosts have shown tremendous promise as production hosts for antibody fragment formats. However, low target protein yields coupled with the complexity of protein folding result in production limitations. Here, we report an alternative antibody fragment format 'FabH3' designed to overcome some key bottlenecks associated with the folding and production of Fabs. The FabH3 molecule is based on the Fab format with the constant domains replaced by engineered immunoglobulin G1 (IgG1) CH3 domains capable of heterodimerization based on the electrostatic steering approach. We show that this alternative antibody fragment format can be efficiently produced in the cytoplasm of E. coli using the catalyzed disulfide-bond formation system (CyDisCo) in a natively folded state with higher soluble yields than its Fab counterpart and a comparable binding affinity against the target antigen.
Collapse
Affiliation(s)
- Aatir A Tungekar
- Protein and Structural Biology Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Lloyd W Ruddock
- Protein and Structural Biology Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
| |
Collapse
|
8
|
Pouresmaeil M, Azizi-Dargahlou S. Factors involved in heterologous expression of proteins in E. coli host. Arch Microbiol 2023; 205:212. [PMID: 37120438 PMCID: PMC10148705 DOI: 10.1007/s00203-023-03541-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
The production of recombinant proteins is one of the most significant achievements of biotechnology in the last century. These proteins are produced in the eukaryotic or prokaryotic heterologous hosts. By increasing the omics data especially related to different heterologous hosts as well as the presence of new amenable genetic engineering tools, we can artificially engineer heterologous hosts to produce recombinant proteins in sufficient quantities. Numerous recombinant proteins have been produced and applied in various industries, and the global recombinant proteins market size is expected to be cast to reach USD 2.4 billion by 2027. Therefore, identifying the weakness and strengths of heterologous hosts is critical to optimize the large-scale biosynthesis of recombinant proteins. E. coli is one of the popular hosts to produce recombinant proteins. Scientists reported some bottlenecks in this host, and due to the increasing demand for the production of recombinant proteins, there is an urgent need to improve this host. In this review, we first provide general information about the E. coli host and compare it with other hosts. In the next step, we describe the factors involved in the expression of the recombinant proteins in E. coli. Successful expression of recombinant proteins in E. coli requires a complete elucidation of these factors. Here, the characteristics of each factor will be fully described, and this information can help to improve the heterologous expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
9
|
Jaramillo-Martinez V, Dominguez MJ, Bell GM, Souness ME, Carhart AH, Cuibus MA, Masoumzadeh E, Lantz BJ, Adkins AJ, Latham MP, Ball KA, Stollar EJ. How a highly acidic SH3 domain folds in the absence of its charged peptide target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.532811. [PMID: 36993259 PMCID: PMC10055188 DOI: 10.1101/2023.03.21.532811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Charged residues on the surface of proteins are critical for both protein stability and interactions. However, many proteins contain binding regions with a high net-charge that may destabilize the protein but are useful for binding to oppositely charged targets. We hypothesized that these domains would be marginally stable, as electrostatic repulsion would compete with favorable hydrophobic collapse during folding. Furthermore, by increasing the salt concentration we predict that these protein folds would be stabilized by mimicking some of the favorable electrostatic interactions that take place during target binding. We varied the salt and urea concentrations to probe the contributions of electrostatic and hydrophobic interactions for the folding of the 60-residue yeast SH3 domain found in Abp1p. The SH3 domain was significantly stabilized with increased salt concentrations according to the Debye-Huckel limiting law. Molecular dynamics and NMR show that sodium ions interact with all 15 acidic residues but do little to change backbone dynamics or overall structure. Folding kinetics experiments show that the addition of urea or salt primarily affects the folding rate, indicating that almost all the hydrophobic collapse and electrostatic repulsion occurs in the transition state. After the transition state formation, modest yet favorable short-range salt-bridges are formed along with hydrogen bonds, as the native state fully folds. Thus, hydrophobic collapse offsets electrostatic repulsion to ensure this highly charged binding domain can still fold and be ready to bind to its charged peptide targets, a property that is likely evolutionarily conserved over one billion years. Statement for broader audience Some protein domains are highly charged because they are adapted to bind oppositely charged proteins and nucleic acids. However, it is unknown how these highly charged domains fold as during folding there will be significant repulsion between like-charges. We investigate how one of these highly charged domains folds in the presence of salt, which can screen the charge repulsion and make folding easier, allowing us to understand how folding occurs despite the protein’s high charge. Supplementary material Supplementary material document containing additional details on protein expression methods, thermodynamics and kinetics equations, and the effect of urea on electrostatic interactions, as well as 4 supplemental figures and 4 supplemental data tables. ( Supplementary_Material.docx ), 15 pages Supplemental excel file containing covariation data across AbpSH3 orthologs ( FileS1.xlsx ).
Collapse
|
10
|
de Divitiis M, Ami D, Pessina A, Palmioli A, Sciandrone B, Airoldi C, Regonesi ME, Brambilla L, Lotti M, Natalello A, Brocca S, Mangiagalli M. Cheese-whey permeate improves the fitness of Escherichia coli cells during recombinant protein production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:30. [PMID: 36823649 PMCID: PMC9948444 DOI: 10.1186/s13068-023-02281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Escherichia coli cells are the most frequently used hosts in recombinant protein production processes and mainly require molecules such as IPTG or pure lactose as inducers of heterologous expression. A possible way to reduce the production costs is to replace traditional inducers with waste materials such as cheese whey permeate (CWP). CWP is a secondary by-product generated from the production of the valuable whey proteins, which are obtained from ultrafiltration of cheese whey, a main by-product of the dairy industry, which is rich in lactose. RESULTS The effects of CWP collected from an Italian plant were compared with those of traditional inducers on the production of two model proteins (i.e., green fluorescent protein and the toxic Q55 variant of ataxin-3), in E. coli BL21 (DE3) cells. It was found that the high lactose content of CWP (165 g/L) and the antioxidant properties of its micronutrients (vitamins, cofactors and osmolytes) sustain production yields similar to those obtained with traditional inducers, accompanied by the improvement of cell fitness. CONCLUSIONS CWP has proven to be an effective and low-cost alternative inducer to produce recombinant proteins. Its use thus combines the advantage of exploiting a waste product with that of reducing the production costs of recombinant proteins.
Collapse
Affiliation(s)
- Marcella de Divitiis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Alex Pessina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Barbara Sciandrone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Maria Elena Regonesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Luca Brambilla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy.
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
11
|
Zhang J, Luo W, Wang Z, Chen Y, Fu J, Xu J, Lv P. High-Level Production of Recombinant Lipase by Fed-Batch Fermentation in Escherichia coli and Its Application in Biodiesel Synthesis from Waste Cooking Oils. Appl Biochem Biotechnol 2023; 195:432-450. [PMID: 36087232 DOI: 10.1007/s12010-022-04146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
The enzymatic production of biodiesel from waste cooking oils (WCOs) offers a green and sustainable solution for the liquid fuel manufacture as well as waste resource recovery. In present study, liquid lipase was used to simplify the catalysis process, thereby reducing biodiesel production costs. An engineered Escherichia coli expressing Geobacillus thermocatenulatus lipase 2 (GTL2) was screened at an enzyme activity of 6.96 U/mg, after evaluating the propagating stability of the recombinant plasmids exceeding 86.11%. Through the beneficial feeding strategy and effective pH control, high-level production of GTL2 by fed-batch fermentation was achieved with an enzyme activity of 434.32 U/mg, which was almost 62 times that of shake flask fermentation. In addition, liquid GTL2 was used to prepare fatty acid methyl esters (FAMEs) using WCOs. The effects of the reaction time, catalyst loading, temperature, and methanol-to-oil molar ratio on FAMEs production using WCOs were explored, and a maximum FAMEs yield of 96.62% was achieved under optimized conditions. These results indicate that liquid GTL2 is a promising biocatalyst for efficient utilization of WCOs in the synthesis of biodiesel and provide a novel enzymatic process for biodiesel reducing the cost of production.
Collapse
Affiliation(s)
- Jun Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Wen Luo
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiyuan Wang
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Yiaoyan Chen
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Junying Fu
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Pengmei Lv
- Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
12
|
Application of Milk Permeate as an Inducer for the Production of Microbial Recombinant Lipolytic Enzymes. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinantly produced enzymes are applied in many fields, ranging from medicine to food and nutrition, production of detergents, textile, leather, paper, pulp, and plastics. Thus, the cost-effectiveness of recombinant enzyme synthesis is an important issue in biotechnological industry. Isopropyl-β-D-thiogalactoside (IPTG), an analog of lactose, is currently the most widely used chemical agent for the induction of recombinant enzyme synthesis. However, the use of IPTG can lead to production of toxic elements and can introduce physiological stress to cells. Thus, this study aims to find a simpler, cheaper, and safer way to produce recombinant enzymes. In this study, production of several previously designed recombinant lipolytic enzymes (GDEst-95 esterase, GD-95RM lipase, fused GDEst-lip lipolytic enzyme, and putative cutinase Cut+SP from Streptomyces scabiei 87.22) is induced in E. coli BL21 (DE3) using 4 mM milk permeate, a type of waste of the milk manufacturing process possessing >82% lactose. The SDS-PAGE analysis clearly indicates synthesis of all target enzymes during a 2–12 h post-induction timeframe. Further investigation of GDEst-95, GD-95RM, GDEst-lip, and Cut+SP biocatalysts was carried out spectrophotometrically and using zymography method, confirming production of fully active enzymes.
Collapse
|
13
|
Ronzetti M, Baljinnyam B, Jalal I, Pal U, Simeonov A. Application of biophysical methods for improved protein production and characterization: A case study on an high-temperature requirement A-family bacterial protease. Protein Sci 2022; 31:e4498. [PMID: 36334045 PMCID: PMC9679970 DOI: 10.1002/pro.4498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The high-temperature requirement A (HtrA) serine protease family presents an attractive target class for antibacterial therapeutics development. These proteins possess dual protease and chaperone functions and contain numerous binding sites and regulatory loops, displaying diverse oligomerization patterns dependent on substrate type and occupancy. HtrA proteins that are natively purified coelute with contaminating peptides and activating species, shifting oligomerization and protein structure to differently activated populations. Here, a redesigned HtrA production results in cleaner preparations with high yields by overexpressing and purifying target protein from inclusion bodies under denaturing conditions, followed by a high-throughput screen for optimal refolding buffer composition using function-agnostic biophysical techniques that do not rely on target-specific measurements. We use Borrelia burgdorferi HtrA to demonstrate the effectiveness of our function-agnostic approach, while characterization with both new and established biophysical methods shows the retention of proteolytic and chaperone activity of the refolded protein. This systematic workflow and toolset will translate to the production of HtrA-family proteins in higher quantities of pure and monodisperse composition than the current literature standard, with applicability to a broad array of protein purification strategies.
Collapse
Affiliation(s)
- Michael Ronzetti
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
- Department of Veterinary Medicine, College of Agriculture & Natural ResourcesUniversity of MarylandCollege ParkMarylandUSA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | | | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture & Natural ResourcesUniversity of MarylandCollege ParkMarylandUSA
| | - Anton Simeonov
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
14
|
Fan Q, Neubauer P, Gimpel M. Production of soluble regulatory hydrogenase from Ralstonia eutropha in Escherichia coli using a fed-batch-based autoinduction system. Microb Cell Fact 2021; 20:201. [PMID: 34663324 PMCID: PMC8522226 DOI: 10.1186/s12934-021-01690-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoinduction systems can regulate protein production in Escherichia coli without the need to monitor cell growth or add inducer at the proper time following culture growth. Compared to classical IPTG induction, autoinduction provides a simple and fast way to obtain high protein yields. In the present study, we report on the optimization process for the enhanced heterologous production of the Ralstonia eutropha regulatory hydrogenase (RH) in E. coli using autoinduction. These autoinduction methods were combined with the EnPresso B fed-batch like growth system, which applies slow in situ enzymatic glucose release from a polymer to control cell growth and protein synthesis rate. RESULTS We were able to produce 125 mg L-1 RH corresponding to a productivity averaged over the whole process time of 3 mg (L h)-1 in shake flasks using classic single-shot IPTG induction. IPTG autoinduction resulted in a comparable volumetric RH yield of 112 mg L-1 and due to the shorter overall process time in a 1.6-fold higher productivity of 5 mg (L h)-1. In contrast, lactose autoinduction increased the volumetric yield more than 2.5-fold and the space time yield fourfold reaching 280 mg L-1 and 11.5 mg (L h)-1, respectively. Furthermore, repeated addition of booster increased RH production to 370 mg L-1, which to our knowledge is the highest RH concentration produced in E. coli to date. CONCLUSIONS The findings of this study confirm the general feasibility of the developed fed-batch based autoinduction system and provide an alternative to conventional induction systems for efficient recombinant protein production. We believe that the fed-batch based autoinduction system developed herein will favor the heterologous production of larger quantities of difficult-to-express complex enzymes to enable economical production of these kinds of proteins.
Collapse
Affiliation(s)
- Qin Fan
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
15
|
Kumar J, Chauhan AS, Gupta JA, Rathore AS. Supplementation of critical amino acids improves glycerol and lactose uptake and enhances recombinant protein production in Escherichia coli. Biotechnol J 2021; 16:e2100143. [PMID: 34047499 DOI: 10.1002/biot.202100143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lactose-based induction strategy in E. coli cultivation has several advantages over IPTG as it is cheap, does not impart metabolic stress to cells, and is non-toxic to cells. However, complexity of lactose as an inducer limits its application in fed-batch cultivation. A mixed glycerol-lactose based induction strategy is generally opted during fed-batch cultivation of E. coli. However, slow growth of E. coli in glycerol and lactose results in slower induction of heterologous protein. MAIN METHODS AND MAJOR RESULTS In this study, initially we have demonstrated supplementation of critical amino acids (AAs) improves uptake rate of glycerol and lactose in wildtype E. coli BL21(DE3) in defined medium. A feeding strategy of mixed glycerol-lactose feed along with supplement of critical AAs enhances recombinant production of pramlintide multimer (rPramlintide). High cell density cultivation of E. coli using mixed glycerol-lactose feed and critical AAs supplement resulted in final cell density of 52.2 ± 0.90 g L-1 and rPramlintide titer of 7.8 g L-1 . RT-qPCR analysis of genes involved in glycerol and lactose metabolism of recombinant culture showed upregulation with AAs supplementation. CONCLUSIONS AND IMPLICATIONS We hypothesize that supplementation of critical AAs serves dual purpose: (i) faster assimilation of carbon sources, and (ii) combating metabolic stress arises due to AAs starvation. The substrate uptake and gene expression profiles demonstrate that AAs addition enhances glycerol and lactose assimilation due to overall improvement in their metabolism governed by global regulators of carbon metabolism.
Collapse
Affiliation(s)
- Jashwant Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, India
| | - Ashish S Chauhan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, India
| | - Jaya A Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, India
| |
Collapse
|
16
|
Strategies for the Production of Soluble Interferon-Alpha Consensus and Potential Application in Arboviruses and SARS-CoV-2. Life (Basel) 2021; 11:life11060460. [PMID: 34063766 PMCID: PMC8223780 DOI: 10.3390/life11060460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biopharmaceutical production is currently a multibillion-dollar industry with high growth perspectives. The research and development of biologically sourced pharmaceuticals are extremely important and a reality in our current healthcare system. Interferon alpha consensus (cIFN) is a non-natural synthetic antiviral molecule that comprises all the most prevalent amino acids of IFN-α into one consensus protein sequence. For clinical use, cIFN is produced in E. coli in the form of inclusion bodies. Here, we describe the use of two solubility tags (Fh8 and DsbC) to improve soluble cIFN production. Furthermore, we analyzed cIFN production in different culture media and temperatures in order to improve biopharmaceutical production. Our results demonstrate that Fh8-cIFN yield was improved when bacteria were cultivated in autoinduction culture medium at 30 °C. After hydrolysis, the recovery of soluble untagged cIFN was 58% from purified Fh8-cIFN molecule, fourfold higher when compared to cIFN recovered from the DsbC-cIFN, which achieved 14% recovery. The biological activity of cIFN was tested on in vitro model of antiviral effect against Zika, Mayaro, Chikungunya and SARS-CoV-2 virus infection in susceptible VERO cells. We show, for the first time, that cIFN has a potent activity against these viruses, being very low amounts of the molecule sufficient to inhibit virus multiplication. Thus, this molecule could be used in a clinical approach to treat Arboviruses and SARS-CoV-2.
Collapse
|
17
|
Shariati FS, Keramati M, Valizadeh V, Cohan RA, Norouzian D. Comparison of E. coli based self-inducible expression systems containing different human heat shock proteins. Sci Rep 2021; 11:4576. [PMID: 33633341 PMCID: PMC7907268 DOI: 10.1038/s41598-021-84188-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
IPTG-inducible promoter is popularly used for the expression of recombinant proteins. However, it is not suitable at the industrial scale due to the high cost and toxicity on the producing cells. Recently, a Self-Inducible Expression (SILEX) system has developed to bypass such problems using Hsp70 as an autoinducer. Herein, the effect of other heat shock proteins on the autoinduction of green fluorescent protein (EGFP), romiplostim, and interleukin-2 was investigated. For quantitative measurements, EGFP expression was monitored after double-transformation of pET28a-EGFP and pET21a-(Hsp27/Hsp40/Hsp70) plasmids into E. coli using fluorimetry. Moreover, the expression level, bacterial growth curve, and plasmid and expression stability were compared to an IPTG- inducible system using EGFP. Statistical analysis revealed a significant difference in EGFP expression between autoinducible and IPTG-inducible systems. The expression level was higher in Hsp27 system than Hsp70/Hsp40 systems. However, the highest amount of expression was observed for the inducible system. IPTG-inducible and Hsp70 systems showed more lag-time in the bacterial growth curve than Hsp27/Hsp40 systems. A relatively stable EGFP expression was observed in SILEX systems after several freeze-thaw cycles within 90 days, while, IPTG-inducible system showed a decreasing trend compared to the newly transformed bacteria. Moreover, the inducible system showed more variation in the EGFP expression among different clones than clones obtained by SILEX systems. All designed SILEX systems successfully self-induced the expression of protein models. In conclusion, Hsp27 system could be considered as a suitable autoinducible system for protein expression due to less metabolic burden, lower variation in the expression level, suitable plasmid and expression stability, and a higher expression level.
Collapse
Affiliation(s)
- Fatemeh Sadat Shariati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
18
|
Tahara N, Tachibana I, Takeo K, Yamashita S, Shimada A, Hashimoto M, Ohno S, Yokogawa T, Nakagawa T, Suzuki F, Ebihara A. Boosting Auto-Induction of Recombinant Proteins in Escherichia coli with Glucose and Lactose Additives. Protein Pept Lett 2021; 28:1180-1190. [PMID: 34353248 PMCID: PMC8811614 DOI: 10.2174/0929866528666210805120715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Auto-induction is a convenient way to produce recombinant proteins without inducer addition using lac operon-controlled Escherichia coli expression systems. Auto-induction can occur unintentionally using a complex culture medium prepared by mixing culture substrates. The differences in culture substrates sometimes lead to variations in the induction level. OBJECTIVES In this study, we investigated the feasibility of using glucose and lactose as boosters of auto-induction with a complex culture medium. METHODS First, auto-induction levels were assessed by quantifying recombinant GFPuv expression under the control of the T7 lac promoter. Effectiveness of the additive-containing medium was examined using ovine angiotensinogen (tac promoter-based expression) and Thermus thermophilus manganese-catalase (T7 lac promoter-based expression). RESULTS Auto-induced GFPuv expression was observed with the enzymatic protein digest Polypepton, but not with another digest tryptone. Regardless of the type of protein digest, supplementing Terrific Broth medium with glucose (at a final concentration of 2.9 g/L) and lactose (at a final concentration of 7.6 g/L) was successful in obtaining an induction level similar to that achieved with a commercially available auto-induction medium. The two recombinant proteins were produced in milligram quantity of purified protein per liter of culture. CONCLUSION The medium composition shown in this study would be practically useful for attaining reliable auto-induction for E. coli-based recombinant protein production.
Collapse
Affiliation(s)
- Nariyasu Tahara
- Graduate School of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Itaru Tachibana
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuyo Takeo
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shinji Yamashita
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Atsuhiro Shimada
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Misuzu Hashimoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Ohno
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takashi Yokogawa
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tsutomu Nakagawa
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fumiaki Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
19
|
Barazesh M, Mohammadi S, Jalili S, Kavousipour S, Faraji SN, Mokarram P, Pirhadi S. Design and characterization of a recombinant immunotoxin for targeted therapy of breast cancer cells: In vitro and in silico analyses. Life Sci 2020; 265:118866. [PMID: 33301810 DOI: 10.1016/j.lfs.2020.118866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023]
Abstract
AIMS GnRH-DFF40 (gonadotropin releasing hormone-DNA fragmentation factor 40) humanized recombinant immunotoxin serves as a prospective candidate for targeted therapy of malignancies with over-expressed gonadotropin releasing hormone receptor (GnRHR). In this study, we attempted to generate a GnRH-based chimeric protein composed of human DFF40 fused with GnRH which encodes an apoptotic nuclease and specifically targets cancer cells displaying GnRH receptor overexpression. MATERIALS AND METHODS A codon optimized, synthetic GnRH-DFF40 fusion gene and its single counterpart (DFF40) were constructed in pET28a expression vector. Cytotoxicity of these expressed proteins were evaluated on three breast cancer cell lines (MCF7, MDA-MB231, and SKBR3). The stability and biological activity of the recombinant proteins were investigated in the treated cell line and cell-free system. Also, the ability of this fusion and its single form in inducing apoptosis, and inhibiting metastasis and migration were evaluated by flow cytometry, migration assay and wound healing analysis, respectively. In silico analyses were also done to understand the specific interactions between GnRH and its receptor. KEY FINDINGS GnRH-DFF40 fusion protein and DFF40 were successfully expressed. The purified chimeric protein showed dose-dependent cytotoxicity against all three cell lines. The recombinant fusion protein was biologically active with nucleolytic functionality and apoptosis induction ability. Moreover, the fusion could inhibit the invasion property of MDA-MB-231 cells. In silico analysis also showed that four residues from GnRH domain and 11 GnRHR residues had the most interaction sites for specific targeted delivery of the immunotoxin in cancer cells. SIGNIFICANCE Fusion construct could be a prospective candidate for targeted therapy of cancers upregulating GnRH receptor.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Sajad Jalili
- Department of Orthopaedic, School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Nooreddin Faraji
- Department of Biotechnology, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Li Z, Rinas U. Recombinant protein production-associated metabolic burden reflects anabolic constraints and reveals similarities to a carbon overfeeding response. Biotechnol Bioeng 2020; 118:94-105. [PMID: 32880889 DOI: 10.1002/bit.27553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/07/2023]
Abstract
A comparison of the metabolic response of Escherichia coli BL21 (DE3) towards the production of human basic fibroblast growth factor (hFGF-2) or towards carbon overfeeding revealed similarities which point to constraints in anabolic pathways. Contrary to expectations, neither energy generation (e.g., ATP) nor provision of precursor molecules for nucleotides (e.g., uracil) and amino acids (e.g., pyruvate, glutamate) limit host cell and plasmid-encoded functions. Growth inhibition is assumed to occur when hampered anabolic capacities do not match with the ongoing and overwhelming carbon catabolism. Excessive carbon uptake leads to by-product secretion, for example, pyruvate, acetate, glutamate, and energy spillage, for example, accumulation and degradation of adenine nucleotides with concomitant accumulation of extracellular hypoxanthine. The cellular response towards compromised anabolic capacities involves downregulation of cAMP formation, presumably responsible for subsequently better-controlled glucose uptake and resultant accumulation of glucose in the culture medium. Growth inhibition is neglectable under conditions of reduced carbon availability when hampered anabolic capacities also match with catabolic carbon processing. The growth inhibitory effect with accompanying energy spillage, respectively, hypoxanthine secretion and cessation of cAMP formation is not unique to the production of hFGF-2 but observed during the production of other proteins and also during overexpression of genes without transcript translation.
Collapse
Affiliation(s)
- Zhaopeng Li
- Leibniz University of Hannover, Technical Chemistry - Life Science, Hannover, Germany
| | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry - Life Science, Hannover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
21
|
Bolten SN, Knoll AS, Li Z, Gellermann P, Pepelanova I, Rinas U, Scheper T. Purification of the human fibroblast growth factor 2 using novel animal-component free materials. J Chromatogr A 2020; 1626:461367. [PMID: 32797846 DOI: 10.1016/j.chroma.2020.461367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022]
Abstract
This paper analyzes the use of animal-component free chromatographic materials for the efficient purification of the human fibroblast growth factor 2 (hFGF-2). hFGF-2 is produced in Escherichia coli and purified via three different chromatography steps, which include a strong cation exchange chromatography as a capture step, followed by heparin affinity chromatography and an anion exchange chromatography as a polishing step. The affinity chromatography step is based on the animal-derived material heparin. Chemically produced ligands provide a viable alternative to animal-derived components in production processes, since they are characterized by a defined structure which leads to reproducible results and a broad range of applications. The alternative ligands can be assigned to adsorber of the mixed-mode chromatography (MMC) and pseudo-affinity chromatography. Eight different animal-component free materials used as adsorbers in MMC or pseudo-affinity chromatography were tested as a substitute for heparin. The MMCs were cation exchangers characterized with further functional residues. The ligands of the pseudo-affinity chromatography were heparin-like ligands which are based on heparin's molecular structure. The alternative methods were tested as a capture step and in combination with another chromatographic step in the purification procedure of hFGF-2. In each downstream step purity, recovery and yield were analysed and compared to the conventional downstream process. Two types of MMC - the column ForesightTM NuviaTM cPrimeTM from Bio-Rad Laboratories and the column HiTrapTM CaptoTM MMC from GE Healthcare Life Sciences - can be regarded as effective animal-component free alternatives to the heparin - based adsorber.
Collapse
Affiliation(s)
- Svenja Nicolin Bolten
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Anne-Sophie Knoll
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Zhaopeng Li
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Pia Gellermann
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany
| | - Ursula Rinas
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany; Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig 38124, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstraße 5, Hannover 30167, Germany.
| |
Collapse
|
22
|
Li Z, Rinas U. Recombinant protein production associated growth inhibition results mainly from transcription and not from translation. Microb Cell Fact 2020; 19:83. [PMID: 32252765 PMCID: PMC7137236 DOI: 10.1186/s12934-020-01343-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recombinant protein production can be stressful to the host organism. The extent of stress is determined by the specific properties of the recombinant transcript and protein, by the rates of transcription and translation, and by the environmental conditions encountered during the production process. RESULTS The impact of the transcription of the T7-promoter controlled genes encoding human basic fibroblast growth factor (hFGF-2) and green fluorescent protein (GFP) as well as the translation into the recombinant protein on the growth properties of the production host E. coli BL21(DE3) were investigated. This was done by using expression vectors where the promoter region or the ribosome binding site(s) or both were removed. It is shown that already transcription without protein translation imposes a metabolic burden on the host cell. Translation of the transcript into large amounts of a properly folded protein does not show any effect on cell growth in the best case, e.g. high-level production of GFP in Luria-Bertani medium. However, translation appears to contribute to the metabolic burden if it is connected to protein folding associated problems, e.g. inclusion body formation. CONCLUSION The so-called metabolic burden of recombinant protein production is mainly attributed to transcription but can be enhanced through translation and those processes following translation (e.g. protein folding and degradation, heat-shock responses).
Collapse
Affiliation(s)
- Zhaopeng Li
- Leibniz University of Hannover, Technical Chemistry-Life Science, Callinstr. 5, 30167 Hannover, Germany
| | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry-Life Science, Callinstr. 5, 30167 Hannover, Germany
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| |
Collapse
|
23
|
Tan W, Murphy VJ, Charron A, van Twest S, Sharp M, Constantinou A, Parker MW, Crismani W, Bythell-Douglas R, Deans AJ. Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. PLoS One 2020; 15:e0229000. [PMID: 32092106 PMCID: PMC7039436 DOI: 10.1371/journal.pone.0229000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Site-specific conjugation of ubiquitin onto a range of DNA repair proteins regulates their critical functions in the DNA damage response. Biochemical and structural characterization of these functions are limited by an absence of tools for the purification of DNA repair proteins in purely the ubiquitinated form. To overcome this barrier, we designed a ubiquitin fusion protein that is N-terminally biotinylated and can be conjugated by E3 RING ligases onto various substrates. Biotin affinity purification of modified proteins, followed by cleavage of the affinity tag leads to release of natively-mono-ubiquitinated substrates. As proof-of-principle, we applied this method to several substrates of mono-ubiquitination in the Fanconi anemia (FA)-BRCA pathway of DNA interstrand crosslink repair. These include the FANCI:FANCD2 complex, the PCNA trimer and BRCA1 modified nucleosomes. This method provides a simple approach to study the role of mono-ubiquitination in DNA repair or any other mono-ubiquitination signaling pathways.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Vincent J. Murphy
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Aude Charron
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- National Graduate School of Chemistry of Montpellier (ENSCM), Montpellier, France
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Michael Sharp
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Michael W. Parker
- Structural Biology Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Andrew J. Deans
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Muschallik L, Molinnus D, Jablonski M, Kipp CR, Bongaerts J, Pohl M, Wagner T, Schöning MJ, Selmer T, Siegert P. Synthesis of α-hydroxy ketones and vicinal (R,R)-diols by Bacillus clausii DSM 8716T butanediol dehydrogenase. RSC Adv 2020; 10:12206-12216. [PMID: 35497574 PMCID: PMC9050739 DOI: 10.1039/d0ra02066d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/05/2020] [Indexed: 12/04/2022] Open
Abstract
α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716T (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn2+ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated. Reduction of symmetric or asymmetric vicinal diketones with BcBDH leads to the synthesis of either α-hydroxyketones or vicinal diols.![]()
Collapse
Affiliation(s)
- Lukas Muschallik
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Denise Molinnus
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Melanie Jablonski
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Carina Ronja Kipp
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Martina Pohl
- IBG-1: Biotechnology
- Forschungszentrum Jülich
- 52425 Jülich
- Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies
- Aachen University of Applied Sciences
- 52428 Jülich
- Germany
| |
Collapse
|
25
|
Van Tassel L, Moilanen A, Ruddock LW. Efficient production of wild-type lipase B from Candida antarctica in the cytoplasm of Escherichia coli. Protein Expr Purif 2020; 165:105498. [DOI: 10.1016/j.pep.2019.105498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
|
26
|
Johnson JW, Mitchell CD, Deloach AM, Simpson HE, Dunlap TB. Implementing a Hybrid Expression Method That Allows Upper-Division Biochemistry Lab Students To Engage in a Full Protein Production Experience While Allowing Ample Time for Characterization Experiments. JOURNAL OF CHEMICAL EDUCATION 2019; 96:2606-2610. [PMID: 34079146 PMCID: PMC8168722 DOI: 10.1021/acs.jchemed.8b00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein structure, function, and signaling are a large portion of biochemistry. Because of this, proteins are often used as model systems in biochemistry laboratory courses, where a course-long project might comprise protein expression, purification, and characterization. Two common protein expression methods are isopropyl β-d-1-thiogalactopyranoside (IPTG) induction, which utilizes easy-to-make media but requires extensive cell-growth monitoring that is time-intensive, and autoinduction, which employs multicomponent media that are time-consuming to make but require no cell-growth monitoring. A protein expression method that is a hybrid of IPTG induction and autoinduction is presented. The hybrid method utilizes the medium of IPTG induction and the no-cell-growth-monitoring induction process of autoinduction, saving hands-on time in the protein expression phase to allow more time for protein characterization while still having students execute each step.
Collapse
|
27
|
Aguilar F, Scheper T, Beutel S. Improved Production and In Situ Recovery of Sesquiterpene (+)-Zizaene from Metabolically-Engineered E. coli. Molecules 2019; 24:E3356. [PMID: 31540161 PMCID: PMC6767195 DOI: 10.3390/molecules24183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023] Open
Abstract
The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men's fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid-liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid-liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L-1 and productivity of 3.2 mg L-1 h-1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.
Collapse
Affiliation(s)
- Francisco Aguilar
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany.
| |
Collapse
|
28
|
Tan L, Cui H, Xiao Y, Xu H, Xu M, Wu H, Dong H, Qiu G, Liu X, Xie J. Enhancement of platinum biosorption by surface-displaying EC20 on Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:103-111. [PMID: 30439582 DOI: 10.1016/j.ecoenv.2018.10.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
To increase the platinum adsorption capacity of Escherichia coli (E. coli) biomass, we fused EC20 protein to the E. coli cell surface using an InaKN-based display system, which is the N-terminal region of ice nucleation protein that can be employed as a cell surface display motif. The media and culture conditions were optimized for EC20 (a phytochelatin analogue with 20 repeating units of glutamate and cysteine) expression and Pt (IV) biosorption. Furthermore, the adsorption process was elucidated from aspect of adsorption kinetics and equilibrium, and the characterization of blank and Pt-loaded cells were analyzed using SEM, AFM, TEM, FT-IR and XPS. Our study demonstrated that E. coli strain, which had InaKN-EC20 protein expressed on the cell surface, showed a great enhancement in Pt (IV) adsorption under optimized condition when comparing with that of original E. coli strain. The SEM-EDX analysis revealed that the cellular morphology has been changed in Pt-loaded cells, and the weight percent of platinum in the surface of E.coli increased substantially after displaying EC20 protein. Furthermore, intracellular platinum accumulation was detected in Pt-loaded EC20 cells since a clear peak of platinum exhibited, implying that cytoplasmic EC20 protein might also contribute to platinum accumulation. FTIR analysis revealed that the predominant functional groups in platinum adsorption were amine, carboxyl and phosphate groups.
Collapse
Affiliation(s)
- Ling Tan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Hao Cui
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
| | - Yong Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Hang Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Haiyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Haigang Dong
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xinxing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Jianping Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
29
|
Crowley EL, Rafferty SP. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr Purif 2019; 157:70-85. [PMID: 30708035 DOI: 10.1016/j.pep.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
NMR is an important method in the structural and functional characterization of proteins, but such experiments typically require isotopic labelling because of the low natural abundance of the nuclei of interest. Isotope-labelled protein for NMR experiments is typically obtained from IPTG-inducible bacterial expression systems in a minimal media that contains labelled carbon or nitrogen sources. Optimization of expression conditions is crucial yet challenging; large amounts of labelled protein are desired, yet protein yields are lower in minimal media, while the labelled precursors are expensive. Faced with these challenges there is a growing body of literature that apply innovative methods of induction to optimize the yield of isotope-labelled protein. A promising technique is lactose-driven auto-induction as it mitigates user intervention and can lead to higher protein yields. This review assesses the current advances and limitations surrounding the ability of researchers to isotope label proteins using auto-induction, and it identifies key components for optimization.
Collapse
Affiliation(s)
- Erika L Crowley
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| | - Steven P Rafferty
- Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| |
Collapse
|
30
|
Fathi-Roudsari M, Maghsoudi N, Maghsoudi A, Niazi S, Soleiman M. Auto-induction for high level production of biologically active reteplase in Escherichia coli. Protein Expr Purif 2018; 151:18-22. [DOI: 10.1016/j.pep.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/29/2018] [Accepted: 05/14/2018] [Indexed: 11/26/2022]
|
31
|
High Throughput Manufacturing of Bacteriophages Using Continuous Stirred Tank Bioreactors Connected in Series to Ensure Optimum Host Bacteria Physiology for Phage Production. Viruses 2018; 10:v10100537. [PMID: 30275405 PMCID: PMC6213498 DOI: 10.3390/v10100537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 12/26/2022] Open
Abstract
Future industrial demand for large quantities of bacteriophages e.g., for phage therapy, necessitates the development of scalable Good Manufacturing Practice compliant (cGMP) production platforms. The continuous production of high titres of E coli T3 phages (1011 PFU mL−1) was achieved using two continuous stirred tank bioreactors connected in series, and a third bioreactor was used as a final holding tank operated in semi-batch mode to finish the infection process. The first bioreactor allowed the steady-state propagation of host bacteria using a fully synthetic medium with glucose as the limiting substrate. Host bacterial growth was decoupled from the phage production reactor downstream of it to suppress the production of phage-resistant mutants, thereby allowing stable operation over a period of several days. The novelty of this process is that the manipulation of the host reactor dilution rates (range 0.1–0.6 hr−1) allows control over the physiological state of the bacterial population. This results in bacteria with considerably higher intracellular phage production capability whilst operating at high dilution rates yielding significantly higher overall phage process productivity. Using a pilot-scale chemostat system allowed optimisation of the upstream phage amplification conditions conducive for high intracellular phage production in the host bacteria. The effect of the host reactor dilution rates on the phage burst size, lag time, and adsorption rate were evaluated. The host bacterium physiology was found to influence phage burst size, thereby affecting the productivity of the overall process. Mathematical modelling of the dynamics of the process allowed parameter sensitivity evaluation and provided valuable insights into the factors affecting the phage production process. The approach presented here may be used at an industrial scale to significantly improve process control, increase productivity via process intensification, and reduce process manufacturing costs through process footprint reduction.
Collapse
|
32
|
Moilanen A, Korhonen K, Saaranen MJ, Ruddock LW. Molecular analysis of human Ero1 reveals novel regulatory mechanisms for oxidative protein folding. Life Sci Alliance 2018; 1:e201800090. [PMID: 30456358 PMCID: PMC6238587 DOI: 10.26508/lsa.201800090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/24/2022] Open
Abstract
Oxidative protein folding in the ER is driven mainly by oxidases of the endoplasmic reticulum oxidoreductin 1 (Ero1) family. Their action is regulated to avoid cell stress, including hyperoxidation. Previously published regulatory mechanisms are based on the rearrangement of active site and regulatory disulfides. In this study, we identify two novel regulatory mechanisms. First, both human Ero1 isoforms exist in a dynamic mixed disulfide complex with protein disulfide isomerase, which involves cysteines (Cys166 in Ero1α and Cys165 in Ero1β) that have previously been regarded as being nonfunctional. Second, our kinetic studies reveal that Ero1 not only has a high affinity for molecular oxygen as the terminal acceptor of electrons but also that there is a high cooperativity of binding (Hill coefficient >3). This allows Ero1 to maintain high activity under hypoxic conditions, without compromising cellular viability under hyper-hypoxic conditions. These data, together with novel mechanistic details of differences in activation between the two human Ero1 isoforms, provide important new insights into the catalytic cycle of human Ero1 and how they have been fine-tuned to operate at low oxygen concentrations.
Collapse
Affiliation(s)
- Antti Moilanen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kati Korhonen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mirva J Saaranen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
33
|
Guizzo JA, Chaudhuri S, Prigol SR, Yu RH, Dazzi CC, Balbinott N, Frandoloso GP, Kreutz LC, Frandoloso R, Schryvers AB. The amino acid selected for generating mutant TbpB antigens defective in binding transferrin can compromise the in vivo protective capacity. Sci Rep 2018; 8:7372. [PMID: 29743502 PMCID: PMC5943581 DOI: 10.1038/s41598-018-25685-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/26/2018] [Indexed: 02/08/2023] Open
Abstract
Haemophilus parasuis is the causative agent of the Glässer's disease (GD), one of the most important bacterial diseases that affect young pigs worldwide. GD prevention based on vaccination is a major concern due to the limited cross-protection conferred by the inactivated whole cell vaccines used currently. In this study, vaccines based on two mutant recombinant proteins derived from transferrin binding protein B of H. parasuis (Y167A-TbpB and W176A-TbpB) were formulated and evaluated in terms of protection against lethal challenge using a serovar 7 (SV7) H. parasuis in a high susceptibility pig model. Our results showed that H. parasuis strain 174 (SV7) is highly virulent in conventional and colostrum-deprived pigs. The Y167A-TbpB and W176A-TbpB antigens were immunogenic in pigs, however, differences in terms of antigenicity and functional immune response were observed. In regard to protection, animals immunized with Y167A-TbpB antigen displayed 80% survival whereas the W176A-TbpB protein was not protective. In conjunction with previous studies, our results demonstrate, (a) the importance of testing engineered antigens in an in vivo pig challenge model, and, (b) that the Y167A-TbpB antigen is a promising antigen for developing a broad-spectrum vaccine against H. parasuis infection.
Collapse
Affiliation(s)
- João Antônio Guizzo
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Somshukla Chaudhuri
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Simone Ramos Prigol
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Rong-Hua Yu
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Cláudia Cerutti Dazzi
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Natalia Balbinott
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Gabriela Paraboni Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Luiz Carlos Kreutz
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil.
| | - Anthony Bernard Schryvers
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
34
|
Stamm A, Strauß S, Vogt P, Scheper T, Pepelanova I. Positive in vitro wound healing effects of functional inclusion bodies of a lipoxygenase from the Mexican axolotl. Microb Cell Fact 2018; 17:57. [PMID: 29626934 PMCID: PMC5889589 DOI: 10.1186/s12934-018-0904-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/31/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AmbLOXe is a lipoxygenase, which is up-regulated during limb-redevelopment in the Mexican axolotl, Ambystoma mexicanum, an animal with remarkable regeneration capacity. Previous studies have shown that mammalian cells transformed with the gene of this epidermal lipoxygenase display faster migration and wound closure rate during in vitro wound healing experiments. RESULTS In this study, the gene of AmbLOXe was codon-optimized for expression in Escherichia coli and was produced in the insoluble fraction as protein aggregates. These inclusion bodies or nanopills were shown to be reservoirs containing functional protein during in vitro wound healing assays. For this purpose, functional inclusion bodies were used to coat cell culture surfaces prior cell seeding or were added directly to the medium after cells reached confluence. In both scenarios, AmbLOXe inclusion bodies led to faster migration rate and wound closure, in comparison to controls containing either no AmbLOXe or GFP inclusion bodies. CONCLUSIONS Our results demonstrate that AmbLOXe inclusion bodies are functional and may serve as stable reservoirs of this enzyme. Nevertheless, further studies with soluble enzyme are also necessary in order to start elucidating the exact molecular substrates of AmbLOXe and the biochemical pathways involved in the wound healing effect.
Collapse
Affiliation(s)
- Anne Stamm
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University, Callinstraße 5, 30167, Hannover, Germany
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Peter Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University, Callinstraße 5, 30167, Hannover, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University, Callinstraße 5, 30167, Hannover, Germany.
| |
Collapse
|
35
|
Quaas B, Burmeister L, Li Z, Nimtz M, Hoffmann A, Rinas U. Properties of dimeric, disulfide-linked rhBMP-2 recovered from E. coli derived inclusion bodies by mild extraction or chaotropic solubilization and subsequent refolding. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Ahmad I, Nawaz N, Darwesh NM, ur Rahman S, Mustafa MZ, Khan SB, Patching SG. Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif 2018; 144:12-18. [DOI: 10.1016/j.pep.2017.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/28/2022]
|
37
|
You Z, Zhang S, Liu X, Wang Y. Enhancement of prodigiosin synthetase (PigC) production from recombinant Escherichia coli through optimization of induction strategy and media. Prep Biochem Biotechnol 2018; 48:226-233. [DOI: 10.1080/10826068.2017.1421965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhongyu You
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Suping Zhang
- Nanhu College, Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaoxia Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Yujie Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| |
Collapse
|
38
|
Stenvang M, Schafer NP, Malmos KG, Pérez AMW, Niembro O, Sormanni P, Basaiawmoit RV, Christiansen G, Andreasen M, Otzen DE. Corneal Dystrophy Mutations Drive Pathogenesis by Targeting TGFBIp Stability and Solubility in a Latent Amyloid-forming Domain. J Mol Biol 2018. [PMID: 29524512 DOI: 10.1016/j.jmb.2018.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Numerous mutations in the corneal protein TGFBIp lead to opaque extracellular deposits and corneal dystrophies (CDs). Here we elucidate the molecular origins underlying TGFBIp's mutation-induced increase in aggregation propensity through comprehensive biophysical and bioinformatic analyses of mutations associated with every major subtype of TGFBIp-linked CDs including lattice corneal dystrophy (LCD) and three subtypes of granular corneal dystrophy (GCD 1-3). LCD mutations at buried positions in the C-terminal Fas1-4 domain lead to decreased stability. GCD variants show biophysical profiles distinct from those of LCD mutations. GCD 1 and 3 mutations reduce solubility rather than stability. Half of the 50 positions within Fas1-4 most sensitive to mutation are associated with at least one known disease-causing mutation, including 10 of the top 11 positions. Thus, TGFBIp aggregation is driven by mutations that despite their physico-chemical diversity target either the stability or solubility of Fas1-4 in predictable ways, suggesting straightforward general therapeutic strategies.
Collapse
Affiliation(s)
- Marcel Stenvang
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Nicholas P Schafer
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Kirsten Gade Malmos
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Adriana-Michelle Wolf Pérez
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Olatz Niembro
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Rajiv Vaid Basaiawmoit
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Maria Andreasen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
39
|
Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Proc Natl Acad Sci U S A 2018; 115:2964-2969. [PMID: 29507236 DOI: 10.1073/pnas.1716920115] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial production of value-added chemicals from biomass is a sustainable alternative to chemical synthesis. To improve product titer, yield, and selectivity, the pathways engineered into microbes must be optimized. One strategy for optimization is dynamic pathway regulation, which modulates expression of pathway-relevant enzymes over the course of fermentation. Metabolic engineers have used dynamic regulation to redirect endogenous flux toward product formation, balance the production and consumption rates of key intermediates, and suppress production of toxic intermediates until later in the fermentation. Most cases, however, have utilized a single strategy for dynamically regulating pathway fluxes. Here we layer two orthogonal, autonomous, and tunable dynamic regulation strategies to independently modulate expression of two different enzymes to improve production of D-glucaric acid from a heterologous pathway. The first strategy uses a previously described pathway-independent quorum sensing system to dynamically knock down glycolytic flux and redirect carbon into production of glucaric acid, thereby switching cells from "growth" to "production" mode. The second strategy, developed in this work, uses a biosensor for myo-inositol (MI), an intermediate in the glucaric acid production pathway, to induce expression of a downstream enzyme upon sufficient buildup of MI. The latter, pathway-dependent strategy leads to a 2.5-fold increase in titer when used in isolation and a fourfold increase when added to a strain employing the former, pathway-independent regulatory system. The dual-regulation strain produces nearly 2 g/L glucaric acid, representing the highest glucaric acid titer reported to date in Escherichia coli K-12 strains.
Collapse
|
40
|
Ihling N, Bittner N, Diederichs S, Schelden M, Korona A, Höfler GT, Fulton A, Jaeger KE, Honda K, Ohtake H, Büchs J. Online measurement of the respiratory activity in shake flasks enables the identification of cultivation phases and patterns indicating recombinant protein production in various Escherichia coli host strains. Biotechnol Prog 2018; 34:315-327. [PMID: 29314728 DOI: 10.1002/btpr.2600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7-RNA polymerase-dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3-hydroxybutyryl-CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:315-327, 2018.
Collapse
Affiliation(s)
- Nina Ihling
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany.,Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Natalie Bittner
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany
| | - Sylvia Diederichs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany
| | - Maximilian Schelden
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany.,Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Anna Korona
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany
| | - Georg Theo Höfler
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich D-52426, Germany
| | - Karl-Erich Jaeger
- Bioeconomy Science Center (BioSC), Jülich, Germany.,Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich D-52426, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52426, Germany
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisao Ohtake
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen D-52074, Germany.,Bioeconomy Science Center (BioSC), Jülich, Germany
| |
Collapse
|
41
|
Chrast L, Chaloupkova R, Damborsky J. Gram-scale production of recombinant microbial enzymes in shake flasks. FEMS Microbiol Lett 2017; 365:4693837. [DOI: 10.1093/femsle/fnx265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/02/2017] [Indexed: 11/14/2022] Open
|
42
|
Yue Q, Yang Y, Zhao J, Zhang L, Xu L, Chu X, Liu X, Tian J, Wu N. Identification of bacterial laccase cueO mutation from the metagenome of chemical plant sludge. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0178-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Setrerrahmane S, Yu J, Hao J, Zheng H, Xu H. Novel production method of innovative antiangiogenic and antitumor small peptides in Escherichia coli. Drug Des Devel Ther 2017; 11:3207-3220. [PMID: 29184391 PMCID: PMC5685134 DOI: 10.2147/dddt.s136957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Developing innovative drugs with potent efficacy, specificity, and high safety remains an ongoing task in antitumor therapy development. In the last few years, peptide drugs have become attractive agents in cancer therapy. HM-3, mainly with antiangiogenic effect, and AP25, with an additional antiproliferative effect, are two peptides designed in our laboratory targeting αvβ3 and α5β1 integrins, respectively. The low molecular weight of the two peptides renders their recombinant expression very difficult, and the complicated structure of AP25 makes its chemical synthesis restricted, which presents a big challenge for its development. METHODS Bifunctional peptides designed by the ligation of HM-3 and AP25, using linkers with different flexibility, were prepared using recombinant DNA technology in Escherichia coli. The fusion peptides were expressed in a modified auto-induction medium based on a mixture of glucose, glycerol, and lactose as carbon substrates and NH4+ as nitrogen source without any amino acid or other elements. Subsequently, the antiangiogenic, antiproliferative, and cell adhesion assays were conducted to evaluate the bioactivity of the two fusion peptides. RESULTS The peptides were successfully expressed in a soluble form without any induction, which allows the culture to reach higher cell density before protein expression occurs. Human umbilical vein endothelial cell migration assay and chick embryo chorioallantoic membrane assay showed, at low doses, a significantly increased antiangiogenic effect (>75%) of the purified products compared with the single molecules. Meanwhile, MTT assay confirmed their enhanced antitumor activity against gastric cancer cell line MGC-803; however, no significant effect was observed on hepatoma HepG2 cells and no cytotoxicity on normal human lens epithelial cell SRA01/04 and human epithelial esophageal cells. CONCLUSION Bifunctional molecules with antiangiogenic and antiproliferative effects were obtained by using this technique, which presents an alternative for small peptide production, instead of the conventional chemical method. The increased molecular weight facilitates the peptide expression with a simultaneous improvement in their stability and biological activity.
Collapse
Affiliation(s)
- Sarra Setrerrahmane
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu
| | - Jian Yu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu
| | - Jingchao Hao
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu
- College of Pharmacy & the Provincial Key Laboratory of Natural Drug and Pharmacology, Kunming, Yunnan
| | - Heng Zheng
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
44
|
Rahman K, Mandalasi M, Zhao P, Sheikh MO, Taujale R, Kim HW, van der Wel H, Matta K, Kannan N, Glushka JN, Wells L, West CM. Characterization of a cytoplasmic glucosyltransferase that extends the core trisaccharide of the Toxoplasma Skp1 E3 ubiquitin ligase subunit. J Biol Chem 2017; 292:18644-18659. [PMID: 28928220 DOI: 10.1074/jbc.m117.809301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Skp1 is a subunit of the SCF (Skp1/Cullin 1/F-box protein) class of E3 ubiquitin ligases that are important for eukaryotic protein degradation. Unlike its animal counterparts, Skp1 from Toxoplasma gondii is hydroxylated by an O2-dependent prolyl-4-hydroxylase (PhyA), and the resulting hydroxyproline can subsequently be modified by a five-sugar chain. A similar modification is found in the social amoeba Dictyostelium, where it regulates SCF assembly and O2-dependent development. Homologous glycosyltransferases assemble a similar core trisaccharide in both organisms, and a bifunctional α-galactosyltransferase from CAZy family GT77 mediates the addition of the final two sugars in Dictyostelium, generating Galα1, 3Galα1,3Fucα1,2Galβ1,3GlcNAcα1-. Here, we found that Toxoplasma utilizes a cytoplasmic glycosyltransferase from an ancient clade of CAZy family GT32 to catalyze transfer of the fourth sugar. Catalytically active Glt1 was required for the addition of the terminal disaccharide in cells, and cytosolic extracts catalyzed transfer of [3H]glucose from UDP-[3H]glucose to the trisaccharide form of Skp1 in a glt1-dependent fashion. Recombinant Glt1 catalyzed the same reaction, confirming that it directly mediates Skp1 glucosylation, and NMR demonstrated formation of a Glcα1,3Fuc linkage. Recombinant Glt1 strongly preferred the full core trisaccharide attached to Skp1 and labeled only Skp1 in glt1Δ extracts, suggesting specificity for Skp1. glt1-knock-out parasites exhibited a growth defect not rescued by catalytically inactive Glt1, indicating that the glycan acts in concert with the first enzyme in the pathway, PhyA, in cells. A genomic bioinformatics survey suggested that Glt1 belongs to the ancestral Skp1 glycosylation pathway in protists and evolved separately from related Golgi-resident GT32 glycosyltransferases.
Collapse
Affiliation(s)
- Kazi Rahman
- From the Department of Biochemistry and Molecular Biology.,the Departments of Microbiology and Immunology and
| | - Msano Mandalasi
- From the Department of Biochemistry and Molecular Biology.,Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | - Peng Zhao
- the Complex Carbohydrate Research Center, and
| | | | - Rahil Taujale
- the Complex Carbohydrate Research Center, and.,the Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Hyun W Kim
- From the Department of Biochemistry and Molecular Biology
| | | | - Khushi Matta
- the Department of Chemical and Biological Engineering, State University of New York, Buffalo, New York 14260
| | - Natarajan Kannan
- From the Department of Biochemistry and Molecular Biology.,the Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | | | - Lance Wells
- From the Department of Biochemistry and Molecular Biology.,the Complex Carbohydrate Research Center, and
| | - Christopher M West
- From the Department of Biochemistry and Molecular Biology, .,Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| |
Collapse
|
45
|
Li Z, Nimtz M, Rinas U. Global proteome response of Escherichia coli BL21 to production of human basic fibroblast growth factor in complex and defined medium. Eng Life Sci 2017; 17:881-891. [PMID: 32624836 DOI: 10.1002/elsc.201700036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/15/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
The global proteome response toward recombinant protein production in Escherichia coli BL21 (DE3) grown in complex and defined medium was analyzed. Overproduction of human basic fibroblast growth factor (hFGF-2), a difficult-to-fold protein, led to a reconstruction of the bacterial proteome. For example, heat shock chaperones were highly upregulated, especially when production occurred during fast growth in complex medium. Although heat shock chaperones increased to higher levels in complex medium more hFGF-2 accumulated within inclusion bodies indicating that the capacity to chaperone protein folding was not sufficient for high speed production. In both types of media, cellular proteins from substrate transport systems, central metabolic pathways, and by-product uptake (e.g. acetate) were downregulated. This downregulation was connected to growth inhibition and metabolic perturbations. For example, during production in complex and defined medium acetate reassimilation and glucose uptake, respectively, were severely hampered. Cellular proteins for degradation of less favorable substrates, elimination of reactive oxygen species, and DNA protection were also downregulated in response to hFGF-2 production. The decrease of proteins involved in transport, central metabolic pathways, and general cell protection was more pronounced in the fast producing culture in complex medium than in the slow producing culture in defined medium. In general, production of hFGF-2 seems to interfere with the adaptation process to changing growth conditions, in this case the adaptation from exponential growth to stationary phase.
Collapse
Affiliation(s)
- Zhaopeng Li
- Technical Chemistry - Life Science Leibniz University of Hannover Hannover Germany
| | - Manfred Nimtz
- Helmholtz Centre for Infection Research Braunschweig Germany
| | - Ursula Rinas
- Technical Chemistry - Life Science Leibniz University of Hannover Hannover Germany.,Helmholtz Centre for Infection Research Braunschweig Germany
| |
Collapse
|
46
|
Krysenko S, Okoniewski N, Kulik A, Matthews A, Grimpo J, Wohlleben W, Bera A. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in Streptomyces coelicolor M145. Front Microbiol 2017; 8:726. [PMID: 28487688 PMCID: PMC5403932 DOI: 10.3389/fmicb.2017.00726] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962), was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Nicole Okoniewski
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Arne Matthews
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Jan Grimpo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Agnieszka Bera
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| |
Collapse
|
47
|
Berini F, Presti I, Beltrametti F, Pedroli M, Vårum KM, Pollegioni L, Sjöling S, Marinelli F. Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Fact 2017; 16:16. [PMID: 28137256 PMCID: PMC5282697 DOI: 10.1186/s12934-017-0634-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 01/20/2023] Open
Abstract
Background Through functional screening of a fosmid library, generated from a phytopathogen-suppressive soil metagenome, the novel antifungal chitinase—named Chi18H8 and belonging to family 18 glycosyl hydrolases—was previously discovered. The initial extremely low yield of Chi18H8 recombinant production and purification from Escherichia coli cells (21 μg/g cell) limited its characterization, thus preventing further investigation on its biotechnological potential. Results We report on how we succeeded in producing hundreds of milligrams of pure and biologically active Chi18H8 by developing and scaling up to a high-yielding, 30 L bioreactor process, based on a novel method of mild solubilization of E. coli inclusion bodies in lactic acid aqueous solution, coupled with a single step purification by hydrophobic interaction chromatography. Chi18H8 was characterized as a Ca2+-dependent mesophilic chitobiosidase, active on chitin substrates at acidic pHs and possessing interesting features, such as solvent tolerance, long-term stability in acidic environment and antifungal activity against the phytopathogens Fusarium graminearum and Rhizoctonia solani. Additionally, Chi18H8 was found to operate according to a non-processive endomode of action on a water-soluble chitin-like substrate. Conclusions Expression screening of a metagenomic library may allow access to the functional diversity of uncultivable microbiota and to the discovery of novel enzymes useful for biotechnological applications. A persisting bottleneck, however, is the lack of methods for large scale production of metagenome-sourced enzymes from genes of unknown origin in the commonly used microbial hosts. To our knowledge, this is the first report on a novel metagenome-sourced enzyme produced in hundreds-of-milligram amount by recovering the protein in the biologically active form from recombinant E. coli inclusion bodies. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0634-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy. .,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy.
| | - Ilaria Presti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy.,Chemo Biosynthesis, Corana, Pavia, Italy
| | | | | | - Kjell M Vårum
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy
| | - Sara Sjöling
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy
| |
Collapse
|
48
|
Li T, Guo YY, Qiao GQ, Chen GQ. Microbial Synthesis of 5-Aminolevulinic Acid and Its Coproduction with Polyhydroxybutyrate. ACS Synth Biol 2016; 5:1264-1274. [PMID: 27238205 DOI: 10.1021/acssynbio.6b00105] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
5-Aminolevulinic acid (ALA), an important cell metabolic intermediate useful for cancer treatments or plant growth regulator, was produced by recombinant Escherichia coli expressing the codon optimized mitochondrial 5-aminolevulinic acid synthase (EC: 2.3.1.37, hem1) from Saccharomyces cerevisiae controlled via the plasmid encoding T7 expression system with a T7 RNA polymerase. When a more efficient autoinduced expression approach free of IPTG was applied, the recombinant containing antibiotic-free stabilized plasmid was able to produce 3.6 g/L extracellular ALA in shake flask studies under optimized temperature. A recombinant E. coli expressing synthesis pathways of poly-3-hydroxybutyrate (PHB) and ALA resulted in coproduction of 43% PHB in the cell dry weights and 1.6 g/L extracellular ALA, leading to further reduction on ALA cost as two products were harvested both intracellularly and extracellularly. This was the first study on coproduction of extracellular ALA and intracellular PHB for improving bioprocessing efficiency. The cost of ALA production could be further reduced by employing a Halomonas spp. TD01 able to grow and produce ALA and PHB under continuous and unsterile conditions even though ALA had the highest titer of only 0.7 g/L at the present time.
Collapse
Affiliation(s)
- Tian Li
- Peking-Tsinghua
Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Ying-Ying Guo
- Peking-Tsinghua
Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
- Center
for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Guan-Qing Qiao
- Peking-Tsinghua
Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- Peking-Tsinghua
Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
- Center
for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- MOE
Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing 100081, China
| |
Collapse
|
49
|
Fruchtl M, Sakon J, Beitle R. Alternate carbohydrate and nontraditional inducer leads to increased productivity of a collagen binding domain fusion protein via fed-batch fermentation. J Biotechnol 2016; 226:65-73. [PMID: 26975843 DOI: 10.1016/j.jbiotec.2016.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 01/21/2023]
Abstract
The production of collagen binding domain fusion proteins is of significant importance because of their potential as therapeutic biomaterials. It was previously reported that the expression of collagen-binding domain fusion proteins in Escherichia coli was higher when expressed using lactose as an inducer and chemically defined growth media on a shake flask scale. In an effort to further investigate factors that affect expression levels on a fed-batch scale, alternative induction techniques were tested in conjunction with fed-batch fermentation. In this paper, we discuss ten fed-batch fermentation experiments utilizing either glucose or glycerol feed and using lactose or isopropyl-β-d-thiogalactopyranoside (IPTG) as an induction source. It was found that glycerol-fed fermentations induced with lactose allowed for greater expression of target protein, though lesser cell densities were achieved.
Collapse
Affiliation(s)
- McKinzie Fruchtl
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA
| | - Joshua Sakon
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, University of Arkansas, Fayetteville, AR 72701, USA
| | - Robert Beitle
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
50
|
Ude C, Ben-Dov N, Jochums A, Li Z, Segal E, Scheper T, Beutel S. Online analysis of protein inclusion bodies produced in E. coli by monitoring alterations in scattered and reflected light. Appl Microbiol Biotechnol 2016; 100:4147-59. [PMID: 26940052 DOI: 10.1007/s00253-016-7403-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/29/2022]
Abstract
The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.
Collapse
Affiliation(s)
- Christian Ude
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Nadav Ben-Dov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - André Jochums
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Zhaopeng Li
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Thomas Scheper
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Sascha Beutel
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| |
Collapse
|