1
|
Farias JDM, Argolo LA, Neves RAF, Krepsky N, Bitencourt JAP. Mangrove consortium resistant to the emerging contaminant DEHP: Composition, diversity, and ecological function of bacteria. PLoS One 2025; 20:e0320579. [PMID: 40273087 PMCID: PMC12021221 DOI: 10.1371/journal.pone.0320579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
The continuous use of Di(2-ethylhexyl) phthalate (DEHP) in plastic products turns it into a ubiquitous contaminant in the environment. However, DEHP can cause harm to human beings, wildlife, and ecosystems due to its estrogenicity and toxicity. Thus, finding an efficient approach to removing this contaminant from the environment is crucial. The present study aimed to prospect and characterize a bacterial consortium (MP001) isolated from a neotropical mangrove for DEHP bioremediation. A laboratory experiment was performed with environmentally relevant DEHP concentrations (0.05, 0.09, 0.19, 0.38, 0.75, 1.50, 3.00, and 6.00 mg L-1) to determine the consortium resistance to this contaminant and high-throughput sequencing was accomplished to assess the bacterial composition, diversity, and potential ecological function of consortium MP001. The consortium MP001 presented a significant biomass increase throughout short-term incubations with increasing concentrations of DEHP (GLMs, p< 0.001). MP001 was constituted by Paraclostridium sp. (78.99%) and Bacillus sp. (10.73%). After 48 h of consortia exposure to DEHP, the bacterial population changed to Paraclostridium (50.00%), Staphylococcus sp. (12.72%), Staphylococcus epidermidis (10.40%) and Bacillus sp. (17.63%). In the negative control, the bacteria community was composed of Paraclostridium sp. (54.02%), Pseudomonas stutzeri (19.44%), and Staphylococcus sp. (11.97%). The alpha diversity of the MP001 consortium was not significant (Kruskall-Wallis; p > 0.05), and no significant difference was found between the DEHP treatment and the negative control. Furthermore, the potential ecological function found in the consortium MP001 with higher potential for application in bioremediation purposes was fermentation. The results found in this study highlight the potential of a bacterial consortium to be used in the bioremediation of DEHP-contaminated aquatic environments.
Collapse
Affiliation(s)
- Julia de Morais Farias
- Graduate Program in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO)Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Raquel A. F. Neves
- Graduate Program in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natascha Krepsky
- Graduate Program in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO)Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto P. Bitencourt
- Instituto Tecnológico Vale, Desenvolvimento Sustentável (ITV), Belém, Pará, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), Brazil
| |
Collapse
|
2
|
Wang X, Li G, Ali A, Algora C, Delgado-Baquerizo M, Goll DS, Vicca S, Xu T, Bi B, Chen Q, Lin L, Fang Y, Hao Z, Li Z, Yuan Z. Enhanced rock weathering boosts ecosystem multifunctionality via improving microbial networks complexity in a tropical forest plantation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123477. [PMID: 39615472 DOI: 10.1016/j.jenvman.2024.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
Afforestation is expected to contribute to mitigate global change by promoting carbon stocks and multiple ecosystem services. However, the success of plantations may be limited by the availability of soil nutrients. This is especially critical for plantations in tropical ecosystems which are known to be nutrient poor ecosystems. Enhanced rock weathering (ERW) represents a promising strategy for improving soil health and carbon sequestration in such ecosystems. We added wollastonite skarn, a calcium silicate rock, to soils in a rubber plantation in Yunnan, China, as part of an ERW strategy aimed at promoting soil functioning and biodiversity. Statistical significance was determined using a linear mixed-effects model, with p-values indicating the level of significance. The addition of wollastonite skarn significantly enhanced key ecosystem functions related to carbon, nitrogen, phosphorous, silicon, biodiversity, and pathogen control. However, it did not significantly affect soil enzyme activity. Some of these responses to the addition of wollastonite skarn may be associated with an increase in soil pH. Microbial network complexity played a critical role in explaining the changes in ecosystem multifunctionality in response to ERW, through both direct and indirect pathways. SYNTHESIS AND APPLICATIONS: Our findings suggest that ERW is a viable strategy for improving soil health and ecosystem resilience in tropical plantations, which are limited in nutrients. Thus, ERW has implications for carbon management and climate change mitigation.
Collapse
Affiliation(s)
- Xing Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Guochen Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Arshad Ali
- College of Life Sciences, Hebei University, Baoding, China
| | - Camelia Algora
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) CSIC, Sevilla, E-41012, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS) CSIC, Sevilla, E-41012, Spain
| | - Daniel S Goll
- Laboratoire Des Sciences du Climat et de l'Environnement, Université Paris-Saclay, Paris, France
| | - Sara Vicca
- Plants and Ecosystems (PLECO), Biology Department, University of Antwerp, Wilrijk, Belgium
| | - Tongtong Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Boyuan Bi
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qiong Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhanqing Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhenxin Li
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Zuoqiang Yuan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China.
| |
Collapse
|
3
|
Peng Q, Zheng H, Xue J, Xu Y, Hou Q, Yang K, Xia H, Xie G. Mechanism of Polygonum hydropiper reducing ethyl carbamate in Chinese rice wine (Huangjiu) brewing. Food Microbiol 2025; 125:104628. [PMID: 39448146 DOI: 10.1016/j.fm.2024.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
Polygonum hydropiper (PH) is a rich source of active compounds and serves as a pivotal ingredient in Chinese rice wine (Huangjiu) production. This study investigates the impact of PH and Polygonum hydropiper extract (PHE) on ethyl carbamate (EC) production during Huangjiu fermentation. Our findings reveal that PH enhances the relative abundance of Bacillus subtilis in Huangjiu fermentation, thereby facilitating its interaction with Saccharomyces cerevisiae. Furthermore, PH modulates the urea metabolism of S. cerevisiae. In the PH-B. subtilis-S. cerevisiae fermentation system, the expression of DUR1,2 and DUR3 genes in S. cerevisiae is upregulated. This augmentation leads to increased urea uptake and metabolism by S. cerevisiae in the fermentation broth, subsequently reducing the urea concentration in the fermentation medium (The EC content in the CK group was approximately 355.55 % and 356.05 % higher than those in the PH and PHE groups, respectively). Consequently, PH demonstrates promise in reducing the EC concentration of Huangjiu, offering a novel approach to enhance the safety of Huangjiu consumption.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Jingrun Xue
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, 312000, China
| | - Qifan Hou
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Kaiming Yang
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huangjia Xia
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
4
|
Zhou Q, Yang J, Feng Y, Yang Z, Wang Y, Zhang Z, Zhang T, Liu W, Xu Y, Yang Y, Huang J. Analysis of the effects of Bacillus velezensis HJ-16 inoculation on tobacco leaves based on multi-omics methods. Front Bioeng Biotechnol 2024; 12:1493766. [PMID: 39713101 PMCID: PMC11659759 DOI: 10.3389/fbioe.2024.1493766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In this study, a strain isolated from the surface of flue-cured tobacco leaves, identified as Bacillus velezensis HJ-16, was applied in the solid-state fermentation of tobacco leaves. This strain, known for producing thermally stable enzymes, including amylase, cellulase, and protease, significantly improved the sensory qualities of tobacco, enhancing aromatic intensity, density, and softness, while reducing irritation. Whole-genome sequencing and functional annotation revealed that B. velezensis HJ-16 possesses a single circular chromosome containing genes associated with enzyme production and metabolic activities, particularly in carbohydrate metabolism and amino acid metabolism. Untargeted metabolomics analysis identified significant changes in non-volatile metabolites induced by fermentation. These metabolites were enriched in pathways related to flavonoid biosynthesis, alkaloid biosynthesis, aromatic amino acid metabolism, lipid metabolism, and carbon metabolism. Metagenomic analysis showed that Bacillus became the dominant genus on the tobacco leaf surface following inoculation with B. velezensis HJ-16, altering the microbial community composition, reducing diversity and evenness, and enhancing microbial metabolic activity. These findings underscore the potential of B. velezensis HJ-16 as a biotechnological tool to improve tobacco leaf quality.
Collapse
Affiliation(s)
- Qing Zhou
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Zongcan Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yixuan Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Tingting Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Wenzhao Liu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - YongMing Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Zamel D, Pan X, Ye ZL. Ethanol-mediated Anaerobic Digestion: Functional Bacteria and Metabolic Pathways. CHEMOSPHERE 2024; 367:143560. [PMID: 39426748 DOI: 10.1016/j.chemosphere.2024.143560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Ethanol-mediated Anaerobic digestion (Ethanol-AD) is a biological process that converts organic waste into biogas, predominantly composed of methane (CH₄), hydrogen (H₂), and carbon dioxide (CO₂), through the breakdown of complex organic materials while ethanol is an intermediate metabolite. Ethanol improves the digestion of complex organic waste by serving as an electron precursor for interspecies electron transfer, leading to enhanced biogas production. It further serves as a substrate for acetogens or syntrophic bacteria, while mean its oxidation leads to acetate formation, which methanogens can then consume to generate methane. Methanogenesis, the final and crucial step in the anaerobic digestion in which methanogens produce methane through various metabolic routes, most notably via the hydrogenotrophic and syntrophic pathways. In hydrogenotrophic methanogenesis, methanogens consume hydrogen as an electron precursor and carbon dioxide as an electron acceptor, leading to methane generation. Alternatively, syntrophic methanogenesis, which is increasingly recognized for its efficiency, is dominated by DIET between syntrophic partners, bypassing the need for hydrogen as a mediator. This mode of electron transfer enhances the metabolic cooperation between microbes, facilitating a more efficient methanogenesis process. As research continues to explore the mechanisms underlying DIET and the role of (semi) conductive materials, there is potential for optimizing AD systems for renewable energy production by advancing the methanogenesis process, and enhancing biogas quality. The novelty of this review lies in its dual exploration of direct and indirect interspecies electron transfer (DIET and IIET) within ethanol-mediated anaerobic digestion. While DIET in ethanol-driven systems has been previously discussed, this review is the first to comprehensively examine the interplay between both direct and indirect electron transfer mechanisms, offering new insights into optimizing microbial interactions and improving methane production efficiency.
Collapse
Affiliation(s)
- Doaa Zamel
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
6
|
Ngo ACR, Celebi B, Hermann Hadewig SN, Mügge C, Tischler D. Selective pressure leads to an improved synthetic consortium fit for dye degradation. CHEMOSPHERE 2024; 361:142489. [PMID: 38825247 DOI: 10.1016/j.chemosphere.2024.142489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Microorganisms have great potential for bioremediation as they have powerful enzymes and machineries that can transform xenobiotics. The use of a microbial consortium provides more advantages in application point of view than pure cultures due to cross-feeding, adaptations, functional redundancies, and positive interactions among the organisms. In this study, we screened about 107 isolates for their ability to degrade dyes in aerobic conditions and without additional carbon source. From our screening results, we finally limited our synthetic consortium to Gordonia and Rhodococcus isolates. The synthetic consortium was trained and optimized for azo dye degradation using sequential treatment of small aromatic compounds such as phenols that act as selective pressure agents. After four rounds of optimization with different aims for each round, the consortium was able to decolorize and degrade various dyes after 48 h (80%-100% for brilliant black bn, methyl orange, and chromotrop 2b; 50-70% for orange II and reactive orange 16; 15-30% for chlorazol black e, reactive red 120, and allura red ac). Through rational approaches, we can show that treatment with phenolic compounds at micromolar dosages can significantly improve the degradation of bulky dyes and increase its substrate scope. Moreover, our selective pressure approach led to the production of various dye-degrading enzymes as azoreductase, laccase-like, and peroxidase-like activities were detected from the phenol-treated consortium. Evidence of degradation was also shown as metabolites arising from the degradation of methyl red and brilliant black bn were detected using HPLC and LC-MS analysis. Therefore, this study establishes the importance of rational and systematic screening and optimization of a consortium. Not only can this approach be applied to dye degradation, but this study also offers insights into how we can fully maximize microbial consortium activity for other applications, especially in biodegradation and biotransformation.
Collapse
Affiliation(s)
| | - Beyzanur Celebi
- Microbial Biotechnology, Ruhr Universität Bochum, Bochum, Germany
| | | | - Carolin Mügge
- Microbial Biotechnology, Ruhr Universität Bochum, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr Universität Bochum, Bochum, Germany
| |
Collapse
|
7
|
Mohanakrishna G, Pengadeth D. Mixed culture biotechnology and its versatility in dark fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2024; 394:130286. [PMID: 38176598 DOI: 10.1016/j.biortech.2023.130286] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Over the years, extensive research has gone into fermentative hydrogen production using pure and mixed cultures from waste biomass with promising results. However, for up-scaling of hydrogen production mixed cultures are more appropriate to overcome the operational difficulties such as a metabolic shift in response to environmental stress, and the need for a sterile environment. Mixed culture biotechnology (MCB) is a robust and stable alternative with efficient waste and wastewater treatment capacity along with co-generation of biohydrogen and platform chemicals. Mixed culture being a diverse group of bacteria with complex metabolic functions would offer a better response to the environmental variations encountered during biohydrogen production. The development of defined mixed cultures with desired functions would help to understand the microbial community dynamics and the keystone species for improved hydrogen production. This review aims to offer an overview of the application of MCB for biohydrogen production.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi 580031, India.
| | - Devu Pengadeth
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi 580031, India
| |
Collapse
|
8
|
Carducci NGG, Dey S, Hickey DP. Recent Developments and Applications of Microbial Electrochemical Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:149-183. [PMID: 38273205 DOI: 10.1007/10_2023_236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
This chapter provides a comprehensive overview of microbial electrochemical biosensors, which are a unique class of biosensors that utilize the metabolic activity of microorganisms to convert chemical signals into electrical signals. The principles and mechanisms of these biosensors are discussed, including the different types of microorganisms that can be used. The various applications of microbial electrochemical biosensors in fields such as environmental monitoring, medical diagnostics, and food safety are also explored. The chapter concludes with a discussion of future research directions and potential advancements in the field of microbial electrochemical biosensors.
Collapse
Affiliation(s)
- Nunzio Giorgio G Carducci
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sunanda Dey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
López-Gálvez J, Schiessl K, Besmer MD, Bruckmann C, Harms H, Müller S. Development of an Automated Online Flow Cytometry Method to Quantify Cell Density and Fingerprint Bacterial Communities. Cells 2023; 12:1559. [PMID: 37371029 DOI: 10.3390/cells12121559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cell density is an important factor in all microbiome research, where interactions are of interest. It is also the most important parameter for the operation and control of most biotechnological processes. In the past, cell density determination was often performed offline and manually, resulting in a delay between sampling and immediate data processing, preventing quick action. While there are now some online methods for rapid and automated cell density determination, they are unable to distinguish between the different cell types in bacterial communities. To address this gap, an online automated flow cytometry procedure is proposed for real-time high-resolution analysis of bacterial communities. On the one hand, it allows for the online automated calculation of cell concentrations and, on the other, for the differentiation between different cell subsets of a bacterial community. To achieve this, the OC-300 automation device (onCyt Microbiology, Zürich, Switzerland) was coupled with the flow cytometer CytoFLEX (Beckman Coulter, Brea, USA). The OC-300 performs the automatic sampling, dilution, fixation and 4',6-diamidino-2-phenylindole (DAPI) staining of a bacterial sample before sending it to the CytoFLEX for measurement. It is demonstrated that this method can reproducibly measure both cell density and fingerprint-like patterns of bacterial communities, generating suitable data for powerful automated data analysis and interpretation pipelines. In particular, the automated, high-resolution partitioning of clustered data into cell subsets opens up the possibility of correlation analysis to identify the operational or abiotic/biotic causes of community disturbances or state changes, which can influence the interaction potential of organisms in microbiomes or even affect the performance of individual organisms.
Collapse
Affiliation(s)
- Juan López-Gálvez
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | | | - Michael D Besmer
- onCyt Microbiology AG, Marchwartstrasse 61, 8038 Zürich, Switzerland
| | - Carmen Bruckmann
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| |
Collapse
|
10
|
Areniello M, Matassa S, Esposito G, Lens PNL. Microbial protein production from sulfide-rich biogas through an enrichment of methane- and sulfur-oxidizing bacteria. BIORESOURCE TECHNOLOGY 2023:129237. [PMID: 37244308 DOI: 10.1016/j.biortech.2023.129237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
This study evaluated the possibility of combining methane oxidizing bacteria (MOB) with sulfur oxidizing bacteria (SOB) to enable the utilization of sulfide-rich biogas for microbial protein production. For this purpose, a MOB-SOB mixed-culture enriched by feeding both methane and sulfide was benchmarked against an enrichment of solely MOB. Different CH4:O2 ratios, starting pH values, sulfide levels and nitrogen sources were tested and evaluated for the two enrichments. The MOB-SOB culture gave promising results in terms of both biomass yield (up to 0.07±0.01 g VSS/g CH4-COD) and protein content (up to 73±5% of VSS) at 1500 ppm of equivalent H2S. The latter enrichment was able to grow also under acidic pH (5.8-7.0), but as inhibited outside the optimal CH4:O2 ratio of 2:3. The obtained results show the capability of MOB-SOB mixed-cultures to directly upcycle sulfide-rich biogas into microbial protein potentially suited for feed, food or biobased product applications.
Collapse
Affiliation(s)
- Marica Areniello
- Department of Microbiology and Ryan Institute, School of Natural Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland.
| | - Silvio Matassa
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio, Naples, 80125, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio, Naples, 80125, Italy
| | - Piet N L Lens
- Department of Microbiology and Ryan Institute, School of Natural Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
11
|
Nieto EE, Macchi M, Valacco MP, Festa S, Morelli IS, Coppotelli BM. Metaproteomic and gene expression analysis of interspecies interactions in a PAH-degrading synthetic microbial consortium constructed with the key microbes of a natural consortium. Biodegradation 2023; 34:181-197. [PMID: 36596914 DOI: 10.1007/s10532-022-10012-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) impose adverse effects on the environment and human life. The use of synthetic microbial consortia is promising in bioremediation of contaminated sites with these pollutants. However, the design of consortia taking advantage of natural interactions has been poorly explored. In this study, a dual synthetic bacterial consortium (DSC_AB) was constructed with two key members (Sphingobium sp. AM and Burkholderia sp. Bk), of a natural PAH degrading consortium. DSC_AB showed significantly enhanced degradation of PAHs and toxic intermediary metabolites relative to the axenic cultures, indicating the existence of synergistic relationships. Metaproteomic and gene-expression analyses were applied to obtain a view of bacterial performance during phenanthrene removal. Overexpression of the Bk genes, naph, biph, tol and sal and the AM gene, ahdB, in DSC_AB relative to axenic cultures, demonstrated that both strains are actively participating in degradation, which gave evidence of cross-feeding. Several proteins related to stress response were under-expressed in DSC_AB relative to axenic cultures, indicating that the division of labour reduces cellular stress, increasing the efficiency of degradation. This is the one of the first works revealing bacterial relationships during PAH removal in a synthetic consortium applying an omics approach. Our findings could be used to develop criteria for evaluating the potential effectiveness of synthetic bacterial consortia in bioremediation.
Collapse
Affiliation(s)
- Esteban E Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - Marianela Macchi
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - María P Valacco
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, FCEN-UBA, Buenos Aires, Argentina
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CINDEFI (UNLP; CCT-La Plata, CONICET), Street 50 N°227, 1900, La Plata, Argentina.
| |
Collapse
|
12
|
Identification and Selection of Prospective Probiotics for Enhancing Gastrointestinal Digestion: Application in Pharmaceutical Preparations and Dietary Supplements. Nutrients 2023; 15:nu15061306. [PMID: 36986037 PMCID: PMC10053534 DOI: 10.3390/nu15061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Our study investigated the effectiveness of 446 strains of lactic acid bacteria (LAB) belonging to different species and isolated from diverse sources (food, human, and animal) as potential probiotic candidates, with the perspective of producing dietary supplements or pharmacological formulations suitable for enhancing gastrointestinal digestion. The survival capability of all the isolates under harsh gastrointestinal tract conditions was evaluated, in which only 44 strains, named high-resistant, were selected for further food digestibility investigations. All 44 strains hydrolyzed raffinose and exhibited amino and iminopeptidase activities but at various extents, confirming species- and strain-specificity. After partial in vitro digestion mimicking oral and gastric digestive phases, food matrices were incubated with single strains for 24 h. Fermented partially digested matrices provided additional functional properties for some investigated strains by releasing peptides and increasing the release of highly bio-accessible free phenolic compounds. A scoring procedure was proposed as an effective tool to reduce data complexity and quantitively characterize the probiotic potential of each LAB strain, which could be more useful in the selection procedure of powerful probiotics.
Collapse
|
13
|
Multi-dimensional experimental and computational exploration of metabolism pinpoints complex probiotic interactions. Metab Eng 2023; 76:120-132. [PMID: 36720400 DOI: 10.1016/j.ymben.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Multi-strain probiotics are widely regarded as effective products for improving gut microbiota stability and host health, providing advantages over single-strain probiotics. However, in general, it is unclear to what extent different strains would cooperate or compete for resources, and how the establishment of a common biofilm microenvironment could influence their interactions. In this work, we develop an integrative experimental and computational approach to comprehensively assess the metabolic functionality and interactions of probiotics across growth conditions. Our approach combines co-culture assays with genome-scale modelling of metabolism and multivariate data analysis, thus exploiting complementary data- and knowledge-driven systems biology techniques. To show the advantages of the proposed approach, we apply it to the study of the interactions between two widely used probiotic strains of Lactobacillus reuteri and Saccharomyces boulardii, characterising their production potential for compounds that can be beneficial to human health. Our results show that these strains can establish a mixed cooperative-antagonistic interaction best explained by competition for shared resources, with an increased individual exchange but an often decreased net production of amino acids and short-chain fatty acids. Overall, our work provides a strategy that can be used to explore microbial metabolic fingerprints of biotechnological interest, capable of capturing multifaceted equilibria even in simple microbial consortia.
Collapse
|
14
|
Wang Z, Wang H, Nie Q, Ding Y, Lei Z, Zhang Z, Shimizu K, Yuan T. Pb(II) bioremediation using fresh algal-bacterial aerobic granular sludge and its underlying mechanisms highlighting the role of extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130452. [PMID: 36435038 DOI: 10.1016/j.jhazmat.2022.130452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb) discharged from rural industries poses a significant threat to the environment and human health. Algal-bacterial aerobic granular sludge (A-B AGS) is a promising alternative for sewage treatment with high efficiency and good settleability. In this study, Pb(II) biosorption using fresh A-B AGS was investigated for the first time. The important role of extracellular polymeric substances (EPS) was revealed with the involved mechanisms being clarified. The desorbents for Pb recovery from Pb-loaded A-B AGS were also screened. Results showed that A-B AGS has an excellent maximum Pb adsorption capacity of 72.4 mg·g-1 at pH 6.0. EPS plays an important role in keeping microbial activity, Pb bonding, and providing metal ions (Ca, Na and Mg) for Pb ion exchanges. Electrostatic interaction, ion exchange, and bonding to functional groups may occur orderly in the Pb biosorption process and the formation of pyromorphite (Pb5(PO4)3Cl) contributes to Pb biosorption. About 66 % of the adsorbed Pb was accumulated in the A-B AGS microbial cells. Na2EDTA (0.05 M) can recover 60.3 % of the loaded Pb with the highest microbial activity of granules being remained. All the findings will provide the theoretical basis for the large-scale application of A-B AGS to bioremediate Pb(II)-containing wastewater.
Collapse
Affiliation(s)
- Zhiwei Wang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hanxiao Wang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qi Nie
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yi Ding
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
15
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollan GC. Consortia of lactic acid bacteria strains increase the antioxidant activity and bioactive compounds of quinoa sourdough - based biscuits. World J Microbiol Biotechnol 2023; 39:95. [PMID: 36759385 DOI: 10.1007/s11274-023-03538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The aim of this work was to use consortia (two or three strains) of lactic acid bacteria (LAB) [Lactiplantibacillus plantarum CRL 1964 and CRL 1973, and Leuconostoc mesenteroides subsp. mesenteroides CRL 2131] to obtain quinoa sourdoughs (QS) for further manufacturing of quinoa sourdough-based biscuits (QB). Microbial grow and acidification were evaluated in QS while antioxidant activity (AOA), total phenolic compounds (TPC) and total flavonoid compounds (TFC) were determined in QS and QB. QS inoculated with LAB consortia respect to monocultures showed higher growth and acidification, AOA (7.9?42.6%), TPC (19.9?35.0%) and TFC (6.1?31.6%). QB prepared with QS inoculated by LAB consortia showed higher AOA (5.0-81.1%), TPC (22.5?57.5%) and TFC (14.0-79.9%) than biscuits inoculated by monocultures sourdoughs. These results were attributed to a synergic effect from LAB consortia. Principal component analysis showed the highest scores of the evaluated characteristics for biscuits made with consortia sourdough of two (CRL1964?+?CRL2131) and three (CRL1964?+?CRL1973?+?CRL2131) strains.
Collapse
Affiliation(s)
- S H Sandez Penidez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - M A Velasco Manini
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - C L Gerez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - G C Rollan
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
16
|
Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. Trends Biotechnol 2023; 41:197-213. [PMID: 35989113 DOI: 10.1016/j.tibtech.2022.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 01/24/2023]
Abstract
Securing a sustainable protein supply at the global level is among the greatest challenges currently faced by humanity. Alternative protein sources, such as second-generation microbial protein (MP), could give rise to innovative circular bioeconomy practices, synthesizing high-value bioproducts through the recovery and upcycling of resources from overabundant biowastes and residues. Within such a multi-feedstock biorefinery scenario, the wide range of microbial pathways and networks that characterize mixed microbial cultures, offers interesting and not yet fully explored advantages over conventional monoculture-based processes. In this review, we combine a comprehensive analysis of waste recovery platforms for second-generation MP production with a critical evaluation of the research gaps and potentials offered by mixed culture-based MP fermentation processes.
Collapse
|
17
|
de Villalobos NF, Costa MC, Marín-Beltrán I. A community of marine bacteria with potential to biodegrade petroleum-based and biobased microplastics. MARINE POLLUTION BULLETIN 2022; 185:114251. [PMID: 36330933 DOI: 10.1016/j.marpolbul.2022.114251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The biodegradability conditions for both, petroleum-based plastics and bioplastics needs to be evaluated under environmentally realistic conditions. We assessed the biodegradability of low-density polyethylene and biobased polyethylene terephthalate microplastic films by a consortium of marine bacteria during 45 days. Bacterial growth and pH were higher in the samples inoculated with bacteria, compared to the controls. Fourier Infrared spectroscopy-Attenuated Total Reflectance and scanning electron microscopy indicated changes in the chemical functional groups, and the presence of fractures and biofilms in the surface of both plastics exposed to the bacterial community, respectively. The chemical oxygen demand further indicated signs of biodegradation of both polymers. Specific groups of bacteria showed preference for each type of microplastic. Overall, our results show signs of biodegradation, or at least biodeterioration and biofragmentation, of both types of plastics, when subjected to the selected bacterial community. Biobased PET was no more prone to biodegradation than conventional, petroleum-based LDPE.
Collapse
Affiliation(s)
- Nuria Fernández de Villalobos
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Maria Clara Costa
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Building 7, 8005-139 Faro, Portugal; Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - Isabel Marín-Beltrán
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Building 7, 8005-139 Faro, Portugal.
| |
Collapse
|
18
|
Li J, Liu Q, Sun S, Zhang X, Zhao X, Yu J, Cui W, Du Y. Degradation characteristics of crude oil by a consortium of bacteria in the existence of chlorophenol. Biodegradation 2022; 33:461-476. [PMID: 35729449 DOI: 10.1007/s10532-022-09992-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
In order to enhance the degradation effect of microorganisms on crude oil in the existence of chlorophenol compounds, oil-degrading bacteria C4 (Alcaligenes faecails), C5 (Bacillus sp.) and 2,4-dichlorophenol (2,4-DCP) degrading bacteria L3 (Bacillus marisflavi), L4 (Bacillus aquimaris) were isolated to construct a highly efficient consortium named (C4C5 + L3L4). When the compound bacteria agent combination by VC4: VC5: VL3: VL4 = 1:2:2:1, the crude oil degradation efficiency of 7 days was stable at 50.63% ~ 55.43% under different conditions. Degradation mechanism was analyzed by FTIR, GC-MS and IC technology and the following conclusions showed that in the system of adding consortium (C4C5 + L3L4), the heavy components were converted into saturated and unsaturated components. The bacterial consortium could first degrade medium and long chain alkanes into short chain hydrocarbons and then further degrade. And the dechlorination efficiency of 2,4-DCP in the degradation system reached 73.83%. The results suggested that the potential applicability and effectiveness of the selected bacteria consortium for the remediation of oil-contaminated water or soil with the existence of chlorophenol compound.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China. .,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Shuo Sun
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Xiuxia Zhang
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China.,State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Xiuying Zhao
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Junlong Yu
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Wu Cui
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| | - Yi Du
- School of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China
| |
Collapse
|
19
|
Zheng T, Zhang Q, Wu Q, Li D, Wu X, Li P, Zhou Q, Cai W, Zhang J, Du G. Effects of Inoculation With Acinetobacter on Fermentation of Cigar Tobacco Leaves. Front Microbiol 2022; 13:911791. [PMID: 35783443 PMCID: PMC9248808 DOI: 10.3389/fmicb.2022.911791] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic activity of the microbial community greatly affects the quality of cigar tobacco leaves (CTLs). To improve the quality of CTLs, two extrinsic microbes (Acinetobacter sp. 1H8 and Acinetobacter indicus 3B2) were inoculated into CTLs. The quality of CTLs were significantly improved after fermentation. The content of solanone, 6-methyl-5-hepten-2-one, benzeneacetic acid, ethyl ester, cyclohexanone, octanal, acetophenone, and 3,5,5-trimethyl-2-cyclohexen-1-one were significantly increased after inoculated Acinetobacter sp. 1H8. The inoculation of Acinetobacter sp. 1H8 enhanced the normal evolutionary trend of bacterial community. The content of trimethyl-pyrazine, 2,6-dimethyl-pyrazine, and megastigmatrienone were significantly increased after inoculated Acinetobacter indicus 3B2. The inoculation of Acinetobacter indicus 3B2 completely changed the original bacterial community. Network analysis revealed that Acinetobacter was negatively correlated with Aquabacterium, positively correlated with Bacillus, and had significant correlations with many volatile flavor compounds. This work may be helpful for improving fermentation product quality by regulating microbial community, and gain insight into the microbial ecosystem.
Collapse
Affiliation(s)
- Tianfei Zheng
- School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Qiaoyin Wu
- School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- *Correspondence: Dongliang Li,
| | - Xinying Wu
- School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Quanwei Zhou
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Juan Zhang,
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
da Silva GAR, Oliveira SSDS, Lima SF, do Nascimento RP, Baptista ARDS, Fiaux SB. The industrial versatility of Gluconobacter oxydans: current applications and future perspectives. World J Microbiol Biotechnol 2022; 38:134. [PMID: 35688964 PMCID: PMC9187504 DOI: 10.1007/s11274-022-03310-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Gluconobacter oxydans is a well-known acetic acid bacterium that has long been applied in the biotechnological industry. Its extraordinary capacity to oxidize a variety of sugars, polyols, and alcohols into acids, aldehydes, and ketones is advantageous for the production of valuable compounds. Relevant G. oxydans industrial applications are in the manufacture of L-ascorbic acid (vitamin C), miglitol, gluconic acid and its derivatives, and dihydroxyacetone. Increasing efforts on improving these processes have been made in the last few years, especially by applying metabolic engineering. Thereby, a series of genes have been targeted to construct powerful recombinant strains to be used in optimized fermentation. Furthermore, low-cost feedstocks, mostly agro-industrial wastes or byproducts, have been investigated, to reduce processing costs and improve the sustainability of G. oxydans bioprocess. Nonetheless, further research is required mainly to make these raw materials feasible at the industrial scale. The current shortage of suitable genetic tools for metabolic engineering modifications in G. oxydans is another challenge to be overcome. This paper aims to give an overview of the most relevant industrial G. oxydans processes and the current strategies developed for their improvement.
Collapse
Affiliation(s)
- Gabrielle Alves Ribeiro da Silva
- Graduate Program in Science and Biotechnology, Biology Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil.
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil.
- Ecology of Microbial Process Laboratory, Biochemical Engineering Department, Chemical School, Technology Center, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, 21941-909, Brazil.
| | - Simone Santos de Sousa Oliveira
- Graduate Program in Science and Biotechnology, Biology Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| | - Sara Fernandes Lima
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| | - Rodrigo Pires do Nascimento
- Ecology of Microbial Process Laboratory, Biochemical Engineering Department, Chemical School, Technology Center, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, 21941-909, Brazil
| | - Andrea Regina de Souza Baptista
- Center for Microorganisms Investigation, Microbiology and Parasitology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil
| | - Sorele Batista Fiaux
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| |
Collapse
|
21
|
Li J, Song B, Yao C, Zhang Z, Wang L, Zhang J. S-Doped NiFe2O4 Nanosheets Regulated Microbial Community of Suspension for Constructing High Electroactive Consortia. NANOMATERIALS 2022; 12:nano12091496. [PMID: 35564204 PMCID: PMC9103806 DOI: 10.3390/nano12091496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022]
Abstract
Iron-based nanomaterials (NMs) are increasingly used to promote extracellular electron transfer (EET) for energy production in bioelectrochemical systems (BESs). However, the composition and roles of planktonic bacteria in the solution regulated by iron-based NMs have rarely been taken into account. Herein, the changes of the microbial community in the solution by S-doped NiFe2O4 anodes have been demonstrated and used for constructing electroactive consortia on normal carbon cloth anodes, which could achieve the same level of electricity generation as NMs-mediated biofilm, as indicated by the significantly high voltage response (0.64 V) and power density (3.5 W m−2), whereas with different microbial diversity and connections. Network analysis showed that the introduction of iron-based NMs made Geobacter positively interact with f_Rhodocyclaceae, improving the competitiveness of the consortium (Geobacter and f_Rhodocyclaceae). Additionally, planktonic bacteria regulated by S-doped anode alone cannot hinder the stimulation of Geobacter by electricity and acetate, while the assistance of lining biofilm enhanced the cooperation of sulfur-oxidizing bacteria (SOB) and fermentative bacteria (FB), thus promoting the electroactivity of microbial consortia. This study reveals the effect of S-doped NiFe2O4 NMs on the network of microbial communities in MFCs and highlights the importance of globality of microbial community, which provides a feasible solution for the safer and more economical environmental applications of NMs.
Collapse
Affiliation(s)
- Jiaxin Li
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongchao Yao
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
| | - Zhihao Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- Correspondence: (L.W.); (J.Z.)
| | - Jing Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
- Correspondence: (L.W.); (J.Z.)
| |
Collapse
|
22
|
Baltaci MO. Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2038581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
23
|
An X, Zong Z, Zhang Q, Li Z, Zhong M, Long H, Cai C, Tan X. Novel thermo-alkali-stable cellulase-producing Serratia sp. AXJ-M cooperates with Arthrobacter sp. AXJ-M1 to improve degradation of cellulose in papermaking black liquor. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126811. [PMID: 34388933 DOI: 10.1016/j.jhazmat.2021.126811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/26/2023]
Abstract
There is an urgent requirement to treat cellulose present in papermaking black liquor since it induces severe economic wastes and causes environmental pollution. We characterized cellulase activity at different temperatures and pH to seek thermo-alkali-stable cellulase-producing bacteria, a natural consortium of Serratia sp. AXJ-M and Arthrobacter sp. AXJ-M1 was used to improve the degradation of cellulose. Notably, the enzyme activities and the degradation rate of cellulose were increased by 30%-70% and 30% after co-culture, respectively. In addition, the addition of cosubstrates increased the degradation rate of cellulose beyond 30%. The thermo-alkali-stable endoglucanase (bcsZ) gene was derived from the strain AXJ-M and was cloned and expressed. The purified bcsZ displayed the maximum activity at 70 °C and pH 9. Mn2+, Ca2+, Mg2+ and Tween-20 had beneficial effects on the enzyme activity. Structurally, bcsZ potentially catalyzed the degradation of cellulose. The co-culture with ligninolytic activities significantly decreased target the parameters (cellulose 45% and COD 95%) while using the immobilized fluidized bed reactors (FBRs). Finally, toxicological tests and antioxidant enzyme activities indicated that the co-culture had a detoxifying effect on black liquor. Our study showed that Serratia sp. AXJ-M acts synergistically with Arthrobacter sp. AXJ-M1 may be potentially useful for bioremediation for black liquor.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Zhengbin Zong
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China.
| | - Zhimin Li
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Min Zhong
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Haozhi Long
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Changzhi Cai
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Xiaoming Tan
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, Wuhan 430062, PR China
| |
Collapse
|
24
|
Liu J, Liu J, Guo L, Liu J, Chen X, Liu L, Gao C. Advances in microbial synthesis of bioplastic monomers. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:35-81. [DOI: 10.1016/bs.aambs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Yang X, Zhao Z, Nguyen BV, Hirayama S, Tian C, Lei Z, Shimizu K, Zhang Z. Cr(VI) bioremediation by active algal-bacterial aerobic granular sludge: Importance of microbial viability, contribution of microalgae and fractionation of loaded Cr. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126342. [PMID: 34329001 DOI: 10.1016/j.jhazmat.2021.126342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, chromium (Cr) was used as an example of the most toxic heavy metals that threaten human health, and Cr(VI) bioremediation was implemented by using a new type of aerobic granular sludge (AGS), i.e., algal-bacterial AGS. Results showed that the total Cr removal efficiency by active algal-bacterial AGS was 85.1 ± 0.6% after 6 h biosorption at pH 6 and room temperature, which could be further improved to 93.8 ± 0.4% with external electron donor (glucose) supply. However, inactivation dramatically decreased the total Cr removal efficiency to 29.6 ± 3.5%, and no effect was noticed when external electron donor was provided. With an antibiotic (levofloxacin) or metabolic inhibitor (NaN3) addition, the total Cr removal efficiency of bacterial AGS was inhibited by 16.0% or 10.1%, but this efficiency was maintained in the case of algal-bacterial AGS. Analysis of extracellular polymeric substances (EPS) composition revealed that under Cr(VI) exposure, more loosely bound EPS were secreted by algal-bacterial AGS, favoring Cr(VI) reduction. Results from chemical fractionation indicated that 90.5 ± 4.2% of the loaded Cr on algal-bacterial AGS was in an immobile form, reflecting the low environmental risk of Cr-loaded algal-bacterial AGS after biosorption of hazardous heavy metals from wastewater.
Collapse
Affiliation(s)
- Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Bach Van Nguyen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shota Hirayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Caixing Tian
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
26
|
Blombach B, Grünberger A, Centler F, Wierckx N, Schmid J. Exploiting unconventional prokaryotic hosts for industrial biotechnology. Trends Biotechnol 2021; 40:385-397. [PMID: 34482995 DOI: 10.1016/j.tibtech.2021.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Developing cost-efficient biotechnological processes is a major challenge in replacing fossil-based industrial production processes. The remarkable progress in genetic engineering ensures efficient and fast tailoring of microbial metabolism for a wide range of bioconversions. However, improving intrinsic properties such as tolerance, handling, growth, and substrate consumption rates is still challenging. At the same time, synthetic biology tools are becoming easier applicable and transferable to nonmodel organisms. These trends have resulted in the exploitation of new and unconventional microbial systems with sophisticated properties, which render them promising hosts for the bio-based industry. Here, we highlight the metabolic and cellular capabilities of representative prokaryotic newcomers and discuss the potential and drawbacks of these hosts for industrial application.
Collapse
Affiliation(s)
- Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany; SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | | | - Florian Centler
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Nick Wierckx
- Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
27
|
Chun SJ, Cui Y, Baek SH, Ahn CY, Oh HM. Seasonal succession of microbes in different size-fractions and their modular structures determined by both macro- and micro-environmental filtering in dynamic coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147046. [PMID: 33894601 DOI: 10.1016/j.scitotenv.2021.147046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 05/16/2023]
Abstract
Microbes interact with each other in response to various environmental changes in coastal marine ecosystems. To explore how the macroenvironment (environmental filtering) and species-engineered microenvironment (niche construction) affect the ecological network of the marine microbiome in the highly dynamic coastal waters of Korea, we analyzed the modular structures of the microbial community and identified microbial interconnections in different size fractions for a year. Fluctuations in the macroenvironment, such as temperature and nutrient concentrations driven by seasonal changes, are the major factors in determining successive microbial modules. Compared to particle-associated (PA) microbes, free-living (FL) microbes seemed to be more affected by macroenvironmental filtering. Modules related to nutrients were further divided into various modules according to different lifestyles. In addition, a large transient discharge of the Changjiang (Yangtze River) in summer also formed a distinct microbial module, which was related to the high ammonia concentration arising from phytoplankton degradation. Microbes belonging to the SAR11, SAR86, and SAR116 clades, Flavobacteriaceae, and MG IIa-L showed repeated interconnections in temperature-related modules, while the SAR202 clade, Marinimicrobia, DEV007 clade, and Arctic97B-4 and Sva0996 marine groups displayed repeated connections in nutrient-related modules. These 'skeleton'-forming microbes created species-engineered microenvironments, further fine-tuning microbial modular structures. Furthermore, they serve as keystone species for module stability by linking interdependent microbial partners within their own modules through universally beneficial metabolic activities. Therefore, they could reinforce the ecological resilience of microbial communities under abiotic and biotic perturbations in dynamic coastal waters. In conclusion, both macro- and micro-environmental filtering were important for determining the seasonal succession of microbial community structures.
Collapse
Affiliation(s)
- Seong-Jun Chun
- LMO Research Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon 33657, Republic of Korea; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yingshun Cui
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Ho Baek
- South Sea Institute, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
28
|
Chen R, Miao Y, Liu Y, Zhang L, Zhong M, Adams JM, Dong Y, Mahendra S. Identification of novel 1,4-dioxane degraders and related genes from activated sludge by taxonomic and functional gene sequence analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125157. [PMID: 33540262 DOI: 10.1016/j.jhazmat.2021.125157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment.
Collapse
Affiliation(s)
- Ruihuan Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Miao
- Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; National Engineering Laboratory of Site Remediation Technologies, Beijing 100015, China.
| | - Lan Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ming Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | | | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Shaily Mahendra
- Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
30
|
Fernandes S, Kerkar S, D'Costa A, Costa M, Mishra A, Shyama SK, Das KR. Immuno-stimulatory effect and toxicology studies of salt pan bacteria as probiotics to combat shrimp diseases in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2021; 113:69-78. [PMID: 33798719 DOI: 10.1016/j.fsi.2021.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The shrimp aquaculture industry has experienced serious economic losses due to diseases caused by Vibrio species. The application of antibiotics to combat diseases has led to environmental hazards, antibiotic-resistance in pathogens and accumulation of antibiotics in tissues. This study explores the use of probiotics as an alternative to antibiotics. A probiotic consortium SFSK4 (comprising salt pan bacteria Bacillus licheniformis TSK71, Bacillus amyloliquefaciens SK27, Bacillus subtilis SK07, Pseudomonas sp. ABSK55) was used as a water additive during shrimp culture. It significantly increased shrimp (Litopenaeus vannamei) immunity i.e. total hemocyte count, phagocytosis, total plasma protein, respiratory burst and bactericidal activity as compared to the control. It also stimulated the phenoloxidase activity by two-fold. Proteomic analysis revealed the differential expression of 50 immune proteins (39 up-regulated and 11 down-regulated) in SFSK4 treated shrimps. Four major immune modulation proteins viz. Caspase2, GTPase activating protein, Hemocyanin and Glucan pattern-recognition lipoprotein involved in cell mediated immune response were identified in SFSK4 treated shrimp hemolymph. SFSK4 decreased shrimp mortality by more than 50% against pathogens. Toxicology studies revealed that administration of the highest dose of probiotic (1012 CFU/mL) showed no adverse effect on shrimp survival (LC50 analysis) and neither exhibited cytotoxicity. Genotoxicity study confirmed that the probiotic did not cause DNA damage in shrimps. The findings suggest that the probiotic SFSK4 is an eco-friendly water additive to enhance shrimp immunity against diseases in aquaculture, which could help curtail environmental hazards as an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Samantha Fernandes
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Savita Kerkar
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Avelyno D'Costa
- Department of Zoology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Moreska Costa
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Abhishek Mishra
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Soorambail K Shyama
- Department of Zoology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Kirti Ranjan Das
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
31
|
Yang G, Yang D, Wang X, Cao W. A novel thermostable cellulase-producing Bacillus licheniformis A5 acts synergistically with Bacillus subtilis B2 to improve degradation of Chinese distillers' grains. BIORESOURCE TECHNOLOGY 2021; 325:124729. [PMID: 33493746 DOI: 10.1016/j.biortech.2021.124729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Lack of effective degradation approaches of Chinese distillers' grains (CDGs) produced by Chinese liquor industry results in environmental pollution and economic waste. Cellulase activity was characterized at different temperatures to find thermostable cellulase-producing bacteria, and microbial co-culture method was used to improve the degradation of CDGs. Incubation of endoglucanase produced by Bacillus licheniformis A5 at 80 °C for 120 min showed 82% residual enzyme activity. Notably, enzyme activity increased by 30%-70% after co-culturing Bacillus licheniformis A5 and Bacillus subtilis B2. The two strains increased degradation rate of CDGs by 70% compared with optimized results of Bacillus subtilis B2 culture alone, and increased the reducing sugar content to 16.6 mg/mL. In addition, 2% ethanol increased degradation rate of CDGs by 15% in co-culture. The findings of this study imply that Bacillus licheniformis A5 acts synergistically with Bacillus subtilis B2 to improve degradation of CDGs.
Collapse
Affiliation(s)
- Gang Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Diqin Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaodan Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Cao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
32
|
|
33
|
|
34
|
Chauhan R, Singh N, Pal GK, Goel G. Trending biocontrol strategies against Cronobacter sakazakii: A recent updated review. Food Res Int 2020; 137:109385. [DOI: 10.1016/j.foodres.2020.109385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022]
|
35
|
Canon F, Nidelet T, Guédon E, Thierry A, Gagnaire V. Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-cultures. Front Microbiol 2020; 11:2088. [PMID: 33013761 PMCID: PMC7500094 DOI: 10.3389/fmicb.2020.02088] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Microorganisms grow in concert, both in natural communities and in artificial or synthetic co-cultures. Positive interactions between associated microbes are paramount to achieve improved substrate conversion and process performance in biotransformation and fermented food production. The mechanisms underlying such positive interactions have been the focus of numerous studies in recent decades and are now starting to be well characterized. Lactic acid bacteria (LAB) contribute to the final organoleptic, nutritional, and health properties of fermented food products. However, interactions in LAB co-cultures have been little studied, apart from the well-characterized LAB co-culture used for yogurt manufacture. LAB are, however, multifunctional microorganisms that display considerable potential to create positive interactions between them. This review describes why LAB co-cultures are of such interest, particularly in foods, and how their extensive nutritional requirements can be used to favor positive interactions. In that respect, our review highlights the benefits of co-cultures in different areas of application, details the mechanisms underlying positive interactions and aims to show how mechanisms based on nutritional interactions can be exploited to create efficient LAB co-cultures.
Collapse
Affiliation(s)
| | - Thibault Nidelet
- SPO, INRAE, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
36
|
Alnahhas RN, Sadeghpour M, Chen Y, Frey AA, Ott W, Josić K, Bennett MR. Majority sensing in synthetic microbial consortia. Nat Commun 2020; 11:3659. [PMID: 32694598 PMCID: PMC7374166 DOI: 10.1038/s41467-020-17475-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/25/2020] [Indexed: 01/26/2023] Open
Abstract
As synthetic biocircuits become more complex, distributing computations within multi-strain microbial consortia becomes increasingly beneficial. However, designing distributed circuits that respond predictably to variation in consortium composition remains a challenge. Here we develop a two-strain gene circuit that senses and responds to which strain is in the majority. This involves a co-repressive system in which each strain produces a signaling molecule that signals the other strain to down-regulate production of its own, orthogonal signaling molecule. This co-repressive consortium links gene expression to ratio of the strains rather than population size. Further, we control the cross-over point for majority via external induction. We elucidate the mechanisms driving these dynamics by developing a mathematical model that captures consortia response as strain fractions and external induction are varied. These results show that simple gene circuits can be used within multicellular synthetic systems to sense and respond to the state of the population.
Collapse
Affiliation(s)
| | - Mehdi Sadeghpour
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Ye Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Alexis A Frey
- Department of Biosciences, Rice University, Houston, TX, USA
| | - William Ott
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
37
|
Mohanakrishnan AS, Easwaran SN, Ravi DP, Mahadevan S. Understanding the biocalorimetric and respirometric behaviour of co-culture (R. eutropha, P. putida and A. vinelandii) in poly (3-hydroxybutyrate) batch production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures. Curr Opin Biotechnol 2019; 62:106-115. [PMID: 31715386 DOI: 10.1016/j.copbio.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Microbial consortia are fascinating yet barely understood biological systems with an elusive intrinsic complexity. Studying microbial consortia and the interactions of their members is of major importance for the understanding, engineering and control of synthetic and natural microbial consortia. Microfluidic cultivation and analysis devices are versatile tools for the study of microbial interactions at the single-cell level. While there is a vast amount of literature on microfluidics for the investigation of monocultures only few studies on co-cultures have been conducted in this context. Here we give an overview of different microfluidic single-cell cultivation tools for the analysis of microbial consortia with a focus on their physiology, growth dynamics and cellular interactions. Finally, central challenges and perspectives for the future application of microfluidic tools for microbial consortia investigations will be given.
Collapse
|
39
|
Singh R, Ryu J, Kim SW. Microbial consortia including methanotrophs: some benefits of living together. J Microbiol 2019; 57:939-952. [PMID: 31659683 DOI: 10.1007/s12275-019-9328-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023]
Abstract
With the progress of biotechnological research and improvements made in bioprocessing with pure cultures, microbial consortia have gained recognition for accomplishing biological processes with improved effectiveness. Microbes are indispensable tool in developing bioprocesses for the production of bioenergy and biochemicals while utilizing renewable resources due to technical, economic and environmental advantages. They communicate with specific cohorts in close proximity to promote metabolic cooperation. Use of positive microbial associations has been recognized widely, especially in food industries and bioremediation of toxic compounds and waste materials. Role of microbial associations in developing sustainable energy sources and substitutes for conventional fuels is highly promising with many commercial prospects. Detoxification of chemical contaminants sourced from domestic, agricultural and industrial wastes has also been achieved through microbial catalysis in pure and co-culture systems. Methanotrophs, the sole biological sink of greenhouse gas methane, catalyze the methane monooxygenasemediated oxidation of methane to methanol, a high energy density liquid and key platform chemical to produce commodity chemical compounds and their derivatives. Constructed microbial consortia have positive effects, such as improved biomass, biocatalytic potential, stability etc. In a methanotroph-heterotroph consortium, non-methanotrophs provide key nutrient factors and alleviate the toxicity from the culture. Non-methanotrophic organisms biologically stimulate the growth and activity of methanotrophs via production of growth stimulators. However, methanotrophs in association with co-cultured microorganisms are in need of further exploration and thorough investigation to study their interaction mode and application with improved effectiveness.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jaewon Ryu
- Department of Energy Convergence, Chosun University, Gwangju, 61452, Republic of Korea
| | - Si Wouk Kim
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea. .,Department of Energy Convergence, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
40
|
Wang X, Chen J, Ji R, Liu Y, Su Y, Guo R. Degradation of Bisphenol S by a Bacterial Consortium Enriched from River Sediments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:630-635. [PMID: 31486911 DOI: 10.1007/s00128-019-02699-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of bisphenol S (BPS) as a bisphenol A substitute increases its potential of release into the aquatic environments. However, the degradation of BPS in aquatic systems is largely unknown, which will dictate its fate and toxicity. In this study, a bacterial consortium was enriched from river sediments and the dynamic changes of community structure during bacterial acclimation were studied. BPS degrading bacterial strains isolated from the consortium were identified by 16S rRNA analysis. The efficiency of the consortium and strains for BPS degradation were further evaluated. After 28 days of acclimation, the microbial diversity decreased significantly and four bacterial genera Hyphomicrobium, Pandoraea, Rhodococcus, and Cupriavidus with relative abundances of 5.1%-52.8% became dominant in the consortium. Total of two pure strains including Terrimonas pekingensis and Pseudomonas sp. were isolated from the consortium, using BPS as the sole carbon source. The consortium was highly efficient to degrade BPS, and 99% of BPS with an initial concentration of 50 mg/L was removed within 10 days at pH 7 and 30°C. In comparison with the consortium, a single strain cultures had lower BPS degradation efficiency. These findings indicate that BPS will degrade rapidly under aerobic conditions in river sediments and have implication for BPS-contaminated site remediation using the enriched consortium.
Collapse
Affiliation(s)
- Xingwang Wang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
41
|
Yu K, Yi S, Li B, Guo F, Peng X, Wang Z, Wu Y, Alvarez-Cohen L, Zhang T. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. MICROBIOME 2019; 7:16. [PMID: 30728080 PMCID: PMC6366072 DOI: 10.1186/s40168-019-0634-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Understanding microbial interactions in engineering bioprocesses is important to enhance and optimize performance outcomes and requires dissection of the multi-layer complexities of microbial communities. However, unraveling microbial interactions as well as substrates involved in complex microbial communities is a challenging task. Here, we demonstrate an integrated approach of metagenomics, metatranscriptomics, and targeted metabolite analysis to identify the substrates involved in interspecies interactions from a potential cross-feeding model community-bisphenol A (BPA)-biodegrading community, aiming to establish an identification method of microbial interactions in engineering or environmental bioprocesses. RESULTS The community-level BPA-metabolic pathway was constructed using integrated metagenomics and targeted metabolite analyses. The dynamics of active functions and metabolism of major community members were identified using metagenomic and metatranscriptomic analyses in concert. Correlating the community BPA biodegradation performance to the individual bacterial activities enabled the discovery of substrates involved in a synergistic interaction of cross-feeding between BPA-degrading Sphingonomas species and intermediate users, Pseudomonas sp. and Pusillimonas sp. This proposed synergistic interaction was confirmed by the co-culture of a Sphingonomas sp. and Pseudomonas sp. isolates, which demonstrated enhanced BPA biodegradation compared to the isolate of Sphingonomas sp. alone. CONCLUSION The three types of integrated meta-omics analyses effectively revealed the metabolic capability at both community-wide and individual bacterial levels. The correlation between these two levels revealed the hidden connection between apparent overall community performance and the contributions of individual community members and their interactions in a BPA-degrading microbial community. In addition, we demonstrated that using integrated multi-omics in conjunction with culture-based confirmation approach is effective to elucidate the microbial interactions affecting the performance outcome. We foresee this approach would contribute the future application and operation of environmental bioprocesses on a knowledge-based control.
Collapse
Affiliation(s)
- Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China.
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China.
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA.
- Environmental microbiology and bioinformatics Laboratory, Shenzhen Graduate School, Peking University, Nanshan district, Shenzhen, Guangdong, China.
| | - Shan Yi
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA
| | - Bing Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Feng Guo
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xingxing Peng
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zhiping Wang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China.
| |
Collapse
|
42
|
Yang R, Zhang G, Li S, Moazeni F, Li Y, Wu Y, Zhang W, Chen T, Liu G, Zhang B, Wu X. Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1834-1847. [PMID: 30456621 DOI: 10.1007/s11356-018-3718-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
This study investigates the biodegradation of crude oil by a mixed culture of bacteria isolated from the Qinghai-Tibet plateau using gas chromatography-mass spectrometer (GC-MS) and the gravimetric method. The results showed that a mixed culture has a stronger ability to degrade hydrocarbon than pure cultures. Once both Nocardia soli Y48 and Rhodococcus erythropolis YF28-1 (8) were present in a culture, the culture demonstrated the highest crude oil removal efficiency of almost 100% after 10 days of incubation at 20 °C. Moreover, further analysis of the degradation mechanisms used by the above strains, which revealed utilization of different n-alkane substrates, indicated the diversity of evolution and variations in different strains, as well as the importance of multiple metabolic mechanisms for alkane degradation. Therefore, it is concluded that a mixed culture of Y48 and YF28-1 (8) strains can provide a more effective method for bioremediation of hydrocarbon-contaminated soil in permafrost regions.
Collapse
Affiliation(s)
- Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Shiweng Li
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Faegheh Moazeni
- School of Science Engineering and Technology, Penn State Harrisburg University, Middletown, PA, 17057, USA
| | - Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yongna Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
| | - Binglin Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
43
|
Burmeister A, Hilgers F, Langner A, Westerwalbesloh C, Kerkhoff Y, Tenhaef N, Drepper T, Kohlheyer D, von Lieres E, Noack S, Grünberger A. A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. LAB ON A CHIP 2018; 19:98-110. [PMID: 30488920 DOI: 10.1039/c8lc00977e] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interspecies interactions inside microbial communities bear a tremendous diversity of complex chemical processes that are by far not understood. Even for simplified, often synthetic systems, the interactions between two microbes are barely revealed in detail. Here, we present a microfluidic co-cultivation platform for the analysis of growth and interactions inside microbial consortia with single-cell resolution. Our device allows the spatial separation of two different microbial organisms inside adjacent microchambers facilitating sufficient exchange of metabolites via connecting nanochannels. Inside the cultivation chambers cell growth can be observed with high spatio-temporal resolution by live-cell imaging. In contrast to conventional approaches, in which single-cell activity is typically fully masked by the average bulk behavior, the small dimensions of the microfluidic cultivation chambers enable accurate environmental control and observation of cellular interactions with full spatio-temporal resolution. Our method enables one to study phenomena in microbial interactions, such as gene transfer or metabolic cross-feeding. We chose two different microbial model systems to demonstrate the wide applicability of the technology. First, we investigated commensalistic interactions between an industrially relevant l-lysine-producing Corynebacterium glutamicum strain and an l-lysine auxotrophic variant of the same species. Spatially separated co-cultivation of both strains resulted in growth of the auxotrophic strain due to secreted l-lysine supplied by the producer strain. As a second example we investigated bacterial conjugation between Escherichia coli S17-1 and Pseudomonas putida KT2440 cells. We could show that direct cell contact is essential for the successful gene transfer via conjugation and was hindered when cells were spatially separated. The presented device lays the foundation for further studies on contactless and contact-based interactions of natural and synthetic microbial communities.
Collapse
Affiliation(s)
- Alina Burmeister
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
45
|
Shanmugam BK, Easwaran SN, Lakra R, Deepa PR, Mahadevan S. Metabolic pathway and role of individual species in the bacterial consortium for biodegradation of azo dye: A biocalorimetric investigation. CHEMOSPHERE 2017; 188:81-89. [PMID: 28869849 DOI: 10.1016/j.chemosphere.2017.08.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/03/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
In this study, an attempt was made to investigate the functional role and metabolic behaviour of the monoculture (Staphylococcus lentus (SL), Bacillus flexus (BF) and Pseudomonas aeruginosa (PA)) in the bacterial biocenosis for biotransformation of an azo dye. The power-time profile obtained from consortia depicted three distinct peaks, which correlated well with the individual bacterial growth (PA > SL > BF), indicating the synergistic relation and division of labour in the biocenosis. The heat release pattern was used to identify the sequential behaviour of microbial consortia in real time. Yield calculation based on total heat liberated to the complete substrate utilization Y (Q/S) for PA, SL, and BF were 15.99, 16.68, 7.32 kJ/L respectively. Similarly, the oxy calorific values Y (Q/O) for the above species are respectively 386, 375, 440 kJ/mol and indicates the aerobic nature of microorganism employed. Further, the metabolome produced during the biotransformation were identified using Gas Chromatography-Mass Spectrometry (GC-MS), based on which a plausible pathway was predicted. The abundant metabolites were palmitic acid (m/z = 256) and diethyl phthalate (m/z = 222.2). The abundance of diethyl phthalate was much lesser in the consortia compared to the monoculture. Thus, the biocalorimetric heat yield calculation along with the stoichiometry and plausible pathway based biochemical elucidation provides a mechanistic basis for understanding the azo-dye biotransformation by the monocultures in consortia.
Collapse
Affiliation(s)
- Bhuvanesh Kumar Shanmugam
- Chemical Engineering Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Sivanesh Nanjan Easwaran
- Chemical Engineering Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Rachita Lakra
- Biomaterials Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| | - Perinkulam Ravi Deepa
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan 333031, India
| | - Surianarayanan Mahadevan
- Chemical Engineering Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
| |
Collapse
|
46
|
Cortes-Tolalpa L, Salles JF, van Elsas JD. Bacterial Synergism in Lignocellulose Biomass Degradation - Complementary Roles of Degraders As Influenced by Complexity of the Carbon Source. Front Microbiol 2017; 8:1628. [PMID: 29067002 PMCID: PMC5641323 DOI: 10.3389/fmicb.2017.01628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/10/2017] [Indexed: 01/23/2023] Open
Abstract
Lignocellulosic biomass (LCB) is an attractive source of carbon for the production of sugars and other chemicals. Due to its inherent complexity and heterogeneity, efficient biodegradation requires the actions of different types of hydrolytic enzymes. In nature, complex microbial communities that work efficiently and often synergistically accomplish degradation. Studying such synergisms in LCB degradation is fundamental for the establishment of an optimal biological degradation process. Here, we examine the wheat straw degradation potential of synthetic microbial consortia composed of bacteria and fungi. Growth of, and enzyme secretion by, monocultures of degrader strains were studied in aerobic cultures using wheat straw as the sole carbon and energy source. To investigate synergism, co-cultures were constructed from selected strains and their performance was tested in comparison with the respective monocultures. In monoculture, each organism – with a typical enzymatic profile – was found to mainly consume the cellulose part of the substrate. One strain, Flavobacterium ginsengisoli so9, displayed an extremely high degradation capacity, as measured by its secreted enzymes. Among 13 different co-cultures, five presented synergisms. These included four bacterial bicultures and one bacterial–fungal triculture. The highest level of synergism was found in a Citrobacter freundii/Sphingobacterium multivorum biculture, which revealed an 18.2-fold increase of the produced biomass. As compared to both monocultures, this bacterial pair showed significantly increased enzymatic activities, in particular of cellobiohydrolases, mannosidases, and xylosidases. Moreover, the synergism was unique to growth on wheat straw, as it was completely absent in glucose-grown bicultures. Spent supernatants of either of the two partners were found to stimulate the growth on wheat straw of the counterpart organism, in a directional manner. Thus, the basis of the LCB-specific synergism might lie in the specific release of compounds or agents by S. multivorum w15 that promote the activity of C. freundii so4 and vice versa.
Collapse
Affiliation(s)
- Larisa Cortes-Tolalpa
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Joana F Salles
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|