1
|
Zhang S, Miao L, Tian X, Yang B, Luo B. Opportunities and challenges of immuno-oncology: A bibliometric analysis from 2014 to 2023. Hum Vaccin Immunother 2025; 21:2440203. [PMID: 39885669 PMCID: PMC11792843 DOI: 10.1080/21645515.2024.2440203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
The emergence of immuno-oncology (IO) has led to revolutionary changes in the field of cancer treatment. Despite notable advancements in this field, a thorough exploration of its full depth and extent has yet to be performed. This study provides a comprehensive overview of publications pertaining to IO. Publications on IO from 2014 to 2023 were retrieved by searching the Web of Science Core Collection database (WoSCC). VOSviewer software and Citespace software were used for the visualized analysis. A total of 1,874 articles have been published in the IO domain. The number of publications and citations has been increasing annually. This study also examines the primary research directions within the field of IO. In conclusion, this study offers a comprehensive overview of the opportunities and challenges associated with IO, illuminating the current status of research and indicating potential future trajectories in this rapidly progressing field. This study provides a comprehensive survey of the current research status and hot spots within the field of IO. It will assist researchers in comprehending the current research emphasis and development trends in this field and offers guidance for future research directions.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Tian
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bingxu Yang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Baoping Luo
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Oncology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Castagnino PA, Haas DA, Musante L, Tancler NA, Tran BV, Kean R, Steck AR, Martinez LA, Mostaghel EA, Hooper DC, Kim FJ. Sigma1 inhibitor suppression of adaptive immune resistance mechanisms mediated by cancer cell derived extracellular vesicles. Cancer Biol Ther 2025; 26:2455722. [PMID: 39863992 PMCID: PMC11776462 DOI: 10.1080/15384047.2025.2455722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER. Sigma1 is a unique ligand-regulated integral membrane scaffolding protein enriched in the ER of cancer cells. PD-L1 is an integral membrane glycoprotein that is translated into the ER and processed through the cellular secretory pathway. At the cell surface, PD-L1 is an immune checkpoint molecule that binds PD-1 on activated T-cells and blocks anti-tumor immunity. PD-L1 can also be incorporated into cancer cell-derived extracellular vesicles (EVs), and EV-associated PD-L1 can inactivate T-cells within the tumor microenvironment. Here, we demonstrate that a selective small molecule inhibitor of Sigma1 can block IFN-γ mediated adaptive immune resistance in part by altering the incorporation of PD-L1 into cancer cell-derived EVs. Sigma1 inhibition blocked post-translational maturation of PD-L1 downstream of IFN-γ/STAT1 signaling. Subsequently, EVs released in response to IFN-γ stimulation were significantly less potent suppressors of T-cell activation. These results suggest that by reducing tumor derived immune suppressive EVs, Sigma1 inhibition may promote antitumor immunity. Sigma1 modulation presents a novel approach to regulating the tumor immune microenvironment by altering the content and production of EVs. Altogether, these data support the notion that Sigma1 may play a role in adaptive immune resistance in the tumor microenvironment.
Collapse
Affiliation(s)
- Paola A. Castagnino
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Derick A. Haas
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Luca Musante
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Nathalia A. Tancler
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Bach V. Tran
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Rhonda Kean
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Alexandra R. Steck
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Luis A. Martinez
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Elahe A. Mostaghel
- Geriatric Research, Education and Clinical Center, U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - D. Craig Hooper
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| | - Felix J. Kim
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Comprehensive Cancer Center at Jefferson, Philadelphia, PA, USA
| |
Collapse
|
3
|
Han M, Zhou S, Liao Z, Zishan C, Yi X, Wu C, Zhang D, He Y, Leong KW, Zhong Y. Bimetallic peroxide-based nanotherapeutics for immunometabolic intervention and induction of immunogenic cell death to augment cancer immunotherapy. Biomaterials 2025; 315:122934. [PMID: 39509856 DOI: 10.1016/j.biomaterials.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy has transformed cancer treatment, but its efficacy is often limited by the immunosuppressive characteristics of the tumor microenvironment (TME), which are predominantly influenced by the metabolism of cancer cells. Among these metabolic pathways, the indoleamine 2,3-dioxygenase (IDO) pathway is particularly crucial, as it significantly contributes to TME suppression and influences immune cell activity. Additionally, inducing immunogenic cell death (ICD) in tumor cells can reverse the immunosuppressive TME, thereby enhancing the efficacy of immunotherapy. Herein, we develop CGDMRR, a novel bimetallic peroxide-based nanodrug based on copper-cerium peroxide nanoparticles. These nanotherapeutics are engineered to mitigate tumor hypoxia and deliver therapeutics such as 1-methyltryptophan (1MT), glucose oxidase (GOx), and doxorubicin (Dox) in a targeted manner. The design aims to alleviate tumor hypoxia, reduce the immunosuppressive effects of the IDO pathway, and promote ICD. CGDMRR effectively inhibits the growth of 4T1 tumors and elicits antitumor immune responses by leveraging immunometabolic interventions and therapies that induce ICD. Furthermore, when CGDMRR is combined with a clinically certified anti-PD-L1 antibody, its efficacy in inhibiting tumor growth is enhanced. This improved efficacy extends beyond unilateral tumor models, also affecting bilateral tumors and lung metastases, due to the activation of systemic antitumor immunity. This study underscores CGDMRR's potential to augment the efficacy of PD-L1 blockade in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Min Han
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Shiying Zhou
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Zunde Liao
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chen Zishan
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Xiangting Yi
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chuanbin Wu
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Dongmei Zhang
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Yao He
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
4
|
Khan T, Nagarajan M, Kang I, Wu C, Wangpaichitr M. Targeting Metabolic Vulnerabilities to Combat Drug Resistance in Cancer Therapy. J Pers Med 2025; 15:50. [PMID: 39997327 PMCID: PMC11856717 DOI: 10.3390/jpm15020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Drug resistance remains a significant barrier to effective cancer therapy. Cancer cells evade treatment by reprogramming their metabolism, switching from glycolysis to oxidative phosphorylation (OXPHOS), and relying on alternative carbon sources such as glutamine. These adaptations not only enable tumor survival but also contribute to immune evasion through mechanisms such as reactive oxygen species (ROS) generation and the upregulation of immune checkpoint molecules like PD-L1. This review explores the potential of targeting metabolic weaknesses in drug-resistant cancers to enhance therapeutic efficacy. Key metabolic pathways involved in resistance, including glycolysis, glutamine metabolism, and the kynurenine pathway, are discussed. The combination of metabolic inhibitors with immune checkpoint inhibitors (ICIs), particularly anti-PD-1/PD-L1 therapies, represents a promising approach to overcoming both metabolic and immune evasion mechanisms. Clinical trials combining metabolic and immune therapies have shown early promise, but further research is needed to optimize treatment combinations and identify biomarkers for patient selection. In conclusion, targeting cancer metabolism in combination with immune checkpoint blockade offers a novel approach to overcoming drug resistance, providing a potential pathway to improved outcomes in cancer therapy. Future directions include personalized treatments based on tumor metabolic profiles and expanding research to other tumor types.
Collapse
Affiliation(s)
- Taranatee Khan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Manojavan Nagarajan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Irene Kang
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
- Department of Surgery, Division of Thoracic Surgery, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Shao Y, Pu W, Su R, Wang Y, Yin S, Zhong H, Han L, Yu H. Autocrine and paracrine LIF signals to collaborate sorafenib-resistance in hepatocellular carcinoma and effects of Kanglaite Injection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156262. [PMID: 39580996 DOI: 10.1016/j.phymed.2024.156262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/22/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Sorafenib (SFN) is the first-line medicine for advanced hepatocellular carcinoma (HCC). However, Sorafenib resistance is a main challenge of therapeutic efficacy, and the mechanisms have not been fully clarified. PURPOSE The purpose of this study was to investigate the therapeutic potential and mechanism of action of LIF in modulating the microenvironment of SFN resistance as well as Kanglaite Injection (KLTI) in ameliorating SFN resistance in HCC and to guide future research directions for drug combination for HCC. METHODS Established SFN-resistance HCC cell line was used to study the relationship between resistance and immunosuppression in HCC-tumor microenvironment (TME). In vivo macrophage and natural killer (NK) cells depletion were achieved by clodronate liposomes (CL) and anti-NK1.1. In vitro multiple cell co-culture systems were used to determine the effects of KLTI on SFN-resistant. Likewise, flow cytometry, qRT-PCR, Western blot, and immunohistochemistry analysis were performed for further mechanistic investigation. RESULTS Tumor associated-macrophages (TAMs) and NK cells mediated SFN-resistance in murine HCC. In the case of SFN resistance, the paracrine-leukemia inhibitory factor (LIF) by M2-like TAMs increased and potently suppressed NK cells proliferation and cytotoxicity, which finally inducing NK cells exhaustion and malignancy of HCC metastasis. Meanwhile, SFN resistance led to the increased autocrine-LIF of tumor cells, and further promoted the protective autophagy and activation of the acquired drug-resistant pathway PI3K/Akt/mTOR. KLTI could ameliorate the resistance of tumor immune microenvironment (TIME) and enhance the sensitivity of HCC to SFN by regulating LIF and macrophage-NK cell interaction. CONCLUSIONS Our findings verify the therapeutic effects of targeting LIF in SFN-resistance, uncover the potential mechanism for the increased sensitivity to SFN and sought to elucidate how this intervention might contribute to overcoming SFN resistance. KLTI is a promising immunomodulatory drug by regulating LIF and macrophage-NK cell interaction, which could be a potential combination partner for HCC treatment.
Collapse
Affiliation(s)
- Yingying Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Weiling Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Ranran Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Shuangshuang Yin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Hao Zhong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
6
|
Ghabra S, Trehan R, Rodriguez-Matos F, Ma C, Greten TF. Protocol for establishing liver tumors via ultrasound-guided intrahepatic injection prior partial hepatic resection in a mouse model. STAR Protoc 2024; 5:103341. [PMID: 39446579 PMCID: PMC11539144 DOI: 10.1016/j.xpro.2024.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
We present a protocol to generate a liver tumor murine model utilizing orthotopic ultrasound-guided intrahepatic injections of tumor cells and a partial hepatectomy. We describe cell and animal preparation and ultrasound-guided intrahepatic injections. We then depict how to conduct a partial hepatectomy addressing solutions to potential problems. This approach introduces a rapid and reproducible orthotopic implantation model of liver tumor model in a minimally invasive manner, allowing the surgical procedure to be optimized with minimal intra-abdominal injury. For complete details on the use and execution of this protocol, please refer to Brown et al.1.
Collapse
Affiliation(s)
- Shadin Ghabra
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Surgical Oncology Program, CCR, NCI, NIH, Bethesda, MD 20892, USA.
| | - Rajiv Trehan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Francisco Rodriguez-Matos
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chi Ma
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tim F Greten
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Liver Cancer Program, CCR, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Liu X, Xi X, Xu S, Chu H, Hu P, Li D, Zhang B, Liu H, Jiang T, Lu Z. Targeting T cell exhaustion: emerging strategies in non-small cell lung cancer. Front Immunol 2024; 15:1507501. [PMID: 39726592 PMCID: PMC11669709 DOI: 10.3389/fimmu.2024.1507501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Lung cancer continues to be a major contributor to cancer-related deaths globally. Recent advances in immunotherapy have introduced promising treatments targeting T cell functionality. Central to the efficacy of these therapies is the role of T cells, which are often rendered dysfunctional due to continuous antigenic stimulation in the tumor microenvironment-a condition referred to as T cell exhaustion. This review addresses the critical challenge of T cell exhaustion in non-small cell lung cancer (NSCLC), offering a detailed examination of its molecular underpinnings and the resultant therapeutic ineffectiveness. We synthesize current knowledge on the drivers of T cell exhaustion, evaluate emerging strategies for its reversal, and explore the potential impact of these insights for enhancing the clinical efficacy of immunotherapies. By consolidating reported clinical trials and preclinical studies, this article highlights innovative approaches to modulate immune responses and improve patient outcomes, thus providing a roadmap for future research and therapeutic development in lung cancer immunotherapy.
Collapse
Affiliation(s)
- Xianqiang Liu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Xiaowei Xi
- Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Penghui Hu
- Scientific Research and Education Department, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Dong Li
- Department of Intensive Care Unit and Clinical Experimental Center, Jiangmen Central Hospital, Jiangmen, China
| | - Bin Zhang
- Department of Cardiovascular Disease and Clinical Experimental Center, Jiangmen Central Hospital, Jiangmen, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hejie Liu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Tianxiao Jiang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhuming Lu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| |
Collapse
|
8
|
Sarangi P. Role of indoleamine 2, 3-dioxygenase 1 in immunosuppression of breast cancer. CANCER PATHOGENESIS AND THERAPY 2024; 2:246-255. [PMID: 39371092 PMCID: PMC11447360 DOI: 10.1016/j.cpt.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Breast cancer (BC) contributes greatly to global cancer incidence and is the main cause of cancer-related deaths among women globally. It is a complex disease characterized by numerous subtypes with distinct clinical manifestations. Immune checkpoint inhibitors (ICIs) are not effective in all patients and have been associated with tumor resistance and immunosuppression. Because amino acid (AA)-catabolizing enzymes have been shown to regulate immunosuppressive effects, this review investigated the immunosuppressive roles of indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme, which is overexpressed in various metastatic tumors. It promotes immunomodulatory effects by depleting Trp in the regional microenvironment. This leads to a reduction in the number of immunogenic immune cells, such as effector T and natural killer (NK) cells, and an increase in tolerogenic immune cells, such as regulatory T (Treg) cells. The BC tumor microenvironment (TME) establishes a supportive niche where cancer cells can interact with immune cells and neighboring endothelial cells and is thus a feasible target for cancer therapy. In many immunological contexts, IDO1 regulates immune control by causing regional metabolic changes in the TME and tissue environment, which may further affect the maturation of systemic immunological tolerance. In the development of effective treatment targets and approaches, it is essential to understand the immunomodulatory effects exerted by AA-catabolizing enzymes, such as IDO1, on the components of the TME.
Collapse
Affiliation(s)
- Pratyasha Sarangi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
9
|
Xia RJ, Du XY, Shen LW, Ma JG, Xu SM, Fan RF, Qin JW, Yan L. Roles of the tumor microenvironment in the resistance to programmed cell death protein 1 inhibitors in patients with gastric cancer. World J Gastrointest Oncol 2024; 16:3820-3831. [PMID: 39350980 PMCID: PMC11438768 DOI: 10.4251/wjgo.v16.i9.3820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the continuous developments and advancements in the treatment of gastric cancer (GC), which is one of the most prevalent types of cancer in China, the overall survival is still poor for most patients with advanced GC. In recent years, with the progress in tumor immunology research, attention has shifted toward immunotherapy as a therapeutic approach for GC. Programmed cell death protein 1 (PD-1) inhibitors, as novel immunosuppressive medications, have been widely utilized in the treatment of GC. However, many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy. To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy, to maximize the clinical activity of immunosuppressive drugs, and to elicit a lasting immune response, it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients. This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment, aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.
Collapse
Affiliation(s)
- Ren-Jie Xia
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Xiao-Yu Du
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Li-Wen Shen
- Department of Medical Support Center, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Guo Ma
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Shu-Mei Xu
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Rui-Fang Fan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Wei Qin
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
10
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
11
|
Li Y, Chen K, Chen B, Zeng R, He Y, Wang C, Zhong M, Liu X, Chen X, Xiao L, Zhou H. Increased coexpression of PD-L1 and IDO1 is associated with poor overall survival in patients with NK/T-cell lymphoma. Leukemia 2024; 38:1553-1563. [PMID: 38783159 DOI: 10.1038/s41375-024-02266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Immunotherapy with programmed cell death 1 ligand 1 (PD-L1) blockade was effective in patients with NK/T-cell lymphoma. In addition to PD-L1, indoleamine 2,3-dioxygenase-1 (IDO1) is one of the most promising immunotherapeutic targets. High proportions of PD-L1 and IDO1 proteins were observed by immunohistochemistry (IHC) from 230 newly diagnosed patients with NK/T lymphoma with tissue samples from three cancer centers and were associated with poor overall survival (OS) in patients with NK/T lymphoma. Importantly, the coexpression of PD-L1 and IDO1 was related to poor OS and short restricted mean survival time in patients with NK/T lymphoma and was an independent prognostic factor in the training cohorts, and which was also validated in 58 NK/T lymphoma patients (GSE90597). Moreover, a nomogram model constructed with PD-L1 and IDO1 expression together with age could provide concise and precise predictions of OS rates and median survival time. The high-risk group in the nomogram model had a positive correlation with CD4 + T-cell infiltration in the validation cohort, as did the immunosuppressive factor level. Therefore, high PD-L1 and IDO1 expression was associated with poor OS in patients with NK/T lymphoma. PD-L1 and IDO1 might be potential targets for future immune checkpoint blockade (ICB) therapy for NK/T lymphoma.
Collapse
Affiliation(s)
- Yajun Li
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Kailin Chen
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Bihua Chen
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ruolan Zeng
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yizi He
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Caiqin Wang
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoyan Chen
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| | - Hui Zhou
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China.
| |
Collapse
|
12
|
Dawood ZS, Brown ZJ, Alaimo L, Lima HA, Shaikh C, Katayama ES, Munir MM, Moazzam Z, Endo Y, Woldesenbet S, Pawlik TM. Comparison of tumor response and outcomes of patients with hepatocellular carcinoma after multimodal treatment including immune checkpoint inhibitors - a systematic review and meta-analysis. HPB (Oxford) 2024; 26:618-629. [PMID: 38369433 DOI: 10.1016/j.hpb.2024.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The efficacy of immune checkpoint inhibitors (ICIs) combined with tyrosine kinase inhibitors (TKIs), trans-arterial chemoembolization (TACE), and radiotherapy to treat hepatocellular carcinoma (HCC) has not been well-defined. We performed a meta-analysis to characterize tumor response and survival associated with multimodal treatment of HCC. METHODS PubMed, Embase, Medline, Scopus, and CINAHL databases were searched (1990-2022). Random-effect meta-analysis was conducted to compare efficacy of treatment modalities. Odds ratios (OR) and standardized mean difference (SMD) were reported. RESULTS Thirty studies (4170 patients) met inclusion criteria. Triple therapy regimen (ICI + TKI + TACE) had the highest overall disease control rate (DCR) (87%, 95% CI 83-91), while ICI + radiotherapy had the highest objective response rate (ORR) (72%, 95% CI 54%-89%). Triple therapy had a higher DCR than ICI + TACE (OR 4.49, 95% CI 2.09-9.63), ICI + TKI (OR 3.08, 95% CI 1.63-5.82), and TKI + TACE (OR 2.90, 95% CI 1.61-5.20). Triple therapy demonstrated improved overall survival versus ICI + TKI (SMD 0.72, 95% CI 0.37-1.07) and TKI + TACE (SMD 1.13, 95% CI 0.70-1.48) (both p < 0.05). Triple therapy had a greater incidence of adverse events (AEs) compared with ICI + TKI (OR 0.59, 95% CI 0.29-0.91; p = 0.02), but no difference in AEs versus ICI + TACE or TKI + TACE (both p > 0.05). CONCLUSION The combination of ICIs, TKIs and TACE demonstrated superior tumor response and survival and should be considered for select patients with advanced HCC.
Collapse
Affiliation(s)
- Zaiba S Dawood
- Medical College, The Aga Khan University Hospital, Stadium Road, Karachi, 74800, Pakistan
| | - Zachary J Brown
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY, USA
| | - Laura Alaimo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Henrique A Lima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Chanza Shaikh
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Erryk S Katayama
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Muhammad M Munir
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Zorays Moazzam
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yutaka Endo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Selamawit Woldesenbet
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
13
|
Hou K, Xu X, Ge X, Jiang J, Ouyang F. Blockade of PD-1 and CTLA-4: A potent immunotherapeutic approach for hepatocellular carcinoma. Biofactors 2024; 50:250-265. [PMID: 37921427 DOI: 10.1002/biof.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Immune checkpoints (ICPs) can promote tumor growth and prevent immunity-induced cancer cell apoptosis. Fortunately, targeting ICPs, such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4), has achieved great success in the past few years and has gradually become an effective treatment for cancers, including hepatocellular carcinoma (HCC). However, many patients do not respond to ICP therapy due to acquired resistance and recurrence. Therefore, clarifying the specific mechanisms of ICP in the development of HCC is very important for enhancing the efficacy of anti-PD-1 and anti-CTLA-4 therapy. In particular, antigen presentation and interferon-γ (IFN-γ) signaling were reported to be involved in the development of resistance. In this review, we have explained the role and regulatory mechanisms of ICP therapy in HCC pathology. Moreover, we have also elaborated on combinations of ICP inhibitors and other treatments to enhance the antitumor effect. Collectively, recent advances in the pharmacological targeting of ICPs provide insights for the development of a novel alternative treatment for HCC.
Collapse
Affiliation(s)
- Kai Hou
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xiaohui Xu
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xin Ge
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Jiacen Jiang
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, PR China
| |
Collapse
|
14
|
Gorji L, Brown ZJ, Pawlik TM. Advances and considerations in the use of immunotherapies for primary hepato-biliary malignancies. Surg Oncol 2024; 52:102031. [PMID: 38128340 DOI: 10.1016/j.suronc.2023.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) comprise the two most common primary liver malignancies. Curative treatment options often include hepatectomy or liver transplantation; however, many patients present with advanced disease that is not amenable to surgical management. In turn, many patients are treated with systemic or targeted therapy. The tumor microenvironment (TME) is a complex network of immune cells and somatic cells, which can foster an environment for disease development and progression, as well as susceptibility and resistance to systemic therapeutic agents. In particular, the TME is comprised of both immune and non-immune cells. Immune cells such as T lymphocytes, natural killer (NK) cells, macrophages, and neutrophils reside in the TME and can affect tumorigenesis, disease progression, as well as response to therapy. Given the importance of the immune system, there are many emerging approaches for cancer immunotherapy. We herein provide a review the latest data on immunotherapy for primary HCC and BTC relative to the TME.
Collapse
Affiliation(s)
- Leva Gorji
- Department of Surgery, Kettering Health Dayton, Dayton, OH, USA.
| | - Zachary J Brown
- Department of Surgery, Division of Surgical Oncology, New York University - Long Island, Mineola, NY, 11501, USA.
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital, Columbus, OH, USA.
| |
Collapse
|
15
|
Huynh JC, Cho M, Monjazeb A, Al-Obeidi E, Singh A, Tam K, Lara F, Martinez A, Garcia L, Kim EJ. Phase I/II trial of BMS-986,205 and nivolumab as first line therapy in hepatocellular carcinoma. Invest New Drugs 2024; 42:35-43. [PMID: 38038862 PMCID: PMC10891185 DOI: 10.1007/s10637-023-01416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Indoleamine-2,3-dioxygenase (IDO) helps orchestrate immune suppression and checkpoint inhibitor resistance in hepatocellular carcinoma (HCC). BMS-986,205 is a novel oral drug that potently and selectively inhibits IDO. This Phase I/II study evaluated the safety and tolerability of BMS-986,205 in combination with nivolumab as first-line therapy in advanced HCC. METHODS Adults with untreated, unresectable/metastatic HCC received BMS-986,205 at two dose levels (50-100 mg orally daily) in combination with fixed dose nivolumab (240mg/m2 IV on Day 1 of each 14-day cycle). The primary objective was to determine the safety and tolerability of this combination; secondary objectives were to obtain preliminary efficacy. RESULTS Eight patients received a total of 91 treatment cycles in the dose escalation phase. All patients were Child Pugh A and 6 patients had underlying viral hepatitis. In the 6 evaluable patients, no dose-limiting toxicities (DLTs) were observed. The most common treatment-related adverse events (TRAEs) were aspartate transaminase (AST) and alanine transaminase (ALT) elevation (3 patients) and diarrhea, maculopapular rash and increased alkaline phosphatase (2 patients each). Grade 3 events were diarrhea and AST elevation (1 patient), and hyperglycemia and pancreatitis requiring treatment discontinuation (1 patient). No grade 4-5 events occurred. Partial response was observed in 1 patient (12.5%) and stable disease in 3 patients (37.5%), yielding a disease control rate of 50%. Median PFS was 8.5 weeks; median OS was not reached. CONCLUSION Combination BMS-986,205 and nivolumab showed a manageable safety profile with durable benefit as first-line therapy in a meaningful subset of advanced HCC patients.
Collapse
Affiliation(s)
- Jasmine C Huynh
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - May Cho
- Division of Hematology and Oncology, Irvine Comprehensive Cancer Center, University of California, Orange, CA, 92868, USA
| | - Arta Monjazeb
- Department of Radiation Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Ebaa Al-Obeidi
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Amisha Singh
- Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA, 95817, USA
| | - Kit Tam
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Frances Lara
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Anthony Martinez
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Leslie Garcia
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Edward J Kim
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA.
| |
Collapse
|
16
|
Gu XY, Huo JL, Yu ZY, Jiang JC, Xu YX, Zhao LJ. Immunotherapy in hepatocellular carcinoma: an overview of immune checkpoint inhibitors, drug resistance, and adverse effects. ONCOLOGIE 2024; 26:9-25. [DOI: 10.1515/oncologie-2023-0412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Hepatocellular carcinoma (HCC) is a concerning liver cancer with rising incidence and mortality rates worldwide. The effectiveness of traditional therapies in managing advanced HCC is limited, necessitating the development of new therapeutic strategies. Immune checkpoint inhibitors (ICIs) have emerged as a promising strategy for HCC management. By preventing tumor cells from evading immune surveillance through immunological checkpoints, ICIs can restore the immune system’s ability to target and eliminate tumors. While ICIs show promise in enhancing the immune response against malignancies, challenges such as drug resistance and adverse reactions hinder their efficacy. To address these challenges, developing individualized ICI treatment strategies is critical. Combining targeted therapy and immunotherapy holds the potential for comprehensive therapeutic effects. Additionally, biomarker-based individualized ICI treatment strategies offer promise in predicting treatment response and guiding personalized patient care. Future research should explore emerging ICI treatment methods to optimize HCC immunotherapy. This review provides an overview of ICIs as a new treatment for HCC, demonstrating some success in promoting the tumor immune response. However, drug resistance and adverse reactions remain important considerations that must be addressed. As tailored treatment plans evolve, the prospect of immunotherapy for HCC is expected to grow, offering new opportunities for improved patient outcomes.
Collapse
Affiliation(s)
- Xuan-Yu Gu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Jin-Long Huo
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Zhi-Yong Yu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Ji-Chang Jiang
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Ya-Xuan Xu
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| | - Li-Jin Zhao
- Department of General Surgery , Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University , Zunyi , China
| |
Collapse
|
17
|
Khodadadi H, Salles ÉL, Alptekin A, Mehrabian D, Rutkowski M, Arbab AS, Yeudall WA, Yu JC, Morgan JC, Hess DC, Vaibhav K, Dhandapani KM, Baban B. Inhalant Cannabidiol Inhibits Glioblastoma Progression Through Regulation of Tumor Microenvironment. Cannabis Cannabinoid Res 2023; 8:824-834. [PMID: 34918964 PMCID: PMC10589502 DOI: 10.1089/can.2021.0098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Daniel Mehrabian
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Martin Rutkowski
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ali S. Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - W. Andrew Yeudall
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John C. Morgan
- Parkinson's Foundation Center of Excellence, Movement Disorders, Program, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kumar Vaibhav
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Center for Excellence in Research, Scholarship and Innovation, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
18
|
Sato K, Ohira M, Imaoka Y, Imaoka K, Bekki T, Doskali M, Nakano R, Yano T, Tanaka Y, Ohdan H. The aryl hydrocarbon receptor maintains antitumor activity of liver resident natural killer cells after partial hepatectomy in C57BL/6J mice. Cancer Med 2023; 12:19821-19837. [PMID: 37747052 PMCID: PMC10587932 DOI: 10.1002/cam4.6554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Liver-resident natural killer (lr-NK) cells are distinct from conventional NK cells and exhibit higher cytotoxicity against hepatoma via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). However, the mechanism by which partial hepatectomy (PH) significantly suppresses TRAIL expression in lr-NK cells remains unclear. METHODS This study aimed to investigate the PH influence on the function and characteristics of liver-resident NK (lr-NK) cells using a PH mouse model. RESULTS Here, we report that PH alters the differentiation pattern of NK cells in the liver, and an aryl hydrocarbon receptor (AhR) molecule is involved in these changes. Treatment with the AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) inhibited the maturation of NK cells. FICZ increased the immature subtype proportion of NK cells with high TRAIL activity and decreased the mature subtype of NK cells with low TRAIL activity. Consequently, FICZ increased the expression of TRAIL and cytotoxic activity of NK cells in the liver, and this effect was confirmed even after hepatectomy. The participation of AhR promoted FoxO1 expression in the mTOR signaling pathway involved in the maturation of NK cells, resulting in TRAIL expression. CONCLUSION Our findings provide direct in-vivo evidence that partial hepatectomy affects lrNK cell activity through NK cell differentiation in the liver. Perioperative therapies using an AhR agonist to improve NK cell function may reduce the recurrence of hepatocellular carcinoma after hepatectomy.
Collapse
Affiliation(s)
- Koki Sato
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Medical Center for Translational and Clinical Research Hiroshima University HospitalHiroshimaJapan
| | - Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Kouki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tomoaki Bekki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Marlen Doskali
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Ryosuke Nakano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takuya Yano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
19
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Yiong CS, Lin TP, Lim VY, Toh TB, Yang VS. Biomarkers for immune checkpoint inhibition in sarcomas - are we close to clinical implementation? Biomark Res 2023; 11:75. [PMID: 37612756 PMCID: PMC10463641 DOI: 10.1186/s40364-023-00513-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Sarcomas are a group of diverse and complex cancers of mesenchymal origin that remains poorly understood. Recent developments in cancer immunotherapy have demonstrated a potential for better outcomes with immune checkpoint inhibition in some sarcomas compared to conventional chemotherapy. Immune checkpoint inhibitors (ICIs) are key agents in cancer immunotherapy, demonstrating improved outcomes in many tumor types. However, most patients with sarcoma do not benefit from treatment, highlighting the need for identification and development of predictive biomarkers for response to ICIs. In this review, we first discuss United States (US) Food and Drug Administration (FDA)-approved and European Medicines Agency (EMA)-approved biomarkers, as well as the limitations of their use in sarcomas. We then review eight potential predictive biomarkers and rationalize their utility in sarcomas. These include gene expression signatures (GES), circulating neutrophil-to-lymphocyte ratio (NLR), indoleamine 2,3-dioxygenase (IDO), lymphocyte activation gene 3 (LAG-3), T cell immunoglobin and mucin domain-containing protein 3 (TIM-3), TP53 mutation status, B cells, and tertiary lymphoid structures (TLS). Finally, we discuss the potential for TLS as both a predictive and prognostic biomarker for ICI response in sarcomas to be implemented in the clinic.
Collapse
Affiliation(s)
- Chin Sern Yiong
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore
| | - Tzu Ping Lin
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore
| | - Vivian Yujing Lim
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Valerie Shiwen Yang
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore.
- Duke-NUS Medical School, Oncology Academic Clinical Program, Singapore, 169857, Singapore.
| |
Collapse
|
21
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
22
|
Asghar K, Bashir S, Ali Rana I, Abu Bakar M, Farooq A, Hassan M, Asif Z, Afzal M, Masood I, Ishaq M, Tahseen M, Bilal S, Mehmood S, Kanwal N, Ud Din I, Loya A. PD-L1 is Fascinating but IDO Needs Attention in Non-HCV and Non-HBV-Associated Hepatocellular Carcinoma Patients. J Hepatocell Carcinoma 2023; 10:921-934. [PMID: 37350801 PMCID: PMC10284167 DOI: 10.2147/jhc.s409741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/20/2023] [Indexed: 06/24/2023] Open
Abstract
Background/Aim Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer that is modulated by the immune system. Programmed cell death ligand-1 (PD-L1) has emerged as a novel therapeutic target in various cancers. Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that is associated with poor prognoses in various cancer types. The aim of this study was to investigate the PD-L1 expression, and clinicopathological features of non-HCV and non-HBV-associated HCC patients, including IDO expression. Patients and Methods In this study, immunohistochemical analysis was performed to analyze the expression of PD-L1 and IDO. Formalin-fixed paraffin-embedded HCC tumor tissues (n=50) were obtained from the pathology department, at Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) in Lahore, Pakistan between 2005 and 2022. All the patients were HBV and HCV negative. Furthermore, it was a rare group of patients with no previous history of any viral hepatitis. In addition, for categorical and continuous variables chi-square or Fisher exact test and Mann-Whitney U-test was performed. Results Of 50 tissue specimens, PD-L1+ was observed in 21 [high: 12 (24%), low: 9 (18%)] and PD-L1- was observed in 29 HCC patients. IDO+ was observed in all 50 specimens [high: 42 (84%), low: 8 (16%)]. Additionally, both PD-L1 and IDO had high expression in 11 (22%) patients. While both PD-L1 and IDO had low expression in 2 (4%) patients. Furthermore, in IDO+/PD-L1- group, 20 (69%) out of 29 patients died while in the IDO+/PD-L1+ group, 9 (43%) out of 21 patients died. Conclusion Evaluation of IDO and PD-L1 expression may add therapeutic advantage in non-HCV and non-HBV-associated HCC patients that overexpress IDO. Further validation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Shaarif Bashir
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Iftikhar Ali Rana
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Abu Bakar
- Department of Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Asim Farooq
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Hassan
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Zukhruf Asif
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Mahnoor Afzal
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Iqra Masood
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Ishaq
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Sundus Bilal
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Shafqat Mehmood
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Nosheen Kanwal
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Islah Ud Din
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| |
Collapse
|
23
|
Shen C, Li M, Duan Y, Jiang X, Hou X, Xue F, Zhang Y, Luo Y. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma. Front Immunol 2023; 14:1170207. [PMID: 37304265 PMCID: PMC10250615 DOI: 10.3389/fimmu.2023.1170207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common liver malignancy with a poor prognosis and increasing incidence, remains a serious health problem worldwide. Immunotherapy has been described as one of the ideal ways to treat HCC and is transforming patient management. However, the occurrence of immunotherapy resistance still prevents some patients from benefiting from current immunotherapies. Recent studies have shown that histone deacetylase inhibitors (HDACis) can enhance the efficacy of immunotherapy in a variety of tumors, including HCC. In this review, we present current knowledge and recent advances in immunotherapy-based and HDACi-based therapies for HCC. We highlight the fundamental dynamics of synergies between immunotherapies and HDACis, further detailing current efforts to translate this knowledge into clinical benefits. In addition, we explored the possibility of nano-based drug delivery system (NDDS) as a novel strategy to enhance HCC treatment.
Collapse
Affiliation(s)
- Chen Shen
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Li
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujuan Duan
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Jiang
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fulai Xue
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Yao Luo
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Asghar K, Rana IA, Abu Bakar M, Hasham K, Tahseen M, Bilal S, Mehmood S, Farooq A, Siddique K, Loya A. High Indoleamine 2,3-Dioxygenase Expression along with Low Bridging Integrator-1 Expression in Hepatocellular Carcinoma Patients. Asian Pac J Cancer Prev 2023; 24:1591-1600. [PMID: 37247278 PMCID: PMC10495885 DOI: 10.31557/apjcp.2023.24.5.1591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) adopts several tumor immune escape mechanisms; therefore, it has the potential to be targeted by immunotherapy. Indoleamine 2, 3-dioxygenase (IDO) is an immunosuppressive enzyme that has been observed to be overexpressed in HCC patients with poor prognoses. Bridging integrator 1 (Bin1) loss promotes immune escape in cancer by deregulating IDO. Our aim is to investigate IDO expression along with Bin1 expression to find evidence of immunosuppression in HCC patients. MATERIALS AND METHODS In this study, we investigated IDO and Bin1 expression in HCC tissue specimens and the correlation of IDO and Bin1 expression with clinicopathological characteristics and prognosis of HCC patients (n=45). Immunohistochemical analysis was performed to analyze the expression of IDO and Bin1. RESULTS IDO was overexpressed in 38 (84.4%) out of 45 HCC tissue specimens. In addition, tumor size was significantly increased with an increase in the IDO expression (P=0.03). Low Bin1 expression was observed in 27(60%) HCC tissue specimens, whereas the remaining 18(40%) showed high Bin1 expression. CONCLUSION Our data showed that expression of IDO along with Bin1 expression could be investigated for clinical evaluation in HCC. IDO might be used as an immunotherapeutic target for HCC. Therefore, further studies in larger patient cohorts are warranted.
Collapse
Affiliation(s)
- Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, 54782, Pakistan.
| | - Iftikhar Ali Rana
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan.
| | - Muhammad Abu Bakar
- Department of Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, 54782, Pakistan.
| | - Kinza Hasham
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, 54782, Pakistan.
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan.
| | - Sundus Bilal
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, 54782, Pakistan.
| | - Shafqat Mehmood
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, 54782, Pakistan.
| | - Asim Farooq
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, 54782, Pakistan.
| | - Kashif Siddique
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, 54782, Pakistan.
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan.
| |
Collapse
|
25
|
Brown ZJ, Ruff SM, Pawlik TM. Developments in FGFR and IDH inhibitors for cholangiocarcinoma therapy. Expert Rev Anticancer Ther 2023; 23:257-264. [PMID: 36744395 DOI: 10.1080/14737140.2023.2176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an uncommon malignancy originating from epithelial cells of the biliary tract. Regardless of the site of origin within the biliary tree, CCAs are generally aggressive with a poor survival. Surgical resection remains the only chance for cure, yet a majority of patients are not surgical candidates at presentation. Unfortunately, systemic therapies are often ineffective and complicated by side effects. As such, more effective targeted therapies are required in order to improve survival. AREA COVERED Genetic analysis of CCA has allowed for a better understanding of the genomic landscape of CCA. Isocitrate dehydrogenase (IDH) and fibroblast growth factor receptor (FGFR) mutations have emerged as the most promising molecular targets for CCA. Inhibitors of IDH and FGFR have proven to have therapeutic benefit with an acceptable safety profile. However, patients often develop resistance rendering the therapy ineffective. EXPERT OPINION Understanding the molecular pathways of IDH and FGFR may lead to a better understanding of the mechanisms of resistance. Thus, novel therapies may be developed to improve the efficacy of these therapies. Developing novel biomarkers may improve patient selection and further enhance effectiveness of targeted therapies.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, Summit Health, Berkeley Heights, NJ, USA
| | - Samantha M Ruff
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
26
|
Brown ZJ, Tsilimigras DI, Ruff SM, Mohseni A, Kamel IR, Cloyd JM, Pawlik TM. Management of Hepatocellular Carcinoma: A Review. JAMA Surg 2023; 158:410-420. [PMID: 36790767 DOI: 10.1001/jamasurg.2022.7989] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Importance Hepatocellular carcinoma (HCC) is the sixth most common malignancy and fourth leading cause of cancer-related death worldwide. Recent advances in systemic and locoregional therapies have led to changes in many guidelines regarding systemic therapy, as well as the possibility to downstage patients to undergo resection. This review examines the advances in surgical and medical therapies relative to multidisciplinary treatment strategies for HCC. Observations HCC is a major health problem worldwide. The obesity epidemic has made nonalcoholic fatty liver disease a major risk factor for the development of HCC. Multiple societies, such as the American Association for the Study of Liver Diseases, the European Association for the Study of the Liver, the Asian Pacific Association for the Study of the Liver, and the National Comprehensive Cancer Network, provide guidelines for screening at-risk patients, as well as define staging systems to guide optimal treatment strategies. The Barcelona Clinic Liver Cancer staging system is widely accepted and has recently undergone updates with the introduction of new systemic therapies and stage migration. Conclusions and Relevance The treatment of patients with HCC should involve a multidisciplinary approach with collaboration among surgeons, medical oncologists, radiation oncologists, and interventional radiologists to provide optimal care. Treatment paradigms must consider both tumor and patient-related factors such as extent of liver disease, which is a main driver of morbidity and mortality. The advent of more effective systemic and locoregional therapies has prolonged survival among patients with advanced disease and allowed some patients to undergo surgical intervention who would otherwise have disease considered unresectable.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus
| | | | - Samantha M Ruff
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus
| | - Alireza Mohseni
- Department of Radiology, John Hopkins University, Baltimore, Maryland
| | - Ihab R Kamel
- Department of Radiology, John Hopkins University, Baltimore, Maryland
| | - Jordan M Cloyd
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus
| |
Collapse
|
27
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Fibrolamellar Hepatocellular Carcinoma: Comprehensive Review of Diagnosis, Imaging, and Management. J Am Coll Surg 2023; 236:399-410. [PMID: 36648268 DOI: 10.1097/xcs.0000000000000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Fibrolamellar hepatocellular carcinoma (FLC) is a rare malignancy that primarily affects patients in late adolescence and young adulthood. FLC tumors are characterized by their unique histologic features and a recently discovered genomic alteration, a chimeric fusion protein found in nearly all tumors. This review article provides the latest advancements in diagnosing, imaging, and managing FLC. STUDY DESIGN A comprehensive systematic review was performed using MEDLINE/PubMed and Web of Science databases, with the end of search date being July 1, 2022, regarding FLC diagnosis, imaging, and management. RESULTS Surgical resection remains the mainstay of therapy offering a chance for cure; however, given the incidence of metastatic disease at diagnosis and high rates of distant relapse, systemic therapies remain a crucial component of disease control. Unfortunately, few systemic therapies have demonstrated proven benefits. Consequently, recent efforts have galvanized around single-institute or small consortia-based studies specifically focused on enrolling patients with FLC or using agents with a biologic rationale. CONCLUSIONS FLC has unique demographic, radiologic, and pathologic features. The rarity of these tumors, coupled with the only recent acknowledgment of the genomic abnormality, has likely led to disease underrecognition and deprioritization of collaborative efforts to establish an evidence-based standard of care. Despite R0 resection, most patients experience recurrence. However, surgical resection is feasible for many recurrences and is associated with good survival. The role of chemotherapy is evolving, and further research is required to define its role in managing this disease.
Collapse
|
29
|
Zhang C, Wang L, Xu C, Xu H, Wu Y. Resistance mechanisms of immune checkpoint inhibition in lymphoma: Focusing on the tumor microenvironment. Front Pharmacol 2023; 14:1079924. [PMID: 36959853 PMCID: PMC10027765 DOI: 10.3389/fphar.2023.1079924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic strategies of multiple types of malignancies including lymphoma. However, efficiency of ICIs varies dramatically among different lymphoma subtypes, and durable response can only be achieved in a minority of patients, thus requiring unveiling the underlying mechanisms of ICI resistance to optimize the individualized regimens and improve the treatment outcomes. Recently, accumulating evidence has identified potential prognostic factors for ICI therapy, including tumor mutation burden and tumor microenvironment (TME). Given the distinction between solid tumors and hematological malignancies in terms of TME, we here review the clinical updates of ICIs for lymphoma, and focus on the underlying mechanisms for resistance induced by TME, which play important roles in lymphoma and remarkably influence its sensitivity to ICIs. Particularly, we highlight the value of multiple cell populations (e.g., tumor infiltrating lymphocytes, M2 tumor-associated macrophages, and myeloid-derived suppressor cells) and metabolites (e.g., indoleamine 2, 3-dioxygenase and adenosine) in the TME as prognostic biomarkers for ICI response, and also underline additional potential targets in immunotherapy, such as EZH2, LAG-3, TIM-3, adenosine, and PI3Kδ/γ.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiming Wang
- Shenzhen Bay Laboratory, Center for transnational medicine, Shenzhen, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Yu Wu,
| |
Collapse
|
30
|
Meng R, Fu Y, Zhang Y, Mou Y, Liu G, Fan H. Indoleamine 2,3-dioxygenase 1 signaling orchestrates immune tolerance in Echinococcus multilocularis-infected mice. Front Immunol 2022; 13:1032280. [PMID: 36439161 PMCID: PMC9691980 DOI: 10.3389/fimmu.2022.1032280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023] Open
Abstract
The cestode Echinococcus multilocularis larva infection causes lethal zoonotic alveolar echinococcosis (AE), a disease posing a great threat to the public health worldwide. This persistent hepatic tumor-like disease in AE patients has been largely attributed to aberrant T cell responses, of which Th1 responses are impeded, whilst Th2 and regulatory T cell responses are elevated, creating an immune tolerogenic microenvironment in the liver. However, the immune tolerance mechanisms are not fully understood. Dendritic cells (DCs) are key cellular components in facilitating immune tolerance in chronic diseases, including AE. Here, we demonstrate that indoleamine 2,3-dioxygenase 1-deficient (IDO1-/-) mice display less severe AE as compared to wild-type (WT) mice during the infection. Mechanistically, IDO1 prevents optimal T cells responses by programming DCs into a tolerogenic state. Specifically, IDO1 prevents the maturation and migration potential of DCs, as shown by the significantly enhanced expression of the antigen-presenting molecule (MHC II), costimulatory molecules (CD80 and CD86), and chemokine receptors (CXCR4 and CCR7) in infected IDO1-/- mice as compared to infected wild-type mice. More importantly, the tolerogenic phenotype of DCs is partly reverted in IDO1-/- mice, as indicated by enhanced activation, proliferation, and differentiation of both CD4+ and CD8+ - T cells upon infection with Echinococcus multilocularis, in comparison with WT mice. Interestingly, in absence of IDO1, CD4+ T cells are prone to differentiate to effector memory cells (CD44+CD62L-); in contrast, CD8+ T cells are highly biased to the central memory phenotype (CD44+CD62L+). Overall, these data are the first to demonstrate the essential role of IDO1 signaling in inducing immunosuppression in mice infected with Echinococcus multilocularis.
Collapse
Affiliation(s)
- Ru Meng
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), The Research Key Laboratory for Echinococcosis of Qinghai Province, Qinghai University, Xining, China
- Academician Zhang Yong Innovation Center, Xining Animal Disease Control Center, Xining, China
| | - Yong Fu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, China
| | - Yaogang Zhang
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Yalin Mou
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Gongguan Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haining Fan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), The Research Key Laboratory for Echinococcosis of Qinghai Province, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| |
Collapse
|
31
|
Harkus U, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Semin Cancer Biol 2022; 86:799-815. [PMID: 35065242 DOI: 10.1016/j.semcancer.2022.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related deaths in the world, and for patients with advanced disease there are few therapeutic options available. The complex immunological microenvironment of HCC and the success of immunotherapy in several types of tumours, has raised the prospect of potential benefit for immune based therapies, such as immune checkpoint inhibitors (ICIs), in HCC. This has led to significant breakthrough research, numerous clinical trials and the rapid approval of multiple systemic drugs for HCC by regulatory bodies worldwide. Although some patients responded well to ICIs, many have failed to achieve significant benefit, while others showed unexpected and paradoxical deterioration. The aim of this review is to discuss the pathophysiology of HCC, the tumour microenvironment, key clinical trials evaluating ICIs in HCC, various resistance mechanisms to ICIs, and possible ways to overcome these impediments to improve patient outcomes.
Collapse
Affiliation(s)
- Uasim Harkus
- Townsville University Hospital, Townsville, Queensland 4811, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Pranavan Palamuthusingam
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Townsville University Hospital, Townsville, Queensland 4811, Australia; Mater Hospital, Townsville, Queensland 4811, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales 2145, Australia.
| |
Collapse
|
32
|
Fujiwara Y, Kato S, Nesline MK, Conroy JM, DePietro P, Pabla S, Kurzrock R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev 2022; 110:102461. [PMID: 36058143 DOI: 10.1016/j.ctrv.2022.102461] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Strategies for unlocking immunosuppression in the tumor microenvironment have been investigated to overcome resistance to first-generation immune checkpoint blockade with anti- programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4) agents. Indoleamine 2,3-dioxygenase (IDO) 1, an enzyme catabolizing tryptophan to kynurenine, creates an immunosuppressive environment in preclinical studies. Early phase clinical trials investigating inhibition of IDO1, especially together with checkpoint blockade, provided promising results. Unfortunately, the phase 3 trial of the IDO1 inhibitor epacadostat combined with the PD-1 inhibitor pembrolizumab did not show clinical benefit when compared with pembrolizumab monotherapy in patients with advanced malignant melanoma, which dampened enthusiasm for IDO inhibitors. Even so, several molecules, such as the aryl hydrocarbon receptor and tryptophan 2,3-dioxygenase, were reported as additional potential targets for the modulation of the tryptophan pathway, which might enhance clinical effectiveness. Furthermore, the combination of IDO pathway blockade with agents inhibiting other signals, such as those generated by PIK3CA mutations that may accompany IDO1 upregulation, may be a novel way to enhance activity. Importantly, IDO1 expression level varies by tumor type and among patients with the same tumor type, suggesting that patient selection based on expression levels of IDO1 may be warranted in clinical trials.
Collapse
Affiliation(s)
- Yu Fujiwara
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York, NY, United States.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, United States.
| | | | | | | | | | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
33
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
34
|
Oweira H, Lahdou I, Mehrle S, Khajeh E, Nikbakhsh R, Ghamarnejad O, Terness P, Reißfelder C, Sadeghi M, Ramouz A. Kynurenine Is the Main Metabolite of Tryptophan Degradation by Tryptophan 2,3-Dioxygenase in HepG2 Tumor Cells. J Clin Med 2022; 11:jcm11164794. [PMID: 36013032 PMCID: PMC9410271 DOI: 10.3390/jcm11164794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
There are two main enzymes that convert tryptophan (Trp) to kynurenine (Kyn): tryptophan-2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Kyn accumulation can promote immunosuppression in certain cancers. In this study, we investigated Trp degradation to Kyn by IDO and TDO in primary human hepatocytes (PHH) and tumoral HepG2 cells. To quantify Trp-degradation and Kyn-accumulation, using reversed-phase high-pressure liquid chromatography, the levels of Trp and Kyn were determined in the culture media of PHH and HepG2 cells. The role of IDO in Trp metabolism was investigated by activating IDO with IFN-γ and inhibiting IDO with 1-methyl-tryptophan (1-DL-MT). The role of TDO was investigated using one of two TDO inhibitors: 680C91 or LM10. Real-time PCR was used to measure TDO and IDO expression. Trp was degraded in both PHH and HepG2 cells, but degradation was higher in PHH cells. However, Kyn accumulation was higher in the supernatants of HepG2 cells. Stimulating IDO with IFN-γ did not significantly affect Trp degradation and Kyn accumulation, even though it strongly upregulated IDO expression. Inhibiting IDO with 1-DL-MT also had no effect on Trp degradation. In contrast, inhibiting TDO with 680C91 or LM10 significantly reduced Trp degradation. The expression of TDO but not of IDO correlated positively with Kyn accumulation in the HepG2 cell culture media. Furthermore, TDO degraded L-Trp but not D-Trp in HepG2 cells. Kyn is the main metabolite of Trp degradation by TDO in HepG2 cells. The accumulation of Kyn in HepG2 cells could be a key mechanism for tumor immune resistance. Two TDO inhibitors, 680C91 and LM10, could be useful in immunotherapy for liver cancers.
Collapse
Affiliation(s)
- Hani Oweira
- Department of Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Imad Lahdou
- Department of Transplantation Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Mehrle
- Department of Transplantation Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rajan Nikbakhsh
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Terness
- Department of Transplantation Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Reißfelder
- Department of Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Mahmoud Sadeghi
- Department of Transplantation Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ali Ramouz
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-32475
| |
Collapse
|
35
|
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:988295. [PMID: 36046791 PMCID: PMC9421293 DOI: 10.3389/fendo.2022.988295] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
It is notorious that cancer cells alter their metabolism to adjust to harsh environments of hypoxia and nutritional starvation. Metabolic reprogramming most often occurs in the tumor microenvironment (TME). TME is defined as the cellular environment in which the tumor resides. This includes surrounding blood vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix (ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells within TME can regulate tumor progression through metabolic reprogramming. As the most significant proportion of cells among all the stromal cells that constitute TME, cancer-associated fibroblasts (CAFs) are closely associated with tumorigenesis and progression. Multitudinous studies have shown that CAFs participate in and promote tumor metabolic reprogramming and exert regulatory effects via the dysregulation of metabolic pathways. Previous studies have demonstrated that curbing the substance exchange between CAFs and tumor cells can dramatically restrain tumor growth. Emerging studies suggest that CAFs within the TME have emerged as important determinants of metabolic reprogramming. Metabolic reprogramming also occurs in the metabolic pattern of immune cells. In the meanwhile, immune cell phenotype and functions are metabolically regulated. Notably, immune cell functions influenced by metabolic programs may ultimately lead to alterations in tumor immunity. Despite the fact that multiple previous researches have been devoted to studying the interplays between different cells in the tumor microenvironment, the complicated relationship between CAFs and immune cells and implications of metabolic reprogramming remains unknown and requires further investigation. In this review, we discuss our current comprehension of metabolic reprogramming of CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and crosstalk between them that induces immune responses, and we also highlight their contributions to tumorigenesis and progression. Furthermore, we underscore potential therapeutic opportunities arising from metabolism dysregulation and metabolic crosstalk, focusing on strategies targeting CAFs and immune cell metabolic crosstalk in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Lei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiwei Hong
- School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of General surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
36
|
Li X, Fang J, Wei G, Chen Y, Li D. CircMMP9 accelerates the progression of hepatocellular carcinoma through the miR-149/ CCND2 axis. J Gastrointest Oncol 2022; 13:1875-1888. [PMID: 36092323 PMCID: PMC9459201 DOI: 10.21037/jgo-22-677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND This study aimed to verify the hypothesis that circular RNA MMP9 (circMMP9) promotes hepatocellular carcinoma (HCC) progression through targeting miR-149 and regulating cyclin D2 (CCND2) expression. METHODS Expression of circMMP9, miR-149 and CCND2 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or protein blotting. Cell Counting Kit-8 (CCK-8) was used to evaluate cell proliferation. The HCC cell migration and invasion were evaluated using wound healing and transwell assays. The interaction among circMMP9, miR-149, and CCND2 was evaluated using luciferase, RNA-pull down, and RNA immunoprecipitation (RIP) assays, respectively. Cell apoptosis and cycle were examined by flow cytometry. A subcutaneous HCC xenograft mouse model was established for analyzing the role of circMMP9 in regulating the progression of HCC in vivo. RESULTS The expression of circMMP9 was elevated in HCC tissues and its high expression correlated with poor prognosis (P<0.05). Knockdown of circMMP9 restrained the proliferation, migration, and invasion of HCC cells and led to arrested cell cycle and increased apoptosis (all P<0.05). Furthermore, knockdown of circMMP9 attenuated HCC growth in vivo (P<0.05). Mechanically, circMMP9 acted as a sponge for miR-149 and enhanced CCND2 expression in HCC cells (P<0.05). Inhibition of miR-149 or overexpression of CCND2 abrogated knockdown of circMMP9-mediated alleviation of the malignant phenotypes of HCC (P<0.05). CONCLUSIONS For the first time, we demonstrated that circMMP9 exacerbated HCC progression through the miR-149/CCND2 axis, which suggested that circMMP9 could be potentially targeted for HCC treatment.
Collapse
Affiliation(s)
- Xiaolou Li
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jiankai Fang
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Guangmin Wei
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Outpatient Department, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Dongliang Li
- Department of Hepatobiliary Medicine, the 900th Hospital of Joint Logistics Support Forces of the Chinese PLA, Fuzhou, China
| |
Collapse
|
37
|
The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112756. [PMID: 35681736 PMCID: PMC9179436 DOI: 10.3390/cancers14112756] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that metabolizes an essential amino acid tryptophan (Trp) into kynurenine (Kyn), and it promotes the occurrence of immunosuppressive effects by regulating the consumption of Trp and the accumulation of Kyn in the tumor microenvironment (TME). Recent studies have shown that the main cellular components of TME interact with each other through this pathway to promote the formation of tumor immunosuppressive microenvironment. Here, we review the role of the immunosuppression mechanisms mediated by the IDO1 pathway in tumor growth. We discuss obstacles encountered in using IDO1 as a new tumor immunotherapy target, as well as the current clinical research progress.
Collapse
|
38
|
Brown ZJ, Hewitt DB, Pawlik TM. Experimental drug treatments for hepatocellular carcinoma: Clinical trial failures 2015 to 2021. Expert Opin Investig Drugs 2022; 31:693-706. [PMID: 35580650 DOI: 10.1080/13543784.2022.2079491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide with limited systemic therapy options. Since the approval of sorafenib in 2008, no systemic therapy has provided a sustained/robust/survival benefit for patients with advanced HCC until recently. Many initially promising therapies have been trialed, but survival outcomes remained stagnant. As such, knowledge concerning previous treatment failures may help guide further areas of study, as well inform future therapeutic approaches. AREA COVERED This article reviews recent advances in the treatment of HCC. Despite some recent success, many systemic and locoregional therapies have failed to produce significant improvements in outcome. These treatment failures are examined and insight into pathways for future success are discussed. EXPERT OPINION Combination atezolizumab and bevacizumab has changed the landscape of systemic treatment for patients with HCC when it became the first therapy after demonstrating improve outcomes over sorafenib. Clinical trials in patients with advanced HCC have inherent difficulty with challenges to determine if a patient's declining liver function is secondary to disease progression, worsening cirrhosis, or drug toxicity, which may skew results. As we gain more knowledge of underlying genetic alterations behind the pathophysiology of the development of HCC, molecular markers may be identified to assist in predicting which patients would respond to a specific therapy.
Collapse
|
39
|
Suresh A, Dhanasekaran R. Implications of genetic heterogeneity in hepatocellular cancer. Adv Cancer Res 2022; 156:103-135. [PMID: 35961697 PMCID: PMC10321863 DOI: 10.1016/bs.acr.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) exhibits a remarkable degree of heterogeneity, not only at an inter-patient level but also between and within tumors in the same patient. The advent of next-generation sequencing (NGS)-based technologies has allowed the creation of high-resolution atlases of HCC. This review outlines recent findings from genomic, epigenomic, transcriptomic, and proteomic sequencing that have yielded valuable insights into the spatial and temporal heterogeneity of HCC. The high heterogeneity of HCC has both clinical and therapeutic implications. The challenges in prospectively validating molecular classifications for HCC either for prognostication or for prediction of therapeutic response are partly due to the immense heterogeneity in HCC. Moreover, the heterogeneity of HCC tumors combined with the lack of commonly mutated, druggable targets severely limits treatment options for HCC. Recently, immune checkpoint inhibitors and combination therapies have shown promise for advanced HCC, while T cell therapies and vaccines are currently being investigated. Yet, immunotherapies show benefit only in a limited subset of patients, making it imperative to decipher tumor heterogeneity in HCC in order to enable optimal patient selection. This review summarizes the cutting-edge research on heterogeneity in HCC and explores the implications of heterogeneity on stratifying patients and developing biomarkers and therapies for HCC.
Collapse
Affiliation(s)
- Akanksha Suresh
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, United States
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
40
|
Marin JJG, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Sanchez-Martin A, Fabris L, Briz O. Mechanisms of Pharmacoresistance in Hepatocellular Carcinoma: New Drugs but Old Problems. Semin Liver Dis 2022; 42:87-103. [PMID: 34544160 DOI: 10.1055/s-0041-1735631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis when diagnosed at advanced stages in which curative treatments are no longer applicable. A small group of these patients may still benefit from transarterial chemoembolization. The only therapeutic option for most patients with advanced HCC is systemic pharmacological treatments based on tyrosine kinase inhibitors (TKIs) and immunotherapy. Available drugs only slightly increase survival, as tumor cells possess additive and synergistic mechanisms of pharmacoresistance (MPRs) prior to or enhanced during treatment. Understanding the molecular basis of MPRs is crucial to elucidate the genetic signature underlying HCC resistome. This will permit the selection of biomarkers to predict drug treatment response and identify tumor weaknesses in a personalized and dynamic way. In this article, we have reviewed the role of MPRs in current first-line drugs and the combinations of immunotherapeutic agents with novel TKIs being tested in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.,Department of Internal Medicine, Yale Liver Center (YLC), School of Medicine, Yale University New Haven, Connecticut
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
41
|
Song X, Si Q, Qi R, Liu W, Li M, Guo M, Wei L, Yao Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Front Immunol 2022; 12:800630. [PMID: 35003126 PMCID: PMC8733291 DOI: 10.3389/fimmu.2021.800630] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis is a complex multifactorial and multistep process in which tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade host immune attacks. The degradation of tryptophan into immunosuppressive kynurenine is considered an important immunosuppressive mechanism in the tumor microenvironment. There are three enzymes, namely, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1), and indoleamine 2,3-dioxygenase 2 (IDO2), involved in the metabolism of tryptophan. IDO1 has a wider distribution and higher activity in catalyzing tryptophan than the other two; therefore, it has been studied most extensively. IDO1 is a cytosolic monomeric, heme-containing enzyme, which is now considered an authentic immune regulator and represents one of the promising drug targets for tumor immunotherapy. Collectively, this review highlights the regulation of IDO1 gene expression and the ambivalent mechanisms of IDO1 on the antitumoral immune response. Further, new therapeutic targets via the regulation of IDO1 are discussed. A comprehensive analysis of the expression and biological function of IDO1 can help us to understand the therapeutic strategies of the inhibitors targeting IDO1 in malignant tumors.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Qianqian Si
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Rui Qi
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Weidan Liu
- Department of Clinical Laboratory, The People's Hospital, Pingxiang County, Xingtai, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Mengyue Guo
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| |
Collapse
|
42
|
Su C, Lin S, Wang H, Hsu F, Chung JG, Hsu L. The inhibitory effect and mechanism of quetiapine on tumor progression in hepatocellular carcinoma in vivo. ENVIRONMENTAL TOXICOLOGY 2022; 37:92-100. [PMID: 34626444 PMCID: PMC9293313 DOI: 10.1002/tox.23380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the primary tumor of the liver and the fourth leading cause of cancer-related death. Recently, several studies indicated the anti-tumor potential of antipsychotic medicine. Quetiapine, an atypical antipsychotic, is used to treat schizophrenia, bipolar disorder, and major depressive disorder since 1997. However, whether quetiapine may show potential to suppress HCC progression and its underlying mechanism is persisting unclear. Quetiapine has been shown to induce apoptosis and inhibit invasion ability in HCC in vitro. Here, we established two different HCC (Hep3B, SK-Hep1) bearing animals to identify the treatment efficacy of quetiapine. Tumor growth, signaling transduction, and normal tissue pathology after quetiapine treatment were validated by caliper, bioluminescence image, immunohistochemistry (IHC), and hematoxylin and eosin staining, respectively. Quetiapine suppressed HCC progression in a dose-dependent manner. Extracellular signal-regulated kinases (ERKs) and Nuclear factor-κB (NF-κB) mediated downstream proteins, such as myeloid leukemia cell differentiation protein (MCL-1), cellular FLICE-inhibitory protein (C-FLIP), X-linked inhibitor of apoptosis protein (XIAP), Cyclin-D1, matrix metallopeptidase 9 (MMP-9), vascular endothelial growth factor-A (VEGF-A) and indoleamine 2,3-dioxygenase (IDO) which involved in proliferation, survival, angiogenesis, invasion and anti-tumor immunity were all decreased by quetiapine. In addition, extrinsic/intrinsic caspase-dependent and caspase-independent pathways, including cleaved caspase-3, -8, and - 9 were increased by quetiapine. In sum, the tumor inhibition that results from quetiapine may associate with ERK and NF-κB inactivation.
Collapse
Affiliation(s)
- Chun‐Min Su
- Department of SurgeryShow Chwan Memorial HospitalChanghuaTaiwan, ROC
| | - Song‐Shei Lin
- Department of Medical Imaging and Radiological SciencesCentral Taiwan University of Science and TechnologyTaichungTaiwan, ROC
| | - Hsiao‐Chia Wang
- Emergency DepartmentCathay General HospitalTaipeiTaiwan, ROC
- School of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan, ROC
| | - Fei‐Ting Hsu
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan, ROC
| | - Jing Gung Chung
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan, ROC
| | - Li‐Cho Hsu
- School of MedicineNational Yang‐Ming Chiao‐Tung University HospitalTaipeiTaiwan, ROC
| |
Collapse
|
43
|
Argemi J, Ponz-Sarvise M, Sangro B. Immunotherapies for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: Current and developing strategies. Adv Cancer Res 2022; 156:367-413. [PMID: 35961706 DOI: 10.1016/bs.acr.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Zhong W, Yang M, Cheng S, Hou W, Wang B, Chen J, Yu H, Ouyang Y, Wang X, Ou Z, Xu P, Li X, Zhou L, Huang J, Wang C, Lin T. Identification of an IDO1-based immune classifier for survival prediction of upper tract urothelial carcinoma. Cancer Sci 2021; 113:852-863. [PMID: 34962030 PMCID: PMC8898711 DOI: 10.1111/cas.15253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/09/2022] Open
Abstract
The limited response rate of immunotherapy in upper tract urothelial carcinoma (UTUC) might be attributed to additional immunosuppressive mechanisms in vivo. As a promising immune checkpoint target, the expression and prognostic role of indoleamine 2,3‐dioxygenase 1 (IDO1) in UTUC remains unknown. In this study, the expression and prognostic value of IDO1 was analyzed in 251 patients from 3 independent cohorts. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to construct an IDO1‐based immune classifier and external validation was performed to further validate the classifier. RNA sequencing and immunofluorescence were used to explore the immune contexture of different risk groups stratified by classifier. We found that high IDO1 expression on tumor cells (TC) indicated a poorer overall survival and disease‐free survival in all cohorts. Patients with high expression of IDO1 TC possessed increased infiltration of CD4+, CD8+ and Foxp3+ T cells. An immune classifier based on intratumoral CD8+ lymphocytes, IDO1 TC, and stromal PD‐L1 expression status was developed, with its area under the curves (AUCs) values for overall survival at 5 y being 0.79 (95% confidence interval [CI] 0.65‐0.93) in the discovery cohort, 0.75 (95% CI 0.58‐0.92) and 0.78 (95% CI 0.65‐0.92) in the internal and external validation cohorts, respectively. The high‐risk group stratified by the immune classifier was associated with immunosuppressive contexture, accompanied by enhanced CD8+ T cells exhaustion patterns. Our IDO1‐based immune classifier can provide a superior accuracy for survival prediction and lead to individual stratification of UTUC immune subtypes.
Collapse
Affiliation(s)
- Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases
| | - Meng Yang
- Department of Urology, Yan'an Hospital, Kunming Medical University, Kunming, PR China
| | - Sida Cheng
- Department of Urology, Peking University First Hospital, Beijing, PR China
| | - Weibin Hou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases
| | - Junyu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases
| | - Hao Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases
| | - Yi Ouyang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases
| | - Xiaofei Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases
| | - Ziwei Ou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases
| | - Peiqi Xu
- Department of Urology, Yan'an Hospital, Kunming Medical University, Kunming, PR China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, PR China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases
| | - Chunhui Wang
- Department of Urology, Yan'an Hospital, Kunming Medical University, Kunming, PR China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Clinical Research Center for Urological Diseases.,Kashgar Prefecture First People's Hospital of Kashi, Xinjiang, PR China
| |
Collapse
|
45
|
Xu L, Ling J, Su C, Su YW, Xu Y, Jiang Z. Emerging Roles on Immunological Effect of Indoleamine 2,3-Dioxygenase in Liver Injuries. Front Med (Lausanne) 2021; 8:756435. [PMID: 34869457 PMCID: PMC8636938 DOI: 10.3389/fmed.2021.756435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is one of the initial rate-limiting enzymes of the kynurenine pathway (KP), which causes immune suppression and induction of T cell anergy. It is associated with the imbalance of immune homeostasis in numerous diseases including cancer, chronic viral infection, allergy, and autoimmune diseases. Recently, IDO has extended its role to liver field. In this review, we summarize the dysregulation and potentials of IDO in the emerging field of liver injuries, as well as current challenges for IDO targets. In particular, we discuss unexpected conclusions against previous work published. IDO is induced by pro-inflammatory cytokines in liver dysfunction and exerts an immunosuppressive effect, whereas the improvement of liver injury may require consideration of multiple factors besides IDO.
Collapse
Affiliation(s)
- Lingyan Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jiawei Ling
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chang Su
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Wen Su
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
46
|
Involvement of Kynurenine Pathway in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13205180. [PMID: 34680327 PMCID: PMC8533819 DOI: 10.3390/cancers13205180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The kynurenine pathway (KP) is a biochemical pathway that synthesizes the vital coenzyme, nicotinamide adenine dinucleotide (NAD+). In cancer, the KP is significantly activated, leading to tryptophan depletion and the production of downstream metabolites, which skews the immune response towards tumour tolerance. More specifically, advanced stage cancers that readily metastasize evidence the most dysregulation in KP enzymes, providing a clear link between the KP and cancer morbidity. Consequently, this provides the rationale for an attractive new drug discovery opportunity for adjuvant therapeutics targeting KP-mediated immune tolerance, which would greatly complement current pharmacological interventions. In this review, we summarize recent developments in the roles of the KP and clinical trials examining KP inhibition in liver cancer. Abstract As the second and third leading cancer-related death in men and the world, respectively, primary liver cancer remains a major concern to human health. Despite advances in diagnostic technology, patients with primary liver cancer are often diagnosed at an advanced stage. Treatment options for patients with advanced hepatocarcinoma (HCC) are limited to systemic treatment with multikinase inhibitors and immunotherapy. Furthermore, the 5-year survival rate for these late-stage HCC patients is approximately 12% worldwide. There is an unmet need to identify novel treatment options and/or sensitive blood-based biomarker(s) to detect this cancer at an early stage. Given that the liver harbours the largest proportion of immune cells in the human body, understanding the tumour–immune microenvironment has gained increasing attention as a potential target to treat cancer. The kynurenine pathway (KP) has been proposed to be one of the key mechanisms used by the tumour cells to escape immune surveillance for proliferation and metastasis. In an inflammatory environment such as cancer, the KP is elevated, suppressing local immune cell populations and enhancing tumour growth. In this review, we collectively describe the roles of the KP in cancer and provide information on the latest research into the KP in primary liver cancer.
Collapse
|
47
|
Chisari A, Golán I, Campisano S, Gélabert C, Moustakas A, Sancho P, Caja L. Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Front Pharmacol 2021; 12:723798. [PMID: 34588983 PMCID: PMC8473699 DOI: 10.3389/fphar.2021.723798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Malignant cells are commonly characterised by being capable of invading tissue, growing self-sufficiently and uncontrollably, being insensitive to apoptosis induction and controlling their environment, for example inducing angiogenesis. Amongst them, a subpopulation of cancer cells, called cancer stem cells (CSCs) shows sustained replicative potential, tumor-initiating properties and chemoresistance. These characteristics make CSCs responsible for therapy resistance, tumor relapse and growth in distant organs, causing metastatic dissemination. For these reasons, eliminating CSCs is necessary in order to achieve long-term survival of cancer patients. New insights in cancer metabolism have revealed that cellular metabolism in tumors is highly heterogeneous and that CSCs show specific metabolic traits supporting their unique functionality. Indeed, CSCs adapt differently to the deprivation of specific nutrients that represent potentially targetable vulnerabilities. This review focuses on three of the most aggressive tumor types: pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma (HCC) and glioblastoma (GBM). The aim is to prove whether CSCs from different tumour types share common metabolic requirements and responses to nutrient starvation, by outlining the diverse roles of glucose and amino acids within tumour cells and in the tumour microenvironment, as well as the consequences of their deprivation. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, glucose and amino acid derivatives contribute to immune responses linked to tumourigenesis and metastasis. Furthermore, potential metabolic liabilities are identified and discussed as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrea Chisari
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Irene Golán
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sabrina Campisano
- Department of Chemistry, School of Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Caroline Gélabert
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Patricia Sancho
- Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragon, Zaragoza, Spain
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Cheu JWS, Wong CCL. Mechanistic Rationales Guiding Combination Hepatocellular Carcinoma Therapies Involving Immune Checkpoint Inhibitors. Hepatology 2021; 74:2264-2276. [PMID: 33811765 DOI: 10.1002/hep.31840] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers because of late symptom manifestation leading to delayed diagnosis, which limits patients with HCC in terms of receiving curative surgical treatment. There are only a few therapeutic options for patients with advanced HCC. The emergence of immune checkpoint inhibitors (ICIs) brings HCC treatment to a stage at which nivolumab, an anti-programmed cell death protein 1 monoclonal antibody, achieves a 20% response rate. However, the large proportion of unresponsive patients drives the exploration of therapeutic strategies to improve ICIs' efficacy. Recent preclinical and clinical studies have suggested that ICIs, when used in combinations or when used with other cancer therapies, might elicit synergistic antitumor effects. However, the mechanistic rationales guiding different drug combinations to maximize this synergy remain largely ambiguous. In this review, we discuss different drug combinations used in HCC and the underlying mechanistic rationales, aiming to enhance the understanding of how these treatments can achieve synergy. This knowledge sets the foundation for the development of more effective and promising combination therapies for HCC.
Collapse
Affiliation(s)
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
49
|
Gao Y, Ouyang Z, Yang C, Song C, Jiang C, Song S, Shen M, Shi X. Overcoming T Cell Exhaustion via Immune Checkpoint Modulation with a Dendrimer-Based Hybrid Nanocomplex. Adv Healthc Mater 2021; 10:e2100833. [PMID: 34212538 DOI: 10.1002/adhm.202100833] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Indexed: 12/20/2022]
Abstract
T cell exhaustion, in which dysfunctional T cells are limited in cytokine release and constrained in immune response, leads to immune escape of cancer cells and decreased efficiency of cancer immunotherapy. Direct regulation or blocking of programmed death 1 (PD-1) represents a promising strategy to overcome T cell exhaustion for reinvigorating anticancer immunity. Here, the construction of a 1,3-propanesultone (1,3-PS)-grafted zwitterionic dendrimer-entrapped gold nanoparticle platform chelated with Gd(III) (Gd-Au DENP-PS) for immune checkpoint modulation is reported. The developed Gd-Au DENP-PS possesses good stability, antifouling property, biocompatibility, and dual-mode computed tomography (CT)/magnetic resonance (MR) imaging functions, and allows for efficient packaging and serum-enhanced delivery of PD-1 siRNA to mediate PD-1 gene silencing in T cells in vitro, and also in vivo in a melanoma-bearing mouse model and in healthy aging mice. The dendrimer nanocomplexes or T cell-laden nanocomplexes enable suppression of tumor growth through the generation of significant effector CD8+ and CD4+ T cells, and the tumor immunotherapeutic potency can be further improved by combination with an indoleamine 2,3-dioxygenase inhibitor. This study identifies a new possibility with a functional dendrimer-based nanohybrid platform for dual-mode CT/MR imaging-guided cancer immunotherapy via the regulation of T cell exhaustion.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐Dimension Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐Dimension Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Chao Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐Dimension Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Cong Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐Dimension Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Chunjuan Jiang
- Department of Nuclear Medicine, Shanghai Cancer Center Fudan University Shanghai 200030 China
| | - Shaoli Song
- Department of Nuclear Medicine, Shanghai Cancer Center Fudan University Shanghai 200030 China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐Dimension Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials International Joint Laboratory for Advanced Fiber and Low‐Dimension Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
50
|
Pilard C, Ancion M, Delvenne P, Jerusalem G, Hubert P, Herfs M. Cancer immunotherapy: it's time to better predict patients' response. Br J Cancer 2021; 125:927-938. [PMID: 34112949 PMCID: PMC8476530 DOI: 10.1038/s41416-021-01413-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
In less than a decade, half a dozen immune checkpoint inhibitors have been approved and are currently revolutionising the treatment of many cancer (sub)types. With the clinical evaluation of novel delivery approaches (e.g. oncolytic viruses, cancer vaccines, natural killer cell-mediated cytotoxicity) and combination therapies (e.g. chemo/radio-immunotherapy) as well as the emergence of novel promising targets (e.g. TIGIT, LAG-3, TIM-3), the 'immunotherapy tsunami' is not about to end anytime soon. However, this enthusiasm in the field is somewhat tempered by both the relatively low percentage (<15%) of patients who display an effective anti-cancer immune response and the inability to accurately identify them. Recently, several existing or acquired features/parameters have been shown to impact the efficacy of immune checkpoint inhibitors. In the present review, we critically discuss current knowledge regarding predictive biomarkers for checkpoint inhibitor-based immunotherapy, highlight the missing/unclear links and emphasise the importance of characterising each neoplasm and its microenvironment in order to better guide the course of treatment.
Collapse
Affiliation(s)
- Charlotte Pilard
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie Ancion
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Philippe Delvenne
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium ,grid.411374.40000 0000 8607 6858Department of Pathology, University Hospital of Liege, Liege, Belgium
| | - Guy Jerusalem
- grid.411374.40000 0000 8607 6858Department of Medical Oncology, University Hospital of Liege, Liege, Belgium
| | - Pascale Hubert
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Michael Herfs
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| |
Collapse
|