1
|
Yuksekdag Z, Kilickaya R, Kara F, Acar BC. Biogenic-Synthesized Silver Nanoparticles Using the Ligilactobacillus salivarius KC27L Postbiotic: Antimicrobial, Anti-Biofilm, and Antioxidant Activity and Cytotoxic Effects. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10481-x. [PMID: 40011382 DOI: 10.1007/s12602-025-10481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
This study aimed to synthesize silver nanoparticles (AgNPs) using the postbiotic of the Ligilactobacillus salivarius KC27L strain and evaluate their multifunctional biological properties. The use of L. salivarius, a probiotic bacterium known for its ability to produce a wide range of metabolites, plays a crucial role in this process by acting as a natural, eco-friendly reducing, and stabilizing agent during AgNP synthesis. This approach not only eliminates the need for hazardous chemicals typically used in nanoparticle synthesis but also enhances the biocompatibility and biological efficacy of the resulting nanoparticles. Synthesized AgNPs were analyzed by Fourier transform infrared spectroscopy, FTIR (metabolites of postbiotic); UV-vis (peak of 435 nm); scanning electron microscope, SEM; transmission electron microscopy, TEM (spherical shapes, sizes < 50 nm), energy-dispersive spectrometry, EDS (peak at 3 keV); and zeta potential (- 18.6 mV). These nanoparticles (0.156-40 mg/mL) were evaluated for the antimicrobial and anti-biofilm activities against Escherichia coli ATCC 11229, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 35984, and Streptococcus mutans ATCC 25175, and antioxidant activities using four different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging, metal ion chelating, hydroxyl radical scavenging, and superoxide anion scavenging activities). Also, the cytotoxic activity was investigated against a normal cell line (L929) for 24, 48, and 72 h. At a concentration of 40 mg/mL, the AgNPs demonstrated the highest antimicrobial efficacy, with inhibition zones measured as 14.9 mm for P. aeruginosa, 9.5 mm for E. coli, 15.7 mm for S. epidermidis, and 12.9 mm for S. mutans. The AgNPs exhibited anti-biofilm activities against all Gram-positive and Gram-negative bacteria strains studied. According to the DPPH method, the highest antioxidant activity was determined at 40 mg/mL AgNP concentration (80.93%). AgNPs were found to have no toxic effect at low concentrations (0.39-25 µg/mL). Biogenic synthesized AgNPs could be used in biotechnological applications (biomaterials, health, environmental, etc.) with antibacterial, anti-biofilm, antioxidant, and nontoxic properties. However, further research is needed to understand the mechanisms of action of the particles fully.
Collapse
Affiliation(s)
- Zehranur Yuksekdag
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey.
| | - Reyhan Kilickaya
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| | - Filiz Kara
- Faculty of Engineering, Department of Industrial Engineering, Baskent University, Ankara, Turkey
| | - Berat Cinar Acar
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Kang MG, Khan F, Tabassum N, Cho KJ, Jo DM, Kim YM. Inhibition of Biofilm and Virulence Properties of Pathogenic Bacteria by Silver and Gold Nanoparticles Synthesized from Lactiplantibacillus sp. Strain C1. ACS OMEGA 2023; 8:9873-9888. [PMID: 36969455 PMCID: PMC10035013 DOI: 10.1021/acsomega.2c06789] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The emergence of antibiotic resistance in microbial pathogens necessitates the development of alternative ways to combat the infections that arise. The current study used nanotechnology as an alternate technique to control virulence characteristics and biofilm development in Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, based on the acceptance and biocompatibility of the probiotic bacteria, we chose a lactic acid bacteria (LAB) for synthesizing two types of metallic nanoparticles (NPs) in this study. Using molecular techniques, the LAB strain C1 was isolated from Kimchi food samples and identified as Lactiplantibacillus sp. strain C1. The prepared supernatant from strain C1 was used to produce gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). C1-AuNPs and C1-AgNPs were characterized physiochemically using a variety of instruments. C1-AuNPs and C1-AgNPs had spherical shapes and sizes of 100.54 ± 14.07 nm (AuNPs) and 129.51 ± 12.31 nm (AgNPs), respectively. C1-AuNPs and C1-AgNPs were discovered to have high zeta potentials of -23.29 ± 1.17 and -30.57 ± 0.29 mV, respectively. These nanoparticles have antibacterial properties against several bacterial pathogens. C1-AuNPs and C1-AgNPs significantly inhibited the initial stage biofilm formation and effectively eradicated established mature biofilms of P. aeruginosa and S. aureus. Furthermore, when P. aeruginosa was treated with sub-MIC levels of C1-AuNPs and C1-AgNPs, their different virulence features were significantly reduced. Both NPs greatly inhibited the hemolytic activity of S. aureus. The inhibition of P. aeruginosa and S. aureus biofilms and virulence features by C1-AuNPs and C1-AgNPs can be regarded as viable therapeutic strategies for preventing infections caused by these bacteria.
Collapse
Affiliation(s)
- Min-Gyun Kang
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National
University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National
University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National
University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National
University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Viorica R, Pawel P, Płociński T, Gloc M, Dobrucka R, Kurzydłowski KJ, Boguslaw B. Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological method. NANOSCALE RESEARCH LETTERS 2023; 18:2. [PMID: 36723754 DOI: 10.1186/s11671-023-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 05/24/2023]
Abstract
The biological methods are considered as environmental-eco-friendly methods for the silver nanocomposites mediation and are widely used in this context. However, the biological methods go along with the relevant limitations, for instance simultaneous synthesis of silver chlorides (AgNCl) type during the AgNPs mediation process. Therefore, the present research is coming to summarize several aspects in this context. Firstly, to present the possible promotion of the sustainable development using bioactive source (e.g. milk) as a source of two different available and new lactobacillus strains (Lactobacillus curvatus and Lactobacillus fermentum). Secondly, to show the ability of the respective isolates to be involved in mediation of various biosilver nanocomposites ((Bio)NCs) synthesis. Moreover, at this stage, for the first time, two (Bio)NCs mediation methods, called "direct method" and "modified method", have been developed, thus three types (AgNPs, AgNCl and AgNP@AgNCl) of nanocomposites mediated by two different Lactobacillus isolates take place. The interdisciplinary approach included using several spectroscopic, microscopic, spectrometric and thermogravimetric methods demonstrated that all six synthesized nanoparticles (three AgNPs, AgNCl and AgNP@AgNCl types from each source) consist of complex structure including both metallic silver core as well as organic surface deposits. The spectrometric technique allowed to identification of the organics branching surface, naturally secreted by the used Lactobacillus isolates during the inoculation step, suggesting the presence of amino-acids sequences which are direct connected with the reduction of silver ion to metal silver, and subsequently with the formation of coated (Bio)NCs and nucleation process. Moreover, based on the obtained results, the mediation mechanism of each (Bio)NCs has been proposed, suggesting that the formation of AgNPs, AgNCl and AgNP@AgNCl types occurs in different manners with faster synthesis firstly of AgNCl, then of the AgNPs type. No differences between the (Bio)NCs synthesized by two different Lactobacillus isolates have been noticed indicating no discrepancies between metabolites secreted by the respective sources.
Collapse
Affiliation(s)
- Railean Viorica
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland.
| | - Pomastowski Pawel
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland
| | - Tomasz Płociński
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875, Poznan, Poland
| | - Krzysztof Jan Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, Ul. Wiejska 45C, 15-351, Białystok, Poland
| | - Buszewski Boguslaw
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| |
Collapse
|
4
|
Railean V, Buszewska-Forajta M, Rodzik A, Gołębiowski A, Pomastowski P, Buszewski B. In Vivo Efficacy of Wound Healing under External (Bio)AgNCs Treatment: Localization Case Study in Liver and Blood Tissue. Int J Mol Sci 2022; 24:ijms24010434. [PMID: 36613874 PMCID: PMC9820314 DOI: 10.3390/ijms24010434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
The present study reports on the in vivo application of (Bio)silver nanocomposite formulations (LBPC-AgNCs) on wound healing. Additionally, the present study emphasizes the limited uptake of silver by liver and blood tissues as well as the high viability of PBMCs following external LBPC-AgNCs treatment. The wound closure was monitored via stereoscopic microscope, a localization case study in liver and blood tissue was carried out by (Inductively Coupled Plasma-Mass Spectrometers (ICP/MS), and peripheral blood mononuclear cells (PMBC) viability was determined via flow cytometry technique. The silver formulation was applied externally on the site of the wound infection for a period of ten days. At the beginning of the experiment, a moderate decrease in body weight and atypical behavior was observed. However, during the last period of the experiment, no abnormal mouse behaviors were noticed. The wound-healing process took place in a gradual manner, presenting the regeneration effect at around 30% from the fourth day. From the seventh day, the wounds treated with the silver formulation showed 80% of the wound healing potential. The viability of PBMCs was found to be 97%, whereas the concentrations of silver in the liver and blood samples were determined to be 0.022 µg/g and 9.3 µg/g, respectively. Furthermore, the present report becomes a pilot study in transferring from in vitro to in vivo scale (e.g., medical field application) once LBPC-AgNCs have demonstrated a unique wound healing potential as well as a non-toxic effect on the liver and blood.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Gagarina 7, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Correspondence: (V.R.); (P.P.)
| | - Magdalena Buszewska-Forajta
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Torun, Poland
- Department of Plant Physiology, Genetics, and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland
| | - Agnieszka Rodzik
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| | - Adrian Gołębiowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
- Correspondence: (V.R.); (P.P.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland
| |
Collapse
|
5
|
Binding of silver ions to alpha-lactalbumin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Mateo EM, Jiménez M. Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics (Basel) 2022; 11:antibiotics11091205. [PMID: 36139984 PMCID: PMC9495113 DOI: 10.3390/antibiotics11091205] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The present review focuses on the potential use of silver nanoparticles in the therapy of diseases caused by antibiotic-resistant bacteria. Such bacteria are known as “superbugs”, and the most concerning species are Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus (methicillin and vancomycin-resistant), and some Enterobacteriaceae. According to the World Health Organization (WHO), there is an urgent need for new treatments against these “superbugs”. One of the possible approaches in the treatment of these species is the use of antibacterial nanoparticles. After a short overview of nanoparticle usage, mechanisms of action, and methods of synthesis of nanoparticles, emphasis has been placed on the use of silver nanoparticles (AgNPs) to combat the most relevant emerging resistant bacteria. The toxicological aspects of the AgNPs, both in vitro using cell cultures and in vivo have been reviewed. It was found that toxic activity of AgNPs is dependent on dose, size, shape, and electrical charge. The mechanism of action of AgNPs involves interactions at various levels such as plasma membrane, DNA replication, inactivation of protein/enzymes necessary, and formation of reactive oxygen species (ROS) leading to cell death. Researchers do not always agree in their conclusions on the topic and more work is needed in this field before AgNPs can be effectively applied in clinical therapy to combat multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Eva M. Mateo
- Department of Microbiology and Ecology, Faculty of Medicine and Odontology, Universitat de Valencia, E-46010 Valencia, Spain
- Correspondence:
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, Faculty of Biological Sciences, Universitat de Valencia, E-46100 Valencia, Spain
| |
Collapse
|
7
|
Ali G, Khan A, Shahzad A, Alhodaib A, Qasim M, Naz I, Rehman A. Phytogenic-mediated silver nanoparticles using Persicaria hydropiper extracts and its catalytic activity against multidrug resistant bacteria. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Swolana D, Wojtyczka RD. Activity of Silver Nanoparticles against Staphylococcus spp. Int J Mol Sci 2022; 23:ijms23084298. [PMID: 35457115 PMCID: PMC9028791 DOI: 10.3390/ijms23084298] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus epidermidis is a bacterium that is part of the human microbiota. It is most abundant on the skin, in the respiratory system and in the human digestive tract. Also, Staphylococcus aureus contributes to human infections and has a high mortality rate. Both of these bacterial species produce biofilm, a pathogenic factor increasing their resistance to antibiotics. For this reason, we are looking for new substances that can neutralize bacterial cells. One of the best-known substances with such effects are silver nanoparticles. They exhibited antibacterial and antibiofilm formation activity that depended on their size, shape and the concentration used. In this review, we presented the data related to the use of silver nanoparticles in counteracting bacterial growth and biofilm formation published in scientific papers between 2017 and 2021. Based on the review of experimental results, the properties of nanoparticles prompt the expansion of research on their activity.
Collapse
|
9
|
Kumar M, Upadhyay LSB, Kerketta A, Vasanth D. Extracellular Synthesis of Silver Nanoparticles Using a Novel Bacterial Strain Kocuria rhizophila BR-1: Process Optimization and Evaluation of Antibacterial Activity. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Gacem MA, Abd-Elsalam KA. Strategies for scaling up of green-synthesized nanomaterials: Challenges and future trends. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:669-698. [DOI: 10.1016/b978-0-12-824508-8.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Lactococcus spp., mediated MgO nanoparticles: Assessment of antimicrobial and anticancer activities against intestinal disorder. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Złoch M, Rodzik A, Pauter K, Szultka-Młyńska M, Rogowska A, Kupczyk W, Pomastowski P, Buszewski B. Problems with identifying and distinguishing salivary streptococci: a multi-instrumental approach. Future Microbiol 2021; 15:1157-1171. [PMID: 32954849 DOI: 10.2217/fmb-2020-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: The purpose of this study was to create an alternative protocol for the DNA-based identification of salivary microbiota focused on the distinguishing of Streptococcus species. Materials & methods: Salivary bacteria were identified using 16S rDNA sequencing and proteins and lipids profiling using MALDI-TOF/MS as well as FTIR analysis. Results: Most of the isolates belonged to streptococci - mostly the salivarious group indistinguishable by the molecular technique. In turn, MALDI analysis allowed for their fast and reliable classification. Although FTIR spectroscopy demonstrated the correct species classification, the spectra interpretation was time consuming and complicated. Conclusion: MALDI-TOF/MS demonstrated the biggest effectiveness in the identification and discrimination between the salivary streptococci, which could be easily incorporated in the workflow of routine microbiological laboratories.
Collapse
Affiliation(s)
- Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland
| | - Agnieszka Rodzik
- Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Katarzyna Pauter
- Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland.,Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Wojciech Kupczyk
- Department of General, Gastroenterological & Oncological Surgery, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland.,Department of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
14
|
Monedeiro F, Railean-Plugaru V, Monedeiro-Milanowski M, Pomastowski P, Buszewski B. Metabolic Profiling of VOCs Emitted by Bacteria Isolated from Pressure Ulcers and Treated with Different Concentrations of Bio-AgNPs. Int J Mol Sci 2021; 22:4696. [PMID: 33946710 PMCID: PMC8124631 DOI: 10.3390/ijms22094696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL-1. Headspace solid phase microextraction associated to gas chromatography-mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Viorica Railean-Plugaru
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Maciej Monedeiro-Milanowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Bogusław Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
15
|
Viorica RP, Pawel P, Boguslaw B. Use of Lactobacillus paracasei isolated from whey for silver nanocomposite synthesis: Antiradical and antimicrobial properties against selected pathogens. J Dairy Sci 2021; 104:2480-2498. [PMID: 33455769 DOI: 10.3168/jds.2020-19049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/16/2020] [Indexed: 01/25/2023]
Abstract
The present research emphasizes the use of safe, inexpensive, and available whey using Lactobacillus paracasei as a source in silver nanocomposite synthesis as an alternative bioactive agent for dairy and biomedical applications. Through the multiinstrumental approach used in this study based on spectroscopic and microscopic methods as well as spectrometric techniques, the characterization and evaluation of silver composites and their antimicrobial and antiradical properties were enabled. Synthesized silver nanocomposites have been found in form of nanocrystals, naturally coated by an organic surface with high antimicrobial and antiradical properties. Furthermore, this work also presents an innovative approach regarding the organic surface (naturally secreted by the bacteria isolated from whey) of the core of nanoparticles, which has already been explored and therefore is starting to supplement the scientific approach concerning biologically synthesized nanoparticles. This work also presents a general frame on the resistance subject by performing the trial interaction of commercially available antibiotics (kanamycin and ampicillin) with new bioactive compounds that can create novel knowledge on complementing their action. Moreover, synthesized silver nanocomposites have shown great antioxidant and antimicrobial effects against various foodborne pathogens from dairy products and drug resistance pathogens found in the medical area to rank on the top of mortality rate.
Collapse
Affiliation(s)
- Railean-Plugaru Viorica
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Pomastowski Pawel
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Buszewski Boguslaw
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
16
|
Microbial Mediated Synthesis of Silver Nanoparticles by Lactobacillus Plantarum TA4 and its Antibacterial and Antioxidant Activity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196973] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present study aimed to investigate the ability of Lactobacillus plantarum TA4 in tolerating Ag+ and its ability to produce silver nanoparticles (AgNPs). The biosynthesized AgNPs were characterized using UV–Visible spectroscopy (UV–Vis), dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and high-resolution transmission electron microscope (HR-TEM). The cell biomass of L. plantarum TA4 demonstrated the ability to tolerate Ag+ at a concentration of 2 mM, followed by the formation of AgNPs. This was confirmed by the visual observation of color changes and a presence of maximum UV–Vis absorption centered at 429 nm. HR-TEM analysis revealed that the AgNPs were spherical with an average size of 14.0 ± 4.7 nm, while the SEM-EDX analysis detected that the particles were primarily located on the cell membrane of L. plantarum TA4. Further, DLS analysis revealed that the polydispersity index (PDI) value of biosynthesized AgNPs was 0.193, implying the monodispersed characteristic of NPs. Meanwhile, the FTIR study confirmed the involvement of functional groups from the cell biomass that involved in the reduction process. Moreover, biosynthesized AgNPs exhibited antibacterial activity against Gram-positive and Gram-negative pathogens in a concentration-dependent manner. Furthermore, the antioxidant property of biosynthesized AgNPs that was evaluated using the DPPH assay showed considerable antioxidant potential. Results from this study provide a sustainable and inexpensive method for the production of AgNPs.
Collapse
|
17
|
Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 2020; 284:102246. [PMID: 32977142 DOI: 10.1016/j.cis.2020.102246] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The unique silver properties, especially in the form of nanoparticles (NPs), allow to utilize them in numerous applications. For instance, Ag NPs can be utilized for the production of electronic and solar energy harvesting devices, in advanced analytical techniques (NALDI, SERS), catalysis and photocatalysis. Moreover, the Ag NPs can be useful in medicine for bioimaging, biosensing as well as in antibacterial and anticancer therapies. The Ag NPs utilization requires comprehensive knowledge about their features regarding the synthesis approaches as well as exploitation conditions. Unfortunately, a large number of scientific articles provide only restricted information according to the objects under investigation. Additionally, the results could be affected by artifacts introduced with exploited equipment, the utilized technique or sample preparation stages. However, it is rather difficult to get information about problems, which may occur during the studies. Thus, the review provides information about novel trends in the Ag NPs synthesis, among which the physical, chemical, and biological approaches can be found. Basic information about approaches for the control of critical parameters of NPs, i.e. size and shape, was also revealed. It was shown, that the reducing agent, stabilizer, the synthesis environment, including trace ions, have a direct impact on the Ag NPs properties. Further, the capabilities of modern analytical techniques for Ag NPs and nanocomposites investigations were shown, among other microscopic (optical, TEM, SEM, STEM, AFM), spectroscopic (UV-Vis, IR, Raman, NMR, electron spectroscopy, XRD), spectrometric (MALDI-TOF MS, SIMS, ICP-MS), and separation (CE, FFF, gel electrophoresis) techniques were described. The limitations and possible artifacts of the techniques were mentioned. A large number of presented techniques is a distinguishing feature, which makes the review different from others. Finally, the physicochemical and biological properties of Ag NPs were demonstrated. It was shown, that Ag NPs features are dependent on their basic parameters, such as size, shape, chemical composition, etc. At the end of the review, the modern theories of the Ag NPs toxic mechanism were shown in a way that has never been presented before. The review should be helpful for scientists in their own studies, as it can help to prepare experiments more carefully.
Collapse
|
18
|
Pomastowski P, Król-Górniak A, Railean-Plugaru V, Buszewski B. Zinc Oxide Nanocomposites-Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4347. [PMID: 33007802 PMCID: PMC7579083 DOI: 10.3390/ma13194347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
This research presents, for the first time, the potential of the Lactobacillus paracasei LC20 isolated from sweet whey as a novel, effective and accessible source for post-cultured ZnO nanocomposites synthesis. The obtained nanocomposites were subjected to comprehensive characterization by a broad spectrum of instrumental techniques. Results of spectroscopic and microscopic analysis confirmed the hexagonal crystalline structure of ZnO in the nanometer size. The dispersion stability of the obtained nanocomposites was determined based on the zeta potential (ZP) measurements-the average ZP value was found to be -29.15 ± 1.05 mV in the 7-9 pH range. The ZnO nanocomposites (NCs) demonstrated thermal stability up to 130 °C based on the results of thermogravimetric TGA/DTG) analysis. The organic deposit on the nanoparticle surface was recorded by spectroscopic analysis in the infrared range (FT-IR). Results of the spectrometric study exhibited nanostructure-assisted laser desorption/ionization effects and also pointed out the presence of organic deposits and, what is more, allowed us to identify the specific amino acids and peptides present on the ZnO NCs surfaces. In this context, mass spectrometry (MS) data confirmed the nano-ZnO formation mechanism. Moreover, fluorescence data showed an increase in fluorescence signal in the presence of nanocomposites designed for potential use as, e.g., biosensors. Despite ZnO NCs' luminescent properties, they can also act as promising antiseptic agents against clinically relevant pathogens. Therefore, a pilot study on the antibacterial activity of biologically synthesized ZnO NCs was carried out against four strains (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa) by using MIC (minimal inhibitory concentration). Additionally, the colony forming units (CFU) assay was performed and quantified for all bacterial cells as the percentage of viable cells in comparison to a control sample (untreated culture) The nanocomposites were effective among three pathogens with MIC values in the range of 86.25-172.5 μg/mL and showed potential as a new type of, e.g., medical path or ointment formulation.
Collapse
Affiliation(s)
- Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
| | - Anna Król-Górniak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| |
Collapse
|
19
|
An enhanced antibacterial nanoflowers AgPW@PDA@Nisin constructed from polyoxometalate and nisin. J Inorg Biochem 2020; 212:111212. [PMID: 32920432 DOI: 10.1016/j.jinorgbio.2020.111212] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022]
Abstract
A new composite, AgPW@PDA@Nisin, with shell-core structure was successfully synthesized by a polydopamine (PDA) surfaced conjugated nisin (an antibacterial 34 amino acid polycyclic peptide) as shell and polyoxometalates (Ag3PW12O40 = AgPW) as core. The composite was characterized by the zeta potential, scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction analysis (XRD), fourier transform infrared (FT-IR). The AgPW@PDA@Nisin showed flower hierarchical structure and potential antibacterial activity against S. aureus ATCC29213. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of it were 4 and 32 μg/mL. AgPW@PDA@Nisin nanoflowers-induced bacterial death bears the characteristic of cell morphology, membrane integrity and permeability changing, nucleotide leakage. It indicated that the AgPW@PDA@Nisin interfere with the cell membrane, resulting in antibacterial activity against S. aureus. The cytotoxicity of the nanoflowers was low on HDF-a (human dermal fibroblasts) cells. A new class of hybrid inorganic-organic nanoflowers based on polyoxometalates and nisin with enhanced antibacterial properties can be developed for food preservation.
Collapse
|
20
|
Buszewski B, Rogowska A, Railean-Plugaru V, Złoch M, Walczak-Skierska J, Pomastowski P. The Influence of Different Forms of Silver on Selected Pathogenic Bacteria. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2403. [PMID: 32456144 PMCID: PMC7287713 DOI: 10.3390/ma13102403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
The application of silver nanoparticles as an antibacterial agent is becoming more common. Unfortunately, their effect on microorganisms is still not fully understood. Therefore, this paper attempts to investigate the influence of silver ions, biologically synthesized silver nanoparticles and nanoparticles functionalized with antibiotics on molecular bacteria profiles. The initial stage of research was aimed at the mechanism determination involved in antibiotics sorption onto nanoparticles' surface. For this purpose, the kinetics study was performed. Next, the functionalized formulations were characterized by Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and a zeta potential study. The results reveal that functionalization is a complex process, but does not significantly affect the stability of biocolloids. Furthermore, the antimicrobial assays, in most cases, have shown no increases in antibacterial activity after nanoparticle functionalization, which suggests that the functionalization process does not always generate the improved antimicrobial effect. Finally, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique was employed to characterize the changes in the molecular profile of bacteria treated with various antibacterial agents. The recorded spectra proved many differences in bacterial lipids and proteins profiles compared to untreated cells. In addition, the statistical analysis of recorded spectra revealed the strain-dependent nature of stress factors on the molecular profile of microorganisms.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
| | - Justyna Walczak-Skierska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
| |
Collapse
|
21
|
Tasca F, Antiochia R. Biocide Activity of Green Quercetin-Mediated Synthesized Silver Nanoparticles. NANOMATERIALS 2020; 10:nano10050909. [PMID: 32397267 PMCID: PMC7279244 DOI: 10.3390/nano10050909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
The development of new nanomaterials is gaining increasing attention due to their extensive applications in fields ranging from medicine to food and cultural heritage. Green nanoparticles provide advantages compared to conventional nanoparticles as their synthesis is environmentally-friendly and does not require the use of high temperatures, pressure, or toxic chemicals. In this paper, green silver nanoparticles (AgNPs) have been synthesized according to a new method using quercetin as a reducing agent at room temperature. The synthesized AgNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS) techniques and successively tested for biocide activity by studying their effects in the inhibition of bacterial growth. The results demonstrated that the smaller the AgNPs size, the greater their biocide activity. In particular, AgNPs with a diameter of 8 nm showed a minimum inhibitory concentration (MIC) value of 1.0 μg/mL against Streptococcus sp., Escherichia coli and Candida sp. microorganisms, while AgNPs with a larger diameter of about 20 nm were able to inhibit microbial of all selected pathogens at a higher MIC value of 2.5 μg/mL.
Collapse
Affiliation(s)
- Federico Tasca
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O´Higgins 3363, Santiago 9170022, Chile;
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.zale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria, characterization and antifungal activity. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Silver nanoparticles (AgNPs) are nanomaterials obtained by nanotechnology and due to their antimicrobial properties have a major importance in the control of various species of bacteria, fungi and viruses, with applications in medicine, cosmetics or food industry. The goal of the paper was to present the results of the research carried out on rapid extracellular biosynthesis of silver nanoparticles mediated by culture filtrate of lactic acid bacteria Lactobacillus sp. strain LCM5 and to assess the antimicrobial activity. Analysis of transmission electron microscopy (TEM) micrographs evidenced that the size of AgNPs synthesized using culture filtrates of lactic acid bacteria strain LCM5 ranged between 3 and 35 nm diameter, with an average particle size of 13.84±4.56 nm. AgNPs presented a good dispersion, approximately spherical shape, with parallel stripes certifying crystal structure. Frequency distribution revealed that preponderant dimensions of biosynthesized AgNPs were below 20 nm (94%). Antimicrobial activity of AgNPs was variable depending on both species and group of test microorganisms (bacteria or fungi) involved. Diameter of growth inhibition zone of Aspergillus flavus and Aspergillus ochraceus caused by silver nanoparticles synthesized by lactic acid bacteria strain LCM5 were similar (12.39 ± 0.61mm and 12.86 ± 0.78 mm) but significant stronger inhibition was registered against Penicillium expansum (15.87 ± 1.01mm). The effectiveness of biosynthesized silver nanoparticles was more pronounced against Gram-negative bacteria Chromobacterium violaceum with larger zone of inhibition (18 ± 0.69 mm diameter) when compared to those from fungi. Results recommend the silver nanoparticles biosynthesized using culture filtrate of the lactic acid bacteria Lactobacillus sp. strain LCM5 for biotechnological purposes, as promising antimicrobial agents.
Collapse
|
23
|
Rodzik A, Pomastowski P, Sagandykova GN, Buszewski B. Interactions of Whey Proteins with Metal Ions. Int J Mol Sci 2020; 21:E2156. [PMID: 32245108 PMCID: PMC7139725 DOI: 10.3390/ijms21062156] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Whey proteins tend to interact with metal ions, which have implications in different fields related to human life quality. There are two impacts of such interactions: they can provide opportunities for applications in food and nutraceuticals, but may lead to analytical challenges related to their study and outcomes for food processing, storage, and food interactions. Moreover, interactions of whey proteins with metal ions are complicated, requiring deep understanding, leading to consequences, such as metalloproteins, metallocomplexes, nanoparticles, or aggregates, creating a biologically active system. To understand the phenomena of metal-protein interactions, it is important to develop analytical approaches combined with studies of changes in the biological activity and to analyze the impact of such interactions on different fields. The aim of this review was to discuss chemistry of β-lactoglobulin, α-lactalbumin, and lactotransferrin, their interactions with different metal ions, analytical techniques used to study them and the implications for food and nutraceuticals.
Collapse
Affiliation(s)
- Agnieszka Rodzik
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Gulyaim N. Sagandykova
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (G.N.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
24
|
Grand Research Challenges for Sustainable Industrial Biotechnology. Trends Biotechnol 2019; 37:1042-1050. [DOI: 10.1016/j.tibtech.2019.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/23/2023]
|
25
|
Pryshchepa O, Sagandykova GN, Pomastowski P, Railean-Plugaru V, Król A, Rogowska A, Rodzik A, Sprynskyy M, Buszewski B. A New Approach for Spontaneous Silver Ions Immobilization onto Casein. Int J Mol Sci 2019; 20:ijms20163864. [PMID: 31398861 PMCID: PMC6720684 DOI: 10.3390/ijms20163864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
The work presents the kinetic and isotherm studies of silver binding on casein, which was carried out using batch sorption technique. Moreover, the influence of light irradiation on the process was shown. In order to investigate the mechanism of metal ions sorption by casein the zero, pseudo-first order kinetics and Weber-Morris intra-particle diffusion as well as Langmuir and Freundlich isotherm models were used. Furthermore, to specify more precisely, the possible binding mechanism, the spectroscopic (FT-IR—Fourier Transform Infrared Spectroscopy, Raman), spectrometric (MALDI-TOF MS—Matrix-Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry), microscopic (SEM—Scanning Electron Microscope, TEM/EDX—Transmission Electron Microscopy/Energy Dispersive X-ray detector) and thermal (TGA—Thermogravimetric Analysis, DTG—Derivative Thermogravimetry) analysis were performed. Kinetic study indicates that silver binding onto casein is a heterogeneous process with two main stages: initial rapid stage related to surface adsorption onto casein with immediate creation of silver nanoparticles and slower second stage of intraglobular diffusion with silver binding in chelated form (metalloproteins) or ion-exchange form. Spectroscopic techniques confirmed the binding process and MALDI-TOF MS analysis show the dominant contribution of the α-casein in the process. Moreover, the treatment of silver-casein complex by artificial physiological fluids was performed.
Collapse
Affiliation(s)
- Oleksandra Pryshchepa
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Gulyaim N Sagandykova
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland.
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Anna Król
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Agnieszka Rogowska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Agnieszka Rodzik
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
26
|
Rogowska A, Pomastowski P, Walczak J, Railean-Plugaru V, Rudnicka J, Buszewski B. Investigation of Zearalenone Adsorption and Biotransformation by Microorganisms Cultured under Cellular Stress Conditions. Toxins (Basel) 2019; 11:toxins11080463. [PMID: 31394832 PMCID: PMC6723818 DOI: 10.3390/toxins11080463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
The zearalenone binding and metabolization ability of probiotic microorganisms, such as lactic acid bacteria, Lactobacillus paracasei, Lactococcus lactis, and yeast Saccharomyces cerevisiae, isolated from food products, were examined. Moreover, the influence of cellular stress (induced by silver nanoparticles) and lyophilization on the effectiveness of tested microorganisms was also investigated. The concentration of zearalenone after a certain time of incubation with microorganisms was determined using high-performance liquid chromatography. The maximum sorption effectiveness for L. paracasei, L. lactis, and S. cerevisiae cultured in non-stress conditions was 53.3, 41.0, and 36.5%, respectively. At the same time for the same microorganisms cultured at cellular stress conditions, the maximum sorption effectiveness was improved to 55.3, 47.4, and 57.0%, respectively. Also, the effect of culture conditions on the morphology of the cells and its metabolism was examined using microscopic technique and matrix-assisted laser desorption ionization-time of flight mass spectrometry, respectively.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Torun, Poland
| | - Justyna Walczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Torun, Poland
| | - Joanna Rudnicka
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Torun, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Torun, Poland.
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
27
|
Complementarity of Matrix- and Nanostructure-Assisted Laser Desorption/Ionization Approaches. NANOMATERIALS 2019; 9:nano9020260. [PMID: 30769830 PMCID: PMC6410089 DOI: 10.3390/nano9020260] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/06/2023]
Abstract
In recent years, matrix-assisted laser desorption/ionization (MALDI) has become the main tool for the study of biological macromolecules, such as protein nano-machines, especially in the determination of their molecular masses, structure, and post-translational modifications. A key role in the classical process of desorption and ionization of the sample is played by a matrix, usually a low-molecular weight weak organic acid. Unfortunately, the interpretation of mass spectra in the mass range of below m/z 500 is difficult, and hence the analysis of low molecular weight compounds in a matrix-assisted system is an analytical challenge. Replacing the classical matrix with nanomaterials, e.g., silver nanoparticles, allows improvement of the selectivity and sensitivity of spectrometric measurement of biologically important small molecules. Nowadays, the nanostructure-assisted laser desorption/ionization (NALDI) approach complements the classic MALDI in the field of modern bioanalytics. In particular, the aim of this work is to review the recent advances in MALDI and NALDI approaches.
Collapse
|
28
|
|
29
|
|
30
|
Rogowska A, Pomastowski P, Złoch M, Railean-Plugaru V, Król A, Rafińska K, Szultka-Młyńska M, Buszewski B. The influence of different pH on the electrophoretic behaviour of Saccharomyces cerevisiae modified by calcium ions. Sci Rep 2018; 8:7261. [PMID: 29739986 PMCID: PMC5940755 DOI: 10.1038/s41598-018-25024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022] Open
Abstract
The effect of a different pH on Saccharomyces cerevisiae cells modified with calcium ions was investigated by the capillary zone electrophoresis technique. For the identification of the wild strain of S. cerevisiae, the ribosomal nucleic acid sequencing and internal transcribed spacer sequencing as well as spectrometric approach were applied. The potentiometric titration and Fourier transform infrared spectroscopy have shown the occurrence of active functional groups such as carboxyl, amine/hydroxyl, phosphate/hydrogen phosphate groups on the surface of native yeast cells. Moreover, the spectroscopy study in a medium infrared range was carried out to identify the functional groups of yeast cells that participate in calcium ions binding interaction. Furthermore, the microscopic and spectrometric analysis shows that the pH value of the calcium ions solution has a significant effect on the intensity yeast cells clumping. Additionally, the impact of yeast cell clumping on the electrophoretic behaviours was examined. The modification of surface functional groups by calcium ions significantly affected the efficiency of electrophoretic separation. However, these changes did not affect the accuracy of S. cerevisiae identification by MALDI equipment with BioTyper platform. These results form the analytical solution for coupling of electrophoresis and MALDI-TOF MS technique.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Michał Złoch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Anna Król
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Katarzyna Rafińska
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland. .,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland.
| |
Collapse
|
31
|
Physicochemical study of natural fractionated biocolloid by asymmetric flow field-flow fractionation in tandem with various complementary techniques using biologically synthesized silver nanocomposites. Anal Bioanal Chem 2018; 410:2837-2847. [PMID: 29616293 PMCID: PMC5887009 DOI: 10.1007/s00216-018-0967-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
Asymmetric flow field-flow fractionation coupled with use of ultraviolet–visible, multiangle light scattering (MALLS), and dynamic light scattering (DLS) detectors was used for separation and characterization of biologically synthesized silver composites in two liquid compositions. Moreover, to supplement the DLS/MALLS information, various complementary techniques such as transmission electron spectroscopy, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used. The hydrodynamic diameter and the radius of gyration of silver composites were slightly larger than the sizes obtained by transmission electron microscopy (TEM). Moreover, the TEM results revealed the presence of silver clusters and even several morphologies, including multitwinned. Additionally, MALDI-TOF MS examination showed that the particles have an uncommon cluster structure. It can be described as being composed of two or more silver clusters. The organic surface of the nanoparticles can modify their dispersion. We demonstrated that the variation of the silver surface coating directly influenced the migration rate of biologically synthesized silver composites. Moreover, this study proves that the fractionation mechanism of silver biocolloids relies not only on the particle size but also on the type and mass of the surface coatings. Because silver nanoparticles typically have size-dependent cytotoxicity, this behavior is particularly relevant for biomedical applications. Workflow for asymmetric flow field-flow fractionation of natural biologically synthesized silver nanocomposites ![]()
Collapse
|
32
|
Javaid A, Oloketuyi SF, Khan MM, Khan F. Diversity of Bacterial Synthesis of Silver Nanoparticles. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0496-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|