1
|
Barisic S, Brahmbhatt EM, Cherkasova E, Spear TT, Savani U, Pierre S, Scurti GM, Chen L, Igboko M, Nadal R, Zeng G, Parry G, Stroncek DF, Highfill S, Dalheim AV, Reger R, Nishimura MI, Childs RW. Regression of renal cell carcinoma by T cell receptor-engineered T cells targeting a human endogenous retrovirus. J Immunother Cancer 2024; 12:e009147. [PMID: 39266213 PMCID: PMC11409391 DOI: 10.1136/jitc-2024-009147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND We discovered a novel human endogenous retrovirus (CT-RCC HERV-E) that was selectively expressed in most clear cell renal cell carcinomas (ccRCC) and served as a source of antigens for T cell-mediated killing. Here, we described the cloning of a novel T cell receptor (TCR) targeting a CT-RCC HERV-E-derived antigen specific to ccRCC and characterized antitumor activity of HERV-E TCR-transduced T cells (HERV-E T cells). METHODS We isolated a CD8+ T cell clone from a patient with immune-mediated regression of ccRCC post-allogeneic stem cell transplant that recognized the CT-RCC-1 HERV-E-derived peptide in an HLA-A11-restricted manner. We used 5'Rapid Amplification of cDNA Ends (RACE) to clone the full length HERV-E TCR and generated retrovirus encoding this TCR for transduction of T cells. We characterized HERV-E T cells for phenotype and function in vitro and in a murine xenograft model. Lastly, we implemented a good manufacturing practice-compliant method for scalable production of HERV-E T cells. RESULTS The HLA-A11-restricted HERV-E-reactive TCR exhibited a CD8-dependent phenotype and demonstrated specific recognition of the CT-RCC-1 peptide. CD8+ T cells modified to express HERV-E TCR displayed potent antitumor activity against HLA-A11+ ccRCC cells expressing CT-RCC HERV-E compared with unmodified T cells. Killing by HERV-E T cells was lost when cocultured against HERV-E knockout ccRCC cells. HERV-E T cells induced regression of established ccRCC tumors in a murine model and improved survival of tumor-bearing mice. Large-scale production of HERV-E T cells under good manufacturing practice conditions generated from healthy donors retained specific antigen recognition and cytotoxicity against ccRCC. CONCLUSIONS This is the first report showing that human ccRCC cells can be selectively recognized and killed by TCR-engineered T cells targeting a HERV-derived antigen. These preclinical findings provided the foundation for evaluating HERV-E TCR-transduced T cell infusions in patients with metastatic ccRCC in a clinical trial (NCT03354390).
Collapse
Affiliation(s)
- Stefan Barisic
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Elena Cherkasova
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy T Spear
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, USA
| | - Ujjawal Savani
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Pierre
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gina M Scurti
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, USA
| | - Long Chen
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Muna Igboko
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosa Nadal
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gang Zeng
- T-Cure BioScience, Sherman Oaks, California, USA
| | - Gordon Parry
- T-Cure BioScience, Sherman Oaks, California, USA
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Annika V Dalheim
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, USA
| | - Robert Reger
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Wang SY, Scurti GM, Dalheim AV, Quinn S, Stiff PJ, Nishimura MI. Nonactivated and IL-7 cultured CD19-specific CAR T cells are enriched in stem cell phenotypes and functionally superior. Blood Adv 2024; 8:324-335. [PMID: 37967375 PMCID: PMC10788799 DOI: 10.1182/bloodadvances.2023010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT CD19-specific chimeric antigen receptor (CAR) T cells have demonstrated impressive responses in patients with relapsed and refractory B cell malignancies. However, many patients relapse or fail to respond to CD19 CAR T cells, demonstrating the need to improve its efficacy and durability. Current protocols for generating CAR T cells involve T cell activation through CD3 stimulation to facilitate efficient CAR transfer followed by ex vivo expansion with exogenous cytokines to obtain adequate cell numbers for treatment. Both T cell activation and expansion inevitably lead to terminal differentiation and replicative senescence, which are suboptimal for therapy. Interleukin-7 (IL-7) was previously shown to allow for lentiviral transduction of T cells in the absence of activation. In these studies, we used IL-7 to generate CD19 CAR T cells without stimulating CD3. Nonactivated and IL-7 cultured (NICE) CD19 CAR T cells were enriched with the T memory stem cell population, retained novel markers of stemness, had lower expression of exhaustion markers, and increased proliferative potential. Furthermore, our findings are consistent with engraftment of NICE CD19 CAR T cells and demonstrate a superior therapeutic response in both intraperitoneal and subcutaneous in vivo B cell lymphoma models. These results suggest that NICE CD19 CAR T cells may improve outcomes for B cell malignancies and warrant clinical evaluation.
Collapse
Affiliation(s)
- Siao-Yi Wang
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL
| | - Gina M. Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL
| | - Annika V. Dalheim
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL
| | - Suzanne Quinn
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL
| | - Patrick J. Stiff
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL
| | - Michael I. Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL
| |
Collapse
|
3
|
Mensali N, Köksal H, Joaquina S, Wernhoff P, Casey NP, Romecin P, Panisello C, Rodriguez R, Vimeux L, Juzeniene A, Myhre MR, Fåne A, Ramírez CC, Maggadottir SM, Duru AD, Georgoudaki AM, Grad I, Maturana AD, Gaudernack G, Kvalheim G, Carcaboso AM, de Alava E, Donnadieu E, Bruland ØS, Menendez P, Inderberg EM, Wälchli S. ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma. Nat Commun 2023; 14:3375. [PMID: 37291203 PMCID: PMC10250459 DOI: 10.1038/s41467-023-39097-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS. The target recognition element of the second-generation CAR construct is based on two antibodies, previously shown to react against OS. T cells transduced with these CAR constructs mediate efficient and effective cytotoxicity against ALPL-positive cells in in vitro settings and in state-of-the-art in vivo orthotopic models of primary and metastatic OS, without unexpected toxicities against hematopoietic stem cells or healthy tissues. In summary, CAR-T cells targeting ALPL-1 show efficiency and specificity in treating OS in preclinical models, paving the path for clinical translation.
Collapse
Affiliation(s)
- Nadia Mensali
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Hakan Köksal
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sandy Joaquina
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Patrik Wernhoff
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Nicholas P Casey
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Paola Romecin
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
| | - Carla Panisello
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
| | - René Rodriguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBER-ONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lene Vimeux
- Université de Paris, Institut Cochin, INSERM, CNRS, Equipe labellisée Ligue Contre le Cancer, F-75014, PARIS, France
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marit R Myhre
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Anne Fåne
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Carolina Castilla Ramírez
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBER-ONC, 41013, Seville, Spain
| | | | - Adil Doganay Duru
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anna-Maria Georgoudaki
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Iwona Grad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andrés Daniel Maturana
- Laboratory of Animal Cell Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gustav Gaudernack
- Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Angel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Institut de Recerca Sant Joan de Deu, Barcelona, 08950, Spain
| | - Enrique de Alava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBER-ONC, 41013, Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009, Seville, Spain
| | - Emmanuel Donnadieu
- Université de Paris, Institut Cochin, INSERM, CNRS, Equipe labellisée Ligue Contre le Cancer, F-75014, PARIS, France
| | - Øyvind S Bruland
- Department of Oncology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
- CIBER-ONC, ISCIII, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway.
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Gao X, Wu Y, Chick JM, Abbott A, Jiang B, Wang DJ, Comte-Walters S, Johnson RH, Oberholtzer N, Nishimura MI, Gygi SP, Mehta A, Guttridge DC, Ball L, Mehrotra S, Sicinski P, Yu XZ, Wang H. Targeting protein tyrosine phosphatases for CDK6-induced immunotherapy resistance. Cell Rep 2023; 42:112314. [PMID: 37000627 PMCID: PMC10544673 DOI: 10.1016/j.celrep.2023.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Elucidating the mechanisms of resistance to immunotherapy and developing strategies to improve its efficacy are challenging goals. Bioinformatics analysis demonstrates that high CDK6 expression in melanoma is associated with poor progression-free survival of patients receiving single-agent immunotherapy. Depletion of CDK6 or cyclin D3 (but not of CDK4, cyclin D1, or D2) in cells of the tumor microenvironment inhibits tumor growth. CDK6 depletion reshapes the tumor immune microenvironment, and the host anti-tumor effect depends on cyclin D3/CDK6-expressing CD8+ and CD4+ T cells. This occurs by CDK6 phosphorylating and increasing the activities of PTP1B and T cell protein tyrosine phosphatase (TCPTP), which, in turn, decreases tyrosine phosphorylation of CD3ζ, reducing the signal transduction for T cell activation. Administration of a PTP1B and TCPTP inhibitor prove more efficacious than using a CDK6 degrader in enhancing T cell-mediated immunotherapy. Targeting protein tyrosine phosphatases (PTPs) might be an effective strategy for cancer patients who resist immunotherapy treatment.
Collapse
Affiliation(s)
- Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Andrea Abbott
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA 02215, USA
| | - David J Wang
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Susana Comte-Walters
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger H Johnson
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nathaniel Oberholtzer
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Denis C Guttridge
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xue-Zhong Yu
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Meyran D, Zhu JJ, Butler J, Tantalo D, MacDonald S, Nguyen TN, Wang M, Thio N, D'Souza C, Qin VM, Slaney C, Harrison A, Sek K, Petrone P, Thia K, Giuffrida L, Scott AM, Terry RL, Tran B, Desai J, Prince HM, Harrison SJ, Beavis PA, Kershaw MH, Solomon B, Ekert PG, Trapani JA, Darcy PK, Neeson PJ. T STEM-like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models. Sci Transl Med 2023; 15:eabk1900. [PMID: 37018415 DOI: 10.1126/scitranslmed.abk1900] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.
Collapse
Affiliation(s)
- Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Université de Paris, Inserm, U976 HIPI Unit, Institut de Recherche Saint-Louis, Paris F-75010, France
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Jeanne Butler
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Daniela Tantalo
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Sean MacDonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Thu Ngoc Nguyen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Minyu Wang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Niko Thio
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Vicky Mengfei Qin
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Clare Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Aaron Harrison
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Pasquale Petrone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Kevin Thia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rachael L Terry
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 1466, Australia
| | - Ben Tran
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jayesh Desai
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Ben Solomon
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul G Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 1466, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW 1466, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
6
|
Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines (Basel) 2022; 10:vaccines10030457. [PMID: 35335089 PMCID: PMC8949949 DOI: 10.3390/vaccines10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy is a beneficial treatment approach for multiple cancers, however, current therapies are effective only in a small subset of patients. Adoptive cell transfer (ACT) is a facet of immunotherapy where T cells targeting the tumor cells are transferred to the patient with several primary forms, utilizing unmodified or modified T cells: tumor-infiltrating lymphocytes (TIL), genetically modified T cell receptor transduced T cells, and chimeric antigen receptor (CAR) transduced T cells. Many clinical trials are underway investigating the efficacy and safety of these different subsets of ACT, as well as trials that combine one of these subsets with another type of immunotherapy. The main challenges existing with ACT are improving clinical responses and decreasing adverse events. Current research focuses on identifying novel tumor targeting T cell receptors, improving safety and efficacy, and investigating ACT in combination with other immunotherapies.
Collapse
|
7
|
Johnson AJ, Wei J, Rosser JM, Künkele A, Chang CA, Reid AN, Jensen MC. Rationally Designed Transgene-Encoded Cell-Surface Polypeptide Tag for Multiplexed Programming of CAR T-cell Synthetic Outputs. Cancer Immunol Res 2021; 9:1047-1060. [PMID: 34244298 DOI: 10.1158/2326-6066.cir-20-0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Synthetic immunology, as exemplified by chimeric antigen receptor (CAR) T-cell immunotherapy, has transformed the treatment of relapsed/refractory B cell-lineage malignancies. However, there are substantial barriers-including limited tumor homing, lack of retention of function within a suppressive tumor microenvironment, and antigen heterogeneity/escape-to using this technology to effectively treat solid tumors. A multiplexed engineering approach is needed to equip effector T cells with synthetic countermeasures to overcome these barriers. This, in turn, necessitates combinatorial use of lentiviruses because of the limited payload size of current lentiviral vectors. Accordingly, there is a need for cell-surface human molecular constructs that mark multi-vector cotransduced T cells, to enable their purification ex vivo and their tracking in vivo. To this end, we engineered a cell surface-localizing polypeptide tag based on human HER2, designated HER2t, that was truncated in its extracellular and intracellular domains to eliminate ligand binding and signaling, respectively, and retained the membrane-proximal binding epitope of the HER2-specific mAb trastuzumab. We linked HER2t to CAR coexpression in lentivirally transduced T cells and showed that co-transduction with a second lentivirus expressing our previously described EGFRt tag linked to a second CAR efficiently generated bispecific dual-CAR T cells. Using the same approach, we generated T cells expressing a CAR and a second module, a chimeric cytokine receptor. The HER2txEGFRt multiplexing strategy is now being deployed for the manufacture of CD19xCD22 bispecific CAR T-cell products for the treatment of acute lymphoblastic leukemia (NCT03330691).
Collapse
Affiliation(s)
- Adam J Johnson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Seattle Children's Therapeutics, Seattle, Washington
| | - Jia Wei
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Seattle Children's Therapeutics, Seattle, Washington
| | - James M Rosser
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Seattle Children's Therapeutics, Seattle, Washington
| | - Annette Künkele
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Cindy A Chang
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Aquene N Reid
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington.,Seattle Children's Therapeutics, Seattle, Washington
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. .,Seattle Children's Therapeutics, Seattle, Washington.,Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Melanoma reactive TCR-modified T cells generated without activation retain a less differentiated phenotype and mediate a superior in vivo response. Sci Rep 2021; 11:13327. [PMID: 34172810 PMCID: PMC8233420 DOI: 10.1038/s41598-021-92808-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Adoptive T cell therapy with T cell receptor (TCR)-modified T cells has shown promise in treating metastatic melanoma and other malignancies. However, studies are needed to improve the efficacy and durability of responses of TCR-modified T cells. Standard protocols for generating TCR-modified T cells involve activating T cells through CD3 stimulation to allow for the efficient transfer of tumor-reactive receptors with viral vectors. T cell activation results in terminal differentiation and shortening of telomeres, which are likely suboptimal for therapy. In these studies, we demonstrate efficient T cell transduction with the melanoma-reactive TIL1383I TCR through culturing with interleukin 7 (IL-7) in the absence of CD3 activation. The TIL1383I TCR-modified T cells generated following IL-7 culture were enriched with naïve (TN) and memory stem cell populations (TSCM) while maintaining longer telomere lengths. Furthermore, we demonstrated melanoma-reactivity of TIL1383I TCR-modified cells generated following IL-7 culture using in vitro assays and a superior response in an in vivo melanoma model. These results suggest that utilizing IL-7 to generate TCR-modified T cells in the absence of activation is a feasible strategy to improve adoptive T cell therapies for melanoma and other malignancies.
Collapse
|
9
|
Dillard P, Casey N, Pollmann S, Vernhoff P, Gaudernack G, Kvalheim G, Wälchli S, Inderberg EM. Targeting KRAS mutations with HLA class II-restricted TCRs for the treatment of solid tumors. Oncoimmunology 2021; 10:1936757. [PMID: 34235003 PMCID: PMC8216182 DOI: 10.1080/2162402x.2021.1936757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T-cell receptor (TCR) redirected T cells are considered as the next generation of care for the treatment of numerous solid tumors. KRAS mutations are driver neoantigens that are expressed in over 25% of all cancers and are thus regarded as ideal targets for Adoptive Cell Therapy (ACT). We have isolated four KRAS-specific TCRs from a long-term surviving pancreatic cancer patient vaccinated with a mix of mutated KRAS peptides. The sequence of these TCRs could be identified and expressed in primary cells. We demonstrated stable expression of all TCRs as well as target-specific functionality when expressing T cells were co-incubated with target cells presenting KRAS peptides. In addition, these TCRs were all partially co-receptor independent since they were functional in both CD4 and CD8 T cells, thus indicating high affinity. Interestingly, we observed that certain TCRs were able to recognize several KRAS mutations in complex with their cognate Human leukocyte antigen (HLA), suggesting that, here, the point mutations were less important for the HLA binding and TCR recognition, whereas others were single-mutation restricted. Finally, we demonstrated that these peptides were indeed processed and presented, since HLA-matched antigen presenting cells exogenously loaded with KRAS proteins were recognized by TCR-transduced T cells. Taken together, our data demonstrate that KRAS mutations are immunogenic for CD4 T cells and are interesting targets for TCR-based cancer immunotherapy.
Collapse
Affiliation(s)
- Pierre Dillard
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Nicholas Casey
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sylvie Pollmann
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Patrik Vernhoff
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Lelliott EJ, Kong IY, Zethoven M, Ramsbottom KM, Martelotto LG, Meyran D, Jiang Zhu J, Costacurta M, Kirby L, Sandow JJ, Lim L, Dominguez PM, Todorovski I, Haynes NM, Beavis PA, Neeson PJ, Hawkins ED, McArthur GA, Parish IA, Johnstone RW, Oliaro J, Sheppard KE, Kearney CJ, Vervoort SJ. CDK4/6 inhibition promotes anti-tumor immunity through the induction of T cell memory. Cancer Discov 2021; 11:2582-2601. [PMID: 33990344 DOI: 10.1158/2159-8290.cd-20-1554] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Pharmacological inhibitors of cyclin dependent kinases 4 and 6 (CDK4/6) are an approved treatment for hormone receptor-positive breast cancer and are currently under evaluation across hundreds of clinical trials for other cancer types. The clinical success of these inhibitors is largely attributed to well-defined tumor-intrinsic cytostatic mechanisms, while their emerging role as immunomodulatory agents is less understood. Using integrated epigenomic, transcriptomic and proteomic analyses, we demonstrated a novel action of CDK4/6 inhibitors in promoting the phenotypic and functional acquisition of immunological T cell memory. Short-term priming with a CDK4/6 inhibitor promoted long-term endogenous anti-tumor T cell immunity in mice, enhanced the persistence and therapeutic efficacy of chimeric antigen receptor (CAR)-T cells, and induced an RB-dependent T cell phenotype supportive of favorable responses to immune checkpoint blockade in melanoma patients. Together, these mechanistic insights significantly broaden the prospective utility of CDK4/6 inhibitors as clinical tools to boost anti-tumor T cell immunity.
Collapse
Affiliation(s)
| | - Isabella Y Kong
- Inflammation, Walter and Eliza Hall Institute of Medical Research
| | | | | | | | | | | | | | - Laura Kirby
- Cancer Research, Peter MacCallum Cancer Centre
| | - Jarrod J Sandow
- Advanced Biology and Technology, The Walter and Eliza Hall Institute
| | - Lydia Lim
- Division of Research, Peter MacCallum Cancer Centre
| | | | | | - Nicole M Haynes
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Research Centre
| | - Paul J Neeson
- Cancer Immunology Research, Peter MacCallum Cancer Centre
| | - Edwin D Hawkins
- Immunology Division, Walter and Eliza Hall Institute of Medical Research
| | | | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Research Centre
| | | | | | | | | | - Stephin J Vervoort
- Gene Regulation Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre
| |
Collapse
|
11
|
Lança T, Silva-Santos B. The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy. Oncoimmunology 2021; 1:717-725. [PMID: 22934263 PMCID: PMC3429575 DOI: 10.4161/onci.20068] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An important development in tumor immunology was the identification of highly diverse tumor-infiltrating leukocyte subsets that can play strikingly antagonistic functions. Namely, “anti-tumor” vs. “pro-tumor” roles have been suggested for Th1 and Th17 subsets of CD4+ T cells, Type I or Type II NKT cells, M1 and M2 macrophages, or N1 and N2 neutrophils, respectively. While these findings are being validated in cancer patients, it is also clear that the balance between infiltrating CD8+ cytotoxic and Foxp3+ regulatory T cells has prognostic value. Here we review the pre-clinical and clinical data that have shaped our current understanding of tumor-infiltrating leukocytes.
Collapse
Affiliation(s)
- Telma Lança
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon, Portugal
| | | |
Collapse
|
12
|
HDAC inhibition prevents transgene expression downregulation and loss-of-function in T-cell-receptor-transduced T cells. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:352-363. [PMID: 33614916 PMCID: PMC7878989 DOI: 10.1016/j.omto.2021.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/20/2021] [Indexed: 01/22/2023]
Abstract
T cells that are gene-modified with tumor-specific T cell receptors are a promising treatment for metastatic melanoma patients. In a clinical trial, we treated seven metastatic melanoma patients with autologous T cells transduced to express a tyrosinase-reactive T cell receptor (TCR) (TIL 1383I) and a truncated CD34 molecule as a selection marker. We followed transgene expression in the TCR-transduced T cells after infusion and observed that both lentiviral- and retroviral-transduced T cells lost transgene expression over time, so that by 4 weeks post-transfer, few T cells expressed either lentiviral or retroviral transgenes. Transgene expression was reactivated by stimulation with anti-CD3/anti-CD28 beads and cytokines. TCR-transduced T cell lentiviral and retroviral transgene expression was also downregulated in vitro when T cells were cultured without cytokines. Transduced T cells cultured with interleukin (IL)-15 maintained transgene expression. Culturing gene-modified T cells in the presence of histone deacetylase (HDAC) inhibitors maintained transgene expression and functional TCR-transduced T cell responses to tumor. These results implicate epigenetic processes in the loss of transgene expression in lentiviral- and retroviral-transduced T cells.
Collapse
|
13
|
Dillard P, Köksal H, Maggadottir SM, Winge-Main A, Pollmann S, Menard M, Myhre MR, Mælandsmo GM, Flørenes VA, Gaudernack G, Kvalheim G, Wälchli S, Inderberg EM. Targeting Telomerase with an HLA Class II-Restricted TCR for Cancer Immunotherapy. Mol Ther 2020; 29:1199-1213. [PMID: 33212301 PMCID: PMC7934585 DOI: 10.1016/j.ymthe.2020.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
T cell receptor (TCR)-engineered T cell therapy is a promising cancer treatment approach. Human telomerase reverse transcriptase (hTERT) is overexpressed in the majority of tumors and a potential target for adoptive cell therapy. We isolated a novel hTERT-specific TCR sequence, named Radium-4, from a clinically responding pancreatic cancer patient vaccinated with a long hTERT peptide. Radium-4 TCR-redirected primary CD4+ and CD8+ T cells demonstrated in vitro efficacy, producing inflammatory cytokines and killing hTERT+ melanoma cells in both 2D and 3D settings, as well as malignant, patient-derived ascites cells. Importantly, T cells expressing Radium-4 TCR displayed no toxicity against bone marrow stem cells or mature hematopoietic cells. Notably, Radium-4 TCR+ T cells also significantly reduced tumor growth and improved survival in a xenograft mouse model. Since hTERT is a universal cancer antigen, and the very frequently expressed HLA class II molecules presenting the hTERT peptide to this TCR provide a very high (>75%) population coverage, this TCR represents an attractive candidate for immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Pierre Dillard
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Hakan Köksal
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | | | - Anna Winge-Main
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Sylvie Pollmann
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Mathilde Menard
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Marit Renée Myhre
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Vivi Ann Flørenes
- Department of Pathology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway.
| | - Else Marit Inderberg
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway.
| |
Collapse
|
14
|
Singh NK, Alonso JA, Harris DT, Anderson SD, Ma J, Hellman LM, Rosenberg AM, Kolawole EM, Evavold BD, Kranz DM, Baker BM. An Engineered T Cell Receptor Variant Realizes the Limits of Functional Binding Modes. Biochemistry 2020; 59:4163-4175. [PMID: 33074657 DOI: 10.1021/acs.biochem.0c00689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
T cell receptors (TCRs) orchestrate cellular immunity by recognizing peptides presented by a range of major histocompatibility complex (MHC) proteins. Naturally occurring TCRs bind the composite peptide/MHC surface, recognizing peptides that are structurally and chemically compatible with the TCR binding site. Here we describe a molecularly evolved TCR variant that binds the human class I MHC protein HLA-A2 independent of the bound peptide, achieved by a drastic perturbation of the TCR binding geometry that places the molecule far from the peptide binding groove. This unique geometry is unsupportive of normal T cell signaling. A substantial divergence between affinity measurements in solution and in two dimensions between proximal cell membranes leads us to attribute the lack of signaling to steric hindrance that limits binding in the confines of a cell-cell interface. Our results provide an example of how receptor binding geometry can impact T cell function and provide further support for the view that germline-encoded residues in TCR binding loops evolved to drive productive TCR recognition and signaling.
Collapse
Affiliation(s)
- Nishant K Singh
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jesus A Alonso
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Daniel T Harris
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott D Anderson
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Jiaqi Ma
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lance M Hellman
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Aaron M Rosenberg
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - David M Kranz
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Brian M Baker
- Department of Chemistry and Biochemistry and Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Kesarwani P, Chakraborty P, Gudi R, Chatterjee S, Scurti G, Toth K, Simms P, Husain M, Armeson K, Husain S, Garrett-Mayer E, Vasu C, Nishimura MI, Mehrotra S. Blocking TCR restimulation induced necroptosis in adoptively transferred T cells improves tumor control. Oncotarget 2018; 7:69371-69383. [PMID: 27750220 PMCID: PMC5342484 DOI: 10.18632/oncotarget.12674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/02/2016] [Indexed: 02/04/2023] Open
Abstract
Advancements in adoptive cell transfer therapy (ACT) has led to the use of T cells engineered with tumor specific T cell receptors, which after rapid expansion can be obtained in sufficient numbers for treating patients. However, due to massive proliferation these cells are close to replicative senescence, exhibit exhausted phenotype, and also display increased susceptibility to activation induced cell death. We have previously shown that tumor reactive T cells undergo caspase-independent cell death upon TCR restimulation with cognate antigen, which involves reactive oxygen species and c-jun N-terminal kinase. Herein, we show that a large fraction of the human melanoma epitope tyrosinase reactive TCR transduced T cells that exhibit effector memory (TEM) phenotype and undergo programmed necrosis, or necroptosis, upon TCR restimulation. As compared to the T central memory (TCM) subsets, the TEM subset displayed an increased expression of genes involved in necroptotic cell death, and a necrotic phenotype upon TCR restimulation as confirmed by electron microscopy. Higher expression of receptor-interacting kinases (RIPK) that mediate necroptosis was also observed in the TEM fraction. Further, the TEM cells were rescued from undergoing necroptosis when pretreated with necroptotic inhibitor NecroX2 before TCR restimulation. Importantly, NecroX2 pretreated tumor reactive T cells also exhibited better tumor control and increased in vivo persistence when adoptively-transferred to treat subcutaneously established murine melanoma B16-F10. Thus, it is likely that the outcome of ACT could be vastly improved by interfering with the necroptotic cell death pathway in activated tumor reactive T cells used in immunotherapy.
Collapse
Affiliation(s)
- Pravin Kesarwani
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Radhika Gudi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Gina Scurti
- Department of Surgery, Loyola University, Maywood, IL, USA
| | - Kyle Toth
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Patt Simms
- Department of Surgery, Loyola University, Maywood, IL, USA
| | - Mahvash Husain
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kent Armeson
- Department of Public Health, Medical University of South Carolina, Charleston, SC, USA
| | - Shahid Husain
- Department of Opthamology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Chethamarakshan Vasu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Scheffel MJ, Scurti G, Wyatt MM, Garrett-Mayer E, Paulos CM, Nishimura MI, Voelkel-Johnson C. N-acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner. Cancer Immunol Immunother 2018; 67:691-702. [PMID: 29396710 DOI: 10.1007/s00262-018-2120-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/22/2018] [Indexed: 12/15/2022]
Abstract
Therapeutic outcomes for adoptive cell transfer (ACT) therapy are constrained by the quality of the infused T cells. The rapid expansion necessary to obtain large numbers of cells results in a more terminally differentiated phenotype with decreased durability and functionality. N-acetyl cysteine (NAC) protects against activation-induced cell death (AICD) and improves anti-tumor efficacy of Pmel-1 T cells in vivo. Here, we show that these benefits of NAC can be extended to engineered T cells and significantly increases T-cell survival within the tumor microenvironment. The addition of NAC to the expansion protocol of human TIL13838I TCR-transduced T cells that are under evaluation in a Phase I clinical trial, demonstrated that findings in murine cells extend to human cells. Expansion of TIL13838I TCR-transduced T cells in NAC also increased their ability to kill target cells in vitro. Interestingly, NAC did not affect memory subsets, but diminished up-regulation of senescence (CD57) and exhaustion (PD-1) markers and significantly decreased expression of the transcription factors EOMES and Foxo1. Pharmacological inhibition of the PI3K/Akt pathway ablates the decrease in Foxo1 induced by NAC treatment of activated T cells. This suggests a model in which NAC through PI3K/Akt activation suppresses Foxo1 expression, thereby impacting its transcriptional targets EOMES, PD-1, and granzyme B. Taken together, our results indicate that NAC exerts pleiotropic effects that impact the quality of TCR-transduced T cells and suggest that the addition of NAC to current clinical protocols should be considered.
Collapse
Affiliation(s)
- Matthew J Scheffel
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Gina Scurti
- Department of Surgery, Loyola University, Maywood, IL, USA
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | | | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| |
Collapse
|
17
|
Spear TT, Wang Y, Smith TW, Simms PE, Garrett-Mayer E, Hellman LM, Baker BM, Nishimura MI. Altered Peptide Ligands Impact the Diversity of Polyfunctional Phenotypes in T Cell Receptor Gene-Modified T Cells. Mol Ther 2018; 26:996-1007. [PMID: 29503203 DOI: 10.1016/j.ymthe.2018.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/23/2022] Open
Abstract
The use of T cell receptor (TCR) gene-modified T cells in adoptive cell transfer has had promising clinical success, but often, simple preclinical evaluation does not necessarily accurately predict treatment efficacy or safety. Preclinical studies generally evaluate one or a limited number of type 1 cytokines to assess antigen recognition. However, recent studies have implicated other "typed" T cells in effective anti-tumor/viral immunity, and limited functional evaluations may underestimate cross-reactivity. In this study, we use an altered peptide ligand (APL) model and multi-dimensional flow cytometry to evaluate polyfunctionality of TCR gene-modified T cells. Evaluating six cytokines and the lytic marker CD107a on a per cell basis revealed remarkably diverse polyfunctional phenotypes within a single T cell culture and among peripheral blood lymphocyte (PBL) donors. This polyfunctional assessment identified unexpected phenotypes, including cells producing both type 1 and type 2 cytokines, and highlighted interferon γneg (IFNγneg) antigen-reactive populations overlooked in our previous studies. Additionally, APLs skewed functional phenotypes to be less polyfunctional, which was not necessarily related to changes in TCR-peptide-major histocompatibility complex (pMHC) affinity. A better understanding of gene-modified T cell functional diversity may help identify optimal therapeutic phenotypes, predict clinical responses, anticipate off-target recognition, and improve the design and delivery of TCR gene-modified T cells.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA.
| | - Yuan Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thomas W Smith
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Office of Research Services, Loyola University Chicago, Maywood, IL, 60153 USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29415, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29415, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
18
|
Spear TT, Wang Y, Foley KC, Murray DC, Scurti GM, Simms PE, Garrett-Mayer E, Hellman LM, Baker BM, Nishimura MI. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells. Cancer Immunol Immunother 2017; 66:1411-1424. [PMID: 28634816 PMCID: PMC5647210 DOI: 10.1007/s00262-017-2032-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA.
| | - Yuan Wang
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| | - Gina M Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Office of Research Services, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29415, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Bldg 112, Room 308, Maywood, IL, 60153, USA
| |
Collapse
|
19
|
Moore T, Wagner CR, Scurti GM, Hutchens KA, Godellas C, Clark AL, Kolawole EM, Hellman LM, Singh NK, Huyke FA, Wang SY, Calabrese KM, Embree HD, Orentas R, Shirai K, Dellacecca E, Garrett-Mayer E, Li M, Eby JM, Stiff PJ, Evavold BD, Baker BM, Le Poole IC, Dropulic B, Clark JI, Nishimura MI. Clinical and immunologic evaluation of three metastatic melanoma patients treated with autologous melanoma-reactive TCR-transduced T cells. Cancer Immunol Immunother 2017; 67:311-325. [PMID: 29052782 DOI: 10.1007/s00262-017-2073-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022]
Abstract
Malignant melanoma incidence has been increasing for over 30 years, and despite promising new therapies, metastatic disease remains difficult to treat. We describe preliminary results from a Phase I clinical trial (NCT01586403) of adoptive cell therapy in which three patients received autologous CD4+ and CD8+ T cells transduced with a lentivirus carrying a tyrosinase-specific TCR and a marker protein, truncated CD34 (CD34t). This unusual MHC Class I-restricted TCR produces functional responses in both CD4+ and CD8+ T cells. Parameters monitored on transduced T cells included activation (CD25, CD69), inhibitory (PD-1, TIM-3, CTLA-4), costimulatory (OX40), and memory (CCR7) markers. For the clinical trial, T cells were activated, transduced, selected for CD34t+ cells, then re-activated, and expanded in IL-2 and IL-15. After lymphodepleting chemotherapy, patients were given transduced T cells and IL-2, and were followed for clinical and biological responses. Transduced T cells were detected in the circulation of three treated patients for the duration of observation (42, 523, and 255 days). Patient 1 tolerated the infusion well but died from progressive disease after 6 weeks. Patient 2 had a partial response by RECIST criteria then progressed. After progressing, Patient 2 was given high-dose IL-2 and subsequently achieved complete remission, coinciding with the development of vitiligo. Patient 3 had a mixed response that did not meet RECIST criteria for a clinical response and developed vitiligo. In two of these three patients, adoptive transfer of tyrosinase-reactive TCR-transduced T cells into metastatic melanoma patients had clinical and/or biological activity without serious adverse events.
Collapse
Affiliation(s)
- Tamson Moore
- Department of Surgery, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA.
| | - Courtney Regan Wagner
- Department of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
| | - Gina M Scurti
- Department of Surgery, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
| | - Kelli A Hutchens
- Department of Pathology, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
- Forefront Dermatology, 801 York St, Manitowoc, WI, 54220, USA
| | - Constantine Godellas
- Department of Surgery, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
| | - Ann Lau Clark
- Department of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
| | | | - Lance M Hellman
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46656, USA
| | - Nishant K Singh
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46656, USA
| | - Fernando A Huyke
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46656, USA
| | - Siao-Yi Wang
- Department of Surgery, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
| | - Kelly M Calabrese
- Department of Surgery, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
- Abbvie, 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Heather D Embree
- Lentigen Technology Inc, A Miltenyi Biotec Company, 910 Clopper Road Suite 200S, Gaithersburg, MD, 20878, USA
| | - Rimas Orentas
- Lentigen Technology Inc, A Miltenyi Biotec Company, 910 Clopper Road Suite 200S, Gaithersburg, MD, 20878, USA
| | - Keisuke Shirai
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA
- Dartmouth-Hitchcock, Norris Cotton Cancer Center, One Medical Center Dr, Lebanon, NH, 03756, USA
| | - Emilia Dellacecca
- Department of Pathology, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
- Department of Microbiology, and Immunology, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, USA
| | - Elizabeth Garrett-Mayer
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA
| | - Mingli Li
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA
- Bluebird Biology, 60 Binney St., Cambridge, MA, 02142, USA
| | - Jonathan M Eby
- Department of Pathology, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
- Department of Microbiology, and Immunology, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, USA
| | - Patrick J Stiff
- Department of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
| | - Brian D Evavold
- O. Wayne Rollins Research Center, Emory University, Room 3127, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46656, USA
| | - I Caroline Le Poole
- Department of Pathology, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
- Department of Microbiology, and Immunology, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, USA
- Lurie Comprehensive Cancer Center, Department of Dermatology, Northwestern University at Chicago, Room 5-113, 303 East Superior Street, Chicago, IL, 60611, USA
| | - Boro Dropulic
- Lentigen Technology Inc, A Miltenyi Biotec Company, 910 Clopper Road Suite 200S, Gaithersburg, MD, 20878, USA
| | - Joseph I Clark
- Department of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
| | - Michael I Nishimura
- Department of Surgery, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL, 60153, USA
| |
Collapse
|
20
|
Scheffel MJ, Scurti G, Simms P, Garrett-Mayer E, Mehrotra S, Nishimura MI, Voelkel-Johnson C. Efficacy of Adoptive T-cell Therapy Is Improved by Treatment with the Antioxidant N-Acetyl Cysteine, Which Limits Activation-Induced T-cell Death. Cancer Res 2017; 76:6006-6016. [PMID: 27742673 DOI: 10.1158/0008-5472.can-16-0587] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
Although adoptive transfer of autologous tumor antigen-specific T-cell immunotherapy can produce remarkable clinical efficacy, most patients do not achieve durable complete responses. We hypothesized that reducing susceptibility of T cells to activation-induced cell death (AICD), which increases during the rapid in vitro expansion of therapeutic T cells before their infusion, might improve the persistence of adoptively transferred cells. Our investigations revealed that repetitive stimulation of the T-cell receptor (TCR) induced AICD, as a result of activating the DNA damage response pathway through ATM-mediated Ser15 phosphorylation of p53. Activation of this DNA damage response pathway also occurred upon antigen-specific restimulation in TCR-transduced TIL1383I T cells prepared for adoptive transfer to patients as part of a clinical trial. Notably, treatment with the antioxidant N-acetyl cysteine (NAC) significantly reduced upregulation of the DNA damage marker γH2AX, subsequent ATM activation, and cell death. In the Pmel mouse model of melanoma, the presence of NAC during ex vivo T-cell expansion improved the persistence of adoptively transferred cells, reduced tumor growth, and increased survival. Taken together, our results offer a preclinical proof of concept for the addition of NAC to current therapeutic T-cell expansion protocols, offering immediate potential to improve the quality and therapeutic efficacy of adoptive T-cell therapeutics infused into patients. Cancer Res; 76(20); 6006-16. ©2016 AACR.
Collapse
Affiliation(s)
- Matthew J Scheffel
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Gina Scurti
- Department of Surgery, Loyola University Chicago, Maywood, Illinois
| | - Patricia Simms
- Flow Cytometry Core Facility, Loyola University Chicago, Maywood, Illinois
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
21
|
Spear TT, Nishimura MI, Simms PE. Comparative exploration of multidimensional flow cytometry software: a model approach evaluating T cell polyfunctional behavior. J Leukoc Biol 2017; 102:551-561. [PMID: 28550117 DOI: 10.1189/jlb.6a0417-140r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/24/2022] Open
Abstract
Advancement in flow cytometry reagents and instrumentation has allowed for simultaneous analysis of large numbers of lineage/functional immune cell markers. Highly complex datasets generated by polychromatic flow cytometry require proper analytical software to answer investigators' questions. A problem among many investigators and flow cytometry Shared Resource Laboratories (SRLs), including our own, is a lack of access to a flow cytometry-knowledgeable bioinformatics team, making it difficult to learn and choose appropriate analysis tool(s). Here, we comparatively assess various multidimensional flow cytometry software packages for their ability to answer a specific biologic question and provide graphical representation output suitable for publication, as well as their ease of use and cost. We assessed polyfunctional potential of TCR-transduced T cells, serving as a model evaluation, using multidimensional flow cytometry to analyze 6 intracellular cytokines and degranulation on a per-cell basis. Analysis of 7 parameters resulted in 128 possible combinations of positivity/negativity, far too complex for basic flow cytometry software to analyze fully. Various software packages were used, analysis methods used in each described, and representative output displayed. Of the tools investigated, automated classification of cellular expression by nonlinear stochastic embedding (ACCENSE) and coupled analysis in Pestle/simplified presentation of incredibly complex evaluations (SPICE) provided the most user-friendly manipulations and readable output, evaluating effects of altered antigen-specific stimulation on T cell polyfunctionality. This detailed approach may serve as a model for other investigators/SRLs in selecting the most appropriate software to analyze complex flow cytometry datasets. Further development and awareness of available tools will help guide proper data analysis to answer difficult biologic questions arising from incredibly complex datasets.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA; and
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA; and
| | - Patricia E Simms
- Flow Cytometry Core Facility, Office of Research Services, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
22
|
Foley KC, Spear TT, Murray DC, Nagato K, Garrett-Mayer E, Nishimura MI. HCV T Cell Receptor Chain Modifications to Enhance Expression, Pairing, and Antigen Recognition in T Cells for Adoptive Transfer. MOLECULAR THERAPY-ONCOLYTICS 2017; 5:105-115. [PMID: 28573185 PMCID: PMC5447397 DOI: 10.1016/j.omto.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/13/2017] [Indexed: 12/21/2022]
Abstract
T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.
Collapse
Affiliation(s)
- Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kaoru Nagato
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29415, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29415, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
23
|
Sandri S, Bobisse S, Moxley K, Lamolinara A, De Sanctis F, Boschi F, Sbarbati A, Fracasso G, Ferrarini G, Hendriks RW, Cavallini C, Scupoli MT, Sartoris S, Iezzi M, Nishimura MI, Bronte V, Ugel S. Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Res 2016; 76:2540-51. [DOI: 10.1158/0008-5472.can-15-2318] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/24/2016] [Indexed: 11/16/2022]
|
24
|
Spear TT, Riley TP, Lyons GE, Callender GG, Roszkowski JJ, Wang Y, Simms PE, Scurti GM, Foley KC, Murray DC, Hellman LM, McMahan RH, Iwashima M, Garrett-Mayer E, Rosen HR, Baker BM, Nishimura MI. Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability. J Leukoc Biol 2016; 100:545-57. [PMID: 26921345 DOI: 10.1189/jlb.2a1215-561r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
A major obstacle hindering the development of effective immunity against viral infections, their associated disease, and certain cancers is their inherent genomic instability. Accumulation of mutations can alter processing and presentation of antigens recognized by antibodies and T cells that can lead to immune escape variants. Use of an agent that can intrinsically combat rapidly mutating viral or cancer-associated antigens would be quite advantageous in developing effective immunity against such disease. We propose that T cells harboring cross-reactive TCRs could serve as a therapeutic agent in these instances. With the use of hepatitis C virus, known for its genomic instability as a model for mutated antigen recognition, we demonstrate cross-reactivity against immunogenic and mutagenic nonstructural protein 3:1406-1415 and nonstructural protein 3:1073-1081 epitopes in PBL-derived, TCR-gene-modified T cells. These single TCR-engineered T cells can CD8-independently recognize naturally occurring and epidemiologically relevant mutant variants. TCR-peptide MHC modeling data allow us to rationalize how TCR structural properties accommodate recognition of certain mutated epitopes and how these substitutions impact the requirement of CD8 affinity enhancement for recognition. A better understanding of such TCRs' promiscuous behavior may allow for exploitation of these properties to develop novel, adoptive T cell-based therapies for viral infections and cancers exhibiting similar genomic instability.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA;
| | - Timothy P Riley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Gretchen E Lyons
- Department of Surgery, University of Chicago, Chicago, Illinois, USA; Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA
| | - Glenda G Callender
- Department of Surgery, University of Chicago, Chicago, Illinois, USA; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Yuan Wang
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Gina M Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel H McMahan
- Division of Gastroenterology and Hepatology, Hepatitis C Center, and Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA; and
| | - Makio Iwashima
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hugo R Rosen
- Division of Gastroenterology and Hepatology, Hepatitis C Center, and Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA; and
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA; Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, Zheng S, Ni B, Fang D, Song J. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep 2016; 6:20588. [PMID: 26846186 PMCID: PMC4742827 DOI: 10.1038/srep20588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/07/2016] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jianyong Song
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Kristin Fino
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Praneet Sandhu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xinmeng Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Fengyang Lei
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Songguo Zheng
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bing Ni
- Institutes of Irradiation/Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
26
|
Spear TT, Callender GG, Roszkowski JJ, Moxley KM, Simms PE, Foley KC, Murray DC, Scurti GM, Li M, Thomas JT, Langerman A, Garrett-Mayer E, Zhang Y, Nishimura MI. TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors. Cancer Immunol Immunother 2016; 65:293-304. [PMID: 26842125 DOI: 10.1007/s00262-016-1800-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/19/2016] [Indexed: 02/08/2023]
Abstract
The success in recent clinical trials using T cell receptor (TCR)-genetically engineered T cells to treat melanoma has encouraged the use of this approach toward other malignancies and viral infections. Although hepatitis C virus (HCV) infection is being treated with a new set of successful direct anti-viral agents, potential for virologic breakthrough or relapse by immune escape variants remains. Additionally, many HCV+ patients have HCV-associated disease, including hepatocellular carcinoma (HCC), which does not respond to these novel drugs. Further exploration of other approaches to address HCV infection and its associated disease are highly warranted. Here, we demonstrate the therapeutic potential of PBL-derived T cells genetically engineered with a high-affinity, HLA-A2-restricted, HCV NS3:1406-1415-reactive TCR. HCV1406 TCR-transduced T cells can recognize naturally processed antigen and elicit CD8-independent recognition of both peptide-loaded targets and HCV+ human HCC cell lines. Furthermore, these cells can mediate regression of established HCV+ HCC in vivo. Our results suggest that HCV TCR-engineered antigen-reactive T cells may be a plausible immunotherapy option to treat HCV-associated malignancies, such as HCC.
Collapse
Affiliation(s)
- Timothy T Spear
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Glenda G Callender
- Department of Surgery, University of Chicago, Chicago, IL, 60637, USA.,Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Kelly M Moxley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Patricia E Simms
- Flow Cytometry Core Facility, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - David C Murray
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Gina M Scurti
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Mingli Li
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Justin T Thomas
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | | | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29415, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29415, USA
| | - Yi Zhang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA.,Biotherapy Center and Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. 1st Ave, Maywood, IL, 60153, USA. .,Department of Surgery, University of Chicago, Chicago, IL, 60637, USA. .,Department of Surgery, Medical University of South Carolina, Charleston, SC, 29415, USA.
| |
Collapse
|
27
|
Haque M, Song J, Fino K, Sandhu P, Wang Y, Ni B, Fang D, Song J. Melanoma Immunotherapy in Mice Using Genetically Engineered Pluripotent Stem Cells. Cell Transplant 2016; 25:811-27. [PMID: 26777320 DOI: 10.3727/096368916x690467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell transfer (ACT) of antigen (Ag)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a highly promising treatment for a variety of diseases. Naive or central memory T-cell-derived effector CTLs are optimal populations for ACT-based immunotherapy because these cells have a high proliferative potential, are less prone to apoptosis than terminally differentiated cells, and have the higher ability to respond to homeostatic cytokines. However, such ACT with T-cell persistence is often not feasible due to difficulties in obtaining sufficient cells from patients. Here we present that in vitro differentiated HSCs of engineered PSCs can develop in vivo into tumor Ag-specific naive CTLs, which efficiently suppress melanoma growth. Mouse-induced PSCs (iPSCs) were retrovirally transduced with a construct encoding chicken ovalbumin (OVA)-specific T-cell receptors (TCRs) and survival-related proteins (i.e., BCL-xL and survivin). The gene-transduced iPSCs were cultured on the delta-like ligand 1-expressing OP9 (OP9-DL1) murine stromal cells in the presence of murine recombinant cytokines (rFlt3L and rIL-7) for a week. These iPSC-derived cells were then intravenously adoptively transferred into recipient mice, followed by intraperitoneal injection with an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7). Two weeks later, naive OVA-specific CD8(+) T cells were observed in the mouse peripheral lymphatic system, which were responsive to OVA-specific stimulation. Moreover, the mice were resistant to the challenge of B16-OVA melanoma induction. These results indicate that genetically modified stem cells may be used for ACT-based immunotherapy or serve as potential vaccines.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Johnson CB, Riesenberg BP, May BR, Gilreath SC, Li G, Staveley-O'Carroll KF, Garrett-Mayer E, Mehrotra S, Cole DJ, Rubinstein MP. Effector CD8+ T-cell Engraftment and Antitumor Immunity in Lymphodepleted Hosts Is IL7Rα Dependent. Cancer Immunol Res 2015; 3:1364-74. [PMID: 26297711 DOI: 10.1158/2326-6066.cir-15-0087-t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/02/2015] [Indexed: 01/12/2023]
Abstract
Adoptive cellular therapy, in which activated tumor-reactive T cells are transferred into lymphodepleted recipients, is a promising cancer treatment option. Activation of T cells decreases IL7 responsiveness; therefore, IL15 is generally considered the main driver of effector T-cell responses in this setting. However, we found in lymphodepleted mice that CD8(+) T cells activated with IL12 showed enhanced engraftment that was initially dependent on host IL7, but not IL15. Mechanistically, enhanced IL7 responsiveness was conferred by elevated IL7Rα expression, which was critical for antitumor immunity. Elevated IL7Rα expression was achievable without IL12, as polyclonal CD8(+) T cells activated with high T-cell receptor (TCR) stimulation depended on T-cell IL7Rα expression and host IL7 for maximal engraftment. Finally, IL12 conditioning during the activation of human CD8(+) T cells, including TCR-modified T cells generated using a clinically relevant protocol, led to enhanced IL7Rα expression. Our results demonstrate the importance of the donor IL7Rα/host IL7 axis for effector CD8(+) T-cell engraftment and suggest novel strategies to improve adoptive cellular therapy as a cancer treatment.
Collapse
Affiliation(s)
- C Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Brian P Riesenberg
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Bennett R May
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart C Gilreath
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Guangfu Li
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
29
|
Andrijauskaite K, Suriano S, Cloud CA, Li M, Kesarwani P, Stefanik LS, Moxley KM, Salem ML, Garrett-Mayer E, Paulos CM, Mehrotra S, Kochenderfer JN, Cole DJ, Rubinstein MP. IL-12 conditioning improves retrovirally mediated transduction efficiency of CD8+ T cells. Cancer Gene Ther 2015; 22:360-367. [PMID: 26182912 PMCID: PMC4807400 DOI: 10.1038/cgt.2015.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/10/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
The ability to genetically modify T cells is a critical component to many immunotherapeutic strategies and research studies. However, the success of these approaches is often limited by transduction efficiency. As retroviral vectors require cell division for integration, transduction efficiency is dependent on the appropriate activation and culture conditions for T cells. Naive CD8(+) T cells, which are quiescent, must be first activated to induce cell division to allow genetic modification. To optimize this process, we activated mouse T cells with a panel of different cytokines, including interleukin-2 (IL-2), IL-4, IL-6, IL-7, IL-12, IL-15 and IL-23, known to act on T cells. After activation, cytokines were removed, and activated T cells were retrovirally transduced. We found that IL-12 preconditioning of mouse T cells greatly enhanced transduction efficiency, while preserving function and expansion potential. We also observed a similar transduction-enhancing effect of IL-12 preconditioning on human T cells. These findings provide a simple method to improve the transduction efficiencies of CD8(+) T cells.
Collapse
Affiliation(s)
| | - Samantha Suriano
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Colleen A. Cloud
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Mingli Li
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Pravin Kesarwani
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
| | - Leah S. Stefanik
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | | | - Mohamed L Salem
- Immunology & Biotechnology Division, Tanta University, Egypt
| | | | - Chrystal M. Paulos
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - James N. Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston SC 29425
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston SC 29425
| |
Collapse
|
30
|
Rubinstein MP, Su EW, Suriano S, Cloud CA, Andrijauskaite K, Kesarwani P, Schwartz KM, Williams KM, Johnson CB, Li M, Scurti GM, Salem ML, Paulos CM, Garrett-Mayer E, Mehrotra S, Cole DJ. Interleukin-12 enhances the function and anti-tumor activity in murine and human CD8(+) T cells. Cancer Immunol Immunother 2015; 64:539-549. [PMID: 25676709 PMCID: PMC4804872 DOI: 10.1007/s00262-015-1655-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 01/10/2015] [Indexed: 02/07/2023]
Abstract
Mouse CD8(+) T cells conditioned with interleukin (IL)-12 ex vivo mediate the potent regression of established melanoma when transferred into lymphodepleted mice. However, the quantitative and qualitative changes induced by IL-12 in the responding mouse CD8(+) T cells have not been well defined. Moreover, the mechanisms by which IL-12-conditioning impacts human CD8(+) T cells, and how such cells might be expanded prior to infusion into patients is not known. We found that ex vivo IL-12-conditioning of mouse CD8(+) T cells led to a tenfold-100-fold increase in persistence and anti-tumor efficacy upon adoptive transfer into lymphodepleted mice. The enhancing effect of IL-12 was associated with maintenance of functional avidity. Importantly, in the context of ongoing ACT clinical trials, human CD8(+) T cells genetically modified with a tyrosinase-specific T cell receptor (TCR) exhibited significantly enhanced functional activity when conditioned with IL-12 as indicated by heightened granzyme B expression and elevated peptide-specific CD107a degranulation. This effect was sustainable despite the 20 days of in vitro cellular expansion required to expand cells over 1,000-fold allowing adequate cell numbers for administration to cancer patients. Overall, these findings support the efficacy and feasibility of ex vivo IL-12-conditioning of TCR-modified human CD8(+) T cells for adoptive transfer and cancer therapy.
Collapse
Affiliation(s)
- Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, HO506, Charleston, SC, 29425, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kesarwani P, Al-Khami AA, Scurti G, Thyagarajan K, Kaur N, Husain S, Fang Q, Naga OS, Simms P, Beeson G, Voelkel-Johnson C, Garrett-Mayer E, Beeson CC, Nishimura MI, Mehrotra S. Promoting thiol expression increases the durability of antitumor T-cell functions. Cancer Res 2014; 74:6036-6047. [PMID: 25164014 DOI: 10.1158/0008-5472.can-14-1084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ex vivo-expanded CD8(+) T cells used for adoptive immunotherapy generally acquire an effector memory-like phenotype (TEM cells). With regard to therapeutic applications, two undesired features of this phenotype in vivo are limited persistence and reduced antitumor efficacy, relative to CD8(+) T cells with a central memory-like phenotype (TCM cells). Furthermore, there is incomplete knowledge about all the differences between TEM and TCM cells that may influence tumor treatment outcomes. Given that TCM cells survive relatively longer in oxidative tumor microenvironments, we investigated the hypothesis that TCM cells possess relatively greater antioxidative capacity than TEM cells. Here, we report that TCM cells exhibit a relative increase compared with TEM cells in the expression of cell surface thiols, a key target of cellular redox controls, along with other antioxidant molecules. Increased expression of redox regulators in TCM cells inversely correlated with the generation of reactive oxygen and nitrogen species, proliferative capacity, and glycolytic enzyme levels. Notably, T-cell receptor-transduced T cells pretreated with thiol donors, such as N-acetyl cysteine or rapamycin, upregulated thiol levels and antioxidant genes. A comparison of antitumor CD8(+) T-cell populations on the basis of surface thiol expression showed that thiol-high cells persisted longer in vivo and exerted superior tumor control. Our results suggest that higher levels of reduced cell surface thiols are a key characteristic of T cells that can control tumor growth and that profiling this biomarker may have benefits to adoptive T-cell immunotherapy protocols.
Collapse
Affiliation(s)
- Pravin Kesarwani
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Amir A Al-Khami
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Gina Scurti
- Department of Surgery, Loyola University, Maywood, IL 60153
| | | | - Navtej Kaur
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Quan Fang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Osama S Naga
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Patricia Simms
- Department of Surgery, Loyola University, Maywood, IL 60153
| | - Gyda Beeson
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| | | | - Elizabeth Garrett-Mayer
- Department of Biostatistics & Epidemiology, Medical University of South Carolina, Charleston, SC 29425
| | - Craig C Beeson
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425
| | | | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
32
|
Xiao X, Tang C, Xiao S, Fu C, Yu P. Enhancement of proliferation and invasion by MicroRNA-590-5p via targeting PBRM1 in clear cell renal carcinoma cells. Oncol Res 2014; 20:537-44. [PMID: 24063284 DOI: 10.3727/096504013x13775486749335] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in cancer development. In our study, miR-590-5p is found to be upregulated in the examined renal cell carcinoma (RCC) cell lines. PBRM1 acts as tumor suppressor in RCC, and its downregulation is associated with increased proliferation and aggressive behavior in RCC. We confirmed that PBRM1 was a direct target of miR-590-5p. miR-590-5p could regulate PBRM1 mRNA and protein expressions in clear cell renal carcinoma (ccRCC) ACHN and 786-O cells. Downregulation of miR-590-5p, which resulted in increased PBRM1, inhibited proliferation and invasion of ccRCC cells. Upregulation of miR-590-5p, which resulted in decreased PBRM1, promoted proliferation and invasion of ccRCC cells. The process of miR-590-5p promoting proliferation was found to be implicated in its inhibition of G1/S transition of ccRCC cells, and the action mechanisms were involved in its downregulation of PBRM1/p21(WAF1/CIP1) expression. In conclusion, we identified the role of miR-590-5p, serving as an oncomir in ccRCC, and our findings provide a potential target for the treatment of ccRCC.
Collapse
|
33
|
Pritzker KPH, Pritzker LB. Bioinformatics advances for clinical biomarker development. ACTA ACUST UNITED AC 2011; 6:39-48. [DOI: 10.1517/17530059.2012.634797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Al-Khami AA, Mehrotra S, Nishimura MI. Adoptive immunotherapy of cancer: Gene transfer of T cell specificity. SELF NONSELF 2011; 2:80-84. [PMID: 22299059 DOI: 10.4161/self.2.2.15832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 01/13/2023]
Abstract
Adoptive transfer of tumor-reactive T cells has emerged as a promising advance in tumor immunotherapy. Specifically, infusion of tumor-infiltrating lymphocytes has led to long-term objective clinical responses for patients with metastatic melanoma. Donor lymphocyte infusion is also an effective treatment of post-transplant lymphoproliferative disease. However, adoptive T cell therapy has restrictions in the isolation and expansion of antigen-specific lymphocytes for a large group of patients. One approach to circumvent this limitation and extend adoptive immunotherapy to other cancer types is the genetic modification of T cells with antigen-specific receptors. In this article, we review strategies to redirect T cell specificity, including T cell receptor gene transfer and antibody receptor gene transfer.
Collapse
Affiliation(s)
- Amir A Al-Khami
- Division of General Surgery; Department of Surgery; Medical University of South Carolina; Charleston, SC USA
| | | | | |
Collapse
|
35
|
Ito A, Kamihira M. Tissue Engineering Using Magnetite Nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:355-95. [DOI: 10.1016/b978-0-12-416020-0.00009-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Mimura K, Ando T, Poschke I, Mougiakakos D, Johansson CC, Ichikawa J, Okita R, Nishimura MI, Handke D, Krug N, Choudhury A, Seliger B, Kiessling R. T cell recognition of HLA-A2 restricted tumor antigens is impaired by the oncogene HER2. Int J Cancer 2010; 128:390-401. [PMID: 20715101 DOI: 10.1002/ijc.25613] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/25/2010] [Indexed: 01/28/2023]
Abstract
The HER2 oncogene is frequently over-expressed in human cancers and a promising target for immune therapy. Previous studies have shown that over-expression of mouse or rat HER2 leads to markedly reduced levels of major histocompatibility complex (MHC) class I and molecules of the antigen processing and presentation machinery (APM), thus resulting in a phenotype promoting tumor escape from the immune system. Our study focuses on analyzing the effect of HER2 on MHC class I antigen presentation and sensitivity to tumor-antigen specific cytotoxic T lymphocytes (CTLs) in HLA-A2.1(+) melanoma cell lines. We demonstrate significant inverse correlations both between the expression of HER2 and total MHC class I surface expression as well as between HER2 and HLA-A2. A significant reduction of HLA-A2 levels was found when melanoma and carcinoma cell lines were transfected with a human HER2 gene. A signaling-competent HER2 molecule was crucial for the observed HLA-A2 down-regulation, as transfectants expressing high levels of HER2 mutated in the tyrosine signaling domain did not show altered HLA-A2 expression. Importantly, the human melanoma cell line EST049 demonstrated reduced HER2 and melanoma antigen-specific recognition by CTLs upon HER2 transfection. In addition, high expression of HER2 prevented both IFN-γ mediated HLA-A2 up-regulation and improved recognition by HLA-A2-restricted CTLs in treated cells. Moreover, key APM molecules were down-regulated by HER2. These findings implicate that HER2 over-expressing tumors may be more prone to escape from HLA-A2 restricted CTLs suggesting that immunotherapy approaches inducing an integrated humoral, cellular and innate immune response would be most effective.
Collapse
Affiliation(s)
- Kousaku Mimura
- Department of Oncology and Pathology, Immune and Gene Therapy Laboratory, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Renaudet O, Dasgupta G, Bettahi I, Shi A, Nesburn AB, Dumy P, BenMohamed L. Linear and branched glyco-lipopeptide vaccines follow distinct cross-presentation pathways and generate different magnitudes of antitumor immunity. PLoS One 2010; 5:e11216. [PMID: 20574522 PMCID: PMC2888579 DOI: 10.1371/journal.pone.0011216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 05/26/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glyco-lipopeptides, a form of lipid-tailed glyco-peptide, are currently under intense investigation as B- and T-cell based vaccine immunotherapy for many cancers. However, the cellular and molecular mechanisms of glyco-lipopeptides (GLPs) immunogenicity and the position of the lipid moiety on immunogenicity and protective efficacy of GLPs remain to be determined. METHODS/PRINCIPAL FINDINGS We have constructed two structural analogues of HER-2 glyco-lipopeptide (HER-GLP) by synthesizing a chimeric peptide made of one universal CD4(+) epitope (PADRE) and one HER-2 CD8(+) T-cell epitope (HER(420-429)). The C-terminal end of the resulting CD4-CD8 chimeric peptide was coupled to a tumor carbohydrate B-cell epitope, based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules. The resulting HER glyco-peptide (HER-GP) was then linked to a palmitic acid moiety, attached either at the N-terminal end (linear HER-GLP-1) or in the middle between the CD4+ and CD8+ T cell epitopes (branched HER-GLP-2). We have investigated the uptake, processing and cross-presentation pathways of the two HER-GLP vaccine constructs, and assessed whether the position of linkage of the lipid moiety would affect the B- and T-cell immunogenicity and protective efficacy. Immunization of mice revealed that the linear HER-GLP-1 induced a stronger and longer lasting HER(420-429)-specific IFN-gamma producing CD8(+) T cell response, while the branched HER-GLP-2 induced a stronger tumor-specific IgG response. The linear HER-GLP-1 was taken up easily by dendritic cells (DCs), induced stronger DCs maturation and produced a potent TLR- 2-dependent T-cell activation. The linear and branched HER-GLP molecules appeared to follow two different cross-presentation pathways. While regression of established tumors was induced by both linear HER-GLP-1 and branched HER-GLP-2, the inhibition of tumor growth was significantly higher in HER-GLP-1 immunized mice (p<0.005). SIGNIFICANCE These findings have important implications for the development of effective GLP based immunotherapeutic strategies against cancers.
Collapse
Affiliation(s)
- Olivier Renaudet
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ilham Bettahi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alda Shi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Pascal Dumy
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California Irvine Medical Center, Irvine, California, United States of America
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Irvine, California, United States of America
| |
Collapse
|