1
|
Soumeh EA, Nielsen TS, Hedemann MS, Curtasu MV. Integrated faecal microbiota and blood metabolic changes following different dietary zinc oxide levels in weaned piglets. Sci Rep 2025; 15:18346. [PMID: 40419596 DOI: 10.1038/s41598-025-03103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
This study investigated faecal microbial composition and blood metabolome profile of piglets fed different levels of supplementary zinc oxide (ZnO) after weaning. A dose-response study was conducted with four experimental diets containing 153 (D153), 1022 (D1022), 1601 (D1601), and 2407 (D2407) ppm zinc (Zn) in the feed. At the end of the trial, blood and faeces samples were obtained for analyses. Multivariate analysis of the blood metabolomics dataset and Principal Coordinate Analysis (PCoA) of faecal microbiota data showed that pigs receiving D2407 had a different metabolic and microbial profile to the other groups, whereas no differences were observed in pigs fed with D153, D1022, and D1601. The highest dietary Zn inclusion was associated with significant increase in the abundance of Clostridium sensu stricto, Terrisporobacter, Dorea, and Prevotellaceae_NK3B31_group and a decrease in relative abundances of Methanobrevibacter, Treponema, Megasphaera, and UCG 002 genera. Pearson's correlation analysis showed positive correlations between the abundance of Christensenellaceae R7-group with amino acids metabolism and production of microbial metabolites. The results suggest that only 2407 ppm Zn altered gut microbiota and modulated blood metabolic profile, which may impact the health status of piglets through specific microbial metabolites.
Collapse
Affiliation(s)
- Elham Assadi Soumeh
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton Campus, QLD, 4343, Australia.
| | - Tina Skau Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, Blichers Allé 20, Tjele, DK-8830, Denmark
| | - Mette Skou Hedemann
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, Blichers Allé 20, Tjele, DK-8830, Denmark
| | - Mihai Victor Curtasu
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, Blichers Allé 20, Tjele, DK-8830, Denmark
| |
Collapse
|
2
|
Uzoka UH, Fujikura JM, Polveiro RC, Caldeira JLA, Netto MJF, de Souza Menezes LM, Cesário CDC, Valente FL, Moreira MAS. Evaluation of chemical elements as potential biomarkers in the treatment of goat mastitis. Vet Res Commun 2025; 49:166. [PMID: 40232595 DOI: 10.1007/s11259-025-10733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
Mastitis significantly impacts dairy goat herds, causing substantial economic losses. The escalating challenge of multidrug-resistant bacteria has prompted research into alternative therapeutic strategies, including milk microbiota transfer and phytochemical treatments. This study evaluates milk chemical elements as potential biomarkers during alternative treatments for Staphylococcus warneri-induced goat mastitis. Seven female Parda Alpina goats were studied, with six receiving sequential treatments: milk microbiota transplantation (MMT) from the seventh goat (donor), two days later, intra-mammary 7-epiclusianone administration followed. The right udder of the six goats received the treatments and different time points while the left udder served as the control. Milk samples (n = 120) were analyzed using X-ray Energy Dispersive Spectroscopy (XEDS) to monitor trace and macro elements. Milk elemental level variations were observed across both treatments. Notable changes included increased iron levels from MMT initiation, reduced copper and zinc levels during MMT, and decreased sodium levels following 7-epiclusianone treatment. These results suggest zinc, copper, iron, and sodium could serve as potential biomarkers for monitoring mastitis treatment effectiveness. Additional research with broader and more diverse sample populations would help validate these findings and explore the method's broader applicability.
Collapse
Affiliation(s)
- Ugonna Henry Uzoka
- Department of Veterinary, Laboratory of Bacterial Diseases, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Veterinary Medicine, Michael Okpara University of Agriculture Umudike, Umuahia, Nigeria
| | - Juliana Miwa Fujikura
- Department of Veterinary, Laboratory of Bacterial Diseases, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Richard Costa Polveiro
- Department of Veterinary, Laboratory of Bacterial Diseases, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Faculty of Veterinary Medicine and Zootecnia, Federal University of Uberlandia, Uberlandia, Brazil
| | | | - Maria Júlia Fernandes Netto
- Department of Veterinary, Laboratory of Bacterial Diseases, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Luísa Maria de Souza Menezes
- Department of Veterinary, Laboratory of Bacterial Diseases, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
3
|
Chen M, Pan J, Song Y, Liu S, Sun P, Zheng X. Effect of inulin supplementation in maternal fecal microbiota transplantation on the early growth of chicks. MICROBIOME 2025; 13:98. [PMID: 40235010 PMCID: PMC11998286 DOI: 10.1186/s40168-025-02084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/08/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Fecal microbial transplantation (FMT) is an important technology for treating diarrhea and enteritis. Additionally, FMT has been applied to improve productivity, alter abnormal behavior, relieve stress, and reduce burdens. However, some previous studies have reported that FMT may cause stress in acceptor animals. Inulin, a prebiotic, can promote growth, enhance immunity, and balance the gut microbiota. Currently, there are limited reports on the effects of combining FMT with inulin on early growth performance in chicks. RESULTS In this study, a total of 90 1-day-old chicks were randomly divided into the control group (CON), FMT group, and inulin group (INU). The CON group was fed a basic diet, whereas the FMT and INU groups received fecal microbiota transplantation and FMT with inulin treatment, respectively. Compared with the FMT and CON groups, the INU group presented significantly greater average daily gain (ADG) and average daily feed intake (ADFI) values (P < 0.05). However, the organ indices did not significantly change (P > 0.05). The ratio of the villi to crypts in the ileum significantly differed at 21 and 35 days (P < 0.05). In addition, the cecum concentrations of acetic acid and butyric acid significantly increased in the INU group (P < 0.05). In addition, gut inflammation and serum inflammation decreased in the INU group, and immune factors increased after inulin supplementation. (P < 0.05). Firmicutes and Bacteroidetes were the dominant phyla, with more than 90% of all sequences being identified as originating from these two phyla. Inulin supplementation during mother-sourced microbial transplantation significantly increased the abundance of Rikenella, Butyricicoccus, and [Ruminococcus], which contributed positively to the promotion of early intestinal health and facilitated the early growth of chicks. CONCLUSION The results of this study suggest that inulin supplementation in maternal fecal microbiota transplantation can effectively promote early growth and probiotic colonization, which favors the health of chicks. Video Abstract.
Collapse
Affiliation(s)
- Mengxian Chen
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, 130118, China
| | - Junxing Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Shenao Liu
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China
| | - Peng Sun
- College of Life and Health, Dalian University, No. 10 Xuefu Street, Economic and Technological Development Zone, Dalian, 116622, China.
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China.
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
4
|
Schulte NB, Reznik N, Chacón KN, Fass D, Franz KJ. Simultaneous Binding of Cu + and Cu 2+ at the Two-Tiered Copper Binding Site of the Intestinal Mucin MUC2. Inorg Chem 2025; 64:5568-5578. [PMID: 40056184 DOI: 10.1021/acs.inorgchem.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Mucin glycoproteins are secreted from epithelial goblet cells to create protective barriers lining the intestines, stomach, lungs, and other body surfaces. MUC2 is the primary glycoprotein secreted in the intestine and is essential for intestinal homeostasis. The D1 segment of the MUC2 N-terminal region was recently shown to bind Cu2+ and Cu+ separately in a unique two-tiered binding site. Copper is an essential metal acquired through diet for cells and enzymes to function properly, but little is known about how it is handled in the digestive tract. With both oxidation states of Cu in the intestine, we asked how the binding of Cu+ to MUC2 D1 impacts the binding of Cu2+ and vice versa. Here, we use a combination of competition titrations, electron paramagnetic spectroscopy, and X-ray absorption spectroscopy to characterize the physical properties of Cu2+ and Cu+ binding to MUC2 D1 at pH values relevant to the intestine. Our data show that simultaneous yet noncooperative binding of Cu2+ and Cu+ is possible and further reveal new insights into the pH dependence and plasticity of the Cu2+ and Cu+ binding sites. These results inspire interesting questions about the functional roles of MUC2 Cu handling in the intestinal tract.
Collapse
Affiliation(s)
- Natalie B Schulte
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Nava Reznik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kelly N Chacón
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katherine J Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Galiot L, Audet I, Ouattara B, Bissonnette N, Talbot G, Raymond F, Deschênes T, Lessard M, Lapointe J, Guay F, Matte JJ. Effect of Neonatal Interventions with Specific Micronutrients and Bovine Colostrum on Micronutrient and Oxidative Statuses and on Gut Microbiota in Piglets from Birth to Post-Weaning Period. Vet Sci 2025; 12:151. [PMID: 40005911 PMCID: PMC11860533 DOI: 10.3390/vetsci12020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to determine the impact of supplementations of copper, vitamins A and D (ADCU), and a bovine colostrum extract (BC) on the micronutrient status, antioxidant status, and intestinal microbiota of piglets until the post-weaning period. Twenty-three sows were fed conventional gestation and lactation diets, and twenty-four sows were fed conventional diets supplemented with ADCU. For each litter, all piglets received one of four treatments during lactation: no supplementation; ADCU; BC; and ADCU + BC. Within each litter, one low (LW) and one high birth weight (HW) piglet were euthanized before and after weaning to collect liver and intestinal samples. Serum vitamin D, liver retinol, and liver Cu were greater in ADCU piglets (p < 0.01), mostly before weaning. After weaning, liver Cu decreased markedly with a drop of 75% in all treatments, despite high levels of Cu in their post-weaning diets. The antioxidant status of piglets was not globally altered by treatments (p > 0.05). For microbiota composition, sow supplementation increased (p < 0.01) richness in bacterial species in the piglet colon, either before or shortly after weaning. Short-chain fatty acids in caecal digesta were increased by sow supplementation in LW piglets before weaning at 16 days of age (p < 0.05). In conclusion, oral supplementations to piglets increased postnatal micronutrient statuses during lactation, but this did not generally persist after weaning. Treatments to sows or piglets did not improve the response of piglets to oxidative stress, but supplementation to sows favoured gut microbiota diversity, particularly in LW piglets.
Collapse
Affiliation(s)
- Lucie Galiot
- Département des Sciences Animales, Université Laval, Ville de Québec, QC G1V 0A6, Canada; (L.G.); (F.G.)
| | - Isabelle Audet
- Agriculture et Agroalimentaire Canada, Centre de Recherche et de Développement de Sherbrooke, Sherbrooke, QC J1M 0C8, Canada; (I.A.); (B.O.); (N.B.); (G.T.); (M.L.); (J.L.)
| | - Bazoumana Ouattara
- Agriculture et Agroalimentaire Canada, Centre de Recherche et de Développement de Sherbrooke, Sherbrooke, QC J1M 0C8, Canada; (I.A.); (B.O.); (N.B.); (G.T.); (M.L.); (J.L.)
- Biological Sciences, Animal Biology, Université Peleforo GON COULIBALY, Korhogo 1328, Côte d’Ivoire
| | - Nathalie Bissonnette
- Agriculture et Agroalimentaire Canada, Centre de Recherche et de Développement de Sherbrooke, Sherbrooke, QC J1M 0C8, Canada; (I.A.); (B.O.); (N.B.); (G.T.); (M.L.); (J.L.)
| | - Guylaine Talbot
- Agriculture et Agroalimentaire Canada, Centre de Recherche et de Développement de Sherbrooke, Sherbrooke, QC J1M 0C8, Canada; (I.A.); (B.O.); (N.B.); (G.T.); (M.L.); (J.L.)
| | - Frédéric Raymond
- École de Nutrition, Centre Nutrition, Santé et Société (NUTRISS), et Institut de la Nutrition et des Aliments Fonctionnels (INAF), Université Laval, Ville de Québec, QC G1V 0A6, Canada; (F.R.); (T.D.)
| | - Thomas Deschênes
- École de Nutrition, Centre Nutrition, Santé et Société (NUTRISS), et Institut de la Nutrition et des Aliments Fonctionnels (INAF), Université Laval, Ville de Québec, QC G1V 0A6, Canada; (F.R.); (T.D.)
| | - Martin Lessard
- Agriculture et Agroalimentaire Canada, Centre de Recherche et de Développement de Sherbrooke, Sherbrooke, QC J1M 0C8, Canada; (I.A.); (B.O.); (N.B.); (G.T.); (M.L.); (J.L.)
| | - Jérôme Lapointe
- Agriculture et Agroalimentaire Canada, Centre de Recherche et de Développement de Sherbrooke, Sherbrooke, QC J1M 0C8, Canada; (I.A.); (B.O.); (N.B.); (G.T.); (M.L.); (J.L.)
| | - Frédéric Guay
- Département des Sciences Animales, Université Laval, Ville de Québec, QC G1V 0A6, Canada; (L.G.); (F.G.)
| | - Jean Jacques Matte
- Agriculture et Agroalimentaire Canada, Centre de Recherche et de Développement de Sherbrooke, Sherbrooke, QC J1M 0C8, Canada; (I.A.); (B.O.); (N.B.); (G.T.); (M.L.); (J.L.)
| |
Collapse
|
6
|
Du M, Liu X, Ji X, Wang Y, Liu X, Zhao C, Jin E, Gu Y, Wang H, Zhang F. Berberine alleviates enterotoxigenic Escherichia coli-induced intestinal mucosal barrier function damage in a piglet model by modulation of the intestinal microbiome. Front Nutr 2025; 11:1494348. [PMID: 39877539 PMCID: PMC11772193 DOI: 10.3389/fnut.2024.1494348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Enterotoxic Escherichia coli (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance. Berberine, categorized as a substance with similarities in "medicine and food," has been used in China for hundreds of years to treat gastrointestinal disorders and bacteria-induced diarrhea. This study investigated the preventive effect of dietary berberine on the intestinal mucosal barrier induced by ETEC and the microbial community within the intestines of weaned piglets. Methods Twenty-four piglets were randomly divided into four groups. Piglets were administered either a standard diet or a standard diet supplemented with berberine at concentrations of 0.05 and 0.1%. and orally administered ETEC or saline. Results Dietary supplementation with berberine reduced diamine oxidase, d-lactate, and endotoxin levels in piglets infected with ETEC (P < 0.05). Berberine increased jejunal villus height, villus/crypt ratio, mucosal thickness (P < 0.05), and goblet cell numbers in the villi and crypts (P < 0.05). Furthermore, berberine increased the optical density of mucin 2 and the mucin 2, P-glycoprotein, and CYP3A4 mRNA expression levels (P < 0.05). Berberine increased the expressions of zonula occludins-1 (ZO-1), zonula occludins-2 (ZO-2), Claudin-1, Occludin, and E-cadherin in the ileum (P < 0.05). Moreover, berberine increased the expression of BCL2, reduced intestinal epithelial cell apoptosis (P < 0.05) and decreased the expression of BAX and BAK in the duodenum and jejunum, as well as that of CASP3 and CASP9 in the duodenum and ileum (P < 0.05). Berberine decreased the expression of IL-1β, IL-6, IL-8, TNF-α, and IFN-γ (P < 0.05) and elevated total volatile fatty acids, acetic acid, propionic acid, valeric acid, and isovaleric acid concentrations (P < 0.05). Notably, berberine enhanced the abundance of beneficial bacteria including Enterococcus, Holdemanella, Weissella, Pediococcus, Muribaculum, Colidextribacter, Agathobacter, Roseburia, Clostridium, Fusicatenibacter, and Bifidobacterium. Simultaneously, the relative abundance of harmful and pathogenic bacteria, such as Prevotella, Paraprevotella, Corynebacterium, Catenisphaera, Streptococcus, Enterobacter, and Collinsella, decreased (P < 0.05). Discussion Berberine alleviated ETEC-induced intestinal mucosal barrier damage in weaned piglets models. This is associated with enhancement of the physical, chemical, and immune barrier functions of piglets by enhancing intestinal microbiota homeostasis.
Collapse
Affiliation(s)
- Min Du
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xinran Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yue Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Hongyu Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| |
Collapse
|
7
|
Peng Z, Liao Y, Yang W, Liu L. Metal(loid)-gut microbiota interactions and microbiota-related protective strategies: A review. ENVIRONMENT INTERNATIONAL 2024; 192:109017. [PMID: 39317009 DOI: 10.1016/j.envint.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Human exposure to metal(loid)s has dramatically increased over the past five decades, which has triggered public concern worldwide. Recently, gut microbiota has been considered a target for metal(loid)s, and some literature has reviewed the interactions between gut microbiota and heavy metal(loid)s (HMs) with high toxicity. However, whether there is an interaction between gut microbiota and metal(loid)s with essential roles or some normal functions are far from clear to date. Importantly, in addition to traditional probiotics that have been clarified to alleviate the adverse effect of HMs on the body, some novel probiotics, prebiotics, synbiotics, and postbiotics may also exhibit comparable or even better abilities of metal(loid) remediation. In this review, we mainly outline and discuss recent research findings on the metal(loid)-gut microbiota interactions and microbiota-related protective strategies.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
8
|
Jin W, Li B, Wang L, Zhu L, Chai S, Hou R. The causal association between gut microbiota and postpartum depression: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1415237. [PMID: 39286351 PMCID: PMC11402819 DOI: 10.3389/fmicb.2024.1415237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background An escalating body of clinical trials and observational studies hints at a plausible link between gut flora and postpartum depression (PPD). The definitive causal dynamics between these two entities remain shrouded in ambiguity. Therefore, in this study, we employed the two-sample Mendelian randomization approach to ascertain the causal link between gut microbiota and PPD. Methods Summary-level GWAS data related to the human gut microbiota were obtained from the international consortium MiBioGen and the Dutch Microbiome Project (species). For PPD, GWAS data were derived from the FinnGen biobank, consisting 57,604 cases and 596,601 controls. The inverse variance weighted method (IVW) as the cornerstone of our analytical approach. Subsequent to this, a comprehensive suite of tests for pleiotropy and heterogeneity were conducted to ensure the reliability and robustness of our findings. Results We identified 12 bacterial taxa associated with the risk of PPD. Veillonellaceae, Ruminococcaceae UCG 011, Bifidobacterium adolescentis, Paraprevotella clara, Clostridium leptum, Eubacterium siraeum, Coprococcus catus exhibited an inversely associated with the risk of PPD. Alphaproteobacteria, Roseburia, FamilyXIIIAD3011group, Alistipes onderdonkii, Bilophila wadsworthia showed a positive correlation with the risk of PPD. Limitations The GWAS data derived from the MiBioGen consortium, DMP, and FinnGen consortium, may introduce selection bias. Moreover, the data primarily originates from European populations, hence extrapolating these results to diverse populations should be approached with caution. The etiological factors behind PPD remain enigmatic, alluding to the existence of potential undisclosed confounders. Conclusion Based on this MR analysis, we found a causal relationship between certain gut microbial communities and PPD. Future clinical studies can further explore the treatment of PPD through the combined use of microorganisms. This not only offers insights into the pathogenesis of PPD but also lays the foundation for utilizing gut microbiota as biotherapeutics in treating neurological disorders.
Collapse
Affiliation(s)
- Wenjun Jin
- Medical Department, Sias University, Zhengzhou, Henan, China
| | - Bo Li
- Medical Department, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
| | - Lijun Wang
- Medical Department, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
| | - Lin Zhu
- Medical Department, Sias University, Zhengzhou, Henan, China
| | - Songhao Chai
- Ultrasound Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Hou
- Medical Department, Sias University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Guo T, Zhang Q, Wang X, Xu X, Wang Y, Wei L, Li N, Liu H, Hu L, Zhao N, Xu S. Targeted and untargeted metabolomics reveals meat quality in grazing yak during different phenology periods on the Qinghai-Tibetan Plateau. Food Chem 2024; 447:138855. [PMID: 38520902 DOI: 10.1016/j.foodchem.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
Yak meat is more popular among consumers because of its high nutritional value, but little attention has been paid to its meat quality, which is affected by different phenology periods grass. We hypothesized that seasonal variations in grass composition influenced the ruminal bacteria community, and eventually affected the meat quality of yaks. This study aims to investigate the relationship of meat quality in grazing yak as well as the key rumen bacteria using targeted and untargeted metabolomics and 16S rRNA during different phenology periods. The main three altered metabolic pathways in grazing yak, including amino acids biosynthesis, glutathione metabolism, and fatty acids biosynthesis, were found in the grass period (GP) group compared to the regreen period (RP) and hay period (HP) groups. The GP group had higher concentrations of flavor amino acids (FAA), polyunsaturated fatty acids (PUFA), and a lower ratio of n-6/n-3 compared with the RP group. Correlation analysis results showed that Rikenellaceae_RC9_gut_group was positively correlated with fatty acids and lipid metabolites, which might be involved in lipid metabolism. Pediococcus had a positive correlation with biological peptides, which could be involved in the metabolism of bioactive compounds. In conclusion, grass in different phenology periods was associated with modified amino acids and fatty acids composition of yak meat as well as altered regulation of biological pathways, which was correlated with changes in rumen bacterial communities.
Collapse
Affiliation(s)
- Tongqing Guo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xianli Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Wei
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
10
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
11
|
Fernandez M, Thompson J, Calle A. Novel feed additive delivers antimicrobial copper and influences fecal microbiota in pigs. Microbiol Spectr 2024; 12:e0428023. [PMID: 38629838 PMCID: PMC11237605 DOI: 10.1128/spectrum.04280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/18/2024] [Indexed: 06/06/2024] Open
Abstract
Dehydrated alginate beads formulated with copper were synthesized and tested as a feed additive to influence the microbiota in finishing pigs and potentially use them as a preharvest intervention to reduce fecal pathogen shedding. The efficacy of the copper beads was tested in vitro and in vivo. In vitro, Salmonella was significantly (P < 0.05) reduced when in contact with the copper beads solution for up to 6 h, with a 5.4 log CFU/mL reduction over the first hour. Chemical analysis of the soak solutions demonstrated the beads delivered their copper payload gradually over the same period the bactericidal effect was observed. For the in vivo experiments, pigs (n = 48) supplemented with the copper beads experienced significant shifts in their microbiota. Enterobacteriaceae (EB) increased by 1.07 log CFU/g (P < 0.05), while lactic acid bacteria (LAB) decreased by 1.22 log CFU/g (P < 0.05) during the treatment period. When beads were removed from the feed, EB and LAB concentrations returned to baseline, indicating copper beads led to measurable and significant changes in microbial loads. Fecal microbiome analysis conducted to explore additional changes by copper bead supplementation demonstrated that, at the phylum level, there was an increase in Firmicutes, Euryarchaeota, and Acidobacteriota, while at the genus level, an increase in Methanosphaera and Pseudomonas was observed. Measures of copper in swine feces showed values ~20 times higher in the treatment group than in the control group during the treatment period, suggesting that dehydrated alginate copper beads were effective in delivering antimicrobial copper to the animal hindgut.IMPORTANCECopper has long been known to have antimicrobial properties. However, when water-soluble salts are fed to livestock, the copper may rapidly dissolve in gastric contents and fail to reach the gut. Here, specially formulated copper beads are seamlessly incorporated into feed and allow copper to remain longer in the gastrointestinal tract of animals, reach deep into both the foregut and hindgut, and shift microbial populations. The technology delivers antimicrobial copper to the animal hindgut and potentially reduces pathogenic microorganisms before animal slaughter.
Collapse
Affiliation(s)
- Mariana Fernandez
- Texas Tech University, School of Veterinary Medicine, Amarillo, Texas, USA
| | - Jonathan Thompson
- Texas Tech University, School of Veterinary Medicine, Amarillo, Texas, USA
| | - Alexandra Calle
- Texas Tech University, School of Veterinary Medicine, Amarillo, Texas, USA
| |
Collapse
|
12
|
Deng J, Zhang F, Fan H, Zheng Y, Zhao C, Ren M, Jin E, Gu Y. Effects of Plant Polysaccharides Combined with Boric Acid on Digestive Function, Immune Function, Harmful Gas and Heavy Metal Contents in Faeces of Fatteners. Animals (Basel) 2024; 14:1515. [PMID: 38891562 PMCID: PMC11171036 DOI: 10.3390/ani14111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The experiment aimed to investigate the effects of plant polysaccharides combined with boric acid on digestive function, immune function and harmful gas and heavy metal contents in the faeces of fatteners. For this study, 90 healthy crossbred fatteners were selected and randomly divided into five groups: the control group was fed with a basal diet (Con); experimental group I was fed with basal diet + 40 mg/kg boric acid (BA); experimental group II was fed with basal diet + 40 mg/kg boric acid + 400 mg/kg Astragalus polysaccharides (BA+APS); experimental group III was fed with basal diet + 40 mg/kg boric acid + 200 mg/kg Ganoderma lucidum polysaccharides (BA+GLP); and experimental group IV was fed with basal diet + 40 mg/kg boric acid + 500 mg/kg Echinacea polysaccharides (BA+EPS). Compared with Con, the average daily gain (ADG), the trypsin activities in the duodenum and jejunum, the IL-2 levels in the spleen, the T-AOC activities and GSH-Px contents in the lymph node of fattening were increased in the BA group (p < 0.05), but malondialdehyde content in the lymph and spleen, and the contents of NH3, H2S, Hg, Cu, Fe and Zn in the feces and urine were decreased (p < 0.05). Compared with the BA, the ADG, gain-to-feed ratio (G/F), the trypsin and maltase activities in the duodenum and jejunum were increased in the BA+APS (p < 0.05), and the T-SOD activities in the spleen and T-AOC activities in the lymph node were also increased (p < 0.05), but the H2S level was decreased in the feces and urine (p < 0.05). Compared with the BA, the ADG, G/F and the trypsin and maltase activities in the duodenum were increased in the BA+GLP and BA+EPS (p < 0.05), the activities of maltase and lipase in the duodenum of fatteners in the BA+GLP and the activities of trypsin, maltase and lipase in the BA+EPS were increased (p < 0.05). Gathering everything together, our findings reveal that the combined addition of boric acid and plant polysaccharides in the diet of fatteners synergistically improved their growth performance and immune status. That may be achieved by regulating the activity of intestinal digestive enzymes, improving the antioxidant function and then promoting the digestion and absorption of nutrients. Furthermore, the above results reduce the emission of harmful gases and heavy metals in feces and urine.
Collapse
Affiliation(s)
- Juan Deng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Haoran Fan
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Yuxuan Zheng
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (J.D.); (F.Z.); (H.F.); (Y.Z.); (C.Z.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
13
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 PMCID: PMC11932151 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
14
|
Wen Y, Yang L, Wang Z, Liu X, Gao M, Zhang Y, Wang J, He P. Blocked conversion of Lactobacillus johnsonii derived acetate to butyrate mediates copper-induced epithelial barrier damage in a pig model. MICROBIOME 2023; 11:218. [PMID: 37777765 PMCID: PMC10542248 DOI: 10.1186/s40168-023-01655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND High-copper diets have been widely used to promote growth performance of pigs, but excess copper supplementation can also produce negative effects on ecosystem stability and organism health. High-copper supplementation can damage the intestinal barrier and disturb the gut microbiome community. However, the specific relationship between high-copper-induced intestinal damage and gut microbiota or its metabolites is unclear. OBJECTIVE Using fecal microbiota transplantation and metagenomic sequencing, responses of colonic microbiota to a high-copper diet was profiled. In addition, via comparison of specific bacteria and its metabolites rescue, we investigated a network of bacteria-metabolite interactions involving conversion of specific metabolites as a key mechanism linked to copper-induced damage of the colon. RESULTS High copper induced colonic damage, Lactobacillus extinction, and reduction of SCFA (acetate and butyrate) concentrations in pigs. LefSe analysis and q-PCR results confirmed the extinction of L. johnsonii. In addition, transplanting copper-rich fecal microbiota to ABX mice reproduced the gut characteristics of the pig donors. Then, L. johnsonii rescue could restore decreased SCFAs (mainly acetate and butyrate) and colonic barrier damage including thinner mucus layer, reduced colon length, and tight junction protein dysfunction. Given that acetate and butyrate concentrations exhibited a positive correlation with L. johnsonii abundance, we investigated how L. johnsonii exerted its effects by supplementing acetate and butyrate. L. johnsonii and butyrate administration but not acetate could correct the damaged colonic barrier. Acetate administration had no effects on butyrate concentration, indicating blocked conversion from acetate to butyrate. Furthermore, L. johnsonii rescue enriched a series of genera with butyrate-producing ability, mainly Lachnospiraceae NK4A136 group. CONCLUSIONS For the first time, we reveal the microbiota-mediated mechanism of high-copper-induced colonic damage in piglets. A high-copper diet can induce extinction of L. johnsonii which leads to colonic barrier damage and loss of SCFA production. Re-establishment of L. johnsonii normalizes the SCFA-producing pathway and restores colonic barrier function. Mechanistically, Lachnospiraceae NK4A136 group mediated conversion of acetate produced by L. johnsonii to butyrate is indispensable in the protection of colonic barrier function. Collectively, these findings provide a feasible mitigation strategy for gut damage caused by high-copper diets. Video Abstract.
Collapse
Affiliation(s)
- Yang Wen
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Luqing Yang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Meng Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
15
|
Hu H, Zhu H, Yang H, Yao W, Zheng W. In vitro fermentation properties of magnesium hydride and related modulation effects on broiler cecal microbiome and metabolome. Front Microbiol 2023; 14:1175858. [PMID: 37621394 PMCID: PMC10445219 DOI: 10.3389/fmicb.2023.1175858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Magnesium hydride (MGH), a highly promising hydrogen-producing substance/additive for hydrogen production through its hydrolysis reaction, has the potential to enhance broiler production. However, before incorporating MGH as a hydrogen-producing additive in broiler feed, it is crucial to fully understand its impact on microbiota and metabolites. In vitro fermentation models provide a fast, reproducible, and direct assessment tool for microbiota metabolism and composition. This study aims to investigate the effects of MGH and coated-magnesium hydride (CMG) on fermentation characteristics, as well as the microbiota and metabolome in the culture of in vitro fermentation using cecal inocula from broilers. After 48 h of incubation, it was observed that the presence of MGH had a significant impact on various factors. Specifically, the content of N-NH3 decreased, while the total hydrogen gas and total SCFAs increased. Furthermore, the presence of MGH promoted the abundance of SCFA-producing bacteria such as Ruminococcus, Blautia, Coprobacillus, and Dysgonomonas. On the other hand, the presence of CMG led to an increase in the concentration of lactic acid, acetic acid, and valeric acid. Additionally, CMG affected the diversity of microbiota in the culture, resulting in an enrichment of the relative abundance of Firmicutes, as well as genera of Lactobacillus, Coprococcus, and Eubacterium. Conversely, the relative abundance of the phylum Proteobacteria and pathogenic bacteria Shigella decreased. Metabolome analysis revealed that MGH and CMG treatment caused significant changes in 21 co-regulated metabolites, primarily associated with lipid, amino acid, benzenoids, and organooxygen compounds. Importantly, joint correlation analysis revealed that MGH or CMG treatments had a direct impact on the microbiota, which in turn indirectly influenced metabolites in the culture. In summary, the results of this study suggested that both MGH and coated-MGH have similar yet distinct positive effects on the microbiota and metabolites of the broiler cecal in an in vitro fermentation model.
Collapse
Affiliation(s)
- Heng Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - He Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Yang
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Yao S, Zhao Y, Chen H, Sun R, Chen L, Huang J, Yu Z, Chen S. Exploring the Plasticity of Diet on Gut Microbiota and Its Correlation with Gut Health. Nutrients 2023; 15:3460. [PMID: 37571397 PMCID: PMC10420685 DOI: 10.3390/nu15153460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Dietary habits have been proven to help alter the composition of gut microbiota, and exploring the impact of nutritional patterns on gut microbiota changes can help protect gut health. However, few studies have focused on the dietary impact on the gut microbiota over an experimental timeframe. In this study, 16S rRNA gene sequencing was employed to investigate the gut microbiota of mice under different dietary patterns, including AIN-93G diet (Control), high protein diet (HPD), high fiber diet (HFD), and switch diet (Switch). The alpha diversity of the HPD group significantly decreased, but HFD can restore this decline. During HPD, some genera were significantly upregulated (e.g., Feacalibaculum) and downregulated (e.g., Parabacteroides). However, after receiving HFD, other genera were upregulated (e.g., Akkermansia) and downregulated (e.g., Lactobacillus). In addition, the interaction between pathogenic bacteria was more pronounced during HPD, while the main effect was probiotics during HFD. In conclusion, the plasticity exhibited by the gut microbiota was subject to dietary influences, wherein disparate dietary regimens hold pivotal significance in upholding the well-being of the host. Therefore, our findings provide new ideas and references for the relationship between diets and gut microbiota.
Collapse
Affiliation(s)
- Siqi Yao
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha 410008, China;
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Yiming Zhao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410078, China; (H.C.); (J.H.)
| | - Ruizheng Sun
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410078, China; (H.C.); (J.H.)
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410078, China; (Y.Z.); (R.S.); (L.C.)
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
17
|
Zhang F, Yao W, Ji X, Liu X, Jin E. Ionomics-metabolome association analysis as a new approach to the impact of dietary copper levels in suckling piglets model. Sci Rep 2023; 13:1164. [PMID: 36670179 PMCID: PMC9859785 DOI: 10.1038/s41598-023-28503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Ionomics-metabolomics association analysis is a novel method to elucidating the potential mechanisms underlying the effects of dietary copper on the overall health parameters of suckling piglets model. Few studies have elucidated the relationship between the changes of ionic and metabolic homeostasis responses to dietary copper level. The growth performance data was obtained from 180 suckling piglets which access to different copper levels: 6 (low copper diet, LC), 20 (control diet, CON), and 300 (high copper diet, HC) mg·kg-1 copper (based on diet, supplementation from CuSO4), and offered ad libitum from d 14 until weaning at 40 d of age. Dietary high level copper (300 mg·kg-1) increased the ADG and ADFI during d 14 to 28 of piglets. Six elements (Mg, Na, K, P, Cu, and Mn) concentrations significantly changes in hair among the three treatment diets. The significant increased concentrations of Na and K, and decreased concentration of Mg and Mn in 300 mg·kg-1 than 20 mg·kg-1 copper diet was observed. In current study, with the increase in copper level from 20 to 300 mg·kg-1 in diet, the correlation between hair Na, K and Cu, Mn, Zn vanish. Hair Na and K were positively correlated with serum total antioxidant capacity (T-AOC) and negatively correlated with tumor necrosis factor-α (TNF-α). The hair Cu was negatively correlated with serum malondialdehyde (MDA), total bile acid (TBA). The fecal Cu was positively correlated with serum growth hormone (GH). The results suggested that the average daily gain (ADG) in 6 mg·kg-1 copper diet and the average daily feed intake (ADFI) in 20 mg·kg-1 copper diet were decreased than 300 mg·kg-1 copper diet during d 14 to 28 and the ADG was decreased in 6 and 20 mg·kg-1 copper diets in d 29 to 40 of piglets. Dietary 20 mg·kg-1 copper maintain ion homeostasis due to increase the number of positive correlations between macroelements-microelements in hair and serum. Significantly changed Na, K, Mg, Mn and Cu concentrations in hair can reflect the adverse effects of dietary 300 mg·kg-1 copper of suckling piglets. We believe our results may benefit people to gain a better understanding of the ion interactions and metabolic homeostasis of heavy metal elements that are critical to human and animal health.
Collapse
Affiliation(s)
- Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 233100, China. .,Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, 233100, China.
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 233100, China.,Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, 233100, China.,Anhui AnFengT Animal Medicine Industry Co., LTD, Hefei, China
| |
Collapse
|
18
|
Lei H, Du Q, Lu N, Jiang X, Li M, Xia D, Long K. Comparison of the Microbiome-Metabolome Response to Copper Sulfate and Copper Glycinate in Growing Pigs. Animals (Basel) 2023; 13:ani13030345. [PMID: 36766234 PMCID: PMC9913561 DOI: 10.3390/ani13030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
This study aims to compare the fecal microbiome-metabolome response to copper sulfate (CuSO4) and copper glycinate (Cu-Gly) in pigs. Twelve Meishan gilts were allocated into the CuSO4 group and the Cu-Gly group (fed on a basal diet supplemented with 60 mg/kg copper from CuSO4 or Cu-Gly) paired in litter and body weight. After a two-week feeding trial, the Cu-Gly group had a higher copper digestibility, blood hemoglobin, and platelet volume and higher levels of plasma iron and insulin-like growth factor-1 than the CuSO4 group. The Cu-Gly treatment increased the abundance of the Lachnospiraceae family and the genera Lachnospiraceae XPB1014, Corprococcus_3, Anaerorhabdus_furcosa_group, Lachnospiraceae_FCS020_group, and Lachnospiraceae_NK4B4_group and decreased the abundance of the Synergistetes phylum and Peptostreptococcaceae family compared to the CuSO4 treatment. Moreover, the Cu-Gly group had a lower concentration of 20-Oxo-leukotriene E4 and higher concentrations of butyric acid, pentanoic acid, isopentanoic acid, coumarin, and Nb-p-Coumaroyl-tryptamine than the CuSO4 group. The abundance of Synergistetes was positively correlated with the fecal copper content and negatively correlated with the fecal butyric acid content. The abundance of the Lachnospiraceae_XPB1014_group genus was positively correlated with the plasma iron level and fecal contents of coumarin and butyric acid. In conclusion, Cu-Gly and CuSO4 could differentially affect fecal microbiota and metabolites, which partially contributes to the intestinal health of pigs in different manners.
Collapse
Affiliation(s)
- Hulong Lei
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Qian Du
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Naisheng Lu
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xueyuan Jiang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Xia
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Correspondence: (D.X.); (K.L.)
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (D.X.); (K.L.)
| |
Collapse
|
19
|
Wang Y, Zheng W, Deng W, Fang H, Hu H, Zhu H, Yao W. Effect of fermented heat-treated rice bran on performance and possible role of intestinal microbiota in laying hens. Front Microbiol 2023; 14:1144567. [PMID: 37180244 PMCID: PMC10172586 DOI: 10.3389/fmicb.2023.1144567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Rice bran is a high-quality and renewable livestock feed material rich in nutrients and bioactive substances. To investigate the effects of dietary supplementation with fermented heat-treated rice bran on the performance, apparent digestibility of nutrients, cecal microbiota and metabolites in laying hens, a total of 128 18-week-old Hy-Line brown layers were randomly assigned to four treatment groups: 2.5% HRB (basal diet contained 2.5% heat-treated rice bran), 5.0% HRB (5.0% heat-treated rice bran), 2.5% FHRB (2.5% fermented heat-treated rice bran), 5.0% FHRB (5.0% fermented heat-treated rice bran). Results showed that FHRB supplementation significantly increased the average daily feed intake (ADFI) during 25-28 weeks, and improved apparent digestibility of dry matter (DM), crude protein (CP), ether extract (EE) and crude fiber (CF) in laying hens. Moreover, feeding 5.0% of HRB and FHRB resulted higher egg production (EP) and average egg weight (AEW) during the feeding period, and decreased the feed conversion ratio (FCR) during 21 to 28 weeks. The alpha and beta diversity indices indicated that FHRB altered the cecal microbiota. In particular, dietary supplementation with FHRB significantly increased the relative abundances of Lachnospira and Clostridium. Compared with the 2.5% level of supplementation, supplementing 5.0% HRB and 5.0% FHRB increased the relative abundances of Firmicutes, Ruminococcus and Peptococcus, and lowered the relative abundance of Actinobacteria. Furthermore, dietary FHRB supplementation significantly increased the concentration of short-chain fatty acids in cecum and changed the overall metabolome. The results of correlation analysis showed a close interaction between cecal microbiota, metabolites and apparent digestibility of nutrients. Taken together, we revealed that FHRB supplementation can induce characteristic structural and metabolic changes in the cecal microbiome, which could potentially promote nutrient digestion and absorption, and improve the production performance of laying hens.
Collapse
Affiliation(s)
- Yamei Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weijiang Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hua Fang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Heng Hu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - He Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wen Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Nanjing Agricultural University, Nanjing, Jiangsu, China
- *Correspondence: Wen Yao,
| |
Collapse
|
20
|
Effect of Dietary Fructus mume and Scutellaria baicalensis Georgi on the Fecal Microbiota and Its Correlation with Apparent Nutrient Digestibility in Weaned Piglets. Animals (Basel) 2022; 12:ani12182418. [PMID: 36139277 PMCID: PMC9495044 DOI: 10.3390/ani12182418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has long been demonstrated to exert a therapeutic effect on various diseases and has been used as a substitute for antibiotics in pig production. However, few studies have investigated the relationship between the intestinal microbiota and apparent nutrient digestibility when weaned piglet diets are supplemented with TCM. One hundred and sixty-two 25-day-old weaning piglets were housed in an environmentally controlled nursery facility and fed a basal diet (control group, n = 54) or a TCM complex (Fructus mume 1%, Scutellaria baicalensis Georgi 3%) (TCM group, n = 54), or a fermented diet with a complex of these two TCMs (F-TCM group, n = 54). Compared with the control group, in the TCM and F-TCM groups, the average daily gain (ADG) increased (p < 0.05), the F:G ratio and diarrhea rate decreased (p < 0.05), and the apparent digestibility of dry matter (DM) and ether extract (EE) of weaned piglets increased (p < 0.05). Bacteroidetes and Firmicutes were the predominant phyla, representing approximately 95% of all sequences. The abundance of four genera and 10 OTUs (belonging to Ruminococcaceae_UCG-014, Lachnoclostridium, Prevotellaceae_NK3B31 group, Prevotella_1) were negatively correlated with apparent EE digestibility (p < 0.05). The results suggest that weaned piglets fed with antibiotic-free diets supplemented with Fructus mume and Scutellaria baicalensis Georgi gained more weight and were healthier. When added to the diet, the complex of these two TCMs may have a direct impact on apparent EE digestibility by modifying the gut microbial composition, which favors the health of weaned piglets.
Collapse
|
21
|
Role of dietary amino acids and microbial metabolites in the regulation of pig intestinal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:1-6. [PMID: 35949980 PMCID: PMC9344294 DOI: 10.1016/j.aninu.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022]
Abstract
With the rapid development of sequencing technology, research on pigs has focused on intestinal microbes. Accumulating evidence suggests that the metabolites of intestinal microbes are the key medium for interactions between microbes and the host. Amino acid metabolism is involved in the growth and immune processes of pigs. The gut microbes of pigs are heavily involved in the metabolism of amino acids in their hosts. Here, we review the latest relevant literature. Research findings show that microbial metabolites, such as indoles, short-chain fatty acids, and ammonia, play a key role in gut health. Moreover, we summarize the effects of amino acids on the structure of the gut microbial community and the metabolism of amino acids by pig gut microbes. Evidence shows that microbial amino acid metabolites act as signal molecules in the intestine and play an important role in the intestinal health of pigs.
Collapse
|
22
|
Zaitsev SY, Kolesnik NS, Bogolyubova NV. Correlations between the Major Amino Acids and Biochemical Blood Parameters of Pigs at Controlled Fattening Duration. Molecules 2022; 27:2278. [PMID: 35408677 PMCID: PMC9000419 DOI: 10.3390/molecules27072278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Analytical control of protein and amino acid (AA) contents of animal tissues is an important problem in the fundamental and applied aspects. The aims of the work were the following: to measure the pig blood AAs; and to establish the correlations between AAs and biochemical parameters in dependence on the pig fattening duration. All 80 animals were divided onto 4 animal groups: 65, 72, 82, and 90 fattening days. The correlations between AAs and the total protein or its fractions (TP&F), nitrogen metabolites, carbohydrates, lipids, some enzymes in the pig blood for each of these animal groups obtained for the first time. The authors established the following total amounts of correlation coefficients (with reasonable p-values) in each of the group separately: group 1, 1* (p < 0.05); group 2, 0; group 3, 28* (p < 0.05) and 9** (p < 0.01); group 4, 28* (p < 0.05) and 25** (p < 0.01). Thus, about 82−90 days (groups 3 and 4) can be the optimal for the pig fattening, based on the correlation analysis for the numerous data of major AA and biochemical parameters of pig blood. These results can be useful for animal health monitoring and husbandry.
Collapse
Affiliation(s)
- Sergei Yu. Zaitsev
- Federal Research Center for Animal Husbandry Named after Academy Member L.K. Ernst, Dubrovitsy 60, 142132 Podolsk, Moscow Region, Russia; (N.S.K.); (N.V.B.)
| | | | | |
Collapse
|
23
|
Liao J, Li Q, Lei C, Yu W, Deng J, Guo J, Han Q, Hu L, Li Y, Pan J, Zhang H, Chang YF, Tang Z. Toxic effects of copper on the jejunum and colon of pigs: mechanisms related to gut barrier dysfunction and inflammation influenced by the gut microbiota. Food Funct 2021; 12:9642-9657. [PMID: 34664585 DOI: 10.1039/d1fo01286j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper (Cu) is an essential trace mineral, but its excessive intake can lead to potentially toxic effects on host physiology. The mammalian intestine harbors various microorganisms that are associated with intestinal barrier function and inflammation. In this study, the influences of Cu on barrier function, microbiota, and its metabolites were examined in the jejunum and colon of pigs. Here, we identified that the physical and chemical barrier functions were impaired both in the jejunum and colon, as evidenced by the decreased expression of tight junction proteins (ZO-1, Occludin, Claudin-1, and JAM-1) and mucous secretion-related genes, positive rate of Muc2, and secretion of SIgA and SIgG. Additionally, inflammatory cytokines were overexpressed in the jejunum and colon. Furthermore, Cu might increase the abundances of Mycoplasma, Actinobacillus and unidentified_Enterobacteriaceae in the jejunum, which significantly affected pentose and glucoronate interconversions, histidine metabolism, folate biosynthesis, porphyrin metabolism, and purine metabolism. Meanwhile, the abundances of Lactobacillus and Methanobrevibacter were remarkably decreased and Streptococcus, unidentified_Enterobacteriaceae, and unidentified_Muribaculaceae were significantly increased in the colon, with an evident impact on glycerophospholipid metabolism, retinol metabolism, and steroid hormone biosynthesis. These findings revealed that excess Cu had significant effects on the microbiota and metabolites in the jejunum and colon, which were involved in intestinal barrier dysfunction and inflammation.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jichang Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Science, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China.
| |
Collapse
|
24
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
25
|
Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals (Basel) 2021; 11:ani11051276. [PMID: 33946674 PMCID: PMC8145729 DOI: 10.3390/ani11051276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Pigs and poultry, similar to humans, need regular consumption of zinc, copper, and manganese for normal functioning. To ensure adequate dietary intake, and prevent deficiency, their diets are supplemented with sufficient, often excessive, levels of these minerals or even at higher levels, which have been associated with improvements in their health and/or growth. However, if provided in excess, mineral quantities beyond those required are simply excreted from the animal, which is associated with negative consequences for the environment and even the development of antimicrobial resistance. Therefore, it is of great interest to better understand the dynamics of zinc, copper, and manganese in the intestine of pigs and poultry following consumption of supplemented diets, and how the requirements and benefits related to these minerals can be optimized and negative impacts minimized. The intestine of pigs and poultry contains vast numbers of microorganisms, notably bacteria, that continually interact with, and influence, their host. This review explores the influence of zinc, copper, and manganese on these interactions and how novel forms of these minerals have the potential to maximize their delivery and benefits, while limiting any negative consequences. Abstract Zinc, copper, and manganese are prominent essential trace (or micro) minerals, being required in small, but adequate, amounts by pigs and poultry for normal biological functioning. Feed is a source of trace minerals for pigs and poultry but variable bioavailability in typical feed ingredients means that supplementation with low-cost oxides and sulphates has become common practice. Such trace mineral supplementation often provides significant ‘safety margins’, while copper and zinc have been supplemented at supra-nutritional (or pharmacological) levels to improve health and/or growth performance. Regulatory mechanisms ensure that much of this oversupply is excreted by the host into the environment, which can be toxic to plants and microorganisms or promote antimicrobial resistance in microbes, and thus supplying trace minerals more precisely to pigs and poultry is necessary. The gastrointestinal tract is thus central to the maintenance of trace mineral homeostasis and the provision of supra-nutritional or pharmacological levels is associated with modification of the gut environment, such as the microbiome. This review, therefore, considers recent advances in understanding the influence of zinc, copper, and manganese on the gastrointestinal environment of pigs and poultry, including more novel, alternative sources seeking to maintain supra-nutritional benefits with minimal environmental impact.
Collapse
|
26
|
Leyva-Diaz AA, Hernandez-Patlan D, Solis-Cruz B, Adhikari B, Kwon YM, Latorre JD, Hernandez-Velasco X, Fuente-Martinez B, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of curcumin and copper acetate against Salmonella Typhimurium infection, intestinal permeability, and cecal microbiota composition in broiler chickens. J Anim Sci Biotechnol 2021; 12:23. [PMID: 33541441 PMCID: PMC7863265 DOI: 10.1186/s40104-021-00545-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on d 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene. RESULTS The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P < 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P = 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P < 0.05) compared to other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively. CONCLUSIONS CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.
Collapse
Affiliation(s)
- Anaisa A. Leyva-Diaz
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 Ciudad de Mexico, Mexico
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Bishnu Adhikari
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Young Min Kwon
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Juan D. Latorre
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 Ciudad de Mexico, Mexico
| | - Benjamin Fuente-Martinez
- Centro de Ensenanza, Investigacion y Extension en Produccion Avicola, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de Mexico, Mexico
| | - Billy M. Hargis
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), 54714 Cuautitlan Izcalli, Mexico
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, Fayetteville, AR 72704 USA
| |
Collapse
|
27
|
Gaukroger CH, Edwards SA, Walshaw J, Nelson A, Adams IP, Stewart CJ, Kyriazakis I. Shifting sows: longitudinal changes in the periparturient faecal microbiota of primiparous and multiparous sows. Animal 2020; 15:100135. [PMID: 33573959 DOI: 10.1016/j.animal.2020.100135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Knowledge of periparturient longitudinal changes in sow microbiota composition is necessary to fully understand her role in the development of the piglet microbiota, but also to improve gut health and performance of the sow in lactation. Primiparous sows face the challenge of partitioning nutrients to support maternal growth in addition to supporting foetal growth and the demands of lactation. Additional metabolic stress present during the periparturient period may induce changes in the microbiota profile between primiparous and multiparous sows. Using 16S rRNA gene sequencing, the study aimed to characterise the longitudinal changes in the periparturient microbiota and identify differences within the sow microbiota profile associated with parity. Faecal samples from primiparous (n = 13) and multiparous (n = 16) sows were collected at four different time points (day -6, -1, 3 and 8) in relation to farrowing (day 0). Microbiota richness was lowest on day 3 and -1 of the periparturient period (P < 0.05). Microbiota community composition, assessed by weighted and unweighted UniFrac distances, demonstrated longitudinal changes, with day 3 samples clustering away from all other sampling time points (P < 0.05). The relative abundance of several genera segregated gestation from lactation samples including Roseburia, Prevotella 1, Prevotella 2, Christensenellaceae R-7 group, Ruminococcaceae UCG-002 and Ruminococcaceae UCG-010 (P < 0.01). Furthermore, day 3 was characterised by a significant increase in the relative abundance of Escherichia/Shigella, Fusobacterium and Bacteroides, and a decrease in Alloprevotella, Prevotellaceae UCG-003 and Ruminococcus 1 (P < 0.001). Primiparous sows had overall lower periparturient microbiota diversity (P < 0.01) and there was a significant interaction between parity and sampling time point, with primiparous sows having lower microbiota richness on day -6 (P < 0.001). There was a significant interaction between sow parity and sampling time point on microbiota composition on day -6 and -1 (unweighted UniFrac distances; ≤ 0.01) and day 8 (weighted and unweighted UniFrac distances; P < 0.05). Whilst no significant interactions between sow parity and sampling day were observed for genera relative abundances, multiparous sows had a significantly higher relative abundance of Bacteroidetes dgA-11 gut group and Prevotellaceae UCG-004 (P < 0.01). This study demonstrates that the sow microbiota undergoes longitudinal changes, which are collectively related to periparturient changes in the sow environment, diet and physiological changes to support foetal growth, delivery and the onset of lactation, but also sow parity.
Collapse
Affiliation(s)
- C H Gaukroger
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - S A Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - J Walshaw
- Fera Science Limited, York, YO41 1LZ, UK
| | - A Nelson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - I P Adams
- Fera Science Limited, York, YO41 1LZ, UK
| | - C J Stewart
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - I Kyriazakis
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
28
|
He J, Zheng W, Tao C, Guo H, Xue Y, Zhao R, Yao W. Heat stress during late gestation disrupts maternal microbial transmission with altered offspring's gut microbial colonization and serum metabolites in a pig model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115111. [PMID: 32663631 DOI: 10.1016/j.envpol.2020.115111] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Heat stress (HS) during gestation has been associated with negative outcomes, such as preterm birth or postnatal metabolic syndromes. The intestinal microbiota is a unique ecosystem playing an essential role in mediating the metabolism and health of mammals. Here we hypothesize late gestational HS alters maternal microbial transmission and structures offspring's intestinal microbiota and serum metabolic profiles. Our results show maternal HS alters bacterial β-diversity and composition in sows and their piglets. In the maternal intestine, genera Ruminococcaceae UCG-005, [Eubacterium] coprostanoligenes group and Halomonas are higher by HS (q < 0.05), whereas the populations of Streptococcus, Bacteroidales RF16 group_norank and Roseburia are decreased (q < 0.05). In the maternal vagina, HS mainly elevates the proportions of phylum Bacteroidetes and Fusobacteria (q < 0.05), whereas reduces the population of Clostridiales Family XI (q < 0.05). In the neonatal intestine, maternal HS promotes the population of Proteobacteria but reduces the relative abundance of Firmicutes (q < 0.05). Moreover, the core Operational taxonomic units (OTU) analysis indicates the proportions of Clostridium sensu stricto 1, Romboutsia and Turicibacter are decreased by maternal HS in the intestinal and vaginal co-transmission, whereas that of phylum Proteobacteria and Epsilonbacteraeota, such as Escherichia-Shigella, Klebsiella, Acinetobacter, and Comamonas are increased in both the intestinal and vaginal co-transmission and the vagina. Additionally, Aeromonas is the only genus that is transmitted from environmental sources. Lastly, we evaluate the importance of neonatal differential OTU for the differential serum metabolites. The results indicate Acinetobacter significantly contributes to the differences in the adrenocorticotropic hormone (ACTH) and glucose levels due to HS (P < 0.05). Further, Stenotrophomonas is the most important variable for Cholesterol, low-density lipoprotein (LDL), diamine oxidase (DAO), blood urea nitrogen (BUN) and 5-hydroxytryptamine (5-HT) (P < 0.10). Overall, our data provides evidence for the maternal HS in establishing the neonatal microbiota via affecting maternal transmission, which in turn affects the maintenance of metabolic health.
Collapse
Affiliation(s)
- Jianwen He
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weijiang Zheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China; National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Huiduo Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yongqiang Xue
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruqian Zhao
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wen Yao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China; National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
29
|
Zhang Y, Dong Z, Yang H, Liang X, Zhang S, Li X, Wan D, Yin Y. Effects of dose and duration of dietary copper administration on hepatic lipid peroxidation and ultrastructure alteration in piglets' model. J Trace Elem Med Biol 2020; 61:126561. [PMID: 32480055 DOI: 10.1016/j.jtemb.2020.126561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Copper is an essential microelement for animals and has been used at pharmacological doses in weaned piglets to improve growth performance. However, it also induces systemic oxidative stress after short-term feeding. The aim of this study was to investigate the effects of dose and duration of dietary copper on lipid peroxidation and oxidative stress status in model of weaned piglets. METHODS A total of 48 crossbred piglets (weaned at 21d, weight ∼8.2 kg) were randomly assigned into 4 groups of 12 in each. The control group and 3 treatment groups fed with basal diet supplemented with 20, 100 and 200 mg/kg copper as copper sulfate for 3 and 6 weeks, respectively. RESULTS Dietary copper supplementation significantly affected the activities of ALP, LDH, LIPC and the levels of Ca and TG in serum as well as the copper and zinc deposition in liver. Increased MDA concentrations, and decreased GPX, CP and CAT concentrations in serum were found in 0, 100 and 200 mg Cu/kg diet groups at 3 weeks post weaning. Hepatic lipid peroxidation was also induced in these groups indicated from hepatic SOD1, GPX1, CAT, CP, MT1A and MT2A transcriptional levels. Those adverse symptoms were alleviative at 6 weeks post weaning. The hepatic Cu and Zn concentrations, serum MDA concentrations, and serum CAT and GPX activities were significantly correlated with Actinobacillus, Lactobacillus, Sarcina, Helicobacter, Campylobacterales, which could affect the intestinal health further. CONCLUSION These results indicated that copper deficiency or over supplementation would affect the systemic lipid peroxidation. These adverse changes were not observed when the dietary copper concentration at 20 mg Cu/kg diet. The results suggested the appropriate dietary copper concentration is around 20 mg Cu/kg diet, and its range might be much stricter than we thought.
Collapse
Affiliation(s)
- Yiming Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, Hunan, China
| | - Zhenglin Dong
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xiaoxiao Liang
- Henan Guang'an Biology Technology Co. Ltd., Zhengzhou 450001, China
| | - Shuo Zhang
- Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Huabandry Technology Co., Ltd., Shalang Town, Wuhua District, Kunming 6500323, Yunnan Province, China
| | - Xiaozhen Li
- Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Huabandry Technology Co., Ltd., Shalang Town, Wuhua District, Kunming 6500323, Yunnan Province, China
| | - Dan Wan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, Hunan, China.
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha 410125, Hunan, China; Henan Guang'an Biology Technology Co. Ltd., Zhengzhou 450001, China; Yunan Yin Yulong Academician Workstation, Yunan Xinan Tianyou Animal Huabandry Technology Co., Ltd., Shalang Town, Wuhua District, Kunming 6500323, Yunnan Province, China.
| |
Collapse
|
30
|
Hu P, Zhao F, Wang J, Zhu W. Early-life lactoferrin intervention modulates the colonic microbiota, colonic microbial metabolites and intestinal function in suckling piglets. Appl Microbiol Biotechnol 2020; 104:6185-6197. [DOI: 10.1007/s00253-020-10675-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022]
|
31
|
Wang J, Liu Y, Yang Y, Bao C, Cao Y. High-level expression of an acidic thermostable xylanase in Pichia pastoris and its application in weaned piglets. J Anim Sci 2020; 98:5645401. [PMID: 31778535 DOI: 10.1093/jas/skz364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
An acidic thermostable xylanase (AT-xynA) which was stable at low pH and high temperature was considered to have great potential in animal feed. For large-scale production, AT-xynA activity was enhanced about 1-fold in Pichia pastoris by constructing a double-copy expression strain in this study. Furthermore, impacts of different AT-xynA levels on growth performance, nutrient digestibility, short-chain fatty acids, and bacterial community in weaned piglets were determined. Compared with the control group, ADFI and ADG were higher for the pigs fed 4,000 or 6,000 U/kg AT-xynA (P < 0.05). AT-xynA supplementation also significantly increased the digestibility of OM, GE, and DM (P < 0.05). AT-xynA supplementation increased the concentrations of acetate in ileal (P < 0.01) and cecal digesta (P < 0.05). Isobutyrate (P < 0.05) and valerate (P < 0.05) concentrations in colonic digesta also significantly increased compared with the control group. AT-xynA supplementation increased the abundance of Lactobacillus in the ileal, cecal, and colonic digesta of weaned piglets (P < 0.05). AT-xynA alleviated anti-nutritional effects of nonstarch polysaccharides (NSP) by preventing the growth of Pateurella and Leptotrichia in the ileum (P < 0.05). AT-xynA increased the abundance of NSP-degrading bacteria, such as Ruminococcaceae, Prevotella in the cecum and colon (P < 0.05). In summary, AT-xynA addition could improve the growth performance of weaned piglets by altering gut microbiota.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Yongzhi Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
32
|
Zhang Y, Zhou J, Dong Z, Li G, Wang J, Li Y, Wan D, Yang H, Yin Y. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets. Front Microbiol 2019; 10:2808. [PMID: 31921011 PMCID: PMC6927916 DOI: 10.3389/fmicb.2019.02808] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Copper is an essential microelement for animals, and not only it has been used as a feed additive at pharmacological doses in swine production to improve growth performance, but it also has an effect on intestinal microbes by enhancing host bacterial resistance. However, there are few reports on the effects of pharmacological doses of copper on intestinal microorganisms and the antimicrobial resistance profiles of pathogenic bacteria, such as Escherichia coli, in pigs. Therefore, this study aimed to investigate the effects of pharmacological doses of copper on the microbial communities in the hindgut and the antimicrobial resistance profiles of E. coli in weaned piglets. Twenty-four healthy weaned piglets aged 21 ± 1 days and with an average weight of 7.27 ± 0.46 kg were randomly divided into four groups. The control group was fed a basal diet, while the treatment groups were fed a basal diet supplemented with 20, 100, or 200 mg copper/kg feed, in the form of CuSO4. Anal swabs were collected at 0, 21, and 42 days of the trial, and E. coli was isolated. Meanwhile, the contents of the ileum and cecum from the control and 200 mg copper/kg feed groups were collected at 21 and 42 days for microbial community analysis and E. coli isolation. All isolated E. coli strains were used for antimicrobial resistance profile analysis. A pharmacological dose of copper did not significantly change the diversity, but significantly affected the composition, of microbial communities in the ileum and cecum. Moreover, it affected the microbial metabolic functions of energy metabolism, protein metabolism, and amino acid biosynthesis. Specifically, copper treatment increased the richness of E. coli in the hindgut and the rates of E. coli resistance to chloramphenicol and ciprofloxacin. Moreover, the rate of E. coli resistance to multiple drugs increased in the ileum of pigs fed a pharmacological dose of copper. Thus, a pharmacological dose of copper affected the composition of the microbial community, increased the antimicrobial resistance rates of intestinal E. coli, and was most likely harmful to the health of piglets at the early stage after weaning.
Collapse
Affiliation(s)
- Yiming Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jian Zhou
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhenglin Dong
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guanya Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jingjing Wang
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yikun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
33
|
Chen R, Chu Q, Shen C, Tong X, Gao S, Liu X, Zhou B, Schinckel AP. Identification of Single Nucleotide Polymorphisms in Porcine MAOA Gene Associated with Aggressive Behavior of Weaned Pigs after Group Mixing. Animals (Basel) 2019; 9:ani9110952. [PMID: 31718052 PMCID: PMC6912834 DOI: 10.3390/ani9110952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Monoamine Oxidase A (MAOA) gene had been reported as a candidate gene of aggressive behavior in several species. In the present study, the most aggressive and docile weaned pigs in each pen after group mixing were selected to identify single nucleotide polymorphisms in porcine MAOA gene associated with aggressive behavior. Constructs containing variable lengths of truncated porcine MAOA promoter were used to determine the promoter activity by a dual luciferase reporter system. The core promoter region of porcine MAOA was located at −679 bp to −400 bp. A total of nine single nucleotide polymorphisms (SNPs) in the MAOA gene were genotyped, of which six SNPs had significant differences in allele frequency between the aggressive and docile pigs. Four linked SNPs in porcine MAOA gene were associated with aggressive behavior in weaned pigs after mixing, which can be used as candidate molecular markers for aggressive behavior in pigs. Abstract Understanding the genetic background underlying the expression of behavioral traits has the potential to fasten the genetic progress for reduced aggressive behavior of pigs. The monoamine oxidase A (MAOA) gene is known as the “warrior” gene, as it has been previously linked to aggressive behavior in humans and livestock animals. To identify single nucleotide polymorphisms in porcine MAOA gene associated with aggressive behavior of pigs, a total of 500 weaned pigs were selected and mixed in 51 pens. In each pen, two aggressive and two docile pigs (a total of 204 pigs) were selected based on their composite aggressive score (CAS). Ear tissue was sampled to extract genomic DNA. Constructs containing variable lengths of truncated porcine MAOA promoter were used to determine the promoter activity by a dual luciferase reporter system. The core promoter region was located at −679 bp to −400 bp. A total of nine single nucleotide polymorphisms (SNPs) in MAOA gene were genotyped, of which six SNPs had significant differences (p < 0.05) in allele frequency between the aggressive and docile pigs. Linkage disequilibrium and association analyses showed that the pigs inherited the wild genotypes showed more aggressive behavior (p < 0.05) than pigs with the mutant genotypes of the four linked SNPs, rs321936011, rs331624976, rs346245147, and rs346324437. In addition, pigs of GCAA haplotype were more (p < 0.05) aggressive than the pigs with GCGA or ATGG haplotype. The construct containing the wild genotype GG of rs321936011 had lower (p = 0.031) promoter activity compared to the mutant genotype AA. These results suggest that the four linked SNPs in MAOA gene could be considered as a molecular marker for behavioral trait selection in pigs.
Collapse
Affiliation(s)
- Ruonan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Qingpo Chu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Chunyan Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Xian Tong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Xinpeng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (R.C.); (Q.C.); (C.S.); (X.T.); (S.G.); (X.L.)
- Correspondence:
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| |
Collapse
|
34
|
He J, Guo H, Zheng W, Xue Y, Zhao R, Yao W. Heat stress affects fecal microbial and metabolic alterations of primiparous sows during late gestation. J Anim Sci Biotechnol 2019; 10:84. [PMID: 31700622 PMCID: PMC6827230 DOI: 10.1186/s40104-019-0391-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/06/2019] [Indexed: 12/28/2022] Open
Abstract
Background Heat stress (HS) jeopardizes intestinal barrier functions and augments intestinal permeability in pigs. However, whether HS-induced maternal microbial and metabolic changes in primiparous sows during late gestation remains elusive. We present here, a study investigating the fecal microbial and metabolic responses in late gestational primiparous sows when exposed to HS. Methods Twelve first-parity Landrace × Large White F1 sows were randomly assigned into two environmental treatments including the thermoneutral (TN) (18–22 °C; n = 6) and HS (28–32 °C; n = 6) conditions. Both treatments were applied from 85 d of gestation to farrowing. The serum and feces samples were collected on d 107 of gestation, for analyses including intestinal integrity biomarkers, high-throughput sequencing metagenomics, short-chain fatty acid (SCFA) profiles and nontargeted metabolomics. Results Our results show that HS group has higher serum Heat shock protein 70 (HSP70), lipopolysaccharide (LPS) and lipopolysaccharide-binding protein (LBP) levels. The gut microbial community can be altered upon HS by using β-diversity and taxon-based analysis. In particular, the relative abundance of genera and operational taxonomic units (OTUs) related to Clostridiales and Halomonas are higher in HS group, the relative abundance of genera and OTUs related to Bacteroidales and Streptococcus, however, are lower in HS group. Results of metabolic analysis reveal that HS lowers the concentrations of propionate, butyrate, total SCFA, succinate, fumarate, malate, lactate, aspartate, ethanolamine, β-alanine and niacin, whereas that of fructose and azelaic acid are higher in HS group. These metabolites mainly affect propanoate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism, β-alanine metabolism, pantothenate and CoA biosynthesis, tricarboxylic acid cycle (TCA) and nicotinate and nicotinamide metabolism. Additionally, correlation analysis between significant microbes and metabolites indicated that the HS-induced microbiota shift is likely the cause of changes of intestinal metabolism. Conclusions Taken together, we reveal characteristic structural and metabolic changes in maternal gut microbiota as a result of late gestational HS, which could potentially provide the basis for further study on offspring gut microbiota and immune programming.
Collapse
Affiliation(s)
- Jianwen He
- 1Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095
| | - Huiduo Guo
- 1Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095
| | - Weijiang Zheng
- 1Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095.,2National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095
| | - Yongqiang Xue
- 1Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095
| | - Ruqian Zhao
- 3Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095
| | - Wen Yao
- 1Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095.,2National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095.,3Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, Jiangsu People's Republic of China 210095
| |
Collapse
|
35
|
Hu S, Li A, Huang T, Lai J, Li J, Sublette ME, Lu H, Lu Q, Du Y, Hu Z, Ng CH, Zhang H, Lu J, Mou T, Lu S, Wang D, Duan J, Hu J, Huang M, Wei N, Zhou W, Ruan L, Li MD, Xu Y. Gut Microbiota Changes in Patients with Bipolar Depression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900752. [PMID: 31380217 PMCID: PMC6662053 DOI: 10.1002/advs.201900752] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 05/19/2023]
Abstract
This study aims to characterize the gut microbiota in depressed patients with bipolar disorder (BD) compared with healthy controls (HCs), to examine the effects of quetiapine treatment on the microbiota, and to explore the potential of microbiota as a biomarker for BD diagnosis and treatment outcome. Analysis of 16S-ribosomal RNA gene sequences reveals that gut microbial composition and diversity are significantly different between BD patients and HCs. Phylum Bacteroidetes and Firmicutes are the predominant bacterial communities in BD patients and HCs, respectively. Lower levels of butyrate-producing bacteria are observed in untreated patients. Microbial composition changes following quetiapine treatment in BD patients. Notably, 30 microbial markers are identified on a random forest model and achieve an area under the curve (AUC) of 0.81 between untreated patients and HCs. Ten microbial markers are identified with the AUC of 0.93 between responder and nonresponder patients. This study characterizes the gut microbiota in BD and is the first to evaluate microbial changes following quetiapine monotherapy. Gut microbiota-based biomarkers may be helpful in BD diagnosis and predicting treatment outcome, which need further validations.
Collapse
Affiliation(s)
- Shaohua Hu
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Ang Li
- Henan Gene HospitalThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Tingting Huang
- Zhejiang University School of MedicineHangzhou310058China
| | - Jianbo Lai
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
- Research Center for Air Pollution and HealthZhejiang UniversityHangzhou310003China
| | | | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Qiaoqiao Lu
- Zhejiang University School of MedicineHangzhou310058China
| | - Yanli Du
- Zhejiang University School of MedicineHangzhou310058China
| | - Zhiying Hu
- Department of Obstetrics & GynecologyHangzhou Red Cross HospitalHangzhou310003China
| | - Chee H. Ng
- The Melbourne ClinicDepartment of PsychiatryUniversity of MelbourneMelbourneVictoria3052Australia
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Jing Lu
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Tingting Mou
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Shaojia Lu
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Dandan Wang
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Jinfeng Duan
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Jianbo Hu
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Manli Huang
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Ning Wei
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Weihua Zhou
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| | - Liemin Ruan
- Department of Mental HealthNingbo First HospitalNingbo315010China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
- Research Center for Air Pollution and HealthZhejiang UniversityHangzhou310003China
| | - Yi Xu
- Department of PsychiatryFirst Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- The Key Laboratory of Mental Disorder's Management of Zhejiang ProvinceNo. 79, Qingchun RoadHangzhou310003China
- Brain Research Institute of Zhejiang UniversityHangzhou310003China
| |
Collapse
|