1
|
Mahapatra PP, Ahmed S. Fission yeast Bsd1 is required for ER stress response in Ire1 independent manner. Mol Biol Rep 2024; 52:19. [PMID: 39601909 DOI: 10.1007/s11033-024-10121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Endoplasmic reticulum plays a central role in protein folding and cellular detoxification. NEDD4, a HECT E3 ubiquitin ligase, has been implicated in endoplasmic reticulum stress in humans. In this study, we have explored the role of S. pombe Bsd1, an ortholog of mammalian Ndfip1 (NEDD4 interacting protein 1) in tunicamycin-induced stress response pathway. METHODS AND RESULTS Bsd1, an ortholog of mammalian NEDD4 interacting protein 1 (Ndfip1) plays a protective role against tunicamycin-induced ER stress. The confocal microscopy using GFP tagged Bsd1 revealed its localization to the membrane, with a more pronounced signal in the presence of tunicamycin. Additionally, the expression analysis showed a two-fold increase in the expression of Bsd1 after 4 h exposure to tunicamycin. Furthermore, acridine orange/ ethidium bromide staining and MTT assay revealed an increase in apoptotic cell death in bsd1Δ as compared to wild type cells after treatment with ER stressors. Compared to the wild type, we observed punctate FM4-64 staining in bsd1Δ cells in the presence of tunicamycin suggesting a significant loss of vacuolar structures. In a genetic interaction analysis, we observed enhanced sensitivity of tunicamycin in bsd1Δ ire1Δ double mutant as compared to each single mutant, suggesting the role of Bsd1 in the tunicamycin-induced ER stress response might be independent of the Ire1 pathway. CONCLUSION Our study has implicated the role of fission yeast Bsd1 in ER stress response in an Ire1 independent pathway. Further, we have shown its role in apoptotic cell death and the maintenance of vacuolar structures.
Collapse
Affiliation(s)
- Pinaki Prasad Mahapatra
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Mandic M, Paunovic V, Vucicevic L, Kosic M, Mijatovic S, Trajkovic V, Harhaji-Trajkovic L. No energy, no autophagy-Mechanisms and therapeutic implications of autophagic response energy requirements. J Cell Physiol 2024; 239:e31366. [PMID: 38958520 DOI: 10.1002/jcp.31366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.
Collapse
Affiliation(s)
- Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Vucicevic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srdjan Mijatovic
- Clinic for Emergency Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Repas J, Frlic T, Snedec T, Kopitar AN, Sourij H, Janež A, Pavlin M. Physiologically Achievable Concentration of 2-Deoxy-D-Glucose Stimulates IFN-γ Secretion in Activated T Cells In Vitro. Int J Mol Sci 2024; 25:10384. [PMID: 39408714 PMCID: PMC11476708 DOI: 10.3390/ijms251910384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
2-deoxy-D-glucose (2DG) is a glycolysis and protein N-glycosylation inhibitor with promising anti-tumor and immunomodulatory effects. However, 2DG can also suppress T cell function, including IFN-γ secretion. Few human T cell studies have studied low-dose 2DG, which can increase IFN-γ in a Jurkat clone. We therefore investigated 2DG's effect on IFN-γ in activated human T cells from PBMCs, with 2DG treatment commenced either concurrently with activation or 48 h after activation. Concurrent 2DG treatment decreased IFN-γ secretion in a dose-dependent manner. However, 2DG treatment of pre-activated T cells had a hormetic effect on IFN-γ, with 0.15-0.6 mM 2DG (achievable in vivo) increasing and >2.4 mM 2DG reducing its secretion. In contrast, IL-2 levels declined monotonously with increasing 2DG concentration. Lower 2DG concentrations reduced PD-1 and increased CD69 expression regardless of treatment timing. The absence of increased T-bet or Eomes expression or IFNG transcription suggests another downstream mechanism. 2DG dose-dependently induced the unfolded protein response, suggesting a possible role in increased IFN-γ secretion, possibly by increasing the ER folding capacity for IFN-γ via increased chaperone expression. Overall, low-dose, short-term 2DG exposure could potentially improve the T cell anti-tumor response.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Tjaša Frlic
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Tadeja Snedec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
| | - Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetology, Medical University Graz, 8010 Graz, Austria;
| | - Andrej Janež
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.R.); (T.F.); (T.S.)
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Chen X, Rahman A, Akumwami S, Morishita A, Kitada K, Ikeda Y, Funamoto M, Nishiyama A. Effects of D-allose on ATP production and cell viability in neonatal rat cardiomyocytes. J Pharmacol Sci 2024; 154:274-278. [PMID: 38485345 DOI: 10.1016/j.jphs.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
2-Deoxy-d-glucose (2DG) induces anticancer effects through glycolytic inhibition but it may raise the risk of arrhythmia. The rare monosaccharide d-allose also has anticancer properties, but its cardiac effects are unknown. We examined the effects of d-allose on adenosine triphosphate (ATP) production in neonatal rat cardiomyocytes. We showed that 25 mM d-allose selectively reduced glycolytic ATP, but had minimal impact on mitochondrial ATP, while 1 mM 2DG strongly inhibited both. Furthermore, d-allose had less impact on cell viability and was less cytotoxic than 2DG; neither compound caused apoptosis. Thus, d-allose selectively diminished glycolytic ATP production with no apparent effects on cardiomyocytes.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Asadur Rahman
- Department of Pharmacology, Kagawa University, Kagawa, Japan.
| | - Steeve Akumwami
- Department of Pharmacology, Kagawa University, Kagawa, Japan; Department of Anesthesiology, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Masafumi Funamoto
- Department of Pharmacology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| |
Collapse
|
5
|
Elgendy SM, Zaher DM, Sarg NH, Abu Jayab NN, Alhamad DW, Al-Tel TH, Omar HA. Autophagy inhibition potentiates energy restriction-induced cell death in hepatocellular carcinoma cells. IUBMB Life 2024. [PMID: 38497226 DOI: 10.1002/iub.2816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
Hepatocellular carcinoma (HCC) significantly contributes to cancer-related mortality due to the limited response of HCC to current anticancer therapies, thereby necessitating more effective treatment approaches. Energy restriction mimetic agents (ERMAs) have emerged as potential therapies in targeting the Warburg effect, a unique metabolic process in cancer cells. However, ERMAs exhibit limited efficacy when used as monotherapy. Additionally, ERMAs have been found to induce autophagy in cancer cells. The role of autophagy in cancer survival remains a subject of debate. Thus, it is crucial to ascertain whether ERMA-induced autophagy is a mechanism for cell survival or cell death in HCC. Our study aims to investigate the effect of autophagy inhibition on the survival of HCC cells treated with ERMAs while also examining the potential of combining an autophagy inhibitor such as spautin-1 with ERMAs to enhance HCC cell death. Our results suggest a cytoprotective role for ERMA-induced autophagy in HCC cells, as combining the autophagy inhibitor spautin-1 with ERMAs effectively suppressed ERMA-induced autophagy and synergistically enhanced their antitumor activity. The treatment combination promoted HCC death through apoptosis, cell cycle arrest, and inhibition of AKT and ERK activation, which are known to play a key role in cellular proliferation. Collectively, our findings highlight a potential strategy to combat HCC by combining energy restriction with autophagy inhibition.
Collapse
Affiliation(s)
- Sara M Elgendy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Dima W Alhamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Wells AE, Wilson JJ, Heuer SE, Sears JD, Wei J, Pandey R, Costa MW, Kaczorowski CC, Roopenian DC, Chang CH, Carter GW. Transcriptome analysis reveals organ-specific effects of 2-deoxyglucose treatment in healthy mice. PLoS One 2024; 19:e0299595. [PMID: 38451972 PMCID: PMC10919611 DOI: 10.1371/journal.pone.0299595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE Glycolytic inhibition via 2-deoxy-D-glucose (2DG) has potential therapeutic benefits for a range of diseases, including cancer, epilepsy, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and COVID-19, but the systemic effects of 2DG on gene function across different tissues are unclear. METHODS This study analyzed the transcriptional profiles of nine tissues from C57BL/6J mice treated with 2DG to understand how it modulates pathways systemically. Principal component analysis (PCA), weighted gene co-network analysis (WGCNA), analysis of variance, and pathway analysis were all performed to identify modules altered by 2DG treatment. RESULTS PCA revealed that samples clustered predominantly by tissue, suggesting that 2DG affects each tissue uniquely. Unsupervised clustering and WGCNA revealed six distinct tissue-specific modules significantly affected by 2DG, each with unique key pathways and genes. 2DG predominantly affected mitochondrial metabolism in the heart, while in the small intestine, it affected immunological pathways. CONCLUSIONS These findings suggest that 2DG has a systemic impact that varies across organs, potentially affecting multiple pathways and functions. The study provides insights into the potential therapeutic benefits of 2DG across different diseases and highlights the importance of understanding its systemic effects for future research and clinical applications.
Collapse
Affiliation(s)
- Ann E. Wells
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - John J. Wilson
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States of America
| | - John D. Sears
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Jian Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Raghav Pandey
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Mauro W. Costa
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Catherine C. Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
| | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
| | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Tufts University Graduate School of Biomedical Sciences, Boston, MA, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States of America
| |
Collapse
|
7
|
Spinazzola A, Perez-Rodriguez D, Ježek J, Holt IJ. Mitochondrial DNA competition: starving out the mutant genome. Trends Pharmacol Sci 2024; 45:225-242. [PMID: 38402076 DOI: 10.1016/j.tips.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
High levels of pathogenic mitochondrial DNA (mtDNA) variants lead to severe genetic diseases, and the accumulation of such mutants may also contribute to common disorders. Thus, selecting against these mutants is a major goal in mitochondrial medicine. Although mutant mtDNA can drift randomly, mounting evidence indicates that active forces play a role in the selection for and against mtDNA variants. The underlying mechanisms are beginning to be clarified, and recent studies suggest that metabolic cues, including fuel availability, contribute to shaping mtDNA heteroplasmy. In the context of pathological mtDNAs, remodeling of nutrient metabolism supports mitochondria with deleterious mtDNAs and enables them to outcompete functional variants owing to a replicative advantage. The elevated nutrient requirement represents a mutant Achilles' heel because small molecules that restrict nutrient consumption or interfere with nutrient sensing can purge cells of deleterious mtDNAs and restore mitochondrial respiration. These advances herald the dawn of a new era of small-molecule therapies to counteract pathological mtDNAs.
Collapse
Affiliation(s)
- Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK.
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Jan Ježek
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK; Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE (Basque Foundation for Science), 48013 Bilbao, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain; Universidad de País Vasco, Barrio Sarriena s/n, 48940 Leioa, Bilbao, Spain.
| |
Collapse
|
8
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
9
|
Mao M, Yuan Q, Xia X, Cui Y, Chen M, Yang W. Integrative analysis defines DDIT3 amplification as a correlative and essential factor for glioma malignancy. Am J Cancer Res 2023; 13:5418-5430. [PMID: 38058808 PMCID: PMC10695819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioma, particularly glioblastoma multiforme (GBM), is a highly aggressive and lethal primary brain tumor with poor prognosis. Metabolic reprogramming and endoplasmic reticulum (ER) stress are two crucial factors contributing to glioma pathogenesis. However, the intricate coordination between these processes remains incompletely understood. Here, we conducted an integrative analysis to elucidate the nodal role of DNA Damage Inducible Transcript 3 (DDIT3) to couple metabolisms and stress responses in glioma. We demonstrated a positive association between DDIT3 amplification/enhanced expression with glioma malignancy, indicating its potential as a novel biomarker for prognosis and treatment stratification. Genomic and transcriptomic analyses further revealed the involvement of DDIT3 enhancement in glioma progression. Moreover, immune infiltration analysis showed that distinct DDIT3 expression groups had different immune microenvironment. Finally, in vitro validations confirmed the impact of DDIT3 on proliferation and migration of glioma cells. Our findings provide novel insights into the complex interplay between metabolic reprogramming and ER stress, and defines DDIT3 as a promising therapeutic target in glioma.
Collapse
Affiliation(s)
- Mengqian Mao
- Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Yiyuan Cui
- Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Mina Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Wanchun Yang
- Department of Neurosurgery, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Jalil AT, Abdulhadi MA, Alkubaisy SA, Thejeel SH, Essa IM, Merza MS, Zabibah RS, Al-Tamimi R. The role of endoplasmic reticulum stress in promoting aerobic glycolysis in cancer cells: An overview. Pathol Res Pract 2023; 251:154905. [PMID: 37925820 DOI: 10.1016/j.prp.2023.154905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis, also known as the Warburg effect, is a metabolic phenomenon frequently observed in cancer cells, characterized by the preferential utilization of glucose through glycolysis, even under normal oxygen conditions. This metabolic shift provides cancer cells with a proliferative advantage and supports their survival and growth. While the Warburg effect has been extensively studied, the underlying mechanisms driving this metabolic adaptation in cancer cells remain incompletely understood. In recent years, emerging evidence has suggested a potential link between endoplasmic reticulum (ER) stress and the promotion of aerobic glycolysis in cancer cells. The ER is a vital organelle involved in protein folding, calcium homeostasis, and lipid synthesis. Various cellular stresses, such as hypoxia, nutrient deprivation, and accumulation of misfolded proteins, can lead to ER stress. In response, cells activate the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or severe ER stress can activate alternative signaling pathways that modulate cellular metabolism, including the promotion of aerobic glycolysis. This review aims to provide an overview of the current understanding regarding the influence of ER stress on aerobic glycolysis in cancer cells to shed light on the complex interplay between ER stress and metabolic alterations in cancer cells. Understanding the intricate relationship between ER stress and the promotion of aerobic glycolysis in cancer cells may provide valuable insights for developing novel therapeutic strategies targeting metabolic vulnerabilities in cancer.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sara Hamed Thejeel
- National University of Science and Technology, Al-Nasiriyah, Thi-Qar, Iraq
| | - Israa M Essa
- Department of Veterinary Parasitology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University of Najaf, Najaf, Iraq
| | - Raad Al-Tamimi
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
11
|
Alfatah M, Cui L, Goh CJH, Cheng TYN, Zhang Y, Naaz A, Wong JH, Lewis J, Poh WJ, Arumugam P. Metabolism of glucose activates TORC1 through multiple mechanisms in Saccharomyces cerevisiae. Cell Rep 2023; 42:113205. [PMID: 37792530 DOI: 10.1016/j.celrep.2023.113205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutrient-induced TORC1 activation remain poorly understood. By utilizing an in vivo TORC1 activation assay, we demonstrate that differential metabolism of glucose activates TORC1 through three distinct pathways in yeast. The first "canonical Rag guanosine triphosphatase (GTPase)-dependent pathway" requires conversion of glucose to fructose 1,6-bisphosphate, which activates TORC1 via the Rag GTPase heterodimer Gtr1GTP-Gtr2GDP. The second "non-canonical Rag GTPase-dependent pathway" requires conversion of glucose to glucose 6-phosphate, which activates TORC1 via a process that involves Gtr1GTP-Gtr2GTP and mitochondrial function. The third "Rag GTPase-independent pathway" requires complete glycolysis and vacuolar ATPase reassembly for TORC1 activation. We have established a roadmap to deconstruct the link between glucose metabolism and TORC1 activation.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore.
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Corinna Jie Hui Goh
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | | | - Yizhong Zhang
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Arshia Naaz
- Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, Genome #02-01, Singapore 138672, Singapore
| | - Jin Huei Wong
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Jacqueline Lewis
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wei Jie Poh
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation, A(∗)STAR, 31 Biopolis Way, Singapore 138669, Singapore; Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
12
|
Torres-López L, Dobrovinskaya O. Dissecting the Role of Autophagy-Related Proteins in Cancer Metabolism and Plasticity. Cells 2023; 12:2486. [PMID: 37887330 PMCID: PMC10605719 DOI: 10.3390/cells12202486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Modulation of autophagy as an anticancer strategy has been widely studied and evaluated in several cell models. However, little attention has been paid to the metabolic changes that occur in a cancer cell when autophagy is inhibited or induced. In this review, we describe how the expression and regulation of various autophagy-related (ATGs) genes and proteins are associated with cancer progression and cancer plasticity. We present a comprehensive review of how deregulation of ATGs affects cancer cell metabolism, where inhibition of autophagy is mainly reflected in the enhancement of the Warburg effect. The importance of metabolic changes, which largely depend on the cancer type and form part of a cancer cell's escape strategy after autophagy modulation, is emphasized. Consequently, pharmacological strategies based on a dual inhibition of metabolic and autophagy pathways emerged and are reviewed critically here.
Collapse
Affiliation(s)
- Liliana Torres-López
- Laboratory of Immunology and Ionic Transport Regulation, Biomedical Research Centre, University of Colima, Av. 25 de Julio #965, Villas de San Sebastián, Colima 28045, Mexico;
| | | |
Collapse
|
13
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
14
|
Panahi Meymandi AR, Akbari B, Soltantoyeh T, Hadjati J, Klionsky DJ, Badie B, Mirzaei HR. Crosstalk between autophagy and metabolic regulation of (CAR) T cells: therapeutic implications. Front Immunol 2023; 14:1212695. [PMID: 37675121 PMCID: PMC10477670 DOI: 10.3389/fimmu.2023.1212695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Despite chimeric antigen receptor (CAR) T cell therapy's extraordinary success in subsets of B-cell lymphoma and leukemia, various barriers restrict its application in solid tumors. This has prompted investigating new approaches for producing CAR T cells with superior therapeutic potential. Emerging insights into the barriers to CAR T cell clinical success indicate that autophagy shapes the immune response via reprogramming cellular metabolism and vice versa. Autophagy, a self-cannibalization process that includes destroying and recycling intracellular components in the lysosome, influences T cell biology, including development, survival, memory formation, and cellular metabolism. In this review, we will emphasize the critical role of autophagy in regulating and rewiring metabolic circuits in CAR T cells, as well as how the metabolic status of CAR T cells and the tumor microenvironment (TME) alter autophagy regulation in CAR T cells to restore functional competence in CAR Ts traversing solid TMEs.
Collapse
Affiliation(s)
- Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, United States
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
15
|
Tamayo-Molina YS, Velilla PA, Hernández-Sarmiento LJ, Urcuqui-Inchima S. Multitranscript analysis reveals an effect of 2-deoxy-d-glucose on gene expression linked to unfolded protein response and integrated stress response in primary human monocytes and monocyte-derived macrophages. Biochim Biophys Acta Gen Subj 2023:130397. [PMID: 37290716 DOI: 10.1016/j.bbagen.2023.130397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Glycolytic inhibitor 2-deoxy-d-glucose (2-DG) binds to hexokinase in a non-competitive manner and phosphoglucose isomerase in a competitive manner, blocking the initial steps of the glycolytic pathway. Although 2-DG stimulates endoplasmic reticulum (ER) stress, activating the unfolded protein response to restore protein homeostasis, it is unclear which ER stress-related genes are modulated in response to 2-DG treatment in human primary cells. Here, we aimed to determine whether the treatment of monocytes and monocyte-derived macrophages (MDMs) with 2-DG leads to a transcriptional profile specific to ER stress. METHODS We performed bioinformatics analysis to identify differentially expressed genes (DEGs) in previously reported RNA-seq datasets of 2-DG treated cells. RT-qPCR was performed to verify the sequencing data on cultured MDMs. RESULTS A total of 95 common DEGs were found by transcriptional analysis of monocytes and MDMs treated with 2-DG. Among these, 74 were up-regulated and 21 were down-regulated. Multitranscript analysis showed that DEGs are linked to integrated stress response (GRP78/BiP, PERK, ATF4, CHOP, GADD34, IRE1α, XBP1, SESN2, ASNS, PHGDH), hexosamine biosynthetic pathway (GFAT1, GNA1, PGM3, UAP1), and mannose metabolism (GMPPA and GMPPB). CONCLUSIONS Results reveal that 2-DG triggers a gene expression program that might be involved in restoring protein homeostasis in primary cells. GENERAL SIGNIFICANCE 2-DG is known to inhibit glycolysis and induce ER stress; however, its effect on gene expression in primary cells is not well understood. This work shows that 2-DG is a stress inducer shifting the metabolic state of monocytes and macrophages.
Collapse
Affiliation(s)
- Y S Tamayo-Molina
- Immunovirology Group, Faculty of Medicine, University of Antioquia, Calle 70 No. 52-21, Medellin, Colombia
| | - Paula A Velilla
- Immunovirology Group, Faculty of Medicine, University of Antioquia, Calle 70 No. 52-21, Medellin, Colombia
| | | | - Silvio Urcuqui-Inchima
- Immunovirology Group, Faculty of Medicine, University of Antioquia, Calle 70 No. 52-21, Medellin, Colombia.
| |
Collapse
|
16
|
Baďurová L, Polčicová K, Omasta B, Ovečková I, Kocianová E, Tomášková J. 2-Deoxy-D-glucose inhibits lymphocytic choriomeningitis virus propagation by targeting glycoprotein N-glycosylation. Virol J 2023; 20:108. [PMID: 37259080 DOI: 10.1186/s12985-023-02082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Increased glucose uptake and utilization via aerobic glycolysis are among the most prominent hallmarks of tumor cell metabolism. Accumulating evidence suggests that similar metabolic changes are also triggered in many virus-infected cells. Viral propagation, like highly proliferative tumor cells, increases the demand for energy and macromolecular synthesis, leading to high bioenergetic and biosynthetic requirements. Although significant progress has been made in understanding the metabolic changes induced by viruses, the interaction between host cell metabolism and arenavirus infection remains unclear. Our study sheds light on these processes during lymphocytic choriomeningitis virus (LCMV) infection, a model representative of the Arenaviridae family. METHODS The impact of LCMV on glucose metabolism in MRC-5 cells was studied using reverse transcription-quantitative PCR and biochemical assays. A focus-forming assay and western blot analysis were used to determine the effects of glucose deficiency and glycolysis inhibition on the production of infectious LCMV particles. RESULTS Despite changes in the expression of glucose transporters and glycolytic enzymes, LCMV infection did not result in increased glucose uptake or lactate excretion. Accordingly, depriving LCMV-infected cells of extracellular glucose or inhibiting lactate production had no impact on viral propagation. However, treatment with the commonly used glycolytic inhibitor 2-deoxy-D-glucose (2-DG) profoundly reduced the production of infectious LCMV particles. This effect of 2-DG was further shown to be the result of suppressed N-linked glycosylation of the viral glycoprotein. CONCLUSIONS Although our results showed that the LCMV life cycle is not dependent on glucose supply or utilization, they did confirm the importance of N-glycosylation of LCMV GP-C. 2-DG potently reduces LCMV propagation not by disrupting glycolytic flux but by inhibiting N-linked protein glycosylation. These findings highlight the potential for developing new, targeted antiviral therapies that could be relevant to a wider range of arenaviruses.
Collapse
Affiliation(s)
- Lucia Baďurová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Katarína Polčicová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Božena Omasta
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ingrid Ovečková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Kocianová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Tomášková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
17
|
Wells AE, Wilson JJ, Sears JD, Wei J, Heuer S, Pandey R, Costa MW, Kaczorowski CC, Roopenian DC, Chang CH, Carter GW. Transcriptome Analysis Reveals Organ-Specific Effects of 2-Deoxyglucose Treatment in Healthy Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537717. [PMID: 37162857 PMCID: PMC10168223 DOI: 10.1101/2023.04.24.537717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Glycolytic inhibition via 2-deoxy-D-glucose (2DG) has potential therapeutic benefits for a range of diseases, including cancer, epilepsy, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and COVID-19, but the systemic effects of 2DG on gene function across different tissues are unclear. METHODS This study analyzed the transcriptional profiles of nine tissues from C57BL/6J mice treated with 2DG to understand how it modulates pathways systemically. Principal component analysis (PCA), weighted gene co-network analysis (WGCNA), analysis of variance, and pathway analysis were all performed to identify modules altered by 2DG treatment. RESULTS PCA revealed that samples clustered predominantly by tissue, suggesting that 2DG affects each tissue uniquely. Unsupervised clustering and WGCNA revealed six distinct tissue-specific modules significantly affected by 2DG, each with unique key pathways and genes. 2DG predominantly affected mitochondrial metabolism in the heart, while in the small intestine, it affected immunological pathways. CONCLUSIONS These findings suggest that 2DG has a systemic impact that varies across organs, potentially affecting multiple pathways and functions. The study provides insights into the potential therapeutic benefits of 2DG across different diseases and highlights the importance of understanding its systemic effects for future research and clinical applications.
Collapse
|
18
|
Jeong SH, An HK, Ha S, Yu SW. Distinct Signaling Pathways for Autophagy-Driven Cell Death and Survival in Adult Hippocampal Neural Stem Cells. Int J Mol Sci 2023; 24:ijms24098289. [PMID: 37175992 PMCID: PMC10179323 DOI: 10.3390/ijms24098289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Autophagy is a cellular catabolic process that degrades and recycles cellular materials. Autophagy is considered to be beneficial to the cell and organism by preventing the accumulation of toxic protein aggregates, removing damaged organelles, and providing bioenergetic substrates that are necessary for survival. However, autophagy can also cause cell death depending on cellular contexts. Yet, little is known about the signaling pathways that differentially regulate the opposite outcomes of autophagy. We have previously reported that insulin withdrawal (IW) or corticosterone (CORT) induces autophagic cell death (ACD) in adult hippocampal neural stem (HCN) cells. On the other hand, metabolic stresses caused by 2-deoxy-D-glucose (2DG) and glucose-low (GL) induce autophagy without death in HCN cells. Rather, we found that 2DG-induced autophagy was cytoprotective. By comparing IW and CORT conditions with 2DG treatment, we revealed that ERK and JNK are involved with 2DG-induced protective autophagy, whereas GSK-3β regulates death-inducing autophagy. These data suggest that cell death and survival-promoting autophagy undergo differential regulation with distinct signaling pathways in HCN cells.
Collapse
Affiliation(s)
- Seol-Hwa Jeong
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyun-Kyu An
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Shinwon Ha
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
19
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
21
|
Schlesinger M, McDonald C, Ahuja A, Alvarez Canete CA, Nuñez del Prado Z, Naipauer J, Lampidis T, Mesri EA. Glucose and mannose analogs inhibit KSHV replication by blocking N-glycosylation and inducing the unfolded protein response. J Med Virol 2023; 95:e28314. [PMID: 36380418 PMCID: PMC9839548 DOI: 10.1002/jmv.28314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent for Kaposi's sarcoma (KS), an HIV/AIDS-associated malignancy. Effective treatments against KS remain to be developed. The sugar analog 2-deoxy- d-glucose (2-DG) is an anticancer agent that is well-tolerated and safe in patients and was recently demonstrated to be a potent antiviral, including KSHV and severe acute respiratory syndrome coronavirus 2. Because 2-DG inhibits glycolysis and N-glycosylation, identifying its molecular targets is challenging. Here we compare the antiviral effect of 2-DG with 2-fluoro-deoxy- d-glucose, a glycolysis inhibitor, and 2-deoxy-fluoro- d-mannose (2-DFM), a specific N-glycosylation inhibitor. At doses similar to those clinically achievable with 2-DG, the three drugs impair KSHV replication and virion production in iSLK.219 cells via downregulation of viral structural glycoprotein expression (K8.1 and gB), being 2-DFM the most potent KSHV inhibitor. Consistently with the higher potency of 2-DFM, we found that d-mannose rescues KSHV glycoprotein synthesis and virus production, indicating that inhibition of N-glycosylation is the main antiviral target using d-mannose competition experiments. Suppression of N-glycosylation by the sugar drugs triggers ER stress. It activates the host unfolded protein response (UPR), counteracting KSHV-induced inhibition of the protein kinase R-like endoplasmic reticulum kinase branch, particularly activating transcription factor 4 and C/EBP homologous protein expression. Finally, we demonstrate that sugar analogs induce autophagy (a prosurvival mechanism) and, thus, inhibit viral replication playing a protective role against KSHV-induced cell death, further supporting their direct antiviral effect and potential therapeutic use. Our work identifies inhibition of N-glycosylation leading to ER stress and UPR as an antienveloped virus target and sugar analogs such as 2-DG and the newly identified 2-DFM as antiviral drugs.
Collapse
Affiliation(s)
- Mariana Schlesinger
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Christian McDonald
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Anuj Ahuja
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Carolina Alejandra Alvarez Canete
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Zelmira Nuñez del Prado
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
| | - Julian Naipauer
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
- UM‐CFAR/SCCC Argentina Consortium for AIDS MalignanciesMiamiFloridaUSA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE)CONICET‐Universidad de Buenos AiresBuenos AiresArgentina
| | - Theodore Lampidis
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Cell BiologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Enrique A. Mesri
- Tumor Biology ProgramSylvester Comprehensive Cancer CenterMiamiFloridaUSA
- Department of Microbiology and ImmunologyMiami Center for AIDS ResearchMIAMIFloridaUSA
- UM‐CFAR/SCCC Argentina Consortium for AIDS MalignanciesMiamiFloridaUSA
| |
Collapse
|
22
|
What does not kill mesangial cells makes it stronger? The response of the endoplasmic reticulum stress and the O-GlcNAc signaling to ATP depletion. Life Sci 2022; 311:121070. [DOI: 10.1016/j.lfs.2022.121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
|
23
|
An Integrated Proteomic and Glycoproteomic Investigation Reveals Alterations in the N-Glycoproteomic Network Induced by 2-Deoxy-D-Glucose in Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms23158251. [PMID: 35897829 PMCID: PMC9331968 DOI: 10.3390/ijms23158251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
As a well-known glycolysis inhibitor for anticancer treatment, 2-Deoxy-D-glucose (2DG) inhibits the growth and survival of cancer cells by interfering with the ATP produced by the metabolism of D-glucose. In addition, 2DG inhibits protein glycosylation in vivo by competing with D-mannose, leading to endoplasmic reticulum (ER) stress and unfolded protein responses in cancer cells. However, the molecular details underlying the impact of 2DG on protein glycosylation remain largely elusive. With an integrated approach to glycoproteomics and proteomics, we characterized the 2DG-induced alterations in N-glycosylation, as well as the cascading impacts on the whole proteome using the HT29 colorectal cancer cell line as a model system. More than 1700 site-specific glycoforms, represented by unique intact glycopeptides (IGPs), were identified. The treatment of 2DG had a broad effect on the N-glycoproteome, especially the high-mannose types. The glycosite occupancy of the high-mannose N-glycans decreased the most compared with the sialic acid and fucose-containing N-glycans. Many of the proteins with down-regulated high-mannose were implicated in functional networks related to response to topologically incorrect protein, integrin-mediated signaling, lysosomal transport, protein hydroxylation, vacuole, and protein N-glycosylation. The treatment of 2DG also functionally disrupted the global cellular proteome, evidenced by significant up-regulation of the proteins implicated in protein folding, endoplasmic reticulum, mitochondrial function, cellular respiration, oxidative phosphorylation, and translational termination. Taken together, these findings reveal the complex changes in protein glycosylation and expression underlying the various effects of 2DG on cancer cells, and may provide insightful clues to inform therapeutic development targeting protein glycosylation.
Collapse
|
24
|
The combination of hydroxychloroquine and 2-deoxyglucose enhances apoptosis in breast cancer cells by blocking protective autophagy and sustaining endoplasmic reticulum stress. Cell Death Dis 2022; 8:286. [PMID: 35690609 PMCID: PMC9188615 DOI: 10.1038/s41420-022-01074-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
2-Deoxyglucose (2-DG) can be used in antitumour research by inhibiting glycolysis and promoting the endoplasmic reticulum stress (ERS) pathway, but its clinical application is restricted due to dose-limiting side effects and survival chance for cancer cells by protective autophagy. Therefore, our research explored whether the combination of hydroxychloroquine (HCQ), an FDA-approved autophagy inhibiting drug, and 2-DG is a promising therapeutic strategy. Here, we report that HCQ combined with 2-DG can further inhibit the viability and migration and induce apoptosis of breast tumour cells compared with other individual drugs. The combination of 2-DG and HCQ can significantly reduce transplanted tumour size and tumour cell metastasis of the lung and liver in vivo. At the cellular level, HCQ suppressed autolysosome formation and terminated the autophagy process induced by 2-DG-mediated ERS, resulting in the continuous accumulation of misfolded proteins in the endoplasmic reticulum, which generated sustained ERS through the PERK-eIF2α-ATF-4-CHOP axis and triggered the transformation from a survival process to cell death. Our research reinforced the research interest of metabolic disruptors in triple-negative breast cancer and emphasized the potential of the combination of 2-DG and HCQ as an anticancerous treatment.
Collapse
|
25
|
Yılmaz D, Culha M. Discrimination of Receptor-Mediated Endocytosis by Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6281-6294. [PMID: 35549265 PMCID: PMC9134499 DOI: 10.1021/acs.langmuir.1c03305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Cellular energy required for the maintenance of cellular life is stored in the form of adenosine triphosphate (ATP). Understanding cellular mechanisms, including ATP-dependent metabolisms, is crucial for disease diagnosis and treatment, including drug development and investigation of new therapeutic systems. As an ATP-dependent metabolism, endocytosis plays a key role not only in the internalization of molecules but also in processes including cell growth, differentiation, and signaling. To understand cellular mechanisms including endocytosis, many techniques ranging from molecular approaches to spectroscopy are used. Surface-enhanced Raman scattering (SERS) is shown to provide valuable label-free molecular information from living cells. In this study, receptor-mediated endocytosis was investigated with SERS by inhibiting endocytosis with ATP depletion agents: sodium azide (NaN3) and 2-deoxy-d-glucose (dG). Human lung bronchial epithelium (Beas-2b) cells, normal prostate epithelium (PNT1A) cells, and cervical cancer epithelium (HeLa) cells were used as models. First, the effect of NaN3 and dG on the cells were examined through cytotoxicity, apoptosis-necrosis, ATP assay, and uptake inhibition analysis. An attempt to relate the spectral changes in the cellular spectra to the studied cellular events, receptor-mediated endocytosis inhibition, was made. It was found that the effect of two different ATP depletion agents can be discriminated by SERS, and hence receptor-mediated endocytosis can be tracked from single living cells with the technique without using a label and with limited sample preparation.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Faculty
of Engineering, Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Mustafa Culha
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Department
of Ophthalmology and Internal Medicine, Morsani College of Medicine, The University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
26
|
Energy restriction induced SIRT6 inhibits microglia activation and promotes angiogenesis in cerebral ischemia via transcriptional inhibition of TXNIP. Cell Death Dis 2022; 13:449. [PMID: 35562171 PMCID: PMC9095711 DOI: 10.1038/s41419-022-04866-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Energy restriction (ER) protects against cerebral ischemic injury, but the underlying mechanism remains largely unclear. Here, rats were fed ad libitum (AL) or on an alternate-day food deprivation intermittent fasting (IF) diet for 3 months, followed by middle cerebral artery occlusion (MCAO) surgery. The body weight, infarct volume, and neurological deficit score were accessed at the designated time points. ELISA, qRT-PCR, and Western blotting were used to determine cytokine secretion and the expression of SIRT6, TXNIP, and signaling molecules, respectively. Immunofluorescence evaluated microglial activation and angiogenesis in vivo. For in vitro study, oxygen-glucose deprivation/reoxygenation (OGD/R)-treated cell model was generated. MTT and tube formation assays were employed to determine cell viability and tube formation capability. ChIP assay detected chromatin occupancy of SIRT6 and SIRT6-mediated H3 deacetylation. We found that IF or ER mimetics ameliorated cerebral ischemic brain damage and microglial activation, and potentiated angiogenesis in vivo. ER mimetics or SIRT6 overexpression alleviated cerebral ischemia and reperfusion (I/R)-induced injury in vitro. SIRT6 suppressed TXNIP via deacetylation of H3K9ac and H3K56ac in HAPI cells and BMVECs. Downregulation of SIRT6 reversed ER mimetics-mediated protection during cerebral I/R in vitro. Our study demonstrated that ER-mediated upregulation of SIRT6 inhibited microglia activation and potentiated angiogenesis in cerebral ischemia via suppressing TXNIP.
Collapse
|
27
|
Li Y, Zeng P, Xiao J, Huang P, Liu P. Modulation of energy metabolism to overcome drug resistance in chronic myeloid leukemia cells through induction of autophagy. Cell Death Discov 2022; 8:212. [PMID: 35443725 PMCID: PMC9021256 DOI: 10.1038/s41420-022-00991-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) such as imatinib (IM) are key drugs for treatment of chronic myeloid leukemia (CML). Development of drug resistance to TKIs due to BCR-ABL mutation, especially T315I mutation, poses a major challenge in the clinical treatment of CML. The purpose of this study was to test metabolic modulation as a potential strategy to overcome imatinib resistance based on the possible crosstalk between BCR-ABL signaling and metabolic changes in CML. 2-deoxy-d-glucose (2-DG) was used to modulate the glucose metabolism in CML cells sensitive to IM (KBM5 cell line) and resistant to imatinib with BCR-ABL T315I mutation (KBM5-T315I cell line). Seahorse XFe24 extracellular flux analyzer to quantify oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was used to measure cellular energy metabolism. Cell proliferation was analyzed by CCK-8 assay and MTS assay. Annexin V/PI staining was used to evaluate cell apoptosis. Autophagy-related proteins and enzyme/proteins were detected by Western blotting. Cellular ATP concentration was detected using an ATP-based Cell Titer Kit. The combined action of 2-DG and IM was evaluated by calculating the drug combination index. Our results found that inhibition of glucose metabolism by 2-DG significantly impaired the viability of CML cells and co-treatment with 2-DG and imatinib induced a synergistic inhibition of KBM5 and KBM5-T315I cells. 2-DG induced cell death by autophagy, not by apoptosis, as evidenced by increased expression of Beclin1 and LC3AII and lack of annexin V/PI-positive cells. At the biochemical level, 2-DG inhibited glycolysis and mitochondrial oxygen consumption manifested by a significant decrease in ECAR and OCR, and a depletion of ATP. The severe metabolic stress induced by 2-DG in CML cells led to autophagic cell death. Our results suggested a metabolic vulnerability of CML cells that could be targeted by a combination of 2-DG and imatinib as an alternative treatment for imatinib-resistant CML.
Collapse
Affiliation(s)
- Yiqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Peiting Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, 510060, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, 510060, Guangzhou, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, 510060, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dong Feng East Road, 510060, Guangzhou, China.
| |
Collapse
|
28
|
Huang Z, Chavda VP, Vora LK, Gajjar N, Apostolopoulos V, Shah N, Chen ZS. 2-Deoxy-D-Glucose and its Derivatives for the COVID-19 Treatment: An Update. Front Pharmacol 2022; 13:899633. [PMID: 35496298 PMCID: PMC9041304 DOI: 10.3389/fphar.2022.899633] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Treatment choices for the "severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2)" are inadequate, having no clarity on efficacy and safety profiles. Currently, no established intervention has lowered the mortality rate in the "coronavirus disease 2019 (COVID-19)" patients. Recently, 2-deoxy-D-glucose (2-DG) has evaluated as a polypharmacological agent for COVID-19 therapy owing to its influence on the glycolytic pathway, interaction with viral proteins, and anti-inflammatory action. In May 2020, the Indian drug regulatory authority approved 2-DG as an emergency adjunct therapy in mild to severe COVID-19 patients. Clinical studies of 2-DG corroborate that it aids in faster recovery of hospitalized patients and decreases supplemental oxygen. Herein, we describe the development process, synthesis, mechanism of viral eradication, and preclinical and clinical development of 2-DG and its derivatives as molecularly targeted therapeutics for COVID-19 treatment.
Collapse
Affiliation(s)
- Zoufang Huang
- Department of Hematology, Ganzhou Key Laboratory of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | | | - Normi Gajjar
- PharmD Section, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Ahmedabad, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York City, NY, United States
| |
Collapse
|
29
|
Repas J, Zupin M, Vodlan M, Veranič P, Gole B, Potočnik U, Pavlin M. Dual Effect of Combined Metformin and 2-Deoxy-D-Glucose Treatment on Mitochondrial Biogenesis and PD-L1 Expression in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:1343. [PMID: 35267651 PMCID: PMC8909901 DOI: 10.3390/cancers14051343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Metformin and 2-deoxy-D-glucose (2DG) exhibit multiple metabolic and immunomodulatory anti-cancer effects, such as suppressed proliferation or PD-L1 expression. Their combination or 2DG alone induce triple-negative breast cancer (TNBC) cell detachment, but their effects on mitochondria, crucial for anchorage-independent growth and metastasis formation, have not yet been evaluated. In the present study, we explored the effects of metformin, 2DG and their combination (metformin + 2DG) on TNBC cell mitochondria in vitro. Metformin + 2DG increased mitochondrial mass in TNBC cells. This was associated with an increased size but not number of morphologically normal mitochondria and driven by the induction of mitochondrial biogenesis rather than suppressed mitophagy. 2DG and metformin + 2DG strongly induced the unfolded protein response by inhibiting protein N-glycosylation. Together with adequate energy stress, this was one of the possible triggers of mitochondrial enlargement. Suppressed N-glycosylation by 2DG or metformin + 2DG also caused PD-L1 deglycosylation and reduced surface expression in MDA-MB-231 cells. PD-L1 was increased in low glucose and normalized by both drugs. 2DG and metformin + 2DG reduced PD-1 expression in Jurkat cells beyond the effects on activation, while cytokine secretion was mostly preserved. Despite increasing mitochondrial mass in TNBC cells, metformin and 2DG could therefore potentially be used as an adjunct therapy to improve anti-tumor immunity in TNBC.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Mateja Zupin
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Maja Vodlan
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Boris Gole
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
- Laboratory for Biochemistry, Molecular Biology and Genomics, University of Maribor, SI-2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Yeo AJ, Subramanian GN, Chong KL, Gatei M, Parton RG, Coman D, Lavin MF. An anaplerotic approach to correct the mitochondrial dysfunction in ataxia-telangiectasia (A-T). Mol Metab 2021; 54:101354. [PMID: 34637921 PMCID: PMC8599162 DOI: 10.1016/j.molmet.2021.101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ATM, the protein defective in the human genetic disorder, ataxia-telangiectasia (A-T) plays a central role in response to DNA double-strand breaks (DSBs) and in protecting the cell against oxidative stress. We showed that A-T cells are hypersensitive to metabolic stress which can be accounted for by a failure to exhibit efficient endoplasmic reticulum (ER)-mitochondrial signalling and Ca2+ transfer in response to nutrient deprivation resulting in mitochondrial dysfunction. The objective of the current study is to use an anaplerotic approach using the fatty acid, heptanoate (C7), a metabolic product of the triglyceride, triheptanoin to correct the defect in ER-mitochondrial signalling and enhance cell survival of A-T cells in response to metabolic stress. METHODS We treated control cells and A-T cells with the anaplerotic agent, heptanoate to determine their sensitivity to metabolic stress induced by inhibition of glycolysis with 2- deoxyglucose (2DG) using live-cell imaging to monitor cell survival for 72 h using the Incucyte system. We examined ER-mitochondrial signalling in A-T cells exposed to metabolic stress using a suite of techniques including immunofluorescence staining of Grp75, ER-mitochondrial Ca2+ channel, the VAPB-PTPIP51 ER-mitochondrial tether complexes as well as proximity ligation assays between Grp75-IP3R1 and VAPB1-PTPIP51 to establish a functional interaction between ER and mitochondria. Finally, we also performed metabolomic analysis using LC-MS/MS assay to determine altered levels of TCA intermediates A-T cells compared to healthy control cells. RESULTS We demonstrate that heptanoate corrects all aspects of the defective ER-mitochondrial signalling observed in A-T cells. Heptanoate enhances ER-mitochondrial contacts; increases the flow of calcium from the ER to the mitochondrion; restores normal mitochondrial function and mitophagy and increases the resistance of ATM-deficient cells and cells from A-T patients to metabolic stress-induced killing. The defect in mitochondrial function in ATM-deficient cells was accompanied by more reliance on aerobic glycolysis as shown by increased lactate dehydrogenase A (LDHA), accumulation of lactate, and reduced levels of both acetyl CoA and ATP which are all restored by heptanoate. CONCLUSIONS We conclude that heptanoate corrects metabolic stress in A-T cells by restoring ER-mitochondria signalling and mitochondrial function and suggest that the parent compound, triheptanoin, has immense potential as a novel therapeutic agent for patients with A-T.
Collapse
Affiliation(s)
- A J Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Brisbane, Australia.
| | - G N Subramanian
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Brisbane, Australia
| | - K L Chong
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Brisbane, Australia
| | - M Gatei
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Brisbane, Australia
| | - R G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, Brisbane, Australia
| | - D Coman
- Queensland Children's Hospital, Brisbane, Australia; Faculty of Medicine, University of Queensland, Herston, Brisbane, Australia
| | - M F Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Brisbane, Australia.
| |
Collapse
|
31
|
Synergistic Anticancer Effect of Glycolysis and Histone Deacetylases Inhibitors in a Glioblastoma Model. Biomedicines 2021; 9:biomedicines9121749. [PMID: 34944565 PMCID: PMC8698815 DOI: 10.3390/biomedicines9121749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Over the last decade, we have seen tremendous progress in research on 2-deoxy-D-glucose (2-DG) and its analogs. Clinical trials of 2-DG have demonstrated the challenges of using 2-DG as a monotherapy, due to its poor drug-like characteristics, leading researchers to focus on improving its bioavailability to tissue and organs. Novel 2-DG analogs such as WP1122 and others have revived the old concept of glycolysis inhibition as an effective anticancer strategy. Combined with other potent cytotoxic agents, inhibitors of glycolysis could synergistically eliminate cancer cells. We focused our efforts on the development of new combinations of anticancer agents coupled with 2-DG and its derivatives, targeting glioblastoma, which is in desperate need of novel approaches and therapeutic options and is particularly suited to glycolysis inhibition, due to its reliance on aerobic glycolysis. Herein, we present evidence that a combined treatment of 2-DG analogs and modulation of histone deacetylases (HDAC) activity via HDAC inhibitors (sodium butyrate and sodium valproate) exerts synergistic cytotoxic effects in glioblastoma U-87 and U-251 cells and represents a promising therapeutic strategy.
Collapse
|
32
|
Shin E, Koo JS. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol 2021; 9:728759. [PMID: 34552932 PMCID: PMC8450384 DOI: 10.3389/fcell.2021.728759] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and is associated with high mortality rates despite the continuously advancing treatment strategies. Glucose is essential for cancer cell metabolism owing to the Warburg effect. During the process of glucose metabolism, various glycolytic metabolites, such as serine and glycine metabolites, are produced and other metabolic pathways, such as the pentose phosphate pathway (PPP), are associated with the process. Glucose is transported into the cell by glucose transporters, such as GLUT. Breast cancer shows high expressions of glucose metabolism-related enzymes and GLUT, which are also related to breast cancer prognosis. Triple negative breast cancer (TNBC), which is a high-grade breast cancer, is especially dependent on glucose metabolism. Breast cancer also harbors various stromal cells such as cancer-associated fibroblasts and immune cells as tumor microenvironment, and there exists a metabolic interaction between these stromal cells and breast cancer cells as explained by the reverse Warburg effect. Breast cancer is heterogeneous, and, consequently, its metabolic status is also diverse, which is especially affected by the molecular subtype, progression stage, and metastatic site. In this review, we will focus on glucose metabolism and glucose transporters in breast cancer, and we will additionally discuss their potential applications as cancer imaging tracers and treatment targets.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
33
|
Kosic M, Paunovic V, Ristic B, Mircic A, Bosnjak M, Stevanovic D, Kravic-Stevovic T, Trajkovic V, Harhaji-Trajkovic L. 3-Methyladenine prevents energy stress-induced necrotic death of melanoma cells through autophagy-independent mechanisms. J Pharmacol Sci 2021; 147:156-167. [PMID: 34294367 DOI: 10.1016/j.jphs.2021.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-kinase (PI3K)-blocking autophagy inhibitor, on cancer cell death induced by simultaneous inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. 2DG/rotenone reduced ATP levels and increased mitochondrial superoxide production, causing mitochondrial swelling and necrotic death in various cancer cell lines. 2DG/rotenone failed to increase proautophagic beclin-1 and autophagic flux in melanoma cells despite the activation of AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP depletion, and cell death, while antioxidant treatment mimicked its protective action. The protection was not mediated by autophagy upregulation via class I PI3K/Akt inhibition, as it was preserved in cells with genetically inhibited autophagy. 3MA increased AMPK and mTORC1 activation in energy-stressed cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced JNK activation, and JNK pharmacological/genetic suppression mimicked its mitochondria-preserving and cytoprotective activity. Therefore, 3MA prevents energy stress-triggered cancer cell death through autophagy-independent mechanisms possibly involving JNK suppression and decrease of oxidative stress. Our results warrant caution when using 3MA as an autophagy inhibitor.
Collapse
Affiliation(s)
- Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000, Belgrade, Serbia
| | - Biljana Ristic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000, Belgrade, Serbia
| | - Aleksandar Mircic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Mihajlo Bosnjak
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Danijela Stevanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000, Belgrade, Serbia.
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000, Belgrade, Serbia.
| |
Collapse
|
34
|
Salubrinal Enhances Cancer Cell Death during Glucose Deprivation through the Upregulation of xCT and Mitochondrial Oxidative Stress. Biomedicines 2021; 9:biomedicines9091101. [PMID: 34572286 PMCID: PMC8466651 DOI: 10.3390/biomedicines9091101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have the metabolic flexibility to adapt to heterogeneous tumor microenvironments. The integrated stress response (ISR) regulates the cellular adaptation response during nutrient stress. However, the issue of how the ISR regulates metabolic flexibility is still poorly understood. In this study, we activated the ISR using salubrinal in cancer cells and found that salubrinal repressed cell growth, colony formation, and migration but did not induce cell death in a glucose-containing condition. Under a glucose-deprivation condition, salubrinal induced cell death and increased the levels of mitochondrial reactive oxygen species (ROS). We found that these effects of salubrinal and glucose deprivation were associated with the upregulation of xCT (SLC7A11), which functions as an antiporter of cystine and glutamate and maintains the level of glutathione to maintain redox homeostasis. The upregulation of xCT did not protect cells from oxidative stress-mediated cell death but promoted it during glucose deprivation. In addition, the supplementation of ROS scavenger N-acetylcysteine and the maintenance of intracellular levels of amino acids via sulfasalazine (xCT inhibitor) or dimethyl-α-ketoglutarate decreased the levels of mitochondrial ROS and protected cells from death. Our results suggested that salubrinal enhances cancer cell death during glucose deprivation through the upregulation of xCT and mitochondrial oxidative stress.
Collapse
|
35
|
Rossi DC, Figueroa JAL, Buesing WR, Candor K, Blancett LT, Evans HM, Lenchitz R, Crowther BL, Elsegeiny W, Williamson PR, Rupp J, Deepe GS. A metabolic inhibitor arms macrophages to kill intracellular fungal pathogens by manipulating zinc homeostasis. J Clin Invest 2021; 131:e147268. [PMID: 34237029 DOI: 10.1172/jci147268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/06/2021] [Indexed: 01/01/2023] Open
Abstract
Macrophages deploy numerous strategies to combat invasion by microbes. One tactic is to restrict acquisition of diverse nutrients, including trace metals, a process termed nutritional immunity. Intracellular pathogens adapt to a resource-poor environment by marshaling mechanisms to harvest nutrients. Carbon acquisition is crucial for pathogen survival; compounds that reduce availability are a potential strategy to control intracellular replication. Treatment of macrophages with the glucose analog 2-deoxy-D-glucose (2-DG) armed phagocytes to eliminate the intracellular fungal pathogen Histoplasma capsulatum in vitro and in vivo. Killing did not rely on altering access to carbon-containing molecules or changes in ATP, ER stress, or autophagy. Unexpectedly, 2-DG undermined import of exogenous zinc into macrophages, decreasing the quantity of cytosolic and phagosomal zinc. The fungus perished as a result of zinc starvation. This change in metal ingress was not ascribed to a defect in a single importer; rather, there was a collective impairment in transporter activity. This effect promoted the antifungal machinery of macrophages and expanded the complexity of 2-DG activities far beyond manipulating glycolysis. Mechanistic metabolic studies employing 2-DG will have to consider its effect on zinc transport. Our preclinical data support consideration of this agent as a possible adjunctive therapy for histoplasmosis.
Collapse
Affiliation(s)
- Diego Cp Rossi
- Division of Infectious Diseases, College of Medicine and
| | - Julio A Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Kathleen Candor
- Division of Infectious Diseases, College of Medicine and.,University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA.,Immunology Graduate Program and
| | | | | | - Rena Lenchitz
- Division of Infectious Diseases, College of Medicine and
| | - Bradford L Crowther
- Division of Infectious Diseases, College of Medicine and.,Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine and
| |
Collapse
|
36
|
Luo HL, Liu HY, Chang YL, Sung MT, Chen PY, Su YL, Huang CC, Peng JM. Hypomethylated RRBP1 Potentiates Tumor Malignancy and Chemoresistance in Upper Tract Urothelial Carcinoma. Int J Mol Sci 2021; 22:ijms22168761. [PMID: 34445467 PMCID: PMC8395942 DOI: 10.3390/ijms22168761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022] Open
Abstract
Ribosome-binding protein 1 (RRBP1) is a potential oncogene in several cancer types. However, the correlation between RRBP1 expression and the prognosis of patients with upper tract urothelial carcinoma (UTUC) remains unclear. In this study, we identified that RRBP1 is associated with carcinogenesis and metastasis in UTUC using a methylation profiling microarray. High correlations between RRBP1 and cancer stages, nodal metastasis status, molecular subtypes, and prognosis in bladder urothelial cancer (BLCA) were found. Aberrant DNA methylation in the gene body region of RRBP1 was determined in UTUC tissues by methylation-specific PCR. RRBP1 expression was significantly increased in UTUC tissues and cell lines, as determined by real-time PCR and immunohistochemistry. RRBP1 depletion significantly reduced BFTC909 cell growth induced by specific shRNA. On the other hand, molecular subtype analysis showed that the expression of RRBP1 was associated with genes related to cell proliferation, epithelial-mesenchymal transition, and basal markers. A patient-derived organoid model was established to analyze patients' responses to different drugs. The expression of RRBP1 was related to chemoresistance. Taken together, these results provide the first evidence that RRBP1 gene body hypomethylation predicts RRBP1 high expression in UTUC. The data highlight the importance of RRBP1 in UTUC malignancy and chemotherapeutic tolerance.
Collapse
Affiliation(s)
- Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (P.-Y.C.)
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (P.-Y.C.)
| | - Yin-Lun Chang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (P.-Y.C.)
| | - Ming-Tse Sung
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Po-Yen Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-L.L.); (H.-Y.L.); (Y.-L.C.); (P.-Y.C.)
| | - Yu-Li Su
- Department of Hematology and Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-2-7317123-8597
| |
Collapse
|
37
|
Yan L, Tu B, Yao J, Gong J, Carugo A, Bristow CA, Wang Q, Zhu C, Dai B, Kang Y, Han L, Feng N, Jin Y, Fleming J, Heffernan TP, Yao W, Ying H. Targeting Glucose Metabolism Sensitizes Pancreatic Cancer to MEK Inhibition. Cancer Res 2021; 81:4054-4065. [PMID: 34117030 DOI: 10.1158/0008-5472.can-20-3792] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/22/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is almost universally lethal. A critical unmet need exists to explore essential susceptibilities in PDAC and to identify druggable targets to improve PDAC treatment. KRAS mutations dominate the genetic landscape of PDAC and lead to activation of multiple downstream pathways and cellular processes. Here, we investigated the requirement of these pathways for tumor maintenance using an inducible KrasG12D -driven PDAC mouse model (iKras model), identifying that RAF-MEK-MAPK signaling is the major effector for oncogenic KRAS-mediated tumor maintenance. However, consistent with previous studies, MEK inhibition had minimal therapeutic effect as a single agent for PDAC in vitro and in vivo. Although MEK inhibition partially downregulated transcription of glycolysis genes, it failed to suppress glycolytic flux in PDAC cells, which is a major metabolic effector of oncogenic KRAS. Accordingly, an in vivo genetic screen identified multiple glycolysis genes as potential targets that may sensitize tumor cells to MEK inhibition. Inhibition of glucose metabolism with low-dose 2-deoxyglucose in combination with a MEK inhibitor induced apoptosis in KrasG12D -driven PDAC cells in vitro. The combination also inhibited xenograft PDAC tumor growth and prolonged overall survival in a genetically engineered PDAC mouse model. Molecular and metabolic analyses indicated that co-targeting glycolysis and MAPK signaling results in apoptosis via induction of lethal endoplasmic reticulum stress. Together, our work suggests that combined inhibition of glycolysis and the MAPK pathway may serve as an effective approach to target KRAS-driven PDAC. SIGNIFICANCE: This study demonstrates the critical role of glucose metabolism in resistance to MAPK inhibition in KRAS-driven pancreatic cancer, uncovering a potential therapeutic approach for treating this aggressive disease.
Collapse
Affiliation(s)
- Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bo Tu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, UTHealth Medical School, Houston, Texas
| | - Alessandro Carugo
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher A Bristow
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qiuyun Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cihui Zhu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingbing Dai
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ya'an Kang
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Leng Han
- Department of Biochemistry and Molecular Biology, UTHealth Medical School, Houston, Texas
| | - Ningping Feng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanqing Jin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Fleming
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Timothy P Heffernan
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
38
|
Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021; 13:2922. [PMID: 34208071 PMCID: PMC8230691 DOI: 10.3390/cancers13122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Up to one third of all breast cancers are classified as the aggressive HER2-positive subtype, which is associated with a higher risk of recurrence compared to HER2-negative breast cancers. The HER2 hyperactivity associated with this subtype drives tumor growth by up-regulation of mechanistic target of rapamycin (mTOR) pathway activity and a metabolic shift to glycolysis. Although inhibitors targeting the HER2 receptor have been successful in treating HER2-positive breast cancer, anti-HER2 therapy is associated with a high risk of recurrence and drug resistance due to stimulation of the PI3K-Akt-mTOR signaling pathway and glycolysis. Combination therapies against HER2 with inhibition of mTOR improve clinical outcomes compared to HER2 inhibition alone. Here, we review the role of the HER2 receptor, mTOR pathway, and glycolysis in HER2-positive breast cancer, along with signaling mechanisms and the efficacy of treatment strategies of HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
39
|
Zhang XT, Hu XB, Wang HL, Kan WJ, Xu L, Wang ZJ, Xiang YQ, Wu WB, Feng B, Li JN, Gao AH, Dong TC, Xia CM, Zhou YB, Li J. Activation of unfolded protein response overcomes Ibrutinib resistance in diffuse large B-cell lymphoma. Acta Pharmacol Sin 2021; 42:814-823. [PMID: 32855532 PMCID: PMC8115113 DOI: 10.1038/s41401-020-00505-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/03/2020] [Indexed: 02/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most widespread type of non-Hodgkin lymphoma (NHL). As the most aggressive form of the DLBCL, the activated B-cell-like (ABC) subtype is often resistant to standard chemotherapies. Bruton's tyrosine kinase (BTK) inhibitor ibrutinib provides a potential therapeutic approach for the DLBCL but fails to improve the outcome in the phase III trial. In the current study, we investigated the molecular mechanisms underlying ibrutinib resistance and explored new combination therapy with ibrutinib. We generated an ibrutinib-resistant ABC-DLBCL cell line (OCI-ly10-IR) through continuous exposure to ibrutinib. Transcriptome analysis of the parental and ibrutinib-resistant cell lines revealed that the ibrutinib-resistant cells had significantly lower expression of the unfolded protein response (UPR) marker genes. Overexpression of one UPR branch-XBP1s greatly potentiated ibrutinib-induced apoptosis in both sensitive and resistant cells. The UPR inhibitor tauroursodeoxycholic acid (TUDCA) partially reduced the apoptotic rate induced by the ibrutinib in sensitive cells. The UPR activator 2-deoxy-D-glucose (2-DG) in combination with the ibrutinib triggered even greater cell growth inhibition, apoptosis, and stronger calcium (Ca2+) flux inhibition than either of the agents alone. A combination treatment of ibrutinib (15 mg·kg-1·d-1, po.) and 2-DG (500 mg/kg, po, b.i.d.) synergistically retarded tumor growth in NOD/SCID mice bearing OCI-ly10-IR xenograft. In addition, ibrutinib induced the UPR in the sensitive cell lines but not in the resistant cell lines of the DLBCL. There was also a combined synergistic effect in the primary resistant DLBCL cell lines. Overall, our results suggest that targeting the UPR could be a potential combination strategy to overcome ibrutinib resistance in the DLBCL.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxyglucose/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/physiopathology
- Mice, Inbred NOD
- Mice, SCID
- Piperidines/therapeutic use
- Unfolded Protein Response/drug effects
- Unfolded Protein Response/physiology
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Xiao-Tuan Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiao-Bei Hu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Han-Lin Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei-Juan Kan
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Zhi-Jia Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Yu-Qi Xiang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Wen-Biao Wu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Bo Feng
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Jia-Nan Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - An-Hui Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian-Cheng Dong
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Mei Xia
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
40
|
Melanson B, Lapointe T, Leri F. Impact of impaired glucose metabolism on responses to a psychophysical stressor: modulation by ketamine. Psychopharmacology (Berl) 2021; 238:1005-1015. [PMID: 33404733 DOI: 10.1007/s00213-020-05748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE There is evidence that hypoglycemia, a metabolic stressor, can negatively impact mood and motivation, and can interact with other stressors to potentiate their effects on behavior and physiology. OBJECTIVES/METHODS The current study in male Sprague-Dawley rats explored the interaction between impaired glucose metabolism induced by 0, 200, or 300 mg/kg 2-deoxy-D-glucose (2-DG) and a psychophysical stressor induced by forced swimming stress (FSS; 6 sessions, 10 min/session). The endpoints of interest were blood glucose levels, progressive behavioral immobility, and saccharin preference (2-bottle choice test). Furthermore, it was investigated whether pre-treatment with 0, 10, or 20 mg/kg ketamine could modify the interaction between 2-DG and FSS on these endpoints. RESULTS It was found that 2-DG increased blood glucose levels equally in all experimental groups, accelerated the immobile response to FSS, and suppressed saccharin preference 1 week following termination of stress exposure. As well, pre-treatment with ketamine blocked the effects of combined 2-DG and FSS on immobility and saccharin preference without affecting blood glucose levels and produced an anti-immobility effect that was observed during a drug-free test swim 1 week following administration. CONCLUSIONS Overall, these findings demonstrate that impaired glucose metabolism can potentiate the effects of a psychophysical stressor, and that this interaction can be modulated pharmacologically by ketamine.
Collapse
Affiliation(s)
- Brett Melanson
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Thomas Lapointe
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
41
|
Ohnishi Y, Yamamoto M, Sugiura Y, Setoyama D, Kishima H. Rostro-caudal different energy metabolism leading to differences in degeneration in spinal cord injury. Brain Commun 2021; 3:fcab058. [PMID: 33928249 PMCID: PMC8066884 DOI: 10.1093/braincomms/fcab058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury gradually spreads away from the epicentre of injury. The rate of degeneration on the rostral side of the injury differs from that on the caudal side. Rostral degeneration is an immediate process, while caudal degeneration is delayed. In this study, we demonstrated that the rostro-caudal differences in energy metabolism led to differences in the spread of degeneration in early thoracic cord injury using in vivo imaging. The blood flow at the rostral side of the injury showed ischaemia-reperfusion, while the caudal side presented stable perfusion. The rostral side had an ATP shortage 20 min after spinal cord injury, while the ATP levels were maintained on the caudal side. Breakdown products of purine nucleotides were accumulated at both sides of injury 18 h after spinal cord injury, but the principal metabolites in the tricarboxylic acid cycle and glycolytic pathway were elevated on the caudal side. Although the low-ATP regions expanded at the rostral side of injury until 24 h after spinal cord injury, the caudal-side ATP levels were preserved. The low-ATP regions on the rostral side showed mitochondrial reactive oxygen species production. Administration of 2-deoxy-d-glucose as a glycolysis inhibitor decreased the caudal ATP levels and expanded the low-ATP regions to the caudal side until 24 h after spinal cord injury. These results suggest that deficits in the glycolytic pathway accelerate the caudal degeneration, while immediate rostral degeneration is exacerbated by oxidative stress in early thoracic cord injury.
Collapse
Affiliation(s)
- Yuichiro Ohnishi
- Department of Neurosurgery, Osaka University Medical School, Osaka, Japan.,Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruhiko Kishima
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
42
|
Otto NA, Butler JM, Ramirez-Moral I, van Weeghel M, van Heijst JWJ, Scicluna BP, Houtkooper RH, de Vos AF, van der Poll T. Adherence Affects Monocyte Innate Immune Function and Metabolic Reprogramming after Lipopolysaccharide Stimulation In Vitro. THE JOURNAL OF IMMUNOLOGY 2021; 206:827-838. [PMID: 33408258 DOI: 10.4049/jimmunol.2000702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
Circulating nonadherent monocytes can migrate to extravascular sites by a process that involves adherence. Alterations in intracellular metabolism shape the immunological phenotype of phagocytes upon activation. To determine the effect of adherence on their metabolic and functional response human monocytes were stimulated with LPS under nonadherent and adherent conditions. Adherent monocytes (relative to nonadherent monocytes) produced less TNF and IL-1β (proinflammatory) and more IL-10 (anti-inflammatory) upon LPS stimulation and had an increased capacity to phagocytose and produce reactive oxygen species. RNA sequencing analysis confirmed that adherence modified the LPS-induced response of monocytes, reducing expression of proinflammatory genes involved in TLR signaling and increasing induction of genes involved in pathogen elimination. Adherence resulted in an increased glycolytic response as indicated by lactate release, gene set enrichment, and [13C]-glucose flux analysis. To determine the role of glycolysis in LPS-induced immune responses, this pathway was inhibited by glucose deprivation or the glucose analogue 2-deoxy-d-glucose (2DG). Although both interventions equally inhibited glycolysis, only 2DG influenced monocyte functions, inhibiting expression of genes involved in TLR signaling and pathogen elimination, as well as cytokine release. 2DG, but not glucose deprivation, reduced expression of genes involved in oxidative phosphorylation. Inhibition of oxidative phosphorylation affected TNF and IL-10 release in a similar way as 2DG. Collectively, these data suggest that adherence may modify the metabolic and immunological profile of monocytes and that inhibition of glycolysis and oxidative phosphorylation, but not inhibition of glycolysis alone, has a profound effect on immune functions of monocytes exposed to LPS.
Collapse
Affiliation(s)
- Natasja A Otto
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; .,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Ivan Ramirez-Moral
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Core Facility Metabolomics, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, the Netherlands
| | | | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; and
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Gastroenterology and Metabolism, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, 1105 AZ Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
43
|
Shi X, Zhang W, Gu C, Ren H, Wang C, Yin N, Wang Z, Yu J, Liu F, Zhang H. NAD+ depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radic Biol Med 2021; 162:514-522. [PMID: 33197538 DOI: 10.1016/j.freeradbiomed.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 11/17/2022]
Abstract
Two-deoxy-d-glucose (2-DG) mediated glucose restriction (GR) has been applied as a potential therapeutic strategy for tumor clinical treatments. However, increasing evidences have indicated that 2-DG alone is inefficient in killing tumor cells, and the effect of 2-DG on modifying tumor radio-responses also remains controversial. In this study, we found that 2-DG triggered metabolic adaption in U87 glioma cells by up-regulating nicotinamide phosphoribosyltransferase (NAMPT) and cellular NAD+ content, which abolished 2-DG-induced potential radiosensitizing effect in glioma cells. Strikingly, NAD+ depletion evoked notable oxidative stress by NADPH reduction and hence re-radiosensitized 2-DG-treated glioma cells. Furthermore, isocitrate dehydrogenase-1 (IDH1) mutant U87 glioma cells with deficiency in the rate-limiting enzyme of Preiss-Handler pathway nicotinate phosphoribosyltransferase (Naprt1) revealed notable 2-DG-induced oxidative stress and radiosensitization. Our findings implied that targeting NAD+ could radiosensitize gliomas with GR, and 2-DG administration could be benefit for tumor patients with IDH1 mutation.
Collapse
Affiliation(s)
- Xiaolin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gu
- Department of Radiation Oncology, Changzhou No.4 People's Hospital, Soochow University, Changzhou, 213001, China
| | - Huangge Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Chen Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Narui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahua Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| | - Haowen Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| |
Collapse
|
44
|
Paunovic V, Kosic M, Misirkic-Marjanovic M, Trajkovic V, Harhaji-Trajkovic L. Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118944. [PMID: 33383091 DOI: 10.1016/j.bbamcr.2020.118944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
To sustain their proliferative and metastatic capacity, tumor cells increase the activity of energy-producing pathways and lysosomal compartment, resorting to autophagolysosomal degradation when nutrients are scarce. Consequently, large fragile lysosomes and enhanced energy metabolism may serve as targets for anticancer therapy. A simultaneous induction of energy stress (by caloric restriction and inhibition of glycolysis, oxidative phosphorylation, Krebs cycle, or amino acid/fatty acid metabolism) and lysosomal stress (by lysosomotropic detergents, vacuolar ATPase inhibitors, or cationic amphiphilic drugs) is an efficient anti-cancer strategy demonstrated in a number of studies. However, the mechanisms of lysosomal/energy stress co-amplification, apart from the protective autophagy inhibition, are poorly understood. We here summarize the established and suggest potential mechanisms and candidates for anticancer therapy based on the dual targeting of lysosomes and energy metabolism.
Collapse
Affiliation(s)
- Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Maja Misirkic-Marjanovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| |
Collapse
|
45
|
Wanyan Y, Xu X, Liu K, Zhang H, Zhen J, Zhang R, Wen J, Liu P, Chen Y. 2-Deoxy-d-glucose Promotes Buforin IIb-Induced Cytotoxicity in Prostate Cancer DU145 Cells and Xenograft Tumors. Molecules 2020; 25:E5778. [PMID: 33297583 PMCID: PMC7730206 DOI: 10.3390/molecules25235778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 01/15/2023] Open
Abstract
Inhibition of the glycolytic pathway is a critical strategy in anticancer therapy because of the role of aerobic glycolysis in cancer cells. The glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) has shown potential in combination with other anticancer agents. Buforin IIb is an effective antimicrobial peptide (AMP) with broad-spectrum anticancer activity and selectivity. The efficacy of combination treatment with 2-DG and buforin IIb in prostate cancer remains unknown. Here, we tested the efficacy of buforin IIb as a mitochondria-targeting AMP in the androgen-independent human prostate cancer cell line DU145. Combining 2-DG with buforin IIb had a synergistic toxic effect on DU145 cells and mouse xenograft tumors. Combination treatment with 2-DG and buforin IIb caused stronger proliferation inhibition, greater G1 cell cycle arrest, and higher apoptosis than either treatment alone. Combination treatment dramatically decreased L-lactate production and intracellular ATP levels, indicating severe inhibition of glycolysis and ATP production. Flow cytometry and confocal laser scanning microscopy results indicate that 2-DG may increase buforin IIb uptake by DU145 cells, thereby increasing the mitochondria-targeting capacity of buforin IIb. This may partly explain the effect of combination treatment on enhancing buforin IIb-induced apoptosis. Consistently, 2-DG increased mitochondrial dysfunction and upregulated Bax/Bcl-2, promoting cytochrome c release to initiate procaspase 3 cleavage induced by buforin IIb. These results suggest that 2-DG sensitizes prostate cancer DU145 cells to buforin IIb. Moreover, combination treatment caused minimal hemolysis and cytotoxicity to normal WPMY-1 cells. Collectively, the current study demonstrates that dual targeting of glycolysis and mitochondria by 2-DG and buforin IIb may be an effective anticancer strategy for the treatment of some advanced prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuqing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210000, China; (Y.W.); (X.X.); (K.L.); (H.Z.); (J.Z.); (R.Z.); (J.W.); (P.L.)
| |
Collapse
|
46
|
Wang K, Tu Y, Wan JB, Chen M, He C. Synergistic anti-breast cancer effect of pulsatilla saponin D and camptothecin through interrupting autophagic-lysosomal function and promoting p62-mediated ubiquitinated protein aggregation. Carcinogenesis 2020; 41:804-816. [PMID: 31504230 DOI: 10.1093/carcin/bgz140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Autophagy is an evolutionarily conserved mechanism to protect the cells from unfavorable environmental conditions. Inhibition of autophagy has been contemplated as a novel strategy to enhance anticancer efficacy of existing chemotherapeutic agents. We previously reported that pulsatilla saponin D (PSD) was a potent autophagy inhibitor. However, its anticancer potential as adjuvant and underlying mechanisms are still unknown. In this study, we identified that PSD induced the formation of autophagosome in MCF-7 and MDA-MB-231 breast cancer cells. However, PSD alone and particularly co-treatment with camptothecin remarkably increased p62 protein levels, indicating that PSD strongly inhibited the autophagic cargo degradation. The mechanistic study indicated that PSD profoundly abolished the co-localization of EGFP-LC3 and lysosomal-specific probe LysoTracker Red, suggesting that the autophagosome-lysosome fusion was blocked by PSD, which is similar to the action of chloroquine. In addition, PSD significantly increased lysosomal pH and inhibited the activation of lysosomal cathepsins in both breast cancer cell lines. Furthermore, the accrued p62 resulted in accumulation of ubiquitinated proteins owing to the interaction with p62 and delivery to the malfunctioned autophagosome by PSD. Finally, we demonstrated that PSD synergistically enhanced the anticancer activity of camptothecin (CPT) in cultured breast cancer cells and in mouse xenograft tumor models. Our results indicated that PSD inhibited autophagic flux via blocking autophagosome-lysosome fusion and lysosomal acidification, which may confer a synergistic anti-breast cancer activity of PSD and CPT.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
47
|
Laussel C, Léon S. Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem Pharmacol 2020; 182:114213. [PMID: 32890467 DOI: 10.1016/j.bcp.2020.114213] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Most malignant cells display increased glucose absorption and metabolism compared to surrounding tissues. This well-described phenomenon results from a metabolic reprogramming occurring during transformation, that provides the building blocks and supports the high energetic cost of proliferation by increasing glycolysis. These features led to the idea that drugs targeting glycolysis might prove efficient in the context of cancer treatment. One of these drugs, 2-deoxyglucose (2-DG), is a synthetic glucose analog that can be imported into cells and interfere with glycolysis and ATP generation. Its preferential targeting to sites of cell proliferation is supported by the observation that a derived molecule, 2-fluoro-2-deoxyglucose (FDG) accumulates in tumors and is used for cancer imaging. Here, we review the toxicity mechanisms of this drug, from the early-described effects on glycolysis to its other cellular consequences, including inhibition of protein glycosylation and endoplasmic reticulum stress, and its interference with signaling pathways. Then, we summarize the current data on the use of 2-DG as an anti-cancer agent, especially in the context of combination therapies, as novel 2-DG-derived drugs are being developed. We also show how the use of 2-DG helped to decipher glucose-signaling pathways in yeast and favored their engineering for biotechnologies. Finally, we discuss the resistance strategies to this inhibitor that have been identified in the course of these studies and which may have important implications regarding a medical use of this drug.
Collapse
Affiliation(s)
- Clotilde Laussel
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Sébastien Léon
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
48
|
Kataura T, Tashiro E, Nishikawa S, Shibahara K, Muraoka Y, Miura M, Sakai S, Katoh N, Totsuka M, Onodera M, Shin-Ya K, Miyamoto K, Sasazawa Y, Hattori N, Saiki S, Imoto M. A chemical genomics-aggrephagy integrated method studying functional analysis of autophagy inducers. Autophagy 2020; 17:1856-1872. [PMID: 32762399 PMCID: PMC8386610 DOI: 10.1080/15548627.2020.1794590] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macroautophagy/autophagy plays a critical role in the pathogenesis of various human diseases including neurodegenerative disorders such as Parkinson disease (PD) and Huntington disease (HD). Chemical autophagy inducers are expected to serve as disease-modifying agents by eliminating cytotoxic/damaged proteins. Although many autophagy inducers have been identified, their precise molecular mechanisms are not fully understood because of the complicated crosstalk among signaling pathways. To address this issue, we performed several chemical genomic analyses enabling us to comprehend the dominancy among the autophagy-associated pathways followed by an aggresome-clearance assay. In a first step, more than 400 target-established small molecules were assessed for their ability to activate autophagic flux in neuronal PC12D cells, and we identified 39 compounds as autophagy inducers. We then profiled the autophagy inducers by testing their effect on the induction of autophagy by 200 well-established signal transduction modulators. Our principal component analysis (PCA) and clustering analysis using a dataset of "autophagy profiles" revealed that two Food and Drug Administration (FDA)-approved drugs, memantine and clemastine, activate endoplasmic reticulum (ER) stress responses, which could lead to autophagy induction. We also confirmed that SMK-17, a recently identified autophagy inducer, induced autophagy via the PRKC/PKC-TFEB pathway, as had been predicted from PCA. Finally, we showed that almost all of the autophagy inducers tested in this present work significantly enhanced the clearance of the protein aggregates observed in cellular models of PD and HD. These results, with the combined approach, suggested that autophagy-activating small molecules may improve proteinopathies by eliminating nonfunctional protein aggregates.Abbreviations: ADK: adenosine kinase; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; BECN1: beclin-1; DDIT3/CHOP: DNA damage inducible transcript 3; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FDA: Food and Drug Administration; GSH: glutathione; HD: Huntington disease; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; HTT: huntingtin; JAK: Janus kinase, MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MAP2K/MEK: mitogen-activated protein kinase kinase; MAP3K8/Tpl2: mitogen-activated protein kinase kinase kinase 8; MAPK: mitogen-activated protein kinase; MPP+: 1-methyl-4-phenylpyridinium; MTOR: mechanistic target of rapamycin kinase; MTORC: MTOR complex; NAC: N-acetylcysteine; NGF: nerve growth factor 2; NMDA: N-methyl-D-aspartate; PCA: principal component analysis; PD: Parkinson disease; PDA: pancreatic ductal adenocarcinoma; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PMA: phorbol 12-myristate 13-acetate; PRKC/PKC: protein kinase C; ROCK: Rho-associated coiled-coil protein kinase; RR: ribonucleotide reductase; SIGMAR1: sigma non-opioid intracellular receptor 1; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TFEB: Transcription factor EB; TGFB/TGF-β: Transforming growth factor beta; ULK1: unc-51 like autophagy activating kinase 1; XBP1: X-box binding protein 1.
Collapse
Affiliation(s)
- Tetsushi Kataura
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan.,Research Fellow of the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Shota Nishikawa
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Kensuke Shibahara
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Yoshihito Muraoka
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Masahiro Miura
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Shun Sakai
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Naohiro Katoh
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Misato Totsuka
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| | - Masafumi Onodera
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Biotechnology Research Centre, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Kengo Miyamoto
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Keio University, Kanagawa, Japan
| |
Collapse
|
49
|
Increased mTOR and suppressed autophagic flux in the heart of a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Cell Signal 2020; 74:109730. [PMID: 32730856 DOI: 10.1016/j.cellsig.2020.109730] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/22/2023]
Abstract
Cardiac hypertrophy is common in autosomal dominant polycystic kidney disease (ADPKD) patients. We found increased heart weight in Pkd1RC/RC and Pkd2WS25/+ mouse models of ADPKD. As there is a link between increased heart weight and mammalian target of rapamycin (mTOR), the aim of the study was to determine mTOR complex 1 and 2 signaling proteins in the heart in the Pkd1RC/RC mouse model of PKD. In 70 day old Pkd1RC/RC hearts, on immunoblot analysis, there was a large increase in p-AMPKThr172, a known autophagy inducer, and an increase in p-AktSer473 and p-AktThr308, but no increase in other mTORC1/2 proteins (p-S6Ser240/244, p-mTORSer2448). In 150 day old Pkd1RC/RC hearts, there was an increase in mTORC1 (p-S6Ser240/244) and mTOR-related proteins (p-AktThr308, p-GSK3βSer9, p-AMPKThr172). As the mTOR pathway is the master regulator of autophagy, autophagy proteins were measured. There was an increase in p-Beclin-1 (BECN1), an autophagy regulator and activating molecule in Beclin-1-regulated autophagy (AMBRA1), a regulator of Beclin that play a role in autophagosome formation, an early stage of autophagy. There was a defect in the later stage of autophagy, the fusion of the autophagosome with the lysosome, known as autophagic flux, as evidenced by the lack of an increase in LC3-II, a marker of autophagosomes, with the lysosomal inhibitor bafilomycin, in both 70 day old and 150 day old hearts. To determine the role of autophagy in causing increased heart weight, Pkd1RC/RC were treated with 2-deoxyglucose (2-DG) or Tat-Beclin1 peptide, agents known to induce autophagy. 2-DG treatment from 150 to 350 days of age, a time period when increased heart weight developed, did not reduce the increased heart weight. Unexpectedly, Tat-Beclin 1 peptide treatment from 70 to 120 days of age resulted in increased heart weight. In summary, there is suppressed autophagic flux in the heart at an early age in Pkd1RC/RC mice. Increased mTOR signaling in older mice is associated suppressed autophagic flux. There was a large increase in p-AMPKThr172, a known autophagy inducer, in both young and old mice. 2-DG treatment did not impact increased heart weight and Tat-Beclin1 peptide increased heart weight.
Collapse
|
50
|
Acute myeloid leukemia sensitivity to metabolic inhibitors: glycolysis showed to be a better therapeutic target. Med Oncol 2020; 37:72. [PMID: 32725458 DOI: 10.1007/s12032-020-01394-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Cancer cells alter their metabolism by switching from glycolysis to oxidative phosphorylation (OXPHOS), regardless of oxygen availability. Metabolism may be a molecular target in acute myeloid leukemia (AML), where mutations in metabolic genes have been described. This study evaluated glycolysis and OXPHOS as therapeutic targets. The sensitivity to 2-deoxy-D-glucose (2-DG; glycolysis inhibitor) and oligomycin (OXPHOS inhibitor) was tested in six AML cell lines (HEL, HL-60, K-562, KG-1, NB-4, THP-1). These cells were characterized for IDH1/2 exon 4 mutations, reactive oxygen species, and mitochondrial membrane potential. Metabolic activity was assessed by resazurin assay, whereas cell death and cell cycle were assessed by flow cytometry. Glucose uptake and metabolism-related gene expression were analyzed by 18F-FDG and RT-PCR/qPCR, respectively. No IDH1/2 exon 4 mutations were detected. HEL cells had the highest 18F-FDG uptake and peroxides/superoxide anion levels, whereas THP-1 showed the lowest. 2-DG reduced metabolic activity in all cell lines with HEL, KG-1, and NB-4 being the most sensitive cells. Oligomycin decreased metabolic activity in a cell line-dependent manner, the THP-1 resistant and HL-60 being the most sensitive. Both inhibitors induced apoptosis and cell cycle arrest in a cell line- and compound-dependent manner. 2-DG decreased 18F-FDG uptake in HEL, HL-60, KG-1, and NB-4, while oligomycin increased the uptake in K-562. Metabolism gene expression had different responses to treatments. In conclusion, HEL and KG-1 show to be more glycolytic, whereas HL-60 was more OXPHOS dependent. Results suggest that AML cells reprogram their metabolism to overcome OXPHOS inhibition suggesting that glycolysis may be a better therapeutic target.
Collapse
|