1
|
Zeng J, Iizaka Y, Ouchi Y, Otsuki K, Kikuchi T, Li W, Anzai Y. Inhibitory effects of reumycin produced by Streptomyces sp. TPMA0082 on virulence factors of Pseudomonas aeruginosa. J Nat Med 2025; 79:608-620. [PMID: 40195206 DOI: 10.1007/s11418-025-01902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes a wide range of infections. The increasing multidrug-resistance of P. aeruginosa poses a critical challenge for medical care. P. aeruginosa employs virulence factors and biofilms to establish infections in humans and protect itself from environmental stress or antibiotics. These factors are regulated by a quorum sensing mechanism involving multiple regulatory systems that act interdependently through signaling molecules. Therefore, interference with quorum sensing systems can suppress the pathogenicity of P. aeruginosa. In this study, quorum sensing inhibitors were explored from secondary metabolites derived from 111 strains of actinomycetes by targeting the las system, which is thought to be upstream of the quorum sensing cascade in P. aeruginosa. As a result, reumycin was isolated from the culture broth of Streptomyces sp. TPMA0082. Reumycin, a molecule containing a pyrimidotriazine ring, inhibited the binding of the autoinducer to the LasR receptor in the las system, thereby suppressing the production of P. aeruginosa virulence factors, including pyocyanin, rhamnolipids, elastase, motility, and biofilms, without affecting bacterial growth. Toxoflavin, a reumycin derivative with a methyl group at the N1 position, exhibited strong antibacterial activity. Fervenulin, a reumycin derivative with a methyl group at the N8 position, had a negative impact on the logarithmic growth phase of the bacteria and exhibited lower inhibitory activity against virulence factor production compared to reumycin. These findings suggest that the position and number of methyl groups attached to the pyrimidotriazine structure significantly influence its biological activity, exerting distinct effects on quorum sensing inhibition and antibacterial activity.
Collapse
Affiliation(s)
- Jiahao Zeng
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yohei Iizaka
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - Yasuhiro Ouchi
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yojiro Anzai
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
2
|
Lu J, Chen Z, Zhu H, Tang Q, Yang Z. Optimizing Rhamnolipid Performance by Modulating the Expression of Fatty Acid Synthesis Genes fabA and fabZ in Pseudomonas aeruginosa PAO1. Genes (Basel) 2025; 16:515. [PMID: 40428336 PMCID: PMC12111694 DOI: 10.3390/genes16050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Rhamnolipids (RLs) are biosurfactants with significant industrial and environmental potential, which physicochemical properties depend greatly on their fatty acyl chain composition. This study investigated the impact of genetically modulating the fatty acid synthesis genes fabA and fabZ on RL composition and functionality in Pseudomonas aeruginosa PAO1. METHODS AND RESULTS Using temperature-sensitive mutants and suppressor strains for these essential genes, we successfully engineered RLs with altered fatty acyl chain lengths and saturation levels. LC-MS/MS analyses showed that deletion and overexpression of fabA and fabZ significantly shifted RL fatty acid profiles. Functional analyses indicated that these structural changes markedly influenced RL emulsification activity and critical micelle concentration (CMC). CONCLUSIONS These findings demonstrate the feasibility of optimizing RL properties through targeted genetic manipulation, offering valuable insights for designing customized biosurfactants for diverse industrial and environmental applications.
Collapse
Affiliation(s)
| | | | | | | | - Zhili Yang
- Systems Biology Laboratory, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.)
| |
Collapse
|
3
|
Matthews EL, Hirsch MJ, Prokopczuk F, Jones LI, Martínez E, Barnes JW, Krick S. Wound repair and immune function in the Pseudomonas infected CF lung: before and after highly effective modulator therapy. Front Cell Infect Microbiol 2025; 15:1566495. [PMID: 40357395 PMCID: PMC12066499 DOI: 10.3389/fcimb.2025.1566495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
The leading cause of death for people with cystic fibrosis (pwCF) continues to be due to respiratory-related illnesses. Both wound repair and immune cell responses are dysregulated in the CF airways, creating a cycle of unresolved injury and perpetuating inflammation. PwCF are predisposed to colonization and infections with opportunistic bacteria like Pseudomonas aeruginosa (Pa), the most common adult pathogen in CF. Pa possesses key virulence factors that can exacerbate chronic inflammation and lung injury. With the approval of highly effective modulator therapies like elexacaftor/tezacaftor/ivacaftor (ETI), pwCF eligible for ETI have seen drastic improvements in lung function and clinical outcomes, including an increased life expectancy. While modulator therapies are improving bronchial epithelial cellular processes in wound repair and some areas of immunity, many of these processes do not reach a non-CF baseline state or have not been thoroughly studied. The effect of modulator therapy on Pa may lead to a reduction in infection, but in more longitudinal studies, there is not always eradication of Pa, and colonization and infection frequency can return to pre-modulator levels over time. Finally, in this review we explore the current state of additional treatments for CF lung disease, independent of CFTR genotype, including anti-inflammatories, phage-therapies, and Pa vaccines.
Collapse
Affiliation(s)
- Emma Lea Matthews
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meghan June Hirsch
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Federico Prokopczuk
- Department of Microbiology, The University of Alabama at Birmingham,
Birmingham, AL, United States
| | - Luke I. Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eriel Martínez
- Department of Microbiology, The University of Alabama at Birmingham,
Birmingham, AL, United States
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Shah R, Narh JK, Urlaub M, Jankiewicz O, Johnson C, Livingston B, Dahl JU. Pseudomonas aeruginosa kills Staphylococcus aureus in a polyphosphate-dependent manner. mSphere 2024; 9:e0068624. [PMID: 39365057 PMCID: PMC11520310 DOI: 10.1128/msphere.00686-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
Due to their frequent coexistence in many polymicrobial infections, including in patients with cystic fibrosis or burn/chronic wounds, many studies have investigated the mechanistic details of the interaction between the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. P. aeruginosa rapidly outcompetes S. aureus under in vitro cocultivation conditions, which is mediated by several of P. aeruginosa's virulence factors. Here, we report that polyphosphate (polyP), an efficient stress defense system and virulence factor in P. aeruginosa, plays a role in the pathogen's ability to inhibit and kill S. aureus in a contact-independent manner. We show that P. aeruginosa cells characterized by low polyP levels are less detrimental to S. aureus growth and survival while the Gram-positive pathogen is significantly more compromised by the presence of P. aeruginosa cells that produce high levels of polyP. The polyP-dependent phenotype of P. aeruginosa-mediated killing of S. aureus could at least in part be direct, as polyP was detected in the spent media and causes significant damage to the S. aureus cell envelope. However, more likely is that polyP's effects are indirect through modulating the production of one of P. aeruginosa's virulence factors, pyocyanin. We show that pyocyanin production in P. aeruginosa occurs polyP-dependently and harms S. aureus through membrane damage and potentially the generation of reactive oxygen species, resulting in the increased expression of antioxidant enzymes. In summary, our study adds a new component to the list of biomolecules that the Gram-negative pathogen P. aeruginosa generates to compete with S. aureus for resources.IMPORTANCEHow do interactions between microorganisms shape the course of polymicrobial infections? Previous studies have provided evidence that the two opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus generate molecules that modulate their interaction with potentially significant impact on disease outcomes. Our study identified the biopolymer polyphosphate (polyP) as a new effector molecule that impacts P. aeruginosa's interaction with S. aureus. We show that P. aeruginosa kills S. aureus in a polyP-dependent manner, which occurs primarily through the polyP-dependent production of the P. aeruginosa virulence factor pyocyanin. Our findings add a new role for polyP to an already extensive list of functions. A more in-depth understanding of how polyP influences interspecies interactions is critical, as targeting polyP synthesis in bacteria such as P. aeruginosa may have a significant impact on other microorganisms and potentially result in dynamic changes in the microbial composition.
Collapse
Affiliation(s)
- Ritika Shah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Julius Kwesi Narh
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Magdalena Urlaub
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Olivia Jankiewicz
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Barry Livingston
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| |
Collapse
|
5
|
Pan D, Wu H, Li JJ, Wang B, Jia AQ. Two cinnamoyl hydroxamates as potential quorum sensing inhibitors against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1424038. [PMID: 39165918 PMCID: PMC11333444 DOI: 10.3389/fcimb.2024.1424038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is a ubiquitous pathogen that causes various infectious diseases through the regulation of quorum sensing (QS). The strategy of interfering with the QS systems of P. aeruginosa, coupled with a reduction in the dosage of conventional antibiotics, presents a potential solution to treating infection and mitigating antibiotic resistance. In this study, seven cinnamoyl hydroxamates were synthesized to evaluate their inhibitory effects on QS of P. aeruginosa. Among these cinnamic acid derivatives, we found cinnamoyl hydroxamic acid (CHA) and 3-methoxy-cinnamoyl hydroxamic acid (MCHA) were the two most effective candidates. Furtherly, the effect of CHA and MCHA on the production of virulence factors and biofilm of P. aeruginosa were evaluated. Ultimately, our study may offer promising potential for treating P. aeruginosa infections and reducing its virulence. Methods The disc diffusion test were conducted to evaluate inhibitory effects on QS of seven cinnamoyl hydroxamates. The influence of CHA and MCHA on the production of virulence and flagellar motility of P. aeruginosa was furtherly explored. Scanning electron microscopy (SEM) experiment were conducted to evaluate the suppression of CHA and MCHA on the formed biofilm of P. aeruginosa. RT-qPCR was used to detect rhlI, lasA, lasB, rhlA, rhlB, and oprL genes in P. aeruginosa. In silico docking study was performed to explore the molecular mechanism of CHA and MCHA. The synergistic effects of CHA with gentamicin were detected on biofilm cell dispersal. Result After treatment of CHA or MCHA, the production of multiple virulence factors, including pyocyanin, proteases, rhamnolipid, and siderophore, and swimming and swarming motilities in P. aeruginosa were inhibited significantly. And our results showed CHA and MCHA could eliminate the formed biofilm of P. aeruginosa. RT-qPCR revealed that CHA and MCHA inhibited the expression of QS related genes in P. aeruginosa. Molecular docking indicated that CHA and MCHA primarily inhibited the RhlI/R system in P. aeruginosa by competing with the cognate signaling molecule C4-HSL.Additionally, CHA exhibited potent synergistic effects with gentamicin on biofilm cell dispersal. Discussion P. aeruginosa is one of the most clinically and epidemiologically important bacteria and a primary cause of catheter-related urinary tract infections and ventilator-associated pneumonia. This study aims to explore whether cinnamoyl hydroxamates have inhibitory effects on QS. And our results indicate that CHA and MCHA, as two novel QSIs, offer promising potential for treating P. aeruginosa infections and reducing its virulence.
Collapse
Affiliation(s)
- Deng Pan
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Hua Wu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jun-Jian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
de Rosset A, Tyszkiewicz N, Wiśniewski J, Pudełko-Malik N, Rutkowski P, Młynarz P, Pasternak G. Bioelectrochemical synthesis of rhamnolipids and energy production and its correlation with nitrogen in air-cathode microbial fuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121514. [PMID: 38908152 DOI: 10.1016/j.jenvman.2024.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Microbial fuel cells (MFCs) have been recently proven to synthesise biosurfactants from waste products. In classic bioreactors, the efficiency of biosynthesis process can be controlled by the concentration of nitrogen content in the electrolyte. However, it was not known whether a similar control mechanism could be applied in current-generating conditions. In this work, the effect of nitrogen concentration on biosurfactant production from waste cooking oil was investigated. The concentration of NH4Cl in the electrolyte ranged from 0 to 1 g L-1. The maximum power density equal to 17.5 W m-3 was achieved at a concentration of 0.5 g L-1 (C/N = 2.32) and was accompanied by the highest surface tension decrease (to 54.6 mN m-1) and an emulsification activity index of 95.4%. Characterisation of the biosurfactants produced by the LC-MS/MS method showed the presence of eleven compounds belonging to the mono- and di-rhamnolipids group, most likely produced by P. aeruginosa, which was the most abundant (19.6%) in the community. Importantly, we have found a strong correlation (R = -0.96) of power and biosurfactant activity in response to C/N ratio. This study shows that nitrogen plays an important role in the current-generating metabolism of waste cooking oil. To the best of our knowledge, this is the first study where the nitrogen optimisation was investigated to improve the synthesis of biosurfactants and power generation in a bioelectrochemical system.
Collapse
Affiliation(s)
- Aleksander de Rosset
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Natalia Tyszkiewicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland; Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Natalia Pudełko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Piotr Rutkowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland
| | - Grzegorz Pasternak
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50-370, Poland.
| |
Collapse
|
7
|
Romero-González LE, Montelongo-Martínez LF, González-Valdez A, Quiroz-Morales SE, Cocotl-Yañez M, Franco-Cendejas R, Soberón-Chávez G, Pardo-López L, Bustamante VH. Pseudomonas aeruginosa Isolates from Water Samples of the Gulf of Mexico Show Similar Virulence Properties but Different Antibiotic Susceptibility Profiles than Clinical Isolates. Int J Microbiol 2024; 2024:6959403. [PMID: 38784405 PMCID: PMC11115996 DOI: 10.1155/2024/6959403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments, including soil, water, and habitats associated with animals, humans, and plants. From a One Health perspective, which recognizes the interconnectedness of human, animal, and environmental health, it is important to study the virulence characteristics and antibiotic susceptibility of environmental bacteria. In this study, we compared the virulence properties and the antibiotic resistance profiles of seven isolates collected from the Gulf of Mexico with those of seven clinical strains of P. aeruginosa. Our results indicate that the marine and clinical isolates tested exhibit similar virulence properties; they expressed different virulence factors and were able to kill Galleria mellonella larvae, an animal model commonly used to analyze the pathogenicity of many bacteria, including P. aeruginosa. In contrast, the clinical strains showed higher antibiotic resistance than the marine isolates. Consistently, the clinical strains exhibited a higher prevalence of class 1 integron, an indicator of anthropogenic impact, compared with the marine isolates. Thus, our results indicate that the P. aeruginosa marine strains analyzed in this study, isolated from the Gulf of Mexico, have similar virulence properties, but lower antibiotic resistance, than those from hospitals.
Collapse
Affiliation(s)
- Luis E. Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis F. Montelongo-Martínez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Sara E. Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Rafael Franco-Cendejas
- Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
8
|
Shah R, Jankiewicz O, Johnson C, Livingston B, Dahl JU. Pseudomonas aeruginosa kills Staphylococcus aureus in a polyphosphate-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570291. [PMID: 38106195 PMCID: PMC10723280 DOI: 10.1101/2023.12.05.570291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Due to their frequent coexistence in many polymicrobial infections, including in patients with burn or chronic wounds or cystic fibrosis, recent studies have started to investigate the mechanistic details of the interaction between the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. P. aeruginosa rapidly outcompetes S. aureus under in vitro co-cultivation conditions, which is mediated by several of P. aeruginosa's virulence factors. Here, we report that polyphosphate (polyP), an efficient stress defense system and virulence factor in P. aeruginosa, plays a role for the pathogen's ability to inhibit and kill S. aureus in a contact-independent manner. We show that P. aeruginosa cells characterized by low polyP level are less detrimental to S. aureus growth and survival while the gram-positive pathogen is significantly more compromised by the presence of P. aeruginosa cells that produce high level of polyP. We show that the polyP-dependent phenotype could be a direct effect by the biopolymer, as polyP is present in the spent media and causes significant damage to the S. aureus cell envelope. However, more likely is that polyP's effects are indirect through the regulation of one of P. aeruginosa's virulence factors, pyocyanin. We show that pyocyanin production in P. aeruginosa occurs polyP-dependent and harms S. aureus through membrane damage and the generation of reactive oxygen species, resulting in increased expression of antioxidant enzymes. In summary, our study adds a new component to the list of biomolecules that the gram-negative pathogen P. aeruginosa generates to compete with S. aureus for resources.
Collapse
Affiliation(s)
- Ritika Shah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Olivia Jankiewicz
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Barry Livingston
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| |
Collapse
|
9
|
Ahamad Khan M, Lone SA, Shahid M, Zeyad MT, Syed A, Ehtram A, Elgorban AM, Verma M, Danish M. Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies. TOXICS 2023; 11:toxics11050452. [PMID: 37235266 DOI: 10.3390/toxics11050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Jawahar Lal Nehru Medical College (JNMC), Aligarh Muslim University, Aligarh 202002, India
| | - Showkat Ahmad Lone
- Department of Microbiology, Government Medical College, Baramulla 19310, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aquib Ehtram
- La Jolla Institute for Immunology, San Diego, CA 92037, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- Centre of Research & Development, Department of Chemistry, Chandigarh University, Mohali 160055, India
| | - Mohammad Danish
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
10
|
Jayalatha NA, Devatha CP. Experimental investigation for treating ibuprofen and triclosan by biosurfactant from domestic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116913. [PMID: 36521217 DOI: 10.1016/j.jenvman.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The presence of emerging pollutants of pharmaceutical products and personal care products (PPCPs) in the aquatic environment overspreads the threat on living beings. Bioremediation is a promising option for treating wastewater. In the present study, an experimental investigation was carried out to produce a biosurfactant by Pseudomonas aeruginosa (MTCC 1688) for the removal of Ibuprofen (IBU) and Triclosan (TCS) from domestic wastewater. It was performed in three stages. Firstly, the production and optimization of biosurfactant was carried out to arrive at the best combination of crude sunflower oil, sucrose and ammonium bicarbonate (10%: 5.5 g/L: 1 g/L) to yield effective biosurfactant production (crude biosurfactant) and further extended to achieve critical micelle concentration (CMC) formation by dilution (biosurfactant at 10.5%). The stability of the biosurfactant was also confirmed. Biosurfactant showed a reduction in the surface tension to 41 mN/m with a yield concentration of 11.2 g/L. Secondly, its effectiveness was evaluated for the removal of IBU and TCS from the domestic wastewater collected during the dry and rainy seasons. Complete removal of IBU was achieved at 36 h & 6 h and TCS at 6 h & 1 h by crude biosurfactant and biosurfactant at CMC formation for the dry season sample. IBU removal was achieved in 2 h by both crude and biosurfactant at CMC and no TCS was detected in the rainy season sample. Thirdly, biotransformation intermediates of IBU and TCS formed during the application of the biosurfactant and degradation pathways are proposed based on the Liquid Chromatography-Mass Spectrometry (LC-MS) and it indicates that there is no formation of toxic by-products. Based on the results, it is evident that biosurfactant at CMC has performed better for the removal of IBU and TCS than crude biosurfactants without any formation of toxic intermediates. Hence, this study proved to be an eco-friendly, cost-effective and sustainable treatment option for domestic wastewater treatment.
Collapse
Affiliation(s)
- N A Jayalatha
- Department of Civil Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| | - C P Devatha
- Department of Civil Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| |
Collapse
|
11
|
Alhusaini Q, Scheld WS, Jia Z, Das D, Afzal F, Müller M, Schönherr H. Bare Eye Detection of Bacterial Enzymes of Pseudomonas aeruginosa with Polymer Modified Nanoporous Silicon Rugate Filters. BIOSENSORS 2022; 12:1064. [PMID: 36551031 PMCID: PMC9776340 DOI: 10.3390/bios12121064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The fabrication, characterization and application of a nanoporous Silicon Rugate Filter (pSiRF) loaded with an enzymatically degradable polymer is reported as a bare eye detection optical sensor for enzymes of pathogenic bacteria, which is devoid of any dyes. The nanopores of pSiRF were filled with poly(lactic acid) (PLA), which, upon enzymatic degradation, resulted in a change in the effective refractive index of the pSiRF film, leading to a readily discernible color change of the sensor. The shifts in the characteristic fringe patterns before and after the enzymatic reaction were analyzed quantitatively by Reflectometric Interference Spectroscopy (RIfS) to estimate the apparent kinetics and its dependence on enzyme concentration. A clear color change from green to blue was observed by the bare eye after PLA degradation by proteinase K. Moreover, the color change was further confirmed in measurements in bacterial suspensions of the pathogen Pseudomonas aeruginosa (PAO1) as well as in situ in the corresponding bacterial supernatants. This study highlights the potential of the approach in point of care bacteria detection.
Collapse
Affiliation(s)
- Qasim Alhusaini
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Walter Sebastian Scheld
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Zhiyuan Jia
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Dipankar Das
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, India
| | - Faria Afzal
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
12
|
Constantino-Teles P, Jouault A, Touqui L, Saliba AM. Role of Host and Bacterial Lipids in Pseudomonas aeruginosa Respiratory Infections. Front Immunol 2022; 13:931027. [PMID: 35860265 PMCID: PMC9289105 DOI: 10.3389/fimmu.2022.931027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2α and sPLA2, are also activated during the infectious process and play important roles in P. aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of P. aeruginosa in the lungs and discuss how bacterial and host lipids can impact the outcome of P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Pamella Constantino-Teles
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Albane Jouault
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Alessandra Mattos Saliba,
| |
Collapse
|
13
|
Pachaiappan R, Rajamuthu TP, Sarkar A, Natrajan P, Krishnan N, Sakthivelu M, Velusamy P, Ramasamy P, Gopinath SC. N-acyl-homoserine lactone mediated virulence factor(s) of Pseudomonas aeruginosa inhibited by flavonoids and isoflavonoids. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Veetilvalappil VV, Manuel A, Aranjani JM, Tawale R, Koteshwara A. Pathogenic arsenal of Pseudomonas aeruginosa: an update on virulence factors. Future Microbiol 2022; 17:465-481. [PMID: 35289684 DOI: 10.2217/fmb-2021-0158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The emergence of Pseudomonas aeruginosa as a potential threat in persistent infections can be attributed to the plethora of virulence factors expressed by it. This review discusses the various virulence factors that help this pathogen to establish an infection and regulatory systems controlling these virulence factors. Cell-associated virulence factors such as flagella, type IV pili and non-pilus adhesins have been reviewed. Extracellular virulence factors have also been explained. Quorum-sensing systems present in P. aeruginosa play a cardinal role in regulating the expression of virulence factors. The identification of novel virulence factors in hypervirulent strains indicate that the expression of virulence is dynamic and constantly evolving. An understanding of this is critical for the better clinical management of infections.
Collapse
Affiliation(s)
- Vimal V Veetilvalappil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Atulya Manuel
- Central Frozen Semen Production and Training Institute, Bengaluru, Karnataka, 560088, India
| | - Jesil M Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Roshan Tawale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananthamurthy Koteshwara
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
15
|
Luy J, Ameline D, Thobie‐Gautier C, Boujtita M, Lebègue E. Detection of Bacterial Rhamnolipid Toxin by Redox Liposome Single Impact Electrochemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Justine Luy
- Université de Nantes CNRS CEISAM UMR 6230 44000 Nantes France
| | - Dorine Ameline
- Université de Nantes CNRS CEISAM UMR 6230 44000 Nantes France
| | | | | | - Estelle Lebègue
- Université de Nantes CNRS CEISAM UMR 6230 44000 Nantes France
| |
Collapse
|
16
|
Polaske TJ, Gahan CG, Nyffeler KE, Lynn DM, Blackwell HE. Identification of small molecules that strongly inhibit bacterial quorum sensing using a high-throughput lipid vesicle lysis assay. Cell Chem Biol 2021; 29:605-614.e4. [PMID: 34932995 PMCID: PMC9035047 DOI: 10.1016/j.chembiol.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023]
Abstract
Strategies to both monitor and block bacterial quorum sensing (QS), and thus associated infections, are of significant interest. We developed a straightforward assay to monitor biosurfactants and lytic agents produced by bacteria under the control of QS. The method is based on the lysis of synthetic lipid vesicles containing the environmentally sensitive fluorescent dye calcein. This assay allows for the in situ screening of compounds capable of altering biosurfactant production by bacteria, and thereby the identification of molecules that could potentially modulate QS pathways, and avoids the constraints of many of the cell-based assays in use today. Application of this assay in a high-throughput format revealed five molecules capable of blocking vesicle lysis by S. aureus. Two of these compounds were found to almost completely inhibit agr-based QS in S. aureus and represent the most potent small-molecule-derived QS inhibitors reported in this formidable pathogen.
Collapse
Affiliation(s)
- Thomas J Polaske
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Curran G Gahan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Kayleigh E Nyffeler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - David M Lynn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA.
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA.
| |
Collapse
|
17
|
Johnson AC, Buchanan EP, Khechoyan DY. Wound infection: A review of qualitative and quantitative assessment modalities. J Plast Reconstr Aesthet Surg 2021; 75:1287-1296. [PMID: 35216936 DOI: 10.1016/j.bjps.2021.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 05/26/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Surgical site infections (SSI) and chronic wounds represent a burden to patients and the health care system. One in 24 surgical patients will develop an SSI, making SSI the most common nosocomial infection in the USA. Early detection and monitoring of wound infection are critical for timely healing and return to normal function. However, the mainstay of wound infection diagnostic entails subjective clinical examination and semi-quantitative, invasive microbiological tests. In this review, we present current wound infection assessment modalities in the clinical and translational fields. There is a need for a point-of-care assessment tool that provides fast, accurate, and quantitative information on wound status, with minimal to no contact with the patient. In the next ten years, the evolution of wound diagnostic tools reported here may allow medical providers to optimize patient care while minimizing patient discomfort.
Collapse
Affiliation(s)
- Ariel C Johnson
- Division of Plastic and Reconstructive Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward P Buchanan
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - David Y Khechoyan
- Department of Pediatric Plastic Surgery, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
18
|
Luy J, Ameline D, Thobie-Gautier C, Boujtita M, Lebègue E. Detection of Bacterial Rhamnolipid Toxin by Redox Liposome Single Impact Electrochemistry. Angew Chem Int Ed Engl 2021; 61:e202111416. [PMID: 34816575 DOI: 10.1002/anie.202111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 01/05/2023]
Abstract
The detection of Rhamnolipid virulence factor produced by Pseudomonas aeruginosa involved in nosocomial infections is reported by using the redox liposome single impact electrochemistry. Redox liposomes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine as a pure phospholipid and potassium ferrocyanide as an encapsulated redox content are designed for using the interaction of the target toxin with the lipid membrane as a sensing strategy. The electrochemical sensing principle is based on the weakening of the liposomes lipid membrane upon interaction with Rhamnolipid toxin which leads upon impact at an ultramicroelectrode to the breakdown of the liposomes and the release/electrolysis of its encapsulated redox probe. We present as a proof of concept the sensitive and fast sensing of a submicromolar concentration of Rhamnolipid which is detected after less than 30 minutes of incubation with the liposomes, by the appearing of current spikes in the chronoamperometry measurement.
Collapse
Affiliation(s)
- Justine Luy
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | - Dorine Ameline
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | | | | | - Estelle Lebègue
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| |
Collapse
|
19
|
Kalgudi R, Tamimi R, Kyazze G, Keshavarz T. Quorum quenchers affect the virulence regulation of non-mucoid, mucoid and heavily mucoid biofilms co-cultured on cell lines. Appl Microbiol Biotechnol 2021; 105:8853-8868. [PMID: 34716788 PMCID: PMC8590680 DOI: 10.1007/s00253-021-11638-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022]
Abstract
Biofilm formation conferring pathogenicity is a survival strategy for Pseudomonas aeruginosa. P. aeruginosa’s virulence may differ due to differences in host-microbe interactions and the growth environment. The epithelial cell line within the respiratory system and the keratinocytes on the skin form the first physical barrier of defence. P. aeruginosa spp. biofilm formation and virulence factor secretion with and without quorum quenching (QQ) treatment was studied in co-culture using A549 and HaCaT cell lines; pyocyanin and rhamnolipid productions and elastolytic activity as virulence factors were quantified by independent assays. Biofilm formation was evaluated under dynamic conditions by quantifying total carbohydrates, alginate, proteins and eDNA. A sandwich ELISA was performed to study IL-8 secretion by the epithelial cells. The difference in gene expression of the quorum sensing (QS) and virulence factors between strains during individual and combination treatments was analysed by qPCR. Combination treatment by farnesol and tyrosol was more effective against P. aeruginosa biofilms when grown in co-cultures. The strain RBHi was found to be 3 to 4 times more virulent compared to PAO1 and NCTC 10,662, respectively, and combination treatment was more effective against RBHi strain when grown in co-culture with A549 cell line. The addition of quorum quenchers (QQs) individually and in combination reduced IL-8 secretion by A549 cells. Relative mRNA expression showed upregulation of the QS genes and virulence factors. Co-culture of P. aeruginosa and HaCaT cell line showed a general decrease in gene expression, especially in the case of P. aeruginosa RBHi when treated with farnesol and tyrosol combination. Key points • Differentiating the interactions of biofilm formed by different phenotypes of P. aeruginosa, NCTC 10,662 (non-mucoid), PAO1 (semi mucoid) and RBHi (heavily mucoid). • Biofilm formed by these P. aeruginosa strains on two commonly afflicted tissues represented by A549 (lung) and HaCaT (skin) cell lines. • Anti-biofilm/anti-virulence roles of quorum quenchers, tyrosol and farnesol in co-cultures.
Collapse
Affiliation(s)
- Rachith Kalgudi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
| | - Roya Tamimi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Tajalli Keshavarz
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
20
|
Gahan CG, Patel SJ, Chen LM, Manson DE, Ehmer ZJ, Blackwell HE, Van Lehn RC, Lynn DM. Bacterial Quorum Sensing Signals Promote Large-Scale Remodeling of Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9120-9136. [PMID: 34283628 PMCID: PMC8450678 DOI: 10.1021/acs.langmuir.1c01204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report that N-acyl-l-homoserine lactones (AHLs), a class of nonionic amphiphiles that common bacteria use as signals to coordinate group behaviors, can promote large-scale remodeling in model lipid membranes. Characterization of supported lipid bilayers (SLBs) of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) by fluorescence microscopy and quartz crystal microbalance with dissipation (QCM-D) reveals the well-studied AHL signal 3-oxo-C12-AHL and its anionic head group hydrolysis product (3-oxo-C12-HS) to promote the formation of long microtubules that can retract into hemispherical caps on the surface of the bilayer. These transformations are dynamic, reversible, and dependent upon the head group structure. Additional experiments demonstrate that 3-oxo-C12-AHL can promote remodeling to form microtubules in lipid vesicles and promote molecular transport across bilayers. Molecular dynamics (MD) simulations predict differences in thermodynamic barriers to translocation of these amphiphiles across a bilayer that are reflected in both the type and extent of reformation and associated dynamics. Our experimental observations can thus be interpreted in terms of accumulation and relief of asymmetric stresses in the inner and outer leaflets of a bilayer upon intercalation and translocation of these amphiphiles. Finally, experiments on Pseudomonas aeruginosa, a pathogen that uses 3-oxo-C12-AHL for cell-to-cell signaling, demonstrate that 3-oxo-C12-AHL and 3-oxo-C12-HS can promote membrane remodeling at biologically relevant concentrations and in the absence of other biosurfactants, such as rhamnolipids, that are produced at high population densities. Overall, these results have implications for the roles that 3-oxo-C12-AHL and its hydrolysis product may play in not only mediating intraspecies bacterial communication but also processes such as interspecies signaling and bacterial control of host-cell response. Our findings also provide guidance that could prove useful for the design of synthetic self-assembled materials that respond to bacteria in ways that are useful in the context of sensing, drug delivery, and in other fundamental and applied areas.
Collapse
Affiliation(s)
- Curran G Gahan
- Dept. of Chemical and Biological Engineering, Univ. of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Samarthaben J Patel
- Dept. of Chemical and Biological Engineering, Univ. of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Lawrence M Chen
- Dept. of Chemical and Biological Engineering, Univ. of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Daniel E Manson
- Dept. of Chemistry, Univ. of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Zachary J Ehmer
- Dept. of Chemical and Biological Engineering, Univ. of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Dept. of Chemistry, Univ. of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Reid C Van Lehn
- Dept. of Chemical and Biological Engineering, Univ. of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - David M Lynn
- Dept. of Chemical and Biological Engineering, Univ. of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
- Dept. of Chemistry, Univ. of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Belkilani M, Shokouhi M, Farre C, Chevalier Y, Minot S, Bessueille F, Abdelghani A, Jaffrezic-Renault N, Chaix C. Surface Plasmon Resonance Monitoring of Mono-Rhamnolipid Interaction with Phospholipid-Based Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7975-7985. [PMID: 34170134 DOI: 10.1021/acs.langmuir.1c00846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions of mono-rhamnolipids (mono-RLs) with model membranes were investigated through a biomimetic approach using phospholipid-based liposomes immobilized on a gold substrate and also by the multiparametric surface plasmon resonance (MP-SPR) technique. Biotinylated liposomes were bound onto an SPR gold chip surface coated with a streptavidin layer. The resulting MP-SPR signal proved the efficient binding of the liposomes. The thickness of the liposome layer calculated by modeling the MP-SPR signal was about 80 nm, which matched the average diameter of the liposomes. The mono-RL binding to the film of the phospholipid liposomes was monitored by SPR and the morphological changes of the liposome layer were assessed by modeling the SPR signal. We demonstrated the capacity of the MP-SPR technique to characterize the different steps of the liposome architecture evolution, i.e., from a monolayer of phospholipid liposomes to a single phospholipid bilayer induced by the interaction with mono-RLs. Further washing treatment with Triton X-100 detergent left a monolayer of phospholipid on the surface. As a possible practical application, our method based on a biomimetic membrane coupled to an SPR measurement proved to be a robust and sensitive analytical tool for the detection of mono-RLs with a limit of detection of 2 μg mL-1.
Collapse
Affiliation(s)
- Meryem Belkilani
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
- ENSIT, University of Tunis, Avenue Taha Hussein, Montfleury, 1008 Tunis, Tunisia
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Maryam Shokouhi
- Department of chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Carole Farre
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Yves Chevalier
- CNRS, Claude Bernard Lyon1 University, University of Lyon, LAGEPP, 43 Bd 11 Novembre, F-69622 Villeurbanne, France
| | - Sylvain Minot
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - François Bessueille
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Adnane Abdelghani
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Nicole Jaffrezic-Renault
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Chaix
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
22
|
Geng YF, Yang C, Zhang Y, Tao SN, Mei J, Zhang XC, Sun YJ, Zhao BT. An innovative role for luteolin as a natural quorum sensing inhibitor in Pseudomonas aeruginosa. Life Sci 2021; 274:119325. [PMID: 33713665 DOI: 10.1016/j.lfs.2021.119325] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
AIMS The emergence of antibiotic tolerance was a tricky problem in the treatment of chronic Pseudomonas aeruginosa-infected cystic fibrosis and burn victims. The quorum sensing (QS) inhibitor may serve as a new tactic for the bacterial resistance by inhibiting the biofilm formation and the production of virulence factors. This study explored the potential of luteolin as a QS inhibitor against P. aeruginosa and the molecular mechanism involved. MAIN METHODS Crystal violet staining, CLSM observation, and SEM analysis were carried out to assess the effect of luteolin on biofilm formation. The motility assays and the production of virulence factors were determined to evaluate the QS-inhibitory activity of luteolin. Acyl-homoserine lactone, RT-PCR, and molecular docking assays were conducted to explain its anti-QS mechanisms. KEY FINDINGS The biofilm formation, the production of virulence factors, and the motility of P. aeruginosa could be efficiently inhibited by luteolin. Luteolin could also attenuate the accumulation of the QS-signaling molecules N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) and N-butanoyl-L-homoserine lactone (BHL) (P < 0.01) and downregulate the transcription levels of QS genes (lasR, lasI, rhlR, and rhlI) (P < 0.01). Molecular docking analysis indicated that luteolin had a greater docking affinity with LasR regulator protein compared with OdDHL. SIGNIFICANCE This study is important as it reports the molecular mechanisms involved in the anti-biofilm formation activity of luteolin against P. aeruginosa. This study also indicated that luteolin could be helpful when used for the treatment of clinical drug-resistant infections of P. aeruginosa.
Collapse
Affiliation(s)
- Ya Fei Geng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Sheng Nan Tao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Mei
- Shenzhen Lantern Science Co. Ltd., Qinglan 2nd Road No. 6, Big Industrial Zone, Pingshan District, Shenzhen 518000, China
| | - Xu Chang Zhang
- Shenzhen Lantern Science Co. Ltd., Qinglan 2nd Road No. 6, Big Industrial Zone, Pingshan District, Shenzhen 518000, China
| | - Ya Juan Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bing Tian Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
23
|
Twigg MS, Baccile N, Banat IM, Déziel E, Marchant R, Roelants S, Van Bogaert INA. Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb Biotechnol 2021; 14:147-170. [PMID: 33249753 PMCID: PMC7888453 DOI: 10.1111/1751-7915.13704] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
The demand for microbially produced surface-active compounds for use in industrial processes and products is increasing. As such, there has been a comparable increase in the number of publications relating to the characterization of novel surface-active compounds: novel producers of already characterized surface-active compounds and production processes for the generation of these compounds. Leading researchers in the field have identified that many of these studies utilize techniques are not precise and accurate enough, so some published conclusions might not be justified. Such studies lacking robust experimental evidence generated by validated techniques and standard operating procedures are detrimental to the field of microbially produced surface-active compound research. In this publication, we have critically reviewed a wide range of techniques utilized in the characterization of surface-active compounds from microbial sources: identification of surface-active compound producing microorganisms and functional testing of resultant surface-active compounds. We have also reviewed the experimental evidence required for process development to take these compounds out of the laboratory and into industrial application. We devised this review as a guide to both researchers and the peer-reviewed process to improve the stringency of future studies and publications within this field of science.
Collapse
Affiliation(s)
- Matthew Simon Twigg
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Niki Baccile
- Centre National de la Recherche ScientifiqueLaboratoire de Chimie de la Matière Condensée de ParisSorbonne UniversitéLCMCPParisF‐75005France
| | - Ibrahim M. Banat
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Eric Déziel
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)531, Boul. Des PrairiesLavalQCH7V 1B7Canada
| | - Roger Marchant
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Sophie Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Bio Base Europe Pilot PlantRodenhuizenkaai 1Ghent9042Belgium
| | - Inge N. A. Van Bogaert
- Centre for Synthetic BiologyDepartment of BiotechnologyGhent UniversityCoupure Links 653Ghent9000Belgium
| |
Collapse
|
24
|
Recent progress and trends in the analysis and identification of rhamnolipids. Appl Microbiol Biotechnol 2020; 104:8171-8186. [PMID: 32845366 DOI: 10.1007/s00253-020-10841-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Rhamnolipids have extensive potential applications and are the most promising biosurfactants for commercialization. The efficient and accurate identification and analysis of these are important to their production, application and commercialization. Accordingly, significant efforts have been made to identify and analyse rhamnolipids during screening of producing strains, fermentation and application processes. Cationic cetyltrimethylammonium bromide-methylene blue (CTAB-MB) test combines a series of indirect assays to efficiently assist in the primary screening of rhamnolipids-producing strains, while the secretion of rhamnolipids by these strains can be identified through TLC, FTIR, NMR, electrospray ionization mass spectrometry (ESI-MS) and HPLC-MS analysis. Rhamnolipids can be quantified by colorimetric methods requiring the use of concentrated acid, and this approach has the advantages of reliability, simplicity, low-cost and excellent reproducibility with very low technological requirements. HPLC-MS can also be employed as required as a more accurate quantification method. In addition, HPLC-ELSD has been established as the internationally acceptable measure of rhamnolipids for commercial purposes. The preparation of well-accepted rhamnolipids standards and modifications of analysis operations are essential to further enhance the accuracy and improve the simplicity of rhamnolipid analysis.Key points• Current status of R&D works on determination of rhamnolipids is listed• Advantages and disadvantages of various types analysis are summarized• Limitations of current rhamnolipid quantification are discussed Graphical abstract.
Collapse
|
25
|
Thet NT, Mercer-Chalmers J, Greenwood RJ, Young AER, Coy K, Booth S, Sack A, Jenkins ATA. SPaCE Swab: Point-of-Care Sensor for Simple and Rapid Detection of Acute Wound Infection. ACS Sens 2020; 5:2652-2657. [PMID: 32786390 PMCID: PMC7460538 DOI: 10.1021/acssensors.0c01265] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Wound
infection is commonly observed after surgery and trauma but
is difficult to diagnose and poorly defined in terms of objective
clinical parameters. The assumption that bacteria in a wound correlate
with infection is false; all wounds contain microorganisms, but not
all wounds are clinically infected. This makes it difficult for clinicians
to determine true wound infection, especially in wounds with pathogenic
biofilms. If an infection is not properly treated, pathogenic virulence
factors, such as rhamnolipids from Pseudomonas aeruginosa, can modulate the host immune response and cause tissue breakdown.
Life-threatening sepsis can result if the organisms penetrate deep
into host tissue. This communication describes the sensor development
for five important clinical microbial pathogens commonly found in
wounds: Staphylococcus aureus, P. aeruginosa, Candida albicans/auris, and Enterococcus faecalis (the SPaCE pathogens). The sensor contains liposomes encapsulating
a self-quenched fluorescent dye. Toxins, expressed by SPaCE infecting pathogens in early-stage infected wounds, break down the
liposomes, triggering dye release, thus changing the sensor color
from yellow to green, an indication of infection. Five clinical species
of bacteria and fungi, up to 20 strains each (totaling 83), were grown
as early-stage biofilms in ex vivo porcine burn wounds. The biofilms
were then swabbed, and the swab placed in the liposome suspension.
The population density of selected pathogens in a porcine wound biofilm
was quantified and correlated with colorimetric response. Over 88%
of swabs switched the sensor on (107–108 CFU/swab). A pilot clinical study demonstrated a good correlation
between sensor switch-on and early-stage wound infection.
Collapse
Affiliation(s)
- Naing Tun Thet
- Chemistry Department, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | - Amber E. R. Young
- Bristol Medical School, University of Bristol, Bristol BS2 8AE, United Kingdom
- Children’s Burn Research Centre, University Hospital Bristol NHS Foundation Trust, University of Bristol, Bristol BS2 8BJ, United Kingdom
| | - Karen Coy
- Children’s Burn Research Centre, University Hospital Bristol NHS Foundation Trust, University of Bristol, Bristol BS2 8BJ, United Kingdom
| | - Simon Booth
- Queen Victoria Hospital, Holtye Rd, East Grinstead RH19 3DZ, United Kingdom
| | - Anthony Sack
- Southmead Hospital, Southmead Rd, Bristol BS10 5NB, North
Bristol, United Kingdom
| | | |
Collapse
|
26
|
Kubicki S, Bator I, Jankowski S, Schipper K, Tiso T, Feldbrügge M, Blank LM, Thies S, Jaeger KE. A Straightforward Assay for Screening and Quantification of Biosurfactants in Microbial Culture Supernatants. Front Bioeng Biotechnol 2020; 8:958. [PMID: 32974305 PMCID: PMC7468441 DOI: 10.3389/fbioe.2020.00958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
A large variety of microorganisms produces biosurfactants with the potential for a number of diverse industrial applications. To identify suitable wild-type or engineered production strains, efficient screening methods are needed, allowing for rapid and reliable quantification of biosurfactants in multiple cultures, preferably at high throughput. To this end, we have established a novel and sensitive assay for the quantification of biosurfactants based on the dye Victoria Pure Blue BO (VPBO). The assay allows the colorimetric assessment of biosurfactants directly in culture supernatants and does not require extraction or concentration procedures. Working ranges were determined for precise quantification of different rhamnolipid biosurfactants; titers in culture supernatants of recombinant Pseudomonas putida KT2440 calculated by this assay were confirmed to be the same ranges detected by independent high-performance liquid chromatography (HPLC)-charged aerosol detector (CAD) analyses. The assay was successfully applied for detection of chemically different anionic or non-ionic biosurfactants including mono- and di-rhamnolipids (glycolipids), mannosylerythritol lipids (MELs, glycolipids), 3-(3-hydroxyalkanoyloxy) alkanoic acids (fatty acid conjugates), serrawettin W1 (lipopeptide), and N-acyltyrosine (lipoamino acid). In summary, the VPBO assay offers a broad range of applications including the comparative evaluation of different cultivation conditions and high-throughput screening of biosurfactant-producing microbial strains.
Collapse
Affiliation(s)
- Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Isabel Bator
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Silke Jankowski
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- Center of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Schipper
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- Center of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Till Tiso
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Michael Feldbrügge
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- Center of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars M. Blank
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG 1: Biotechnology, Jülich, Germany
| |
Collapse
|
27
|
Mohammed A, Zurek J, Madueke S, Al-Kassimy H, Yaqoob M, Houacine C, Ferraz A, Kalgudi R, Zariwala MG, Hawkins N, Al-Obaidi H. Generation of High Dose Inhalable Effervescent Dispersions against Pseudomonas aeruginosa Biofilms. Pharm Res 2020; 37:150. [PMID: 32686026 PMCID: PMC7369260 DOI: 10.1007/s11095-020-02878-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Novel particle engineering approach was used in this study to generate high dose inhalable effervescent particles with synergistic effects against Pseudomonas aeruginosa biofilms. METHODS Spray dried co-amorphous salt of ciprofloxacin (CFX) and tartaric acid (TA) was prepared and coated with external layer of sodium bicarbonate and silica coated silver nanobeads. Design of experiments (DOE) was used to optimize physicochemical properties of particles for enhanced lung deposition. RESULTS Generated particles were co-amorphous CFX/TA showing that CFX lost its zwitterionic form and exhibiting distinct properties to CFX/HCl as assessed by FTIR and thermal analysis. Particles exhibited mass mean aerodynamic diameter (MMAD) of 3.3 μm, emitted dose of 78% and fine particle dose of 85%. Particles were further evaluated via antimicrobial assessment of minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentration (MBEC). MIC and MBEC results showed that the hybrid particles were around 3-5 times more effective when compared to CFX signifying that synergistic effect was achieved. Diffusing wave spectroscopy results showed that the silver containing particles had a disruptive effect on rheological properties as opposed to silver free particles. CONCLUSIONS Overall, these results showed the potential to use particle engineering to generate particles that are highly disruptive of bacterial biofilms.
Collapse
Affiliation(s)
- Aram Mohammed
- The School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | - Jakub Zurek
- The School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | - Somto Madueke
- The School of Pharmacy, University of Reading, Reading, RG6 6AD, UK
| | | | | | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Amina Ferraz
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Rachith Kalgudi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Mohammed Gulrez Zariwala
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Nicholas Hawkins
- Department of Engineering Science, University of Oxford, Parks Road, 0X1 3PJ, Oxford, UK
| | - Hisham Al-Obaidi
- The School of Pharmacy, University of Reading, Reading, RG6 6AD, UK.
| |
Collapse
|
28
|
Lakshmanan D, Harikrishnan A, Jyoti K, Idul Ali M, Jeevaratnam K. A compound isolated from Alpinia officinarum Hance. inhibits swarming motility of Pseudomonas aeruginosa and down regulates virulence genes. J Appl Microbiol 2020; 128:1355-1365. [PMID: 31869477 DOI: 10.1111/jam.14563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
AIM The study was aimed at purifying the active principle from Alpinia officinarum rhizomes responsible for inhibition of swarming motility of Pseudomonas aeruginosa and analysing the mechanism of action. METHODS AND RESULTS The active compound from methanol extract of A. officinarum was purified by silica gel column chromatography followed by elution from Amberlite resin. The compound 1-(3,5-dihydroxyphenyl)-2-(methylamino)ethan-1-one, inhibited swarming motility at 12·5 µg ml-1 . This inhibition was independent of rhamnolipid production. Real-time PCR analysis showed significant down-regulation of virulence-associated genes including T3SS exoS, exoT and flagella master regulator fleQ. CONCLUSIONS The compound from A. officinarum inhibited swarming motility and significantly down-regulated the expression of type III secretory system effector genes exoS and exoT and flagellar master regulator fleQ genes. SIGNIFICANCE AND IMPACT OF THE STUDY The study identifies a potent swarming inhibitory compound from the common medicinal plant A. officinarum and reinstates the potential of plant-derived compounds in tackling virulence properties of pathogenic bacteria.
Collapse
Affiliation(s)
- D Lakshmanan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - A Harikrishnan
- Department of Chemistry, Pondicherry University, Kalapet, Pondicherry, India
| | - K Jyoti
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - M Idul Ali
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| | - K Jeevaratnam
- Department of Biochemistry and Molecular Biology, Pondicherry University, Kalapet, Pondicherry, India
| |
Collapse
|
29
|
Lou Z, Letsididi KS, Yu F, Pei Z, Wang H, Letsididi R. Inhibitive Effect of Eugenol and Its Nanoemulsion on Quorum Sensing-Mediated Virulence Factors and Biofilm Formation by Pseudomonas aeruginosa. J Food Prot 2019; 82:379-389. [PMID: 30785306 DOI: 10.4315/0362-028x.jfp-18-196] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to evaluate the quorum sensing (QS) inhibition potential of eugenol and eugenol nanoemulsion against QS-dependent virulence factor production and gene expression, as well as biofilm formation in Pseudomonas aeruginosa. In the current study, eugenol nanoemulsion at a sub-MIC of 0.2 mg/mL specifically inhibited about 50% of the QS-mediated violacein production in Chromobacterium violaceum, as well as the production of N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and C4-HSL N-acyl homoserine lactone signal molecules, pyocyanin, and swarming motility in P. aeruginosa. The inhibitive effect of eugenol and its nanoemulsion on the expression of the QS synthase genes was concentration dependent, displaying 65 and 52% expression level for lasI, respectively, and 61 and 45% expression level for rhlI, respectively, at a concentration of 0.2 mg/mL. In addition, the inhibitive effect of eugenol and its nanoemulsion on the expression of the rhlA gene responsible for the production of rhamnolipid was also concentration dependent, displaying 65 and 51% expression level for the rhlA gene, respectively, at a concentration of 0.2 mg/mL. Eugenol and its nanoemulsion also displayed 36 and 63% respective inhibition of biofilm formation by P. aeruginosa at the 0.2 mg/mL concentration. Therefore, the nanoemulsion could be used as a novel QS-based antibacterial and antibiofilm agent for the control of harmful bacteria.
Collapse
Affiliation(s)
- Zaixiang Lou
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Kekgabile S Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Fuhao Yu
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Zejun Pei
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Hongxin Wang
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Rebaone Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Zhou S, Zhang A, Chu W. Phillyrin is an effective inhibitor of quorum sensing with potential as an anti-Pseudomonas aeruginosa infection therapy. J Vet Med Sci 2019; 81:473-479. [PMID: 30686799 PMCID: PMC6451918 DOI: 10.1292/jvms.18-0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we evaluated the antibacterial and anti-quorum sensing qualities of phillyrin. The minimum inhibitory concentration (MIC) of phillyrin with regard to
Pseudomonas aeruginosa is 0.5 mg/ml. The production of virulence factors—such as rhamnolipid (>78.69%), pyocyanin (>85.94%), and elastase
(>89.95%)—that affect the pathogenicity of the P. aeruginosa strain PAO1 apparently declined in the presence of 0.25 mg/ml phillyrin. Biofilm formation
decreased by 84.48%. In a Caenorhabditis elegans–Pseudomonas aeruginosa infection model, diseased worms lived longer (63.33%) in a phillyrin-containing medium than in a
drug-free medium, and the drug did not directly kill the pathogen. Therefore, the present work suggests that phillyrin has potential as an antimicrobial agent for the control of infectious
pathogens.
Collapse
Affiliation(s)
- Shuxin Zhou
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - An Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
31
|
Andreadou E, Pantazaki AA, Daniilidou M, Tsolaki M. Rhamnolipids, Microbial Virulence Factors, in Alzheimer's Disease. J Alzheimers Dis 2018; 59:209-222. [PMID: 28598837 DOI: 10.3233/jad-161020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) has been attributed to chronic bacterial infections. The recognition of human microbiota as a substantial contributor to health and disease is relatively recent and growing. During evolution, mammals live in a symbiotic state with myriads of microorganisms that survive at a diversity of tissue micro-surroundings. Microbes produce a plethora of secretory products [amyloids, lipopolysaccharides, virulence factors rhamnolipids (RLs), toxins, and a great number of neuroactive compounds]. The contribution of infectious microbial components to the pathophysiology of the human central nervous system including AD is considered potentially substantial, but the involvement of the RLs has never been reported. Here, RLs were isolated from serum and identified through various conventional methods including the colorimetric orcinol method, thin-layer chromatography, attenuated total reflection Fourier transform infrared (ATR-FTIR), and dot blot using antibodies against RLs. Dot blot demonstrated elevated RL levels in sera of AD patients compared to controls (p = 0.014). Moreover, ELISA showed similarly elevated RL levels in cerebrospinal fluid of both AD (0.188 versus 0.080) (p = 0.04) and mild cognitive impairment (0.188 versus 0.129) (p = 0.088) patients compared to healthy, and are well-correlated with the AD stages severity assessed using the Mini-Mental State Examination. These results provide conclusive evidence for the newly-reported implication of RLs in AD, adding it to the list of bacterial components, opening new avenues for AD investigation. Moreover, they strengthen and vindicate the divergence of research toward the exploration of bacterial involvement in AD generation and progression.
Collapse
Affiliation(s)
- Eleni Andreadou
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Makrina Daniilidou
- Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magda Tsolaki
- 3rd Department of Neurology, "G. Papanikolaou" General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
32
|
Thet NT, Wallace L, Wibaux A, Boote N, Jenkins ATA. Development of a mixed-species biofilm model and its virulence implications in device related infections. J Biomed Mater Res B Appl Biomater 2018. [PMID: 29520965 DOI: 10.1002/jbm.b.34103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is becoming increasingly accepted that to understand and model the bacterial colonization and infection of abiotic surfaces requires the use of a biofilm model. There are many bacterial colonizations by at least two primary species, however this is difficult to model in vitro. This study reports the development of a simple mixed-species biofilm model using strains of two clinically significant bacteria: Staphylococcus aureus and Pseudomonas aeruginosa grown on nanoporous polycarbonate membranes on nutrient agar support. Scanning electron microscopy revealed the complex biofilm characteristics of two bacteria blending in extensive extracellular matrices. Using a prototype wound dressing which detects cytolytic virulence factors, the virulence secretion of 30 single and 40 mixed-species biofilms was tested. P. aeruginosa was seen to out-compete S. aureus, resulting in a biofilm with P. aeruginosa dominating. In situ growth of mixed-species biofilm under prototype dressings showed a real-time correlation between the viable biofilm population and their associated virulence factors, as seen by dressing fluorescent assay. This paper aims to provide a protocol for scientists working in the field of device related infection to create mixed-species biofilms and demonstrate that such biofilms are persistently more virulent in real infections. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 129-137, 2019.
Collapse
Affiliation(s)
- Naing T Thet
- Department of Chemistry, University of Bath, BA2 7AY, Bath, UK
| | - Laura Wallace
- Department of Chemistry, University of Bath, BA2 7AY, Bath, UK
| | - Anne Wibaux
- Scapa Healthcare, Hilldrop Lane, Ramsbury, Marlborough, SN8 2RB, UK
| | - Nick Boote
- Scapa Healthcare, Hilldrop Lane, Ramsbury, Marlborough, SN8 2RB, UK
| | | |
Collapse
|
33
|
Lebègue E, Farre C, Jose C, Saulnier J, Lagarde F, Chevalier Y, Chaix C, Jaffrezic-Renault N. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms. SENSORS (BASEL, SWITZERLAND) 2018; 18:E599. [PMID: 29462870 PMCID: PMC5856053 DOI: 10.3390/s18020599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022]
Abstract
Polydiacetylene (PDA) inserted in films or in vesicles has received increasing attention due to its property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle for the detection of various microorganisms (bacteria, directly detected or detected through the emitted toxins or through their DNA, and viruses) and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The analytical performances obtained, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.
Collapse
Affiliation(s)
- Estelle Lebègue
- Institute of Chemical Sciences, University of Rennes 1, 35000 Rennes, France.
| | - Carole Farre
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France.
| | - Catherine Jose
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France.
| | - Joelle Saulnier
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France.
| | - Florence Lagarde
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France.
| | | | - Carole Chaix
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France.
| | | |
Collapse
|
34
|
Metabolite Transporter PEG344 Is Required for Full Virulence of Hypervirulent Klebsiella pneumoniae Strain hvKP1 after Pulmonary but Not Subcutaneous Challenge. Infect Immun 2017; 85:IAI.00093-17. [PMID: 28717029 DOI: 10.1128/iai.00093-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) is an emerging pathotype that is capable of causing tissue-invasive and organ- and life-threatening infections in healthy individuals from the community. Knowledge on the virulence factors specific to hvKP is limited. In this report, we describe a new factor (PEG344) that increases the virulence of hvKP strain hvKP1. peg-344 is present on the hvKP1 virulence plasmid, is broadly prevalent among hvKP strains, and has increased RNA abundance when grown in human ascites. An isogenic derivative of hvKP1 (hvKP1Δpeg-344) was constructed and compared with its wild-type parent strain in in vitro, ex vivo, and infection model studies. Both survival and competition experiments with outbred CD1 mice demonstrated that PEG344 was required for full virulence after pulmonary challenge but, interestingly, not after subcutaneous challenge. In silico analysis suggested that PEG344 serves as an inner membrane transporter. Compared to hvKP1, a small but significant decrease in the growth/survival of hvKP1Δpeg-344 was observed in human ascites, but resistance to the bactericidal activity of complement was similar. These data suggested that PEG344 may transport an unidentified growth factor present in ascites. The data presented are important since they expand our limited knowledge base on virulence factors unique to hvKP, which is needed to lay the groundwork for translational approaches to prevent or treat these devastating infections.
Collapse
|
35
|
Hossain MA, Lee SJ, Park NH, Mechesso AF, Birhanu BT, Kang J, Reza MA, Suh JW, Park SC. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Sci Rep 2017; 7:10618. [PMID: 28878346 PMCID: PMC5587592 DOI: 10.1038/s41598-017-10997-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/17/2017] [Indexed: 01/10/2023] Open
Abstract
Quorum sensing (QS) is a cell density-dependent regulation of virulent bacterial gene expression by autoinducers that potentially pertains in the epidemic of bacterial virulence. This study was initially designed to evaluate the effect of 5 phenolic compounds in the modulation of QS and virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa, and to determine the mechanisms of their effects. Biosensor strains were used to assess antibacterial and anti-QS effect of these compounds. Only methyl gallate (MG) among these compounds demonstrated profound anti-QS effect in the preliminary study, and thus only MG was utilized further to evaluate the effects on the synthesis and activity of acyl homoserine lactone (AHL) in C. violaceum and on the modulation of biofilm, motility, proteolytic, elastase, pyocyanin, and rhamnolipid activity in P. aeruginosa. Finally, the effect of MG on the expression of QS-regulated genes of P. aeruginosa was verified. MG suppressed both the synthesis and activity of AHL in C. violaceum. It also restricted the biofilm formation and other QS-associated virulence factor of P. aeruginosa. MG concentration-dependently suppressed the expression of lasI/R, rhlI/R, and pqsA of P. aeruginosa and was non-toxic in in vitro study. This is the first report of the anti-QS mechanism of MG.
Collapse
Affiliation(s)
- Md Akil Hossain
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea.,Veterinary drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Seung-Jin Lee
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Na-Hye Park
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Abraham Fikru Mechesso
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Biruk Tesfaye Birhanu
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - JeongWoo Kang
- Veterinary drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Md Ahsanur Reza
- Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University (Outer Campus), Babugonj, Barisal, 8210, Bangladesh
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Division of Bioscience and Bioinformatics, Science campus, Myongji University, 449-728, Yongin, Gyeonggi, Republic of Korea.
| | - Seung-Chun Park
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
36
|
Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of Aspergillus fumigatus by inhibiting β1,3 glucan synthase activity. ISME JOURNAL 2017; 11:1578-1591. [PMID: 28338676 PMCID: PMC5584477 DOI: 10.1038/ismej.2017.32] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/05/2017] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus are the two microorganisms responsible for most of the chronic infections in cystic fibrosis patients. P. aeruginosa is known to produce quorum-sensing controlled rhamnolipids during chronic infections. Here we show that the dirhamnolipids secreted from P. aeruginosa (i) induce A. fumigatus to produce an extracellular matrix, rich in galactosaminogalactan, 1,8-dihydroxynaphthalene (DHN)- and pyo-melanin, surrounding their hyphae, which facilitates P. aeruginosa binding and (ii) inhibit A. fumigatus growth by blocking β1,3 glucan synthase (GS) activity, thus altering the cell wall architecture. A. fumigatus in the presence of diRhls resulted in a growth phenotype similar to that upon its treatment with anjpegungal echinocandins, showing multibranched hyphae and thicker cell wall rich in chitin. The diRhl structure containing two rhamnose moieties attached to fatty acyl chain is essential for the interaction with β1,3 GS; however, the site of action of diRhls on GS is different from that of echinocandins, and showed synergistic anjpegungal effect with azoles.
Collapse
|
37
|
Woźniak-Karczewska M, Myszka K, Sznajdrowska A, Szulc A, Zgoła-Grześkowiak A, Ławniczak Ł, Corvini PFX, Chrzanowski Ł. Isolation of rhamnolipids-producing cultures from faeces: Influence of interspecies communication on the yield of rhamnolipid congeners. N Biotechnol 2016; 36:17-25. [PMID: 28043869 DOI: 10.1016/j.nbt.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 11/02/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to evaluate the ability of bacterial cultures isolated from cattle, poultry or pig faeces and manure to produce rhamnolipids, as well as to investigate the influence of interspecies communication on possible quantitative differences in the production of rhamnolipid congeners. Initial screening methods (oil spreading, drop collapse, haemolytic activity and emulsification activity) showed that approximately 36% of the 51 isolated cultures exhibited the ability to produce biosurfactants. Subsequent studies using a selected culturable mixed culture (which included Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli) revealed that only P. aeruginosa was able to produce this biosurfactant. HPLC-MS analysis showed that the surface active compounds were rhamnolipids. Further comparative studies confirmed that the total yield of rhamnolipids was notably higher in the bioreactor inoculated with the selected mixed culture (940.58±1.10mg/L) compared to the bioreactor inoculated with the axenic strain of P. aeruginosa (108.47±0.41mg/L). Twelve rhamnolipid congeners were identified during cultivation of the selected mixed culture, whereas six congeners were detected during cultivation of the sole axenic strain of P. aeruginosa. Furthermore, increased production of rhamnolipids was observed when the concentration of autoinducer molecules (AI-2) responsible for interspecies signaling increased, suggesting the influence of quorum-sensing communication on biosynthesis efficiency. This observation may be of importance for large-scale production of this biosurfactant, as it opens new possible solutions based on the use of mixed cultures or external addition of stimulating autoinducers.
Collapse
Affiliation(s)
- Marta Woźniak-Karczewska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Kamila Myszka
- Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznań, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Agata Sznajdrowska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Alicja Szulc
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Łukasz Ławniczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
38
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
39
|
Priji P, Sajith S, Unni KN, Anderson RC, Benjamin S. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant. J Basic Microbiol 2016; 57:21-33. [PMID: 27400277 DOI: 10.1002/jobm.201600158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 01/02/2023]
Abstract
This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L-1 ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L-1 critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries.
Collapse
Affiliation(s)
- Prakasan Priji
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Sreedharan Sajith
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Kizhakkepowathial Nair Unni
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Robin C Anderson
- United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA
| | - Sailas Benjamin
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| |
Collapse
|
40
|
Thet NT, Alves DR, Bean JE, Booth S, Nzakizwanayo J, Young AER, Jones BV, Jenkins ATA. Prototype Development of the Intelligent Hydrogel Wound Dressing and Its Efficacy in the Detection of Model Pathogenic Wound Biofilms. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14909-19. [PMID: 26492095 DOI: 10.1021/acsami.5b07372] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The early detection of wound infection in situ can dramatically improve patient care pathways and clinical outcomes. There is increasing evidence that within an infected wound the main bacterial mode of living is a biofilm: a confluent community of adherent bacteria encased in an extracellular polymeric matrix. Here we have reported the development of a prototype wound dressing, which switches on a fluorescent color when in contact with pathogenic wound biofilms. The dressing is made of a hydrated agarose film in which the fluorescent dye containing vesicles were mixed with agarose and dispersed within the hydrogel matrix. The static and dynamic models of wound biofilms, from clinical strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis, were established on nanoporous polycarbonate membrane for 24, 48, and 72 h, and the dressing response to the biofilms on the prototype dressing evaluated. The dressing indicated a clear fluorescent/color response within 4 h, only observed when in contact with biofilms produced by a pathogenic strain. The sensitivity of the dressing to biofilms was dependent on the species and strain types of the bacterial pathogens involved, but a relatively higher response was observed in strains considered good biofilm formers. There was a clear difference in the levels of dressing response, when dressings were tested on bacteria grown in biofilm or in planktonic cultures, suggesting that the level of expression of virulence factors is different depending of the growth mode. Colorimetric detection on wound biofilms of prevalent pathogens (S. aureus, P. aeruginosa, and E. faecalis) is also demonstrated using an ex vivo porcine skin model of burn wound infection.
Collapse
Affiliation(s)
- N T Thet
- Department of Chemistry, University of Bath , Bath BA2 7AY, United Kingdom
| | - D R Alves
- Blond McIndoe Research Foundation, Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
- Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
- School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - J E Bean
- Blond McIndoe Research Foundation, Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
| | - S Booth
- Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
- School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - J Nzakizwanayo
- School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - A E R Young
- Healing Foundation Children's Burns Research Centre, University Hospitals Bristol NHS Foundation Trust , Bristol BS2 8BJ, United Kingdom
| | - B V Jones
- Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
- School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - A Toby A Jenkins
- Department of Chemistry, University of Bath , Bath BA2 7AY, United Kingdom
| |
Collapse
|
41
|
Zheng T, Xu YS, Yong XY, Li B, Yin D, Cheng QW, Yuan HR, Yong YC. Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells. BIORESOURCE TECHNOLOGY 2015; 197:416-421. [PMID: 26356112 DOI: 10.1016/j.biortech.2015.08.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 06/05/2023]
Abstract
Microbial fuel cell (MFC) is considered as a promising green energy source and energy-saving pollutants treatment technology as it integrates pollutant biodegradation with energy extraction. In this work, a facile approach to enhance endogenous biosurfactant production was developed to improve the electron transfer rate and power output of MFC. By overexpression of rhlA, the key gene responsible for rhamnolipids synthesis, over-production of self-synthesized rhamnolipids from Pseudomonas aeruginosa PAO1 was achieved. Strikingly, the increased rhamnolipids production by rhlA overexpression significantly promoted the extracellular electron transfer of P. aeruginosa by enhancing electron shuttle (pyocyanin) production and increasing bacteria attachment on the anode. As a result, the strain with endogenously enhanced rhamnolipids production delivered 2.5 times higher power density output than that of the parent strain. This work substantiated that the enhancement on endogenous biosurfactant production could be a promising approach for improvement on the electricity output of MFC.
Collapse
Affiliation(s)
- Tao Zheng
- College of Biotechnology and Pharmaceutical Engineering, and Bioenergy Research Institute, Nanjing Tech University, Nanjing 210095, Jiangsu Province, China; Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy, Chinese Academy of Science, Guangzhou, Guangdong 510640, China
| | - Yu-Shang Xu
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China; College of Biotechnology and Pharmaceutical Engineering, and Bioenergy Research Institute, Nanjing Tech University, Nanjing 210095, Jiangsu Province, China
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, and Bioenergy Research Institute, Nanjing Tech University, Nanjing 210095, Jiangsu Province, China
| | - Bing Li
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Di Yin
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qian-Wen Cheng
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hao-Ran Yuan
- Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy, Chinese Academy of Science, Guangzhou, Guangdong 510640, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
42
|
Thet NT, Jenkins ATA. An electrochemical sensor concept for the detection of bacterial virulence factors from Staphylococcus aureus and Pseudomonas aeruginosa. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
43
|
Protocols for the Detection and Chemical Characterisation of Microbial Glycolipids. SPRINGER PROTOCOLS HANDBOOKS 2014. [DOI: 10.1007/8623_2014_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|