1
|
Kast RE. Potential Benefits of Adding Alendronate, Celecoxib, Itraconazole, Ramelteon, and Simvastatin to Endometrial Cancer Treatment: The EC5 Regimen. Curr Issues Mol Biol 2025; 47:153. [PMID: 40136407 PMCID: PMC11941490 DOI: 10.3390/cimb47030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Metastatic endometrial cancer continues to be a common cause of death as of 2024, even after maximal use of all currently available standard treatments. To address this problem of metastatic cancer generally in 2025, the drug repurposing movement within oncology identifies medicines in common general medical use that have clinical or preclinical experimental data indicating that they interfere with or inhibit a specific growth driving element identified in a given cancer. The drug repurposing movement within oncology also uses data from large scale in vitro screens of thousands of drugs, looking for simple empirical growth inhibition in a given cancer type. This paper outlines the data showing that five drugs from general medical practice meet these evidence criteria for inhibition of endometrial cancer growth, the EC5 regimen. The EC5 regimen uses the osteoporosis treatment drug, alendronate; the analgesic drug, celecoxib; the antifungal drug, itraconazole; the sleep aid, ramelteon; and the cholesterol lowering drug, simvastatin. Side effects seen with these drugs are usually minimal and easily tolerated by patients.
Collapse
|
2
|
Xiong J, Lu H, Jiang Y. Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches. ACS Infect Dis 2025; 11:305-322. [PMID: 39749640 DOI: 10.1021/acsinfecdis.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency. Drawing from these mechanisms, we delineate strategies aimed at enhancing azole effectiveness, such as inhibiting efflux pumps to elevate azole concentrations within fungal cells, intensifying ergosterol synthesis inhibition, mitigating fungal cell resistance to azoles, and disrupting biological processes extending beyond ergosterol synthesis. This review is beneficial for the development of these potentiators, as it meticulously examines instances and provides nuanced discussions on the mechanisms underlying the progression of azole potentiators through drug repurposing strategies.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
4
|
Dong Y, Chen X, Yang S, Fu Y, Wang L, Gao X, Chen D, Xu L. Comprehensive analysis of POLH-AS1 as a prognostic biomarker in hepatocellular carcinoma. BMC Cancer 2024; 24:1112. [PMID: 39242532 PMCID: PMC11378586 DOI: 10.1186/s12885-024-12857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), a prevalent primary malignant tumor, is notorious for its high mortality rate. Despite advancements in HCC treatment, patient outcomes remain suboptimal. This study endeavors to assess the potential prognostic significance of POLH-AS1 in HCC. METHODS In this research, we gathered RNA-Seq information from individuals with HCC in The Cancer Genome Atlas (TCGA). We analyzed the levels of POLH-AS1 expression in both HCC cells and tissues using statistical tests. Additionally, we examined various prognostic factors in HCC using advanced methodologies. Furthermore, we employed Spearman's rank correlation analysis to examine the association between POLH-AS1 expression and the tumor's immune microenvironment. Finally, the functional roles of POLH-AS1 in HCC were validated in two HCC cell lines (HEP3B and HEPG2). RESULTS Our analysis revealed elevated POLH-AS1 expression across various cancers, including HCC, with heightened expression correlating with HCC progression. Notably, POLH-AS1 expression emerged as a potential biomarker for HCC patient survival and prognosis. Mechanistically, we identified the involvement of POLH-AS1 in tumorigenesis pathways such as herpes simplex virus 1 infection, interactions with neuroactive receptors, and the cAMP signaling pathway. Lastly, inhibition of POLH-AS1 was discovered to hinder the proliferation, invasion and migration of HEP3B and HEPG2 HCC cells. CONCLUSIONS POLH-AS1 emerges as a promising prognostic biomarker and therapeutic target for HCC, offering potential avenues for enhanced patient management and treatment strategies.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Prognosis
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Neoplastic
- Tumor Microenvironment
- Cell Proliferation
- Cell Line, Tumor
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Cell Movement
- Hep G2 Cells
Collapse
Affiliation(s)
- Yan Dong
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyi Chen
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shen Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yilong Fu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liangyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueping Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Di Chen
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Lixia Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Yin KL, Chu KJ, Li M, Duan YX, Yu YX, Kang MQ, Fu D, Liao R. Immune Regulatory Networks and Therapy of γδ T Cells in Liver Cancer: Recent Trends and Advancements. J Clin Transl Hepatol 2024; 12:287-297. [PMID: 38426194 PMCID: PMC10899867 DOI: 10.14218/jcth.2023.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai-Jian Chu
- Biliary Surgical Department I, the Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Verkerk T, Pappot AT, Jorritsma T, King LA, Duurland MC, Spaapen RM, van Ham SM. Isolation and expansion of pure and functional γδ T cells. Front Immunol 2024; 15:1336870. [PMID: 38426099 PMCID: PMC10902048 DOI: 10.3389/fimmu.2024.1336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Collapse
Affiliation(s)
- Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Anouk T Pappot
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Lisa A King
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
9
|
Sun D, Chan N, Shao H, Born WK, Kaplan HJ. γδ T Cells Activated in Different Inflammatory Environments Are Functionally Distinct. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1224-1231. [PMID: 35101894 DOI: 10.4049/jimmunol.2100967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
γδ T cells are important immunoregulatory cells in experimental autoimmune uveitis (EAU), and the activation status of γδ T cells determines their disease-enhancing or inhibitory effects. Because γδ T cells can be activated via various pathways, we questioned whether the nature of their activation might impact their function. In this study, we show that γδ T cells activated under different inflammatory conditions differ greatly in their functions. Whereas anti-CD3 treatment activated both IFN-γ+ and IL-17+ γδ T cells, cytokines preferentially activated IL-17+ γδ T cells. γδ T cells continued to express high levels of surface CD73 after exposure to inflammatory cytokines, but they downregulated surface CD73 after exposure to dendritic cells. Although both CD73high and CD73low cells have a disease-enhancing effect, the CD73low γδ T cells are less inhibitory. We also show that polarized activation not only applies to αβ T cells and myeloid cells, but also to γδ T cells. After activation under Th17-polarizing conditions, γδ T cells predominantly expressed IL-17 (gdT17), but after activation under Th1 polarizing conditions (gdT1) they mainly expressed IFN-γ. The pro-Th17 activity of γδ T cells was associated with gdT17, but not gdT1. Our results demonstrate that the functional activity of γδ T cells is strikingly modulated by their activation level, as well as the pathway through which they were activated.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA;
| | - Nymph Chan
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health Center, Denver, CO; and
| | - Henry J Kaplan
- School of Medicine, Saint Louis University, St. Louis, MO
| |
Collapse
|
10
|
Liu C, Skorupinska-Tudek K, Eriksson SG, Parmryd I. Potentiating Vγ9Vδ2 T cell proliferation and assessing their cytotoxicity towards adherent cancer cells at the single cell level. Biol Open 2022; 11:274281. [PMID: 34994391 PMCID: PMC8822357 DOI: 10.1242/bio.059049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Vγ9Vδ2 T cells is the dominant γδ T cell subset in human blood. They are cytotoxic and activated by phosphoantigens whose concentrations are increased in cancer cells, making the cancer cells targets for Vγ9Vδ2 T cell immunotherapy. For successful immunotherapy, it is important both to characterise Vγ9Vδ2 T cell proliferation and optimise the assessment of their cytotoxic potential, which is the aim of this study. We found that supplementation with freshly-thawed human serum potentiated Vγ9Vδ2 T cell proliferation from peripheral mononuclear cells (PBMCs) stimulated with (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and consistently enabled Vγ9Vδ2 T cell proliferation from cryopreserved PBMCs. In cryopreserved PBMCs the proliferation was higher than in freshly prepared PBMCs. In a panel of short-chain prenyl alcohols, monophosphates and diphosphates, most diphosphates and also dimethylallyl monophosphate stimulated Vγ9Vδ2 T cell proliferation. We developed a method where the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells is assessed at the single cell level using flow cytometry, which gives more clear-cut results than the traditional bulk release assays. Moreover, we found that HMBPP enhances the Vγ9Vδ2 T cell cytotoxicity towards colon cancer cells. In summary we have developed an easily interpretable method to assess the cytotoxicity of Vγ9Vδ2 T cells towards adherent cells, found that Vγ9Vδ2 T cell proliferation can be potentiated media-supplementation and how misclassification of non-responders may be avoided. Our findings will be useful in the further development of Vγ9Vδ2 T cell immunotherapy.
Collapse
Affiliation(s)
- Chenxiao Liu
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Sven-Göran Eriksson
- Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Parmryd
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
12
|
Anh BV, Thao CT, Cuong PT, Thuy NTT, Diem HH, Van Khanh BT, Hue BTH, Uyen TTT, Tu ND, Hoai TTT, Thanh NL, Liem NT, Nhung HTM. Vγ9γδ T Cell Induction by Human Umbilical Cord Blood Monocytes-Derived, Interferon-α-Stimulated Dendritic Cells. Cancer Control 2021; 27:1073274820974025. [PMID: 33222507 PMCID: PMC7791440 DOI: 10.1177/1073274820974025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DC) are professional antigen-presenting cells that activate T
cells to kill cancer cells. The extracellular products of DCs have also been
reported to perform the same function. In this study, we examined the in
vitro differentiation of umbilical cord blood monocytes into DCs in
the presence of GM-CSF, and interferon (IFN)-α. The resulting DC population
(called IFN-DCs) were then matured in the presence of TNF-α, and pulsed with
total protein extracted from A549 cancer cell line. The pulsed DCs and their
conditioned medium were then used to stimulate allogeneic lymphocytes (alloLym).
The proliferation and cytotoxicity of alloLym were then determined. The results
showed that after 5 days of differentiation, the stimulated monocytes had the
typical morphology and characteristic surface markers of DCs. Both unpulsed and
pulsed IFN-DCs can induce the proliferation of alloLym, especially Vγ9γδ T
cells. The conditioned medium from pulsed and unpulsed IFN-DCs culture also
prompted the growth of Vγ9γδ T cells. Moreover, alloLym stimulated with pulsed
DCs and their conditioned medium had a greater cytotoxic effect on A549 cells
than the ones that were not stimulated. Our results indicated that IFN-DCs and
their conditioned medium could induce the anti-tumor immunity in
vitro, providing evidence for application of cord blood
monocytes-derived, interferon-α- stimulated dendritic cells and their
extracellular products in anti-cancer therapy.
Collapse
Affiliation(s)
- Bui Viet Anh
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Hightech Center, Vinmec Healthcare system, Hanoi, Vietnam
| | - Chu Thi Thao
- Vinmec Hightech Center, Vinmec Healthcare system, Hanoi, Vietnam
| | - Pham Thi Cuong
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Nguyen Thi Thu Thuy
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Hoang Huong Diem
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Bui Thi Van Khanh
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Bui Thi Hong Hue
- Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vin homes Ocean Park, Hanoi, Vietnam
| | - Than Thi Trang Uyen
- Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vin homes Ocean Park, Hanoi, Vietnam
| | - Nguyen Dac Tu
- Vinmec Hightech Center, Vinmec Healthcare system, Hanoi, Vietnam
| | | | - Nguyen Lai Thanh
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Nguyen Thanh Liem
- Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vin homes Ocean Park, Hanoi, Vietnam
| | - Hoang Thi My Nhung
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam
| |
Collapse
|
13
|
Laplagne C, Ligat L, Foote J, Lopez F, Fournié JJ, Laurent C, Valitutti S, Poupot M. Self-activation of Vγ9Vδ2 T cells by exogenous phosphoantigens involves TCR and butyrophilins. Cell Mol Immunol 2021; 18:1861-1870. [PMID: 34183807 PMCID: PMC8237548 DOI: 10.1038/s41423-021-00720-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies. However, the molecular mechanism of their activation by phosphoantigens (PAgs) is not completely known. Many studies have depicted the mechanism of Vγ9Vδ2 T-cell activation by PAg-sensed accessory cells, such as immune presenting cells or tumor cells. In this study, we demonstrated that pure resting Vγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs, involving their TCR and the butyrophilins BTN3A1 and BTN2A1. This is the first time that these three molecules, concurrently expressed at the plasma membrane of Vγ9Vδ2 T cells, have been shown to be involved together on the same and unique T cell during PAg activation. Moreover, the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vγ9Vδ2 T cells before activating them through membrane clusters formed by γ9TCR, BTN3A1 and BTN2A1. The self-activation of Vγ9Vδ2 T cells, which leads to self-killing, can therefore participate in the failure of γδ T cell-based therapies with exogenous PAgs and should be taken into account.
Collapse
Affiliation(s)
- Chloé Laplagne
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Laetitia Ligat
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Juliet Foote
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Frederic Lopez
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Jean-Jacques Fournié
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Camille Laurent
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- IUCT-O, Toulouse, France
| | - Salvatore Valitutti
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Mary Poupot
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
- ERL 5294 CNRS, Toulouse, France.
| |
Collapse
|
14
|
Galati D, Zanotta S, Bocchino M, De Filippi R, Pinto A. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Cancer Immunol Immunother 2021; 70:1797-1809. [PMID: 33386466 PMCID: PMC10991494 DOI: 10.1007/s00262-020-02805-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Human gamma delta (γδ) T cells represent heterogeneous subsets of unconventional lymphocytes with an HLA-unrestricted target cell recognition. γδ T cells display adaptive clonally restricted specificities coupled to a powerful cytotoxic function against transformed/injured cells. Dendritic cells (DCs) are documented to be the most potent professional antigen-presenting cells (APCs) able to induce adaptive immunity and support the innate immune response independently from T cells. Several data show that the cross-talk of γδ T lymphocytes with DCs can play a crucial role in the orchestration of immune response by bridging innate to adaptive immunity. In the last decade, DCs, as well as γδ T cells, have been of increasing clinical interest, especially as monotherapy for cancer immunotherapy, even though with unpredictable results mainly due to immune suppression and/or tumor-immune escape. For these reasons, new vaccine strategies have to be explored to reach cancer immunotherapy's full potential. The effect of DC-based vaccines on γδ T cell is less extensively investigated, and a combinatorial approach using DC-based vaccines with γδ T cells might promote a strong synergy for long-term tumor control and protection against escaping tumor clones. Here, we discuss the therapeutic potential of the interaction between DCs and γδ T cells to improve cancer vaccination. In particular, we describe the most relevant and updated evidence of such combinatorial approaches, including the use of Zoledronate, Interleukin-15, and protamine RNA, also looking towards future strategies such as CAR therapies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
15
|
D'Oronzo S, Wood S, Brown JE. "The use of bisphosphonates to treat skeletal complications in solid tumours". Bone 2021; 147:115907. [PMID: 33676057 DOI: 10.1016/j.bone.2021.115907] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
The skeleton is the most common site of secondary disease in breast cancer and prostate cancer, with up to 80% of patients with advanced disease developing bone metastases (BM). The proportion is also substantial in advanced lung cancer (20%-40%). Because of the high prevalence of cancers of the breast, prostate and lung, these cancers account for more than 80% of cases of metastatic bone disease occurring in solid tumours. Metastatic bone disease is associated with greatly increased bone resorption by osteoclasts, leading to moderate to severe pain and other skeletal complications, with major impact on quality of life (QoL). Skeletal Related Events (SREs) have been defined as: pathological long bone or vertebral fractures; spinal cord compression; need for radiation for pain relief or to prevent fracture/spinal cord compression, need for surgery to bone and hypercalcaemia. More recently, Symptomatic Skeletal Events (SSEs) have been defined to monitor QoL. Although there are currently no curative treatments for metastatic bone disease, patients with breast or prostate cancer and BM are now surviving for several years and sometimes longer, and prevention of SREs is the key aim to optimization of QoL. Since their discovery 50 years ago and their introduction more than 30 years ago into the field of metastatic bone disease, a range of oral and intravenous bisphosphonate drugs have made a major contribution to prevention of SREs. Large trials have clearly demonstrated the clinical value of different bisphosphonate-based drugs (including the oral drugs ibandronate and clodronate and intravenous agents such as zoledronate and pamidronate), in treatment of hypercalcaemia of malignancy and the reduction of SREs and SSEs in a range of cancers. Despite the success of denosumab in reducing osteolysis, bisphosphonates also remain mainstay drugs for treatment of metastatic bone disease. Recognizing the 50th Anniversary of the discovery of bisphosphonates, this review focuses on their continuing value in BM treatment and their future potential, for example in providing a bone-targeting vehicle for cytotoxic drugs.
Collapse
Affiliation(s)
- S D'Oronzo
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| | - S Wood
- Department of Oncology and Metabolism, The Medical School, Beech Hill Road, Sheffield, South Yorkshire S10 2RX, UK.
| | - J E Brown
- Academic Unit of Clinical Oncology, Department of Oncology and Metabolism, University of Sheffield, Weston Park Hospital, Whitham Rd, Broomhill, Sheffield S10 2SJ, UK
| |
Collapse
|
16
|
Ma R, Yuan D, Guo Y, Yan R, Li K. Immune Effects of γδ T Cells in Colorectal Cancer: A Review. Front Immunol 2020; 11:1600. [PMID: 33013819 PMCID: PMC7509400 DOI: 10.3389/fimmu.2020.01600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Gamma delta (γδ) T cells can effectively recognize and kill colorectal cancer (CRC) cells, thereby suppressing tumor progression via multiple mechanisms. They also have abilities to exert a protumor effect via secreting interleukin-17 (IL-17). γδ T cells have been selected as potential immunocytes for antitumor treatment because of their significant cytotoxic activity. Immunotherapy is another potential anti-CRC strategy after an operation, chemotherapy, and radiotherapy. γδ T cell-based immunotherapy for CRC shows fewer side effects and better toleration. This review will outline the immune functions and the mechanisms of γδ T cells in the growth and progression of CRC in recent years, and summarize the immunotherapies based on γδ T cells, thus providing a direction for future γδ T cells in CRC research.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Colorectal Neoplasms/etiology
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Susceptibility/immunology
- Humans
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Inflammatory Bowel Diseases/complications
- Inflammatory Bowel Diseases/etiology
- Inflammatory Bowel Diseases/metabolism
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Treatment Outcome
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yizhan Guo
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
17
|
Girard P, Ponsard B, Charles J, Chaperot L, Aspord C. Potent Bidirectional Cross-Talk Between Plasmacytoid Dendritic Cells and γδT Cells Through BTN3A, Type I/II IFNs and Immune Checkpoints. Front Immunol 2020; 11:861. [PMID: 32435249 PMCID: PMC7218166 DOI: 10.3389/fimmu.2020.00861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid DCs (pDCs) and γδT cells are both critical players in immunosurveillance against pathogens and cancer due to their ability to sense microbes and cell stress through recognition of pathogen-associated molecular patterns or altered metabolism [phosphoantigens (PAgs)]. Their unique features, high functional plasticity and ability to interact with many immune cell types allow them to bridge innate and adaptive immunity, initiating and orientating widely immune responses, hence contributing to protective and pathogenic immune responses. Yet, despite strategic and closed missions, potential interactions between pDCs and γδT cells are still unknown. Here we investigated whether there is interplay between pDCs and γδT cells and the underlying molecular mechanisms. Purified human pDCs and γδT cells were cocultured in presence of TLR-L, PAg, and zoledronate (Zol) to mimic both infectious and tumor settings. We demonstrated that TLR7/9L- or Zol-stimulated pDCs drive potent γδT-cell activation, Th1 cytokine secretion and cytotoxic activity. Conversely PAg-activated γδT cells trigger pDC phenotypic changes and functional activities. We provided evidence that pDCs and γδT cells cross-regulate each other through soluble factors and cell-cell contacts, especially type I/II IFNs and BTN3A. Such interplay could be modulated by blocking selective immune checkpoints. Our study highlighted crucial bidirectional interactions between these key potent immune players. The exploitation of pDC-γδT cells interplay represents a promising opportunity to design novel immunotherapeutic strategies and restore appropriate immune responses in cancers, infections and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Girard
- Etablissement Français du Sang Auvergne Rhone-Alpes, Research and Development Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France
| | - Benedicte Ponsard
- Etablissement Français du Sang Auvergne Rhone-Alpes, Research and Development Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France
| | - Julie Charles
- Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France.,Dermatology Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang Auvergne Rhone-Alpes, Research and Development Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- Etablissement Français du Sang Auvergne Rhone-Alpes, Research and Development Laboratory, Grenoble, France.,Université Grenoble Alpes, INSERM, CNRS, Team Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
18
|
D’Oronzo S, Silvestris E, Paradiso A, Cives M, Tucci M. Role of Bone Targeting Agents in the Prevention of Bone Metastases from Breast Cancer. Int J Mol Sci 2020; 21:ijms21083022. [PMID: 32344743 PMCID: PMC7215395 DOI: 10.3390/ijms21083022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide and leads, in more than 70% of patients with advanced disease, to skeleton colonization and formation of bone metastases (BM). This condition implies a severe disability and deterioration of the quality of life, with consequent additional social costs. In recent decades, several studies explored the role of agents acting within the bone microenvironment to counteract BM development, and several bone-targeting agents (BTAs) have been introduced in the clinical practice to manage bone lesions and reduce the risk of skeletal complications. However, long-term exposure to these agents is not free from potential toxicities and needs careful monitoring. In this context, the potential capability to prevent BM onset in selected BC patients, through the early administration of BTAs, has been explored by several researchers, with the belief that “prevention is better than cure” and that, ultimately, metastatic BC is an incurable condition. Here, we revised the mechanisms of BM development in BC as well as the strategies for selecting high-risk patients suitable for early BTA treatment.
Collapse
Affiliation(s)
- Stella D’Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (M.C.); (M.T.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
- Correspondence: ; Tel.: +39-080-547-8674; Fax: +39-080-547-8831
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Angelo Paradiso
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (M.C.); (M.T.)
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (M.C.); (M.T.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| |
Collapse
|
19
|
Polito VA, Cristantielli R, Weber G, Del Bufalo F, Belardinilli T, Arnone CM, Petretto A, Antonucci L, Giorda E, Tumino N, Pitisci A, De Angelis B, Quintarelli C, Locatelli F, Caruana I. Universal Ready-to-Use Immunotherapeutic Approach for the Treatment of Cancer: Expanded and Activated Polyclonal γδ Memory T Cells. Front Immunol 2019; 10:2717. [PMID: 31824502 PMCID: PMC6883509 DOI: 10.3389/fimmu.2019.02717] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, important progresses have been registered in the treatment of patients suffering from oncological/haematological malignancies, but more still needs to be done to reduce toxicity and side effects, improve outcome and offer new strategies for relapsed or refractory disease. A remarkable part of these clinical benefits is due to advances in immunotherapy. Here, we investigate the generation of a novel, universal and ready-to-use immunotherapeutic product based on γδ-T lymphocytes. These cells are part of the innate immune system, exerting potent natural cytotoxicity against bacteria, viruses and tumours. This ability, coupled with their negligible alloreactivity, makes them attractive for adoptive immunotherapy approaches. To achieve a cell product suitable for clinical use, we developed a strategy capable to generate polyclonal γδ-T cells with predominant memory-Vδ1 phenotype in good manufacturing practice (GMP) procedures with the additional possibility of gene-modification to improve their anti-tumour activity. Irradiated, engineered artificial antigen-presenting cells (aAPCs) expressing CD86/41BBL/CD40L and the cytomegalovirus (CMV)-antigen-pp65 were used. The presence of CMV-pp65 and CD40L proved to be crucial for expansion of the memory-Vδ1 subpopulation. To allow clinical translation and guarantee patient safety, aAPCs were stably transduced with an inducible suicide gene. Expanded γδ-T cells showed high expression of activation and memory markers, without signs of exhaustion; they maintained polyclonality and potent anti-tumour activity both in vitro (against immortalised and primary blasts) and in in vivo studies without displaying alloreactivity signals. The molecular characterisation (phophoproteomic and gene-expression) of these cell products underlines their unique properties. These cells can further be armed with chimeric antigen receptors (CAR) to improve anti-tumour capacity and persistence. We demonstrate the feasibility of establishing an allogeneic third-party, off-the-shelf and ready-to-use, γδ-T-cell bank. These γδ-T cells may represent an attractive therapeutic option endowed with broad clinical applications, including treatment of viral infections in highly immunocompromised patients, treatment of aggressive malignancies refractory to conventional approaches, bridging therapy to more targeted immunotherapeutic approaches and, ultimately, an innovative platform for the development of off-the-shelf CAR-T-cell products.
Collapse
Affiliation(s)
- Vinicia A Polito
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Rosaria Cristantielli
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gerrit Weber
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Tamascia Belardinilli
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudia M Arnone
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Petretto
- Core Facilities, Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Laura Antonucci
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Ezio Giorda
- Core Facilities, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, IRCSS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Pitisci
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Biagio De Angelis
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Concetta Quintarelli
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Gynaecology/Obstetrics and Paediatrics, Sapienza University of Rome, Rome, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology and Oncology, Cellular and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
20
|
D'Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J Bone Oncol 2019; 15:004-4. [PMID: 30937279 PMCID: PMC6429006 DOI: 10.1016/j.jbo.2018.10.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Bone metastases (BM) are a common complication of cancer, whose management often requires a multidisciplinary approach. Despite the recent therapeutic advances, patients with BM may still experience skeletal-related events and symptomatic skeletal events, with detrimental impact on quality of life and survival. A deeper knowledge of the mechanisms underlying the onset of lytic and sclerotic BM has been acquired in the last decades, leading to the development of bone-targeting agents (BTA), mainly represented by anti-resorptive drugs and bone-seeking radiopharmaceuticals. Recent pre-clinical and clinical studies have showed promising effects of novel agents, whose safety and efficacy need to be confirmed by prospective clinical trials. Among BTA, adjuvant bisphosphonates have also been shown to reduce the risk of BM in selected breast cancer patients, but failed to reduce the incidence of BM from lung and prostate cancer. Moreover, adjuvant denosumab did not improve BM free survival in patients with breast cancer, suggesting the need for further investigation to clarify BTA role in early-stage malignancies. The aim of this review is to describe BM pathogenesis and current treatment options in different clinical settings, as well as to explore the mechanism of action of novel potential therapeutic agents for which further investigation is needed.
Collapse
Key Words
- ActRIIA, activin-A type IIA receptor
- BC, breast cancer
- BM, bone metastases
- BMD, bone mineral density
- BMPs, bone morphogenetic proteins
- BMSC, bone marrow stromal cells
- BPs, bisphosphonates
- BTA, bone targeting agents
- BTM, bone turnover markers
- Bone metastases
- Bone targeting agents
- CCR, chemokine-receptor
- CRPC, castration-resistant PC
- CXCL-12, C–X–C motif chemokine-ligand-12
- CXCR-4, chemokine-receptor-4
- DFS, disease-free survival
- DKK1, dickkopf1
- EBC, early BC
- ECM, extracellular matrix
- ET-1, endothelin-1
- FDA, food and drug administration
- FGF, fibroblast growth factor
- GAS6, growth-arrest specific-6
- GFs, growth factors
- GnRH, gonadotropin-releasing hormone
- HER-2, human epidermal growth factor receptor 2
- HR, hormone receptor
- IL, interleukin
- LC, lung cancer
- MAPK, mitogen-activated protein kinase
- MCSF, macrophage colony-stimulating factor
- MCSFR, MCSF receptor
- MIP-1α, macrophage inflammatory protein-1 alpha
- MM, multiple myeloma
- MPC, malignant plasma cells
- N-BPs, nitrogen-containing BPs
- NF-κB, nuclear factor-κB
- ONJ, osteonecrosis of the jaw
- OS, overall survival
- Osteotropic tumors
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PFS, progression-free survival
- PIs, proteasome inhibitors
- PSA, prostate specific antigen
- PTH, parathyroid hormone
- PTH-rP, PTH related protein
- QoL, quality of life
- RANK-L, receptor activator of NF-κB ligand
- RT, radiation therapy
- SREs, skeletal-related events
- SSEs, symptomatic skeletal events
- Skeletal related events
- TGF-β, transforming growth factor β
- TK, tyrosine kinase
- TKIs, TK inhibitors
- TNF, tumornecrosis factor
- VEGF, vascular endothelial growth factor
- VEGFR, VEGF receptor
- mTOR, mammalian target of rapamycin
- non-N-BPs, non-nitrogen containing BPs
- v-ATPase, vacuolar-type H+ ATPase
Collapse
Affiliation(s)
- Stella D'Oronzo
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| | - Robert Coleman
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Rd, Sheffield S10 2SJ, England, UK
| | - Janet Brown
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Rd, Sheffield S10 2SJ, England, UK
| | - Francesco Silvestris
- Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, P.za Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
21
|
Wang RN, Wen Q, He WT, Yang JH, Zhou CY, Xiong WJ, Ma L. Optimized protocols for γδ T cell expansion and lentiviral transduction. Mol Med Rep 2019; 19:1471-1480. [PMID: 30628681 PMCID: PMC6390064 DOI: 10.3892/mmr.2019.9831] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 10/04/2018] [Indexed: 01/23/2023] Open
Abstract
γδ T cells are a subset of unconventional T cells that serve a critical role in infectious diseases and various types of cancer. Cell therapy with genetically‑modified γδ T cells is regarded as a promising tool for tumor treatment. However, since γδ T cells constitute a minority of T cells, their large‑scale expansion is difficult to realize in an efficient and cost‑effective manner. In the present study, based on previous studies, culture protocols for γδ T cells were tested using different combinations of isopentenyl pyrophosphate and interleukin 2 in order to satisfy different experimental purposes. One protocol was demonstrated to be the most suitable for lentiviral transduction. These results greatly reinforce the promising prospects of using γδ T cells in basic research and for clinical applications.
Collapse
Affiliation(s)
- Rui-Ning Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wen-Ting He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jia-Hui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chao-Ying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wen-Jing Xiong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
22
|
Wang X, Liu J, Gao H, Mo XD, Han T, Xu LP, Zhang XH, Huang XJ. Dendritic Cells Are Critical for the Activation and Expansion of Vδ2 + T Cells After Allogeneic Hematopoietic Transplantation. Front Immunol 2018; 9:2528. [PMID: 30443256 PMCID: PMC6221956 DOI: 10.3389/fimmu.2018.02528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022] Open
Abstract
γδ T cells perform antitumor and antiviral effector functions and are involved in both innate and adaptive immunity. Vδ2+ T cells represent the predominant γδ T subset in the peripheral blood of healthy subjects. Vδ2+ T cells can be selectively activated and expanded by phosphoantigens (pAgs). Dendritic cells (DCs), as potent antigen-presenting cells, are capable of mediating pAgs–triggered Vδ2+ T cells expansion. However, the association between DCs and Vδ2+ T cell recovery in the context of hematopoietic stem cell transplantation (HSCT) remains unclear. We previously demonstrated that the recovery of Vδ2+ T cells was hampered and inversely correlated with Epstein-Barr virus (EBV) reactivation in patients undergoing haploidentical HSCT (haploHSCT). Whether Vδ2+ T cells from haploHSCT recipients can be expanded by stimulation with aminobisphosphonates or pAg–presenting DCs is of particular interest. Herein, we showed that Vδ2+ T cells recovered after haploHSCT failed to expand after ex-vivo stimulation with pamidronate. In addition, we found that the recovery of DC subsets was significantly decreased, and the concentration of myeloid DCs (mDCs) correlated significantly with Vδ2+ T cell recovery in the setting of allogeneic HSCT. Furthermore, coculture of peripheral lymphocytes from recipients with monocyte-derived and pamidronate-pretreated autologous or allogeneic DCs induced the successful expansion of Vδ2+ T cells. Of note, allogeneic DCs from third-party donors stimulated a significantly higher efficiency of Vδ2+ T cell expansion than autologous DCs. More importantly, the memory features were well-retained and the cytotoxic cytokines-production capacity was significantly enhanced in the expanded Vδ2+ T cells. Taken together, these results suggest that the frequency and function of DCs are critical for the recovery of Vδ2+ T cells after allogeneic HSCT. The fact that vigorous expansions of Vδ2+ T cells were induced by phosphoantigen-pretreated DCs, especially by allogeneic third-party DCs, provides additional options for the development of individualized immunotherapy strategies that utilize the anti-viral and anti-leukemic effects of γδ T cells in the context of hematopoietic transplantation.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Beijing Hightrust Diagnostics, Co., Ltd, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Haitao Gao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
23
|
Improving CLL Vγ9Vδ2-T-cell fitness for cellular therapy by ex vivo activation and ibrutinib. Blood 2018; 132:2260-2272. [PMID: 30213872 DOI: 10.1182/blood-2017-12-822569] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
The efficacy of autologous (αβ) T-cell-based treatment strategies in chronic lymphocytic leukemia (CLL) has been modest. The Vγ9Vδ2-T cell subset consists of cytotoxic T lymphocytes with potent antilymphoma activity via a major histocompatibility complex-independent mechanism. We studied whether Vγ9Vδ2-T cells can be exploited as autologous effector lymphocytes in CLL. Healthy control Vγ9Vδ2-T cells were activated by and had potent cytolytic activity against CLL cells. However, CLL-derived Vγ9Vδ2-T cells proved dysfunctional with respect to effector cytokine production and degranulation, despite an increased frequency of the effector-type subset. Consequently, cytotoxicity against malignant B cells was hampered. A comparable dysfunctional phenotype was observed in healthy Vγ9Vδ2-T cells after coculture with CLL cells, indicating a leukemia-induced mechanism. Gene-expression profiling implicated alterations in synapse formation as a conceivable contributor to compromised Vγ9Vδ2-T-cell function in CLL patients. Dysfunction of Vγ9Vδ2-T cells was fully reversible upon activation with autologous monocyte-derived dendritic cells (moDCs). moDC activation resulted in efficient expansion and predominantly yielded Vγ9Vδ2-T cells with a memory phenotype. Furthermore, ibrutinib treatment promoted an antitumor T helper 1 (TH1) phenotype in Vγ9Vδ2-T cells, and we demonstrated binding of ibrutinib to IL-2-inducible kinase (ITK) in Vγ9Vδ2-T cells. Taken together, CLL-mediated dysfunction of autologous Vγ9Vδ2-T cells is fully reversible, resulting in potent cytotoxicity toward CLL cells. Our data support the potential use of Vγ9Vδ2-T cells as effector T cells in CLL immunotherapy and favor further exploration of combining Vγ9Vδ2-T-cell-based therapy with ibrutinib.
Collapse
|
24
|
Fisher J, Anderson J. Engineering Approaches in Human Gamma Delta T Cells for Cancer Immunotherapy. Front Immunol 2018; 9:1409. [PMID: 29997614 PMCID: PMC6028554 DOI: 10.3389/fimmu.2018.01409] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Sharing both innate and adaptive immune properties, γδT cells are attractive candidates for cellular engineering. As the cancer immunotherapy field becomes increasingly busy, orthogonal approaches are required to drive advancement. Engineering of alternative effector cell types such as γδT cells represents one such approach. γδT cells can be modified using many of the techniques used in αβT cell engineering, with the added advantage of innate-like tumor recognition and killing. Progress has been made in T-cell receptor transfer to and from γδT cells as well as in a number of chimeric antigen receptor-based strategies. As the cancer immunotherapy field moves beyond repetitive iteration of established constructs to more creative solutions, γδT cells may offer an attractive chassis to drive anti-tumor responses that are not only broader, but also possess a more favorable safety profile.
Collapse
|
25
|
Wang X, Wang Q. Alpha-Fetoprotein and Hepatocellular Carcinoma Immunity. Can J Gastroenterol Hepatol 2018; 2018:9049252. [PMID: 29805966 PMCID: PMC5899840 DOI: 10.1155/2018/9049252] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/25/2018] [Accepted: 03/18/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinoma is one of the most prevalent gastroenterological cancers in the world with less effective therapy. As an oncofetal antigen and diagnostic marker for liver cancer, alpha-fetoprotein (AFP) possesses a variety of biological functions. Except for its diagnosis in liver cancer, AFP has become a target for liver cancer immunotherapy. Although the immunogenicity of AFP is weak and it could induce the immune escapes through inhibiting the function of dendritic cells, natural killer cells, and T lymphocytes, AFP has attracted more attention in liver cancer immunotherapy. By in vitro modification, the immunogenicity and immune response of AFP could be enhanced. AFP-modified immune cell vaccine or peptide vaccine has displayed the specific antitumor immunity against AFP-positive tumor cells and laid a better foundation for the immunotherapy of liver cancer.
Collapse
Affiliation(s)
- Xiaoping Wang
- Laboratory of Molecular Biology & Pathology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Qiaoxia Wang
- Department of Infectious Diseases, Xi'an Central Hospital, Xi'an, Shaanxi 710000, China
| |
Collapse
|
26
|
Abstract
γδ T cells are one of the three immune cell types that express antigen receptors. They contribute to lymphoid antitumor surveillance and bridge the gap between innate and adaptive immunity. γδ T cells have the capacity of secreting abundant cytokines and exerting potent cytotoxicity against a wide range of cancer cells. γδ T cells exhibit important roles in immune-surveillance and immune defense against tumors and have become attractive effector cells for cancer immunotherapy. γδ T cells mediate anti-tumor therapy mainly by secreting pro-apoptotic molecules and inflammatory cytokines, or through a TCR-dependent pathway. Recently, γδ T cells are making their way into clinical trials. Some clinical trials demonstrated that γδ T cell-based immunotherapy is well tolerated and efficient. Despite the advantages that could be exploited, there are obstacles have to be addressed for the development of γδ T cell immunotherapies. Future direction for immunotherapy using γδ T cells should focus on overcoming the side effects of γδ T cells and exploring better antigens that help stimulating γδ T cell expansion in vitro.
Collapse
|
27
|
Tian W, Ma J, Shi R, Ren C, He J, Zhao H. γδ T cell-mediated individualized immunotherapy for hepatocellular carcinoma considering clinicopathological characteristics and immunosuppressive factors. Oncol Lett 2018; 15:5433-5442. [PMID: 29552184 PMCID: PMC5840521 DOI: 10.3892/ol.2018.8026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/18/2017] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. γδ T cells have been revealed to be promising candidates for immunotherapy in patients with HCC. However, the use of these cells in clinical practice has been demonstrated to be challenging. In the present study, γδ T cells isolated from the peripheral blood of patients with HCC (n=83) and healthy donors (n=15) were characterized. Flow cytometry was used to analyze the proportion, phenotype, tumor-killing capacity and cytokine secretion of regulatory T cells (Tregs) and γδ T17 cells in peripheral blood samples prior to and following amplification. Interleukin (IL)-17A levels in the supernatant was analyzed using an ELISA on days 3, 7, 10 and 14. The in vitro cytotoxicity of γδ T cells was measured using an MTT assay. It was revealed that zoledronate with IL-2 may efficiently expand γδ T cells sourced from the peripheral blood of patients with HCC. The amplification capacity of γδ T cells was associated with the clinicopathological characteristics of patients (clinical stage, levels of AFP and albumin, duration of disease, size and number of tumors, numbers of Tregs and γδ T17 cells, and levels of IL-17A). The proportion of γδ T cells positive for interferon-γ, tumor necrosis factor-α, granzyme B, perforin, and lysosome-associated membrane protein 1 was almost unchanged prior to and following amplification. Following amplification, the in vitro cytotoxicity of γδ T cells also remained unchanged. γδ T17 cells, Tregs and IL-17A levels were not altered during amplification. In summary, following in vitro amplification, circulating γδ T cells were revealed to possess features that may make them suitable for immunotherapy for HCC without increasing immunosuppressive factors. However, immunotherapy should be individualized according to the clinicopathological features of patients.
Collapse
Affiliation(s)
- Wei Tian
- The First Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Department of General Surgery, Taiyuan Central Hospital, Taiyuan, Shanxi 030009, P.R. China.,Department of General Surgery, Shanxi Dayi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, P.R. China
| | - Jun Ma
- The First Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ruyi Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chongren Ren
- The First Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiefeng He
- Department of General Surgery, Shanxi Dayi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, P.R. China
| | - Haoliang Zhao
- The First Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Department of General Surgery, Shanxi Dayi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
28
|
Sousa S, Clézardin P. Bone-Targeted Therapies in Cancer-Induced Bone Disease. Calcif Tissue Int 2018; 102:227-250. [PMID: 29079995 DOI: 10.1007/s00223-017-0353-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 01/14/2023]
Abstract
Cancer-induced bone disease is a major source of morbidity and mortality in cancer patients. Thus, effective bone-targeted therapies are essential to improve disease-free, overall survival and quality of life of cancer patients with bone metastases. Depending of the cancer-type, bone metastases mainly involve the modulation of osteoclast and/or osteoblast activity by tumour cells. To inhibit metastatic bone disease effectively, it is imperative to understand its underlying mechanisms and identify the target cells for therapy. If the aim is to prevent bone metastasis, it is essential to target not only bone metastatic features in the tumour cells, but also tumour-nurturing bone microenvironment properties. The currently available bone-targeted agents mainly affect osteoclasts, inhibiting bone resorption (e.g. bisphosphonates, denosumab). Some agents targeting osteoblasts begin to emerge which target osteoblasts (e.g. romosozumab), activating bone formation. Moreover, certain drugs initially thought to target only osteoclasts are now known to have a dual action (activating osteoblasts and inhibiting osteoclasts, e.g. proteasome inhibitors). This review will focus on the evolution of bone-targeted therapies for the treatment of cancer-induced bone disease, summarizing preclinical and clinical findings obtained with anti-resorptive and bone anabolic therapies.
Collapse
Affiliation(s)
- Sofia Sousa
- National Institute of Health and Medical Research (INSERM), UMR 1033, 69372, Lyon, France.
- Faculty of Medicine Laennec, University of Lyon-1, 69372, Villeurbanne, France.
| | - Philippe Clézardin
- National Institute of Health and Medical Research (INSERM), UMR 1033, 69372, Lyon, France
- Faculty of Medicine Laennec, University of Lyon-1, 69372, Villeurbanne, France
- European Cancer and Bone Metastasis Laboratory, Department of Bone Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Fleming C, Morrissey S, Cai Y, Yan J. γδ T Cells: Unexpected Regulators of Cancer Development and Progression. Trends Cancer 2017; 3:561-570. [PMID: 28780933 DOI: 10.1016/j.trecan.2017.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022]
Abstract
Accumulating evidence suggests a role for gamma delta (γδ) T cells as unexpected drivers of tumor development and progression. These protumoral γδ T cells are abundant in the tumor microenvironment in both mouse and human. They promote tumor progression by: (i) inducing an immunosuppressive tumor microenvironment and angiogenesis via cytokine production; (ii) functioning as regulatory T (Treg)/T helper 2 (Th2)-like cells; (iii) interfering with dendritic cell (DC) effector function; and (iv) inhibiting antitumor adaptive T cell immunity via the programmed death-1 (PD-1)-programmed death ligand-1 (PD-L1) pathway. Understanding how these cells are regulated and what their specific role in cancer is will provide insight for the development of approaches that specifically target these cells and can thereby improve the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Christopher Fleming
- Department of Medicine, Tumor Immunobiology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Samantha Morrissey
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yihua Cai
- Department of Medicine, Tumor Immunobiology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Department of Medicine, Tumor Immunobiology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
30
|
Nakamoto Y. Promising new strategies for hepatocellular carcinoma. Hepatol Res 2017; 47:251-265. [PMID: 27558453 DOI: 10.1111/hepr.12795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. It usually arises based on a background of chronic liver diseases, defined as the hypercarcinogenic state. The current treatment options for HCC ranging from locoregional treatments to chemotherapies, including sorafenib, effectively regulate the limited sizes and numbers of the nodules. However, these treatments remain unsatisfactory because they have insufficient antitumor effects on the large and numerous nodules associated with HCC and because of a high recurrence rate in the surrounding inflamed liver. To develop novel and promising therapies with higher antitumor effects, recent progress in identifying molecular targets and developing immunological procedures for HCC are reviewed. The molecular targets discussed include the intracellular signaling pathways of protein kinase B/mammalian target of rapamycin and RAS/RAF/mitogen-activated protein kinase, Wnt/β-catenin and glutamine synthetase, insulin-like growth factor, signal transducer and activator of transcription 3, nuclear factor-κB and telomerase reverse transcriptase, and c-MET. Immunological studies have focused mainly on target identification, T cells, natural killer cells, dendritic cells, natural killer T cells, and vaccine development.
Collapse
Affiliation(s)
- Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
31
|
Nada MH, Wang H, Workalemahu G, Tanaka Y, Morita CT. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation. J Immunother Cancer 2017; 5:9. [PMID: 28239463 PMCID: PMC5319075 DOI: 10.1186/s40425-017-0209-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
Background Human γδ T cells expressing Vγ2Vδ2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with Vγ2Vδ2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand Vγ2Vδ2 cells where zoledronate is slowly diluted over the course of the culture. Zoledronate inhibits farnesyl diphosphate synthase (FDPS) in monocytes causing isopentenyl pyrophosphate to accumulate that then stimulates Vγ2Vδ2 cells. Because zoledronate inhibition of FDPS is also toxic for T cells, we hypothesized that a short period of exposure would reduce T cell toxicity but still be sufficient for monocytes uptake. Additionally, IL-15 increases the anti-tumor activity of murine αβ T cells in mice but its effect on the in vivo anti-tumor activity of human Vγ2Vδ2 cells has not been assessed. Methods Human Vγ2Vδ2 T cells were expanded by pulse or continuous zoledronate stimulation with IL-2 or IL-15. Expanded Vγ2Vδ2 cells were tested for their expression of effector molecules and killing of tumor cells as well as their in vivo control of human prostate cancer tumors in immunodeficient NSG mice. Results Pulse zoledronate stimulation with either IL-2 or IL-15 resulted in more uniform expansion of Vγ2Vδ2 cells with higher purity and cell numbers as compared with continuous exposure. The Vγ2Vδ2 cells had higher levels of CD107a and perforin and increased tumor cytotoxicity. Adoptive immunotherapy with Vγ2Vδ2 cells derived by pulse stimulation controlled human PC-3 prostate cancer tumors in NSG mice significantly better than those derived by continuous stimulation, halting tumor growth. Although pulse zoledronate stimulation with IL-15 preserved early memory subsets, adoptive immunotherapy with IL-15-derived Vγ2Vδ2 cells equally inhibited PC-3 tumor growth as those derived with IL-2. Conclusions Pulse zoledronate stimulation maximizes the purity, quantity, and quality of expanded Vγ2Vδ2 cells for adoptive immunotherapy but there is no advantage to using IL-15 over IL-2 in our humanized mouse model. Pulse zoledronate stimulation is a simple modification to existing protocols that will enhance the effectiveness of adoptively transferred Vγ2Vδ2 cells by increasing their numbers and anti-tumor activity. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0209-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Grefachew Workalemahu
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| |
Collapse
|
32
|
Cho HW, Kim SY, Sohn DH, Lee MJ, Park MY, Sohn HJ, Cho HI, Kim TG. Triple costimulation via CD80, 4-1BB, and CD83 ligand elicits the long-term growth of Vγ9Vδ2 T cells in low levels of IL-2. J Leukoc Biol 2016; 99:521-9. [PMID: 26561569 DOI: 10.1189/jlb.1hi0814-409rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/11/2015] [Indexed: 12/16/2023] Open
Abstract
Human γδ T cells play important roles in the regulation of infection and cancer. To understand the roles of costimulatory signals in activation and expansion ex vivo, Vγ9Vδ2 T cells were grown with artificial APCs that express CD83, 4-1BB ligand, and/or CD32, which allowed a loading of αCD3 and αCD28 antibodies. The costimulatory signals through CD80, 4-1BB, and CD83 ligand in low levels of IL-2 triggered an explosive ex vivo proliferation of Vγ9Vδ2 T cells capable of secreting high levels of IL-2, IFN-γ, and TNF-α. Moreover, the triple-costimulatory signals cause augmented cell viabilities for long-term growth of Vγ9Vδ2 T cells, resulting in phenotypic changes to CD27(-)CD45RA(+) effector memory-like cells. Notably, we observed that CD83 ligand signaling is crucial to promote ex vivo expansion, survival, and cytolytic effector functions of Vγ9Vδ2 T cells. In contrast, 4-1BB signaling is moderately important in up-regulating surface molecules on Vγ9Vδ2 T cells. Consequently, γδ T cells stimulated in the presence of triple-costimulatory signals have diverse cytolytic effector molecules, including perforin, granzyme A, granzyme B, and Fas ligand, eliciting potent cytolytic activities against tumor cells. Overall, our results provide insights into the roles of costimulatory signals in manufacturing long-lived and fully functional Vγ9Vδ2 T cells that could be useful against cancers.
Collapse
Affiliation(s)
- Hyun-Woo Cho
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Su-Yeon Kim
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dae-Hee Sohn
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Ji Lee
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-Young Park
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Il Cho
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- *Department of Microbiology, Catholic Hematopoietic Stem Cell Bank, and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
33
|
Sugai S, Yoshikawa T, Iwama T, Tsuchiya N, Ueda N, Fujinami N, Shimomura M, Zhang R, Kaneko S, Uemura Y, Nakatsura T. Hepatocellular carcinoma cell sensitivity to Vγ9Vδ2 T lymphocyte-mediated killing is increased by zoledronate. Int J Oncol 2016; 48:1794-804. [PMID: 26936487 PMCID: PMC4809658 DOI: 10.3892/ijo.2016.3403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023] Open
Abstract
The limited efficacy of vaccines in hepatocellular carcinoma (HCC), due to the low frequency of tumor-infiltrating cytotoxic T lymphocytes (CTLs), indicates the importance of innate immune surveillance, which assists acquired immunity by directly recognizing and eliminating HCC. Innate Vγ9Vδ2 T cells have major histocompatibility complex-unrestricted antitumor activity and are activated by phosphoantigens, which are upregulated in cancer cells by the nitrogen-containing bisphosphonate, zoledronate (Zol). A better understanding of HCC susceptibility to Zol and downstream γδ T cell-mediated killing is essential to optimize γδ T cell-mediated immunotherapy. This study systematically examined the interactions between γδ T cells and Zol-treated HCC cell lines (HepG2, HLE, HLF, HuH-1, JHH5, JHH7, and Li-7) in vitro. All HCC cell lines expressed the DNAX accessory molecule-1 ligands, poliovirus receptor, and Nectin-2, and γδ T cell-mediated killing of these cells was significantly enhanced by Zol. Small interfering RNA-mediated knockdown of these ligands did not affect the susceptibility to γδ T cell lysis. This killing activity was partly inhibited by mevastatin, an inhibitor of the mevalonate pathway, and markedly reduced by a monoclonal antibody to γ- and δ-chain T cell receptor, indicating that this is crucial for Zol-induced HCC killing. In addition, Zol-treated HCC cell lines triggered γδ T cell proliferation and induced production of Th1 and Th2, but not Th17, cytokines. The Zol concentration that enhanced HCC cell susceptibility to γδ T cell killing was lower than that required to directly inhibit HCC proliferation. Thus, γδ T cells may be important effector cells in the presence of Zol, especially where there are insufficient number of cancer antigen-specific CTLs to eliminate HCC. Our in vitro data support the proposal that Zol-treatment, combined with adaptive γδ T cell immunotherapy, may provide a feasible and effective approach for treatment of HCC.
Collapse
Affiliation(s)
- Shiori Sugai
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Tatsuaki Iwama
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Nobuhiro Tsuchiya
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Norihiro Ueda
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Norihiro Fujinami
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| |
Collapse
|
34
|
Ang C, Doyle E, Branch A. Bisphosphonates as potential adjuvants for patients with cancers of the digestive system. World J Gastroenterol 2016; 22:906-916. [PMID: 26811636 PMCID: PMC4716044 DOI: 10.3748/wjg.v22.i3.906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/05/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Best known for their anti-resorptive activity in bone, bisphosphonates (BPs) have generated interest as potential antineoplastic agents given their pleiotropic biological effects which include antiproliferative, antiangiogenic and immune-modulating properties. Clinical studies in multiple malignancies suggest that BPs may be active in the prevention or treatment of cancer. Digestive tract malignancies represent a large and heterogeneous disease group, and the activity of BPs in these cancers has not been extensively studied. Recent data showing that some BPs inhibit human epidermal growth factor receptor (HER) signaling highlight a potential therapeutic opportunity in digestive cancers, many of which have alterations in the HER axis. Herein, we review the available evidence providing a rationale for the repurposing of BPs as a therapeutic adjunct in the treatment of digestive malignancies, especially in HER-driven subgroups.
Collapse
|
35
|
Failli A, Legitimo A, Orsini G, Romanini A, Consolini R. The effects of zoledronate on monocyte-derived dendritic cells from melanoma patients differ depending on the clinical stage of the disease. Hum Vaccin Immunother 2015; 10:3375-82. [PMID: 25483657 PMCID: PMC4514079 DOI: 10.4161/hv.29416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Zoledronic acid has shown indirect anticancer effects on angiogenesis, the tumor microenvironment and immune responses. Its immunological action is exerted, at least in part, via its modulating properties. The aim of this study was to investigate the in vitro effects of zoledronic acid on the dendritic cells of melanoma patients. Peripheral blood samples were collected from 26 patients with melanoma and 11 healthy donors. Dendritic cells were derived from purified monocytes, and zoledronic acid (ZA) was added on the first day of culture. The phenotype and function of the generated cells were evaluated by flow cytometry. The ZA-treated monocytes from patients with early-stage disease generated DCs characterized by reduced endocytic activity and increased allostimulatory capacity compared with the untreated samples, allowing restoration of the DC function observed in normal subjects. In contrast, the ZA-treated monocytes from patients at stage III generated cells with higher CD14 antigen expression and endocytosis than the untreated samples. Therefore, in melanoma patients, the in vitro ZA effects differ according to the progression of the disease. In addition, our preliminary results appear to suggest that ZA effects are also influenced by the expression of CD14 antigen, indicating that the DC phenotype together with clinical characteristics must be considered in the choice of patients to be treated with ZA. Our work focus on the effect of ZA on monocyte-derived DCs from melanoma patients, showing that the effects of therapeutic doses of this drug might be mediated at least in part by modulation of myeloid cell function.
Collapse
Affiliation(s)
- Alessandra Failli
- a Department of Clinical and Experimental Medicine ; University of Pisa ; Pisa , Italy
| | | | | | | | | |
Collapse
|
36
|
Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells. PLoS One 2015; 10:e0131477. [PMID: 26121617 PMCID: PMC4488262 DOI: 10.1371/journal.pone.0131477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.
Collapse
|
37
|
Van Acker HH, Anguille S, Van Tendeloo VF, Lion E. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy. Oncoimmunology 2015; 4:e1021538. [PMID: 26405575 PMCID: PMC4570126 DOI: 10.1080/2162402x.2015.1021538] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 12/16/2022] Open
Abstract
Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium ; Center for Cell Therapy & Regenerative Medicine; Antwerp University Hospital ; Edegem, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute (VAXINFECTIO); Faculty of Medicine and Health Sciences; University of Antwerp ; Antwerp, Belgium ; Center for Cell Therapy & Regenerative Medicine; Antwerp University Hospital ; Edegem, Belgium
| |
Collapse
|
38
|
Khan MWA, Eberl M, Moser B. Potential Use of γδ T Cell-Based Vaccines in Cancer Immunotherapy. Front Immunol 2014; 5:512. [PMID: 25374569 PMCID: PMC4204533 DOI: 10.3389/fimmu.2014.00512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/02/2014] [Indexed: 01/11/2023] Open
Abstract
IMMUNOTHERAPY IS A FAST ADVANCING METHODOLOGY INVOLVING ONE OF TWO APPROACHES: (1) compounds targeting immune checkpoints and (2) cellular immunomodulators. The latter approach is still largely experimental and features in vitro generated, live immune effector cells, or antigen-presenting cells. γδ T cells are known for their efficient in vitro tumor killing activities. Consequently, many laboratories worldwide are currently testing the tumor killing function of γδ T cells in clinical trials. Reported benefits are modest; however, these studies have demonstrated that large γδ T-cell infusions were well tolerated. Here, we discuss the potential of using human γδ T cells not as effector cells but as a novel cellular vaccine for treatment of cancer patients. Antigen-presenting γδ T cells do not require to home to tumor tissues but, instead, need to interact with endogenous, tumor-specific αβ T cells in secondary lymphoid tissues. Newly mobilized effector αβ T cells are then thought to overcome the immune blockade by creating proinflammatory conditions fit for effector T-cell homing to and killing of tumor cells. Immunotherapy may include tumor antigen-loaded γδ T cells alone or in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mohd Wajid A Khan
- Institute of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , UK
| | - Matthias Eberl
- Institute of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , UK
| | - Bernhard Moser
- Institute of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
39
|
Khan MWA, Curbishley SM, Chen HC, Thomas AD, Pircher H, Mavilio D, Steven NM, Eberl M, Moser B. Expanded Human Blood-Derived γδT Cells Display Potent Antigen-Presentation Functions. Front Immunol 2014; 5:344. [PMID: 25101086 PMCID: PMC4107971 DOI: 10.3389/fimmu.2014.00344] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/06/2014] [Indexed: 01/12/2023] Open
Abstract
Cell-based immunotherapy strategies target tumors directly (via cytolytic effector cells) or aim at mobilizing endogenous anti-tumor immunity. The latter approach includes dendritic cells (DC) most frequently in the form of in vitro cultured peripheral blood monocytes-derived DC. Human blood γδT cells are selective for a single class of non-peptide agonists (“phosphoantigens”) and develop into potent antigen-presenting cells (APC), termed γδT-APC within 1–3 days of in vitro culture. Availability of large numbers of γδT-APC would be advantageous for use as a novel cellular vaccine. We here report optimal γδT cell expansion (>107 cells/ml blood) when peripheral blood mononuclear cells (PBMC) from healthy individuals and melanoma patients were stimulated with zoledronate and then cultured for 14 days in the presence of IL-2 and IL-15, yielding γδT cell cultures of variable purity (77 ± 21 and 56 ± 26%, respectively). They resembled effector memory αβT (TEM) cells and retained full functionality as assessed by in vitro tumor cell killing as well as secretion of pro-inflammatory cytokines (IFNγ, TNFα) and cell proliferation in response to stimulation with phosphoantigens. Importantly, day 14 γδT cells expressed numerous APC-related cell surface markers and, in agreement, displayed potent in vitro APC functions. Day 14 γδT cells from PBMC of patients with cancer were equally effective as their counterparts derived from blood of healthy individuals and triggered potent CD8+ αβT cell responses following processing and cross-presentation of simple (influenza M1) and complex (tuberculin purified protein derivative) protein antigens. Of note, and in clear contrast to peripheral blood γδT cells, the ability of day 14 γδT cells to trigger antigen-specific αβT cell responses did not depend on re-stimulation. We conclude that day 14 γδT cell cultures provide a convenient source of autologous APC for use in immunotherapy of patients with various cancers.
Collapse
Affiliation(s)
- Mohd Wajid A Khan
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| | - Stuart M Curbishley
- NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham Medical School , Birmingham , UK
| | - Hung-Chang Chen
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| | - Andrew D Thomas
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| | - Hanspeter Pircher
- Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg , Freiburg , Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano , Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy
| | - Neil M Steven
- CR-UK Clinical Trials Unit, School of Cancer Sciences, University of Birmingham Medical School , Birmingham , UK
| | - Matthias Eberl
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| | - Bernhard Moser
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| |
Collapse
|
40
|
Catros V, Dessarthe B, Thedrez A, Toutirais O. [Nectins and nectin-like receptors DNAM-1 and CRTAM: new ways for tumor escape]. Med Sci (Paris) 2014; 30:537-43. [PMID: 24939541 DOI: 10.1051/medsci/20143005017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nectin and nectin-like (Necl) are cell adhesion molecules expressed in various tumors. They were alternatively reported as involved in tumor suppressor or oncogenic functions that led to their use as histological or serological cancer markers. Gene inactivation in lung carcinoma but overexpression in leukemia were reported for Necl-2. DNAM-1 and CRTAM are emerging NK receptors of immune cells that were described to interact with nectin and Necl. DNAM-1, constitutively expressed by CD8(+) T cells, NK or γδ T lymphocytes, is a ligand of Necl-5. It participates to tumor immunosurveillance promoting Necl-5 expressing tumor cell lysis. CRTAM, only expressed after lymphocyte activation, is a ligand of Necl-2. Engagement of CRTAM with Necl-2 has opposite effects depending on the type of lymphocyte. For NK or CD8(+) T cells, it promotes cytotoxicity and IFNγ secretion favoring immunosurveillance. By contrast, CRTAM/Necl-2 interaction triggers cell death of activated TVg9Vd2 γδ T cells favoring immune escape. Nectin and Necl-mediated interactions appear to be crucial for the delicate balance between tumor escape and antitumor response.
Collapse
Affiliation(s)
- Véronique Catros
- Inserm UMR U991, Foie, Métabolismes et Cancer, 35033 Rennes, France - Site biologie cellulaire du CRB (centre de ressources biologiques) santé de Rennes, centre hospitalier universitaire de Rennes, 35033 Rennes, France
| | - Benoit Dessarthe
- Inserm UMR U991, Foie, Métabolismes et Cancer, 35033 Rennes, France
| | - Aurélie Thedrez
- Inserm UMR U991, Foie, Métabolismes et Cancer, 35033 Rennes, France
| | - Olivier Toutirais
- Inserm U919, GIP (groupe d'intérêt public) Cyceron, université de Caen Basse-Normandie, 14074 Caen, France
| |
Collapse
|
41
|
Kalyan S, Chandrasekaran V, Quabius ES, Lindhorst TK, Kabelitz D. Neutrophil uptake of nitrogen-bisphosphonates leads to the suppression of human peripheral blood γδ T cells. Cell Mol Life Sci 2014; 71:2335-46. [PMID: 24162933 PMCID: PMC11114071 DOI: 10.1007/s00018-013-1495-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/23/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
Nitrogen-bisphosphonates (n-BP), such as zoledronate, are the main class of drugs used for the prevention of osteoporotic fractures and the management of cancer-associated bone disease. However, long-term or high-dose use has been associated with certain adverse drug effects, such as osteonecrosis of the jaw and the loss of peripheral of blood Vγ9Vδ2 T cells, which appear to be linked to drug-induced immune dysfunction. In this report we show that neutrophils present in human peripheral blood readily take up zoledronate, and this phenomenon is associated with the potent immune suppression of human peripheral blood Vγ9Vδ2 T cells. Furthermore, we found this zoledronate-mediated inhibition by neutrophils could be overcome to fully reconstitute Vγ9Vδ2 T cell proliferation by concomitantly targeting neutrophil-derived hydrogen peroxide, serine proteases, and arginase I activity. These findings will enable the development of targeted strategies to mitigate some of the adverse effects of n-BP treatment on immune homeostasis and to improve the success of immunotherapy trials based on harnessing the anticancer potential of peripheral blood γδ T cells in the context of n-BP treatment.
Collapse
Affiliation(s)
- Shirin Kalyan
- Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller Strasse 3, Haus 17, 24105 Kiel, Germany
| | | | - Elgar S. Quabius
- Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller Strasse 3, Haus 17, 24105 Kiel, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig–Holstein, Campus Kiel, Kiel, Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University Kiel, Arnold-Heller Strasse 3, Haus 17, 24105 Kiel, Germany
| |
Collapse
|
42
|
He Y, Wu K, Hu Y, Sheng L, Tie R, Wang B, Huang H. γδ T cell and other immune cells crosstalk in cellular immunity. J Immunol Res 2014; 2014:960252. [PMID: 24741636 PMCID: PMC3987930 DOI: 10.1155/2014/960252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 12/28/2022] Open
Abstract
γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell.
Collapse
Affiliation(s)
- Ying He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Kangni Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Lixia Sheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
43
|
Zheng H, Wang X, Ma Y, Xu B, Chen S, Yang L, Wu X, Przybylski GK, Huang S, Ye T, Li Y. The TCR γδ repertoire and relative gene expression characteristics of T-ALL cases with biclonal malignant Vδ1 and Vδ2 T cells. DNA Cell Biol 2013; 33:49-56. [PMID: 24329526 DOI: 10.1089/dna.2013.2199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvement in our understanding of T-cell acute lymphoblastic leukemia (T-ALL) biology and pathogenesis, many questions remain unanswered. In previous studies, we found a T-ALL case with two malignant T-cell clones with Vδ1Dδ2Dδ3Jδ1 and Vδ2Dδ3Jδ2 rearrangements. In this study, we further characterized T-ALL cases with two malignant clones containing Vδ1Dδ3Jδ1 and Vδ2Dδ1Jδ1 rearrangements using fine-tiling array comparative genomic hybridization, ligation-mediated polymerase chain reaction (LM-PCR), sequencing, and reverse transcription polymerase chain reaction (RT-PCR) analysis. We further analyzed the distribution and clonality of the T-cell receptor (TCR) Vγ and Vδ subfamily T cells in the two T-ALL cases by RT-PCR and GeneScan. Monoclonal Vδ1 and Vδ2 subfamilies were confirmed in both samples, the Vδ3 through Vδ7 subfamilies could not be detected in the T-ALL samples, whereas the oligoclonal Vδ8 subfamily could be identified. Based on the clinical finding that both of the T-ALL cases with two malignant T-cell clones had a poor outcome, we attempted to compare the expression pattern of genes related to T-cell activation and proliferation between cases with the malignant Vδ1 and Vδ2 T-cell clones and T-ALL cases with a mono-malignant Vα T-cell clone. We selected two T-ALL cases with VαJα rearrangements and analyzed the expression level of Notch1, TAL1, and the CARMA-BCL10-MALT-A20-NF-κB pathway genes by real-time PCR. A20 had significantly higher expression in the biclonal compared with the monoclonal T-ALL group (p=0.0354), and there was a trend toward higher expression for the other genes in the biclonal group with the exception of TAL1, although the differences were not statistically significant. In conclusion, we identified two T-ALL cases with biclonal malignant T-cell clones and described the characteristics of the biclonal T-ALL subtype and its gene expression pattern. Thus, our findings may improve the understanding of biclonal T-ALL.
Collapse
Affiliation(s)
- Haitao Zheng
- 1 Institute of Hematology, Jinan University , Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88. [PMID: 23890065 DOI: 10.1016/j.immuni.2013.06.014] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Indexed: 12/15/2022]
Abstract
Conventional chemotherapeutics and targeted antineoplastic agents have been developed based on the simplistic notion that cancer constitutes a cell-autonomous genetic or epigenetic disease. However, it is becoming clear that many of the available anticancer drugs that have collectively saved millions of life-years mediate therapeutic effects by eliciting de novo or reactivating pre-existing tumor-specific immune responses. Here, we discuss the capacity of both conventional and targeted anticancer therapies to enhance the immunogenic properties of malignant cells and to stimulate immune effector cells, either directly or by subverting the immunosuppressive circuitries that preclude antitumor immune responses in cancer patients. Accumulating evidence indicates that the therapeutic efficacy of several antineoplastic agents relies on their capacity to influence the tumor-host interaction, tipping the balance toward the activation of an immune response specific for malignant cells. We surmise that the development of successful anticancer therapies will be improved and accelerated by the immunological characterization of candidate agents.
Collapse
|
45
|
Locatelli F, Merli P, Rutella S. At the Bedside: Innate immunity as an immunotherapy tool for hematological malignancies. J Leukoc Biol 2013; 94:1141-57. [DOI: 10.1189/jlb.0613343] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
46
|
Chen S, Huang X, Zheng H, Geng S, Wu X, Yang L, Weng J, Du X, Li Y. The evolution of malignant and reactive γδ + T cell clones in a relapse T-ALL case after allogeneic stem cell transplantation. Mol Cancer 2013; 12:73. [PMID: 23849082 PMCID: PMC3717050 DOI: 10.1186/1476-4598-12-73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/10/2013] [Indexed: 01/20/2023] Open
Abstract
Background To improve the outcome of patients with T-cell acute lymphoblastic leukemia (T-ALL), characterization of the biological features of T-ALL blast cells and the immune status of patients with T-ALL is needed to identify specific therapeutic strategies. Findings Using a novel approach based on the combination of fine-tiling comparative genomic hybridization (FT-CGH) and ligation-mediated PCR (LM-PCR), we molecularly identified a malignant γδ + T cell clone with a Vδ5Dδ2Jδ1 rearrangement that was paired with a T cell receptor (TCR) VγI and comprised a Vγ1Vδ5 T cell clone in a relapse T-ALL patient. This malignant Vδ5 T cell clone disappeared after chemotherapy, but the clone was detected again when disease relapsed post allogeneic hematopoietic stem cell transplantation (allo-HSCT) at 100 weeks. Using PCR and GeneScan analyses, the distribution and clonality of the TCR Vγ and Vδ subfamilies were examined before and after allo-HSCT in the patient. A reactive T cell clone with a Vδ4Dδ3Jδ1 rearrangement was identified in all samples taken at different time points (i.e., 4, 8, 68, 100 and 108 weeks after allo-HSCT). The expression of this Vδ4+ T cell clone was higher in the patient during complete remission (CR) post allo-HSCT and at disease relapse. Conclusions This study established a sensitive methodology to detect T cell subclones, which may be used to monitor minimal residual disease and immune reconstitution.
Collapse
|
47
|
Thedrez A, Lavoué V, Dessarthe B, Daniel P, Henno S, Jaffre I, Levêque J, Catros V, Cabillic F. A quantitative deficiency in peripheral blood Vγ9Vδ2 cells is a negative prognostic biomarker in ovarian cancer patients. PLoS One 2013; 8:e63322. [PMID: 23717410 PMCID: PMC3662688 DOI: 10.1371/journal.pone.0063322] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Vγ9Vδ2 cells are cytotoxic T cells that are able to recognize epithelial ovarian carcinoma (EOC) cells. Therefore, Vγ9Vδ2 cell-based adoptive transfer is an attractive therapy for EOC. However, the inefficient ex vivo expansion after specific stimulation of Vγ9Vδ2 cells from some patients and the relationships between Vγ9Vδ2 cells and clinical course of EOC are issues that remain to be clarified. Herein, peripheral blood mononuclear cells (PBMCs) from 60 EOC patients were stimulated with bromohydrin pyrophosphate (BrHPP) or zoledronate, which are specific agonists of Vγ9Vδ2 cells. The compounds differed in their efficacies to induce ex vivo Vγ9Vδ2 PBMC expansion, but 16/60 samples remained inefficiently expanded with both stimuli. Interestingly, the Vγ9Vδ2 cells in these low-responding PBMCs displayed before expansion (ex vivo PBMCs) an altered production of the pro-inflammatory cytokines IFN-γ and TNF-α, a decreased naive fraction and a reduced frequency. No evidence of an involvement of CD4+CD25+Foxp3+ regulatory cells was observed. Importantly, our data also demonstrate that a Vγ9Vδ2 cell frequency of 0.35% or less in EOC PBMCs could be used to predict low responses to both BrHPP and zoledronate. Moreover, our data highlight that such a deficiency is not correlated with advanced EOC stages but is associated with more refractory states to platinum-based chemotherapy and is an independent predictor of shorter disease-free survival after treatment. These results are the first to suggest a potential contribution of Vγ9Vδ2 cells to the anti-tumor effects of chemotherapeutic agents and they strengthen interest in strategies that might increase Vγ9Vδ2 cells in cancer patients.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- CD3 Complex/metabolism
- Carcinoma, Ovarian Epithelial
- Cell Proliferation/drug effects
- Cells, Cultured
- Combined Modality Therapy
- Diphosphates/pharmacology
- Diphosphonates/pharmacology
- Disease-Free Survival
- Drug Resistance, Neoplasm
- Humans
- Imidazoles/pharmacology
- Interferon-gamma/metabolism
- Middle Aged
- Neoplasms, Glandular and Epithelial/blood
- Neoplasms, Glandular and Epithelial/immunology
- Neoplasms, Glandular and Epithelial/mortality
- Neoplasms, Glandular and Epithelial/therapy
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/therapy
- Prognosis
- Survival Analysis
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/physiology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
- Tumor Necrosis Factor-alpha/metabolism
- Zoledronic Acid
Collapse
Affiliation(s)
- Aurélie Thedrez
- Unité Mixe de Recherche Institut National de la Santé Et de la Recherche Médicale 991, Université de Rennes 1, Rennes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bone marrow microenvironment in cancer patients: immunological aspects and clinical implications. Cancer Metastasis Rev 2012; 32:163-78. [DOI: 10.1007/s10555-012-9397-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Braza MS, Klein B. Anti-tumour immunotherapy with Vγ9Vδ2 T lymphocytes: from the bench to the bedside. Br J Haematol 2012; 160:123-32. [PMID: 23061882 DOI: 10.1111/bjh.12090] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gamma delta (γδ) Τ cells are non-conventional T lymphocyte effectors that can interact with and eradicate tumour cells. Several data demonstrate that these T cells, which are implicated in the first line of defence against pathogens, have anti-tumour activity against many cancers and suggest that γδ Τ cell-mediated immunotherapy is feasible and might induce objective tumour responses. Due to the importance of γδ Τ lymphocytes in the induction and control of immunity, a complete understanding of their biology is crucial for the development of a potent cancer immunotherapy. This review discusses recent advances in γδ Τ basic research and data from clinical trials on the use of γδ Τ cells in the treatment of different cancers. It analyses how this knowledge might be applied to develop new strategies for the clinical manipulation and the potentiation of γδ Τ lymphocyte activity in cancer immunotherapy.
Collapse
|
50
|
Alama A, Orengo AM, Ferrini S, Gangemi R. Targeting cancer-initiating cell drug-resistance: a roadmap to a new-generation of cancer therapies? Drug Discov Today 2012; 17:435-42. [DOI: 10.1016/j.drudis.2011.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/04/2011] [Indexed: 01/20/2023]
|