1
|
Yu F, Zhao X, Zhang S, Lu W, Li P, Yang W, Zhao Z. Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration. Adv Healthc Mater 2025; 14:e2404015. [PMID: 39764719 DOI: 10.1002/adhm.202404015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Indexed: 03/04/2025]
Abstract
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, Ti3C2Tx MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration. Ti3C2Tx MXenes are synthetized, incorporated into beta-tricalcium phosphate ceramics (β-TCP) nanocomposites (T-MXene), and their osteoinductive and immunomodulatory effects are evaluated. The effects of T-MXene-treated T-cells on bone marrow stromal cells (BMSCs) are explored. In addition, its therapeutic potential for bone regeneration is assessed in vivo using a critical-sized mandibular bone defect model. The underlying mechanisms by which T-MXene regulates T-cell differentiation and bone regeneration are explored via whole-transcriptome RNA sequencing. The scaffolds activate N-glycosylation in T cells, which possess anti-inflammatory and antioxidant effects, thereby inducing a pro-regenerative response. T-MXene increased the proportion of IL-4+ T cells among primary T cells and mandibular lymph nodes, ultimately promoting osteogenesis in BMSCs and injured mandibles. The distinctive function of MXene-based nanocomposites in osteoimmunomodulation provides a solid foundation for further exploration and application of MXenes as immune response modulators, potentially advancing their use in regenerative medicine.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuting Zhang
- College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Wenxin Lu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peilin Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Zakaria N, Menze ET, Elsherbiny DA, Tadros MG, George MY. Lycopene mitigates paclitaxel-induced cognitive impairment in mice; Insights into Nrf2/HO-1, NF-κB/NLRP3, and GRP-78/ATF-6 axes. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111262. [PMID: 39848561 DOI: 10.1016/j.pnpbp.2025.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Chemotherapy-induced cognitive impairment, referred to as "chemobrain", is widely acknowledged as a significant adverse effect of cancer therapy. Paclitaxel, a chemotherapeutic drug, has been reported to cause cognitive impairment clinically and in animal models. However, the precise mechanisms are not fully understood. The current study explored the potential neuroprotective effect of lycopene in paclitaxel-induced cognitive impairment in mice and its potential underlying mechanisms. Mice were randomly allocated into six groups: control, paclitaxel-treated (10 mg/kg), lycopene-treated (5, 10, and 20 mg/kg) + paclitaxel, and lycopene alone-treated (20 mg/kg) groups. The effect of lycopene treatment on behavioral function and histological examination was assessed. Lycopene (20 mg/kg) was selected for additional investigation into the underlying mechanisms. Lycopene treatment counteracted paclitaxel-induced oxidative stress by reducing lipid peroxidation and enhancing catalase levels. Additionally, lycopene-treated mice demonstrated a significant elevation in nuclear factor erythroid 2-related factor 2 with no significant effect on hemeoxygenase-1. Moreover, paclitaxel administration elevated endoplasmic reticulum stress markers; glucose-regulated protein78, activating Transcription Factor 6, C/EBP homologous protein, and apoptosis marker annexin V which were significantly reduced by lycopene treatment. Furthermore, lycopene mitigated paclitaxel-induced neuroinflammation through the reduction of the levels of the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome axis markers; nuclear factor-κB, NLRP3, caspase-1, interleukin-1β, and interleukin-18. Our study findings may provide new evidence that lycopene mitigates paclitaxel-induced cognitive impairment in mice by reversing oxidative stress, endoplasmic reticulum stress, and inflammatory mechanisms.
Collapse
Affiliation(s)
- Nora Zakaria
- Armed Forces Medical Complex- Kobry El-Qobba, Ministry of Defense, Kobry El-Qobba, Cairo 11766, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
3
|
Shi L, Ma H, Wang J, Ma M, Zhao H, Li Z, Wang JH, Wu S, Zhou Z, Dong MQ, Li Z. An EMC-Hpo-Yki axis maintains intestinal homeostasis under physiological and pathological conditions. Development 2023; 150:dev201958. [PMID: 38031990 DOI: 10.1242/dev.201958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.
Collapse
Affiliation(s)
- Lin Shi
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hubing Ma
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinjun Wang
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meifang Ma
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shian Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zizhang Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhouhua Li
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
4
|
Paradiso E, Lazzaretti C, Sperduti S, Melli B, Trenti T, Tagliavini S, Roli L, D'Achille F, Beltrán-Frutos E, Simoni M, Casarini L. Protein kinase B (Akt) blockade inhibits LH/hCG-mediated 17,20-lyase, but not 17α-hydroxylase activity of Cyp17a1 in mouse Leydig cell steroidogenesis. Cell Signal 2023; 111:110872. [PMID: 37640196 DOI: 10.1016/j.cellsig.2023.110872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Androgens are produced by adrenal and gonadal cells thanks to the action of specific enzymes. We investigated the role of protein kinase B (Akt) in the modulation of Δ4 steroidogenic enzymes' activity, in the mouse Leydig tumor cell line mLTC1. Cells were treated for 0-24 h with the 3 × 50% effective concentration of human luteinizing hormone (LH) and choriogonadotropin (hCG), in the presence and in the absence of the specific Akt inhibitor 3CAI. Cell signaling analysis was performed by bioluminescence resonance energy transfer (BRET) and Western blotting, while the expression of key target genes was investigated by real-time PCR. The synthesis of progesterone, 17α-hydroxy (OH)-progesterone and testosterone was measured by immunoassay. Control experiments for cell viability and caspase 3 activation were performed as well. We found that both hormones activated cAMP and downstream effectors, such as extracellularly-regulated kinase 1/2 (Erk1/2) and cAMP response element-binding protein (Creb), as well as Akt, and the transcription of Stard1, Hsd3b1, Cyp17a1 and Hsd17b3 genes, boosting the Δ4 steroidogenic pathway. Interestingly, Akt blockade decreased selectively Cyp17a1 expression levels, inhibiting its 17,20-lyase, but not the 17-hydroxylase activity. This effect is consistent with lower Cyp17a1 affinity to 17α-OH-progesterone than progesterone. As a result, cell treatment with 3CAI resulted in 17α-OH-progesterone accumulation at 16-24 h and decreased testosterone levels after 24 h. In conclusion, in the mouse Leydig cell line mLTC1, we found substantial Akt dependence of the 17,20-lyase activity and testosterone synthesis. Our results indicate that different intracellular pathways modulate selectively the dual activity of Cyp17a1.
Collapse
Affiliation(s)
- Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy.
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Beatrice Melli
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Fabio D'Achille
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30120 Murcia, Spain
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
5
|
Liu Y, Hong G, Mao L, Su Z, Liu T, Liu H. A Novel Paclitaxel Derivative for Triple-Negative Breast Cancer Chemotherapy. Molecules 2023; 28:molecules28093662. [PMID: 37175072 PMCID: PMC10180349 DOI: 10.3390/molecules28093662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Paclitaxel-triethylenetetramine hexaacetic acid conjugate (PTX-TTHA), a novel semi-synthetic taxane, is designed to improve the water solubility and cosolvent toxicity of paclitaxel in several aminopolycarboxylic acid groups. In this study, the in vitro and in vivo antitumor effects and mechanisms of PTX-TTHA against triple-negative breast cancer (TNBC) and its intravenous toxicity were evaluated. Results showed the water solubility of PTX-TTHA was greater than 5 mg/mL, which was about 7140-fold higher than that of paclitaxel (<0.7 µg/mL). PTX-TTHA (10-105 nmol/L) could significantly inhibit breast cancer proliferation and induce apoptosis by stabilizing microtubules and arresting the cell cycle in the G2/M phase in vitro, with its therapeutic effect and mechanism similar to paclitaxel. However, when the MDA-MB-231 cell-derived xenograft (CDX) tumor model received PTX-TTHA (13.73 mg/kg) treatment once every 3 days for 21 days, the tumor inhibition rate was up to 77.32%. Furthermore, PTX-TTHA could inhibit tumor proliferation by downregulating Ki-67, and induce apoptosis by increasing pro-apoptotic proteins (Bax, cleaved caspase-3) and TdT-mediated dUTP nick end labeling (TUNEL) positive apoptotic cells, and reducing anti-apoptotic protein (Bcl-2). Moreover, PTX-TTHA demonstrated no sign of acute toxicity on vital organs, hematological, and biochemical parameters at the limit dose (138.6 mg/kg, i.v.). Our study indicated that PTX-TTHA showed better water solubility than paclitaxel, as well as comparable in vitro and in vivo antitumor activity in TNBC models. In addition, the antitumor mechanism of PTX-TTHA was related to microtubule regulation and apoptosis signaling pathway activation.
Collapse
Affiliation(s)
- Yuetong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Lina Mao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Zhe Su
- Tianjin Institute for Drug Control, Tianjin 300070, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
6
|
Zhang L, Zhou C, Zhou Y, Zhang W, Hu X, Chen M, Hui H, Guo L, Wu C, Zhou J, Yin H. P-Y/G@NHs sensitizes non-small cell lung cancer cells to radiotherapy via blockage of the PI3K/AKT signaling pathway. Bioorg Chem 2023; 131:106317. [PMID: 36525920 DOI: 10.1016/j.bioorg.2022.106317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Radioresistance represents a common phenomenon found in cancer treatment. Herein, the current study sought to evaluate the effects of a nanodrug delivery system of YSAYPDSVPMMS (YSA) peptide-modified gold nanoparticles-dextran-based hydrogel loaded with paclitaxel-succinic anhydride (P-Y/G@NHs) on non-small cell lung cancer (NSCLC) cell radiosensitivity. Firstly, utilizing the coupling reaction and layer-by-layer assembly technique, P-Y/G@NHs was prepared. The therapeutic effects of the P-Y/G@NHs in NSCLC cells in relation to the PI3K/AKT signaling pathway were examined by assessing the colony formation, apoptosis, and reactive oxygen species (ROS) generation of A549 cells under 10 Gy X-rays irradiation. Moreover, A549 tumor-bearing mice were generated to further validate the therapeutic effect in vivo. We confirmed the successful conjugation of the nanocomposite. Under 10 Gy X-rays irradiation, P-Y/G@NHs reduced the number of colonies of A549 cells, while inducing both cell apoptosis and ROS production. Moreover, P-Y/G@NHs enhanced the radiosensitivity of A549 cells by inhibiting the PI3K/AKT signaling pathway. In vivo fluorescence experiments validated that P-Y/G@NHs effectively-targeted and accumulated at the tumor site in nude mice, thus augmenting the radiosensitivity of tumors without significant immune toxicity or side effects. Conclusively, our findings highlighted that P-Y/G@NHs significantly enhanced the radiosensitivity of NSCLC cells by repressing the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Soochow University, Suzhou 215000, PR China; Radiotherapy Department, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, PR China
| | - Chong Zhou
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Yun Zhou
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Wei Zhang
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Xiang Hu
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Meng Chen
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Hui Hui
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Ling Guo
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Chengjun Wu
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Juying Zhou
- Radiotherapy Department, the First Affiliated Hospital of Soochow University, Suzhou 215000, PR China.
| | - Haitao Yin
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China.
| |
Collapse
|
7
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
8
|
Mitachi K, Mingle D, Effah W, Sánchez‐Ruiz A, Hevener KE, Narayanan R, Clemons WM, Sarabia F, Kurosu M. Concise Synthesis of Tunicamycin V and Discovery of a Cytostatic DPAGT1 Inhibitor. Angew Chem Int Ed Engl 2022; 61:e202203225. [PMID: 35594368 PMCID: PMC9329268 DOI: 10.1002/anie.202203225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/11/2022]
Abstract
A short total synthesis of tunicamycin V (1), a non-selective phosphotransferase inhibitor, is achieved via a Büchner-Curtius-Schlotterbeck type reaction. Tunicamycin V can be synthesized in 15 chemical steps from D-galactal with 21 % overall yield. The established synthetic scheme is operationally very simple and flexible to introduce building blocks of interest. The inhibitory activity of one of the designed analogues 28 against human dolichyl-phosphate N-acetylglucosaminephosphotransferase 1 (DPAGT1) is 12.5 times greater than 1. While tunicamycins are cytotoxic molecules with a low selectivity, the novel analogue 28 displays selective cytostatic activity against breast cancer cell lines including a triple-negative breast cancer.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - David Mingle
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - Wendy Effah
- Department of Medicine University of Tennessee Health Science Center 19 S. Manassas, Room 120 Memphis TN 38103 USA
| | - Antonio Sánchez‐Ruiz
- Faculty of Pharmacy Campus de Albacete Universidad de Castilla-La Mancha Avda. Dr. José María Sánchez Ibáñez S/N 02008 Albacete Spain
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - Ramesh Narayanan
- Department of Medicine University of Tennessee Health Science Center 19 S. Manassas, Room 120 Memphis TN 38103 USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Francisco Sarabia
- Department of Organic Chemistry Faculty of Sciences Universidad de Málaga, Campus de Teatinos 29071 Málaga Spain
| | - Michio Kurosu
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| |
Collapse
|
9
|
Mohammed RN, Khosravi M, Rahman HS, Adili A, Kamali N, Soloshenkov PP, Thangavelu L, Saeedi H, Shomali N, Tamjidifar R, Isazadeh A, Aslaminabad R, Akbari M. Anastasis: cell recovery mechanisms and potential role in cancer. Cell Commun Signal 2022; 20:81. [PMID: 35659306 PMCID: PMC9166643 DOI: 10.1186/s12964-022-00880-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Balanced cell death and survival are among the most important cell development and homeostasis pathways that can play a critical role in the onset or progress of malignancy steps. Anastasis is a natural cell recovery pathway that rescues cells after removing the apoptosis-inducing agent or brink of death. The cells recuperate and recover to an active and stable state. So far, minimal knowledge is available about the molecular mechanisms of anastasis. Still, several involved pathways have been explained: recovery through mitochondrial outer membrane permeabilization, caspase cascade arrest, repairing DNA damage, apoptotic bodies formation, and phosphatidylserine. Anastasis can facilitate the survival of damaged or tumor cells, promote malignancy, and increase drug resistance and metastasis. Here, we noted recently known mechanisms of the anastasis process and underlying molecular mechanisms. Additionally, we summarize the consequences of anastatic mechanisms in the initiation and progress of malignancy, cancer cell metastasis, and drug resistance. Video Abstract.
Collapse
Affiliation(s)
- Rebar N. Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan University of Sulaimaniya, Kurdistan Region, Sulaimaniya, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Mohsen Khosravi
- Department of Psychiatry and Clinical Psychology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sarchinar District, Sulaimaniyah, Iraq
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Kamali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pavel Petrovich Soloshenkov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Aslaminabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Mitachi K, Mingle D, Effah W, Sánchez-Ruiz A, Hevener KE, Narayanan R, Clemons WM, Sarabia F, Kurosu M. Concise Synthesis of Tunicamycin V and Discovery of a Cytostatic DPAGT1 Inhibitor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katsuhiko Mitachi
- The University of Tennessee Health Science Center College of Pharmacy Pharmacy 881 Madison AvenueROOM 557 38163 MEMPHS UNITED STATES
| | - David Mingle
- The University of Tennessee Health Science Center College of Pharmacy Pharmacy 881 MADISON AVE 38163 MEMPHS UNITED STATES
| | - Wendy Effah
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine Medicine UNITED STATES
| | | | - Kirk E. Hevener
- UTHSC College of Pharmacy Memphis: The University of Tennessee Health Science Center College of Pharmacy Pharmacy UNITED STATES
| | - Ramesh Narayanan
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine Medicine 19, S. Manassas 38013 Memphis UNITED STATES
| | - William M. Clemons
- Caltech: California Institute of Technology Chemistry and Chemical Engineering UNITED STATES
| | - Francisco Sarabia
- University of Malaga: Universidad de Malaga Organic Chemistry UNITED STATES
| | - Michio Kurosu
- UTHSC College of Pharmacy Memphis: The University of Tennessee Health Science Center College of Pharmacy Department of Pharmaceutical Sciences, College of Pharmacy 881 MADISON AVEROOM 557 38163 Memphis UNITED STATES
| |
Collapse
|
11
|
Chen S, Wang Y, Liu W, Liang Y, Wang Y, Wu Z, Xu L, Liang X, Ma C, Gao L. N-Glycosylation at Asn291 Stabilizes TIM-4 and Promotes the Metastasis of NSCLC. Front Oncol 2022; 12:730530. [PMID: 35433445 PMCID: PMC9008408 DOI: 10.3389/fonc.2022.730530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/07/2022] [Indexed: 01/30/2023] Open
Abstract
T-cell immunoglobulin domain and mucin domain 4 (TIM-4) is a transmembrane protein that promotes epithelial-mesenchymal transition (EMT), migration and invasion of non-small cell lung cancer (NSCLC) cells. Most transmembrane proteins are modified by N-glycosylation and the importance of protein N-glycosylation in cancer cell metastasis has been well appreciated. However, whether TIM-4 is modified by N-glycosylation and the role of TIM-4 N-glycosylation in NSCLC remains largely unknown. In the current study, we reported that TIM-4 was extensively N-glycosylated at Asn291. After the removal of N-glycosylation, the stability of TIM-4 protein was decreased and TIM-4 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated ERAD. Thus, the expression of TIM-4 on the cell surface was decreased, which suppressed TIM-4-mediated metastasis in NSCLC. In summary, the present study identifies TIM-4 N-glycosylation and its role in NSCLS migration, which would provide a valuable biomarker for developing drugs targeting N-glycosylation at Asn291 on TIM-4.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuzhen Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Liu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Liang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingchun Wang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuanchang Wu
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyun Xu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Xiaohong Liang
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhong Ma
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lifen Gao
- Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Liu H, Wang H, Chen D, Gu C, Huang J, Mi K. Endoplasmic reticulum stress inhibits 3D Matrigel-induced vasculogenic mimicry of breast cancer cells via TGF-β1/Smad2/3 and β-catenin signaling. FEBS Open Bio 2021; 11:2607-2618. [PMID: 34320274 PMCID: PMC8409287 DOI: 10.1002/2211-5463.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular stress condition involving disturbance in the folding capacity of the ER caused by endogenous and exogenous factors. ER stress signaling pathways affect tumor malignant growth, angiogenesis and progression, and promote the antitumor effects of certain drugs. However, the impact of ER stress on the vasculogenic mimicry (VM) phenotype of cancer cells has not been well addressed. VM is a phenotype that mimics vasculogenesis by forming patterned tubular networks, which are related to stemness and aggressive behaviors of cancer cells. In this study, we used tunicamycin (TM), the unfolded protein response (UPR)-activating agent, to induce ER stress in aggressive triple-negative MDA-MB-231 breast cancer cells, which exhibit a VM phenotype in 3D Matrigel cultures. TM-induced ER stress was able to inhibit the VM phenotype. In addition to the tumor spheroid phenotype observed upon inhibiting the VM phenotype, we observed alterations in glycosylation of integrin β1, loss of VE-cadherin and a decrease in stem cell marker Bmi-1. Further study revealed decreased activated transforming growth factor β1, Smad2/3, Phospho-Smad2 and β-catenin. β-Catenin knockdown markedly inhibited the VM phenotype and resulted in the loss of VE-cadherin. The data suggest that the activation of ER stress inhibited VM phenotype formation of breast cancer cells via both the transforming growth factor β1/Smad2/3 and β-catenin signaling pathways. The discovery of prospective regulatory mechanisms involved in ER stress and VM in breast cancer could lead to more precisely targeted therapies that inhibit vessel formation and affect tumor progression.
Collapse
Affiliation(s)
- Huifen Liu
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hao Wang
- Breast SurgerySichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dan Chen
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cuirong Gu
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianming Huang
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
13
|
2-Hydroxypropyl-β-cyclodextrin Regulates the Epithelial to Mesenchymal Transition in Breast Cancer Cells by Modulating Cholesterol Homeostasis and Endoplasmic Reticulum Stress. Metabolites 2021; 11:metabo11080562. [PMID: 34436503 PMCID: PMC8399758 DOI: 10.3390/metabo11080562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol metabolism affects endoplasmic reticulum (ER) stress and modulates epithelial-mesenchymal transition (EMT). Our previous study demonstrated that 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) attenuated EMT by blocking the transforming growth factor (TGF)-β/Smad signaling pathway and activating ER stress in MDA-MB-231 cells. To further assess the detailed mechanisms between cholesterol metabolism, ER stress, and EMT, LXR-623 (an agonist of LXRα) and simvastatin were used to increase and decrease cholesterol efflux and synthesis, respectively. Here, we found that high HP-β-CD concentrations could locally increase cholesterol levels in the ER by decreasing LXRα expression and increasing Hydroxymethylglutaryl-Coenzyme A reductase (HMGCR) expression in MDA-MB-231 and BT-549 cells, which triggered ER stress and inhibited EMT. Meanwhile, tunicamycin-induced ER stress blocked the TGF-β/Smad signaling pathway. However, low HP-β-CD concentrations can decrease the level of membrane cholesterol, enhance the TGF-β receptor I levels in lipid rafts, which helped to activate TGF-β/Smad signaling pathway, inhibit ER stress and elevate EMT. Based on our findings, the use of high HP-β-CD concentration can lead to cholesterol accumulation in the ER, thereby inducing ER stress, which directly suppresses TGF-β pathway-induced EMT. However, HP-β-CD is proposed to deplete membrane cholesterol at low concentrations and concurrently inhibit ER stress and induce EMT by promoting the TGF-β signaling pathways.
Collapse
|
14
|
Gu C, Zhang Y, Chen D, Liu H, Mi K. Tunicamycin-induced endoplasmic reticulum stress inhibits chemoresistance of FaDu hypopharyngeal carcinoma cells in 3D collagen I cultures and in vivo. Exp Cell Res 2021; 405:112725. [PMID: 34224701 DOI: 10.1016/j.yexcr.2021.112725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/12/2022]
Abstract
The prognosis in patients with advanced head and neck squamous cell carcinoma (HNSCC) is widely affected by the resistance to chemotherapy. As a culture scaffold, collagen I was showed to promote CSC (cancer stem cell) properties of cancer cells which could be used as in vitro models to study the chemoresistance in HNSCC. Endoplasmic reticulum (ER) stress is a cellular stress condition which could affect tumor progression and promote the anti-tumor effects of certain drugs. However, the impact of ER stress on collagen I induced CSC properties and chemoresistance of HNSCC cells has not been addressed. In this study we investigated the effects of tunicamycin (TM) induced ER stress on the stemness and sensitivity to chemotherapeutic drugs of FaDu hypopharyngeal carcinoma cells in 3D (three-dimensional) collagen I cultures and mouse xenograft models. Our study revealed that Collagen I scaffold promoted CSC properties and increased G1 population of FaDu cells in 3D cultures, accompanied by maturation of integrin β1 and enhanced activated TGF-β1 concentration. Compared to 2D (two-dimensional) cultured cells, cells in 3D Collagen I scaffold exhibited significantly increased resistance to chemotherapeutic drugs of cisplatin and paclitaxel. Further analysis revealed that TM induced ER stress preferentially attenuated chemoresistance of FaDu cells in 3D collagen I, downregulated their CSC properties and TGF-β1 concentration and resulted in deglycosylation of integrin β1. TM was further evaluated in the mouse xenograft models and showed significant tumor growth inhibition in combination with paclitaxel than either TM or paclitaxel alone. Taken together, Our findings suggest that TM-induced ER stress potentiates anticancer efficacy of FaDu cells in 3D cultures and in vivo, and highlight implications for targeting chemotherapy-resistant cancer stem cells under ER stress conditions.
Collapse
Affiliation(s)
- Cuirong Gu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Zhang
- Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Chen
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huifen Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Lai TC, Fang CY, Jan YH, Hsieh HL, Yang YF, Liu CY, Chang PMH, Hsiao M. Kinase shRNA screening reveals that TAOK3 enhances microtubule-targeted drug resistance of breast cancer cells via the NF-κB signaling pathway. Cell Commun Signal 2020; 18:164. [PMID: 33087151 PMCID: PMC7579951 DOI: 10.1186/s12964-020-00600-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chemotherapy is currently one of the most effective treatments for advanced breast cancer. Anti-microtubule agents, including taxanes, eribulin and vinca-alkaloids are one of the primary major anti-breast cancer chemotherapies; however, chemoresistance remains a problem that is difficult to solve. We aimed to discover novel candidate protein targets to combat chemoresistance in breast cancer. METHODS A lentiviral shRNA-based high-throughput screening platform was designed and developed to screen the global kinome to find new therapeutic targets in paclitaxel-resistant breast cancer cells. The phenotypes were confirmed with alternative expression in vitro and in vivo. Molecular mechanisms were investigated using global phosphoprotein arrays and expression microarrays. Global microarray analysis was performed to determine TAOK3 and genes that induced paclitaxel resistance. RESULTS A serine/threonine kinase gene, TAOK3, was identified from 724 screened kinase genes. TAOK3 shRNA exhibited the most significant reduction in IC50 values in response to paclitaxel treatment. Ectopic downregulation of TAOK3 resulted in paclitaxel-resistant breast cancer cells sensitize to paclitaxel treatment in vitro and in vivo. The expression of TAOK3 also was correlated to sensitivity to two other anti-microtubule drugs, eribulin and vinorelbine. Our TAOK3-modulated microarray analysis indicated that NF-κB signaling played a major upstream regulation role. TAOK3 inhibitor, CP43, and shRNA of NF-κB both reduced the paclitaxel resistance in TAOK3 overexpressed cells. In clinical microarray databases, high TAOK3 expressed breast cancer patients had poorer prognoses after adjuvant chemotherapy. CONCLUSIONS Here we identified TAOK3 overexpression increased anti-microtubule drug resistance through upregulation of NF-κB signaling, which reduced cell death in breast cancer. Therefore, inhibition of the interaction between TAOK3 and NF-κB signaling may have therapeutic implications for breast cancer patients treated with anti-microtubule drugs. Video abstract.
Collapse
Affiliation(s)
- Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Chun-Yu Liu
- Department of Oncology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.
- Faculty of Medicine, National Yang Ming University, Taipei, 112, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Faculty of Medicine, National Yang Ming University, Taipei, 112, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- The Ph.D.Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
16
|
Celia C, Cristiano MC, Froiio F, Di Francesco M, d'Avanzo N, Di Marzio L, Fresta M. Nanoliposomes as Multidrug Carrier of Gemcitabine/Paclitaxel for the Effective Treatment of Metastatic Breast Cancer Disease: A Comparison with Gemzar and Taxol. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christian Celia
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
| | - Maria Chiara Cristiano
- Department of Clinical and Experimental Medicine University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Francesca Froiio
- Department of Clinical and Experimental Medicine University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Martina Di Francesco
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
- Laboratory of Nanotechnology for Precision Medicine Fondazione Istituto Italiano di Tecnologia Via Morego 30 Genoa I‐16163 Italy
| | - Nicola d'Avanzo
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| | - Luisa Di Marzio
- Department of Pharmacy University of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 Chieti I‐66010 Italy
| | - Massimo Fresta
- Department of Health Science University of Catanzaro “Magna Græcia” Viale “S. Venuta” s.n.c. Catanzaro I‐88100 Italy
| |
Collapse
|
17
|
Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-β/Smad3 signaling in melanoma cells. Cell Death Dis 2020; 11:223. [PMID: 32265437 PMCID: PMC7138813 DOI: 10.1038/s41419-020-2419-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/08/2022]
Abstract
Accumulating evidence demonstrated that alteronol, a novel compound that has a similar structure with paclitaxel, exerts anticancer effects against diversified tumors. However, whether alteronol induces autophagy and the relationship between its anticancer effects and autophagy in melanoma remains elusive. In this study, we show that alteronol induces not only anti-proliferation activity and apoptosis but also autophagy in A375 and UACC62 cells. In addition, alteronol inhibits A375 and UACC62 cells invasion and migration by preventing the epithelial–mesenchymal transition (EMT). Blocking autophagy enhances alteronol-induced apoptosis and anti-EMT effects in vitro and in vivo. Mechanistically, we find that alteronol significantly inhibits Akt/mTOR and TGFβ/Smad3 pathways, and co-treatment with autophagy inhibitor 3-MA further potentiate these effects. Our results suggest that alteronol induces cyto-protective autophagy in melanoma cells through inhibition of Akt/mTOR pathway, thus attenuates apoptosis and promotes melanoma cell EMT through TGF-β/Smad3 pathway. Combination with alteronol and autophagy inhibitor 3-MA may be a potential treatment for melanoma as it not only significantly inhibited tumor growth but also suppressed tumor invasion and migration as anti-metastasis agent.
Collapse
|
18
|
Wu Y, Zhao Y, He X, He Z, Wang T, Wan L, Chen L, Yan N. Hydroxypropyl‑β‑cyclodextrin attenuates the epithelial‑to‑mesenchymal transition via endoplasmic reticulum stress in MDA‑MB‑231 breast cancer cells. Mol Med Rep 2019; 21:249-257. [PMID: 31746388 PMCID: PMC6896369 DOI: 10.3892/mmr.2019.10802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) has been reported to serve vital roles in regulating the progress of cancer metastasis. In addition, lipid rafts enriched in sphingolipids and cholesterol serve important roles in physiological and biochemical processes as a signaling platform. The present study explored the effects of hydroxypropyl-β-cyclodextrin (HP-β-CD), a cholesterol-depleting agent of lipid rafts, on the transforming growth factor (TGF)-β/Smad signaling pathway and endoplasmic reticulum (ER) stress in mediating EMT in MDA-MB-231 breast cancer cells. HP-β-CD treatment inhibited TGF-β1-induced EMT, based on increased expression of E-cadherin and decreased expression of vimentin. HP-β-CD reduced the expression of the TGF receptor TβRI and blocked the phosphorylation of Smad2. In addition, HP-β-CD increased the expression of ER stress-related proteins (binding immunoglobulin protein and activating transcription factor 6), but TGF-β1 could reverse these changes. Sodium 4-phenylbutyrate, an inhibitor of ER stress, suppressed these effects of HP-β-CD on EMT and TGF-β/Smad signaling pathway inhibition in breast cancer cells. Thus, HP-β-CD can block the TGF-β/Smad signaling pathway via diminishing the expression of TβRI which helps to activate ER stress and attenuate EMT in MDA-MB-231 cells, highlighting a potential target of lipid rafts for breast cancer treatment.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yiyang Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tian Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxi Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lai Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Deb B, Patel K, Sathe G, Kumar P. N-Glycoproteomic Profiling Reveals Alteration In Extracellular Matrix Organization In Non-Type Bladder Carcinoma. J Clin Med 2019; 8:jcm8091303. [PMID: 31450586 PMCID: PMC6780497 DOI: 10.3390/jcm8091303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/01/2019] [Accepted: 08/11/2019] [Indexed: 01/03/2023] Open
Abstract
Treatment of advanced and metastatic bladder carcinoma is often ineffective and displays variable clinical outcomes. Studying this aggressive molecular subtype of bladder carcinoma will lead to better understanding of the pathogenesis which may lead to the identification of new therapeutic strategies. The non-type bladder subtype is phenotypically mesenchymal and has mesenchymal features with a high metastatic ability. Post-translational addition of oligosaccharide residues is an important modification that influences cellular functions and contributes to disease pathology. Here, we report the comparative analysis of N-linked glycosylation across bladder cancer subtypes. To analyze the glycosite-containing peptides, we carried out LC-MS/MS-based quantitative proteomic and glycoproteomic profiling. We identified 1299 unique N-linked glycopeptides corresponding to 460 proteins. Additionally, we identified 118 unique N-linked glycopeptides corresponding to 84 proteins to be differentially glycosylated only in non-type subtypes as compared to luminal/basal subtypes. Most of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 55 differentially expressed glycoproteins showed no significant change at the protein abundance level, representing that the glycosylation site occupancy was changed between the non-type subtype and luminal/basal subtypes. Importantly, the extracellular matrix organization pathway was dysregulated in the non-type subtype of bladder carcinoma. N-glycosylation modifications in the extracellular matrix organization proteins may be a contributing factor for the mesenchymal aggressive phenotype in non-type subtype. These aberrant protein glycosylation would provide additional avenues to employ glycan-based therapies and may lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
20
|
Xue YN, Yu BB, Liu YN, Guo R, Li JL, Zhang LC, Su J, Sun LK, Li Y. Zinc promotes prostate cancer cell chemosensitivity to paclitaxel by inhibiting epithelial-mesenchymal transition and inducing apoptosis. Prostate 2019; 79:647-656. [PMID: 30714183 DOI: 10.1002/pros.23772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Paclitaxel (PTX) is a first-line chemotherapeutic drug for the treatment of prostate cancer. However, most patients develop resistance and metastasis, and thus new therapeutic approaches are urgently required. Recent studies have identified widespread anti-tumor effects of zinc (Zn) in various tumor cell lines, especially prostate cancer cells. In this study, we examined the effects of Zn as an adjuvant to PTX in prostate cancer cells. METHODS PC3 and DU145 cells were treated with different concentrations of Zn and/or PTX. MTT assay was used to detect cell viability. Real-time cell analysis (RTCA) and microscopy were used to observe morphological changes in cells. Western blotting was used to detect the expression of epithelial-mesenchymal transition (EMT)-related proteins. qPCR (reverse transcription-polymerase chain reaction) was used to examine changes in TWIST1 mRNA levels. Cell invasion and migration were detected by scratch and transwell assays. shRNA against TWIST1 was used to knockdown TWIST1. Colony formation assay was used to detect cell proliferation, while Annexin V and propidium iodide (PI) staining was used to detect cell apoptosis. RESULTS Zn and PTX increased proliferation inhibition in a dose- and time-dependent manner in prostate cancer cells, while Zn increased prostate cancer cell chemosensitivity to PTX. Combined Zn and PTX inhibited prostate cancer cell invasion and migration by downregulating the expression of TWIST1. Furthermore, knockdown of TWIST1 increased the sensitivity of prostate cancer cells to PTX. In addition, Zn and PTX reduced cell proliferation and induced apoptosis in prostate cancer cells. CONCLUSIONS Our results demonstrated that Zn and PTX combined therapy inhibits EMT by reducing the expression of TWIST1, which reduces the invasion and migration of prostate cancer cells. SiTWIST1 increased the sensitivity of prostate cancer cells to PTX. In addition, with prolonged treatment, Zn and PTX inhibited proliferation and led to prostate cancer cell apoptosis. Therefore, Zn may be a potential adjuvant of PTX in treating prostate cancer and combined treatment may offer a promising therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Ya-Nan Xue
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Bing-Bing Yu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Ya-Nan Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Rui Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiu-Ling Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Li-Chao Zhang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Su
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lian-Kun Sun
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yang Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Shu J, Dang L, Zhang D, Shah P, Chen L, Zhang H, Sun S. Dynamic analysis of proteomic alterations in response to N-linked glycosylation inhibition in a drug-resistant ovarian carcinoma cell line. FEBS J 2019; 286:1594-1605. [PMID: 30884134 PMCID: PMC7360092 DOI: 10.1111/febs.14811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/04/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation inhibition can improve the efficacy of antitumor drugs and enhance the apoptosis of cancer cells, thus holding great potential for cancer treatment. Inhibition of N-glycosylation induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), and eventually triggers ER stress-related apoptosis. Unfortunately, the detailed timeline of these cell responses and protein expression alterations related to N-glycosylation inhibition is not explicit yet, and the pathways involved in different stages of N-glycosylation inhibition still need to be characterized. In this study, the dynamic proteome alterations related to N-glycosylation inhibition were investigated by further analyzing our previously published quantitative proteomics data from tunicamycin (TM)-treated ovarian carcinoma (OVCAR-3) cells. The results revealed that N-glycosylation inhibition not only directly affects the expression of glycosylated proteins but also alters an extended scale of proteins. Functional annotation of these altered proteins demonstrated that proteins related to ER stress start changing within 6 h, followed by UPR within 24 h, and eventually ER stress-related apoptosis is triggered after 48 h, indicating the conversion of cellular response from positive to negative. The dynamic proteome data presented here provide important information for better understanding of the significance of N-glycosylation to cell survival and TM-related cancer treatment.
Collapse
Affiliation(s)
- Jian Shu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Dandan Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
22
|
Structure-based drug discovery by targeting N-glycan biosynthesis, dolichyl-phosphate N-acetylglucosaminephosphotransferase. Future Med Chem 2019; 11:927-933. [PMID: 30907628 DOI: 10.4155/fmc-2018-0405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Pereira DG, Rendeiro MM, Cortes VF, Barbosa LA, Quintas LEM. Antagonistic anticancer effect of paclitaxel and digoxin combination. J Cell Biochem 2019; 120:13107-13114. [PMID: 30883884 DOI: 10.1002/jcb.28583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Despite the growing interest in the antitumor effect of cardiotonic steroids, combination treatments with well-established chemotherapy drugs like paclitaxel have been rarely investigated. Moreover, paclitaxel has been suggested as a Na+ /K+ -ATPase inhibitor. Here we investigated the effect of paclitaxel and digoxin alone or in combination on the viability of human lung (A549) and cervical cancer (HeLa) cell lines and the inhibitory effect of paclitaxel on several mammalian Na+ /K+ -ATPases. Although the viability of both tumor cell lines was concentration-dependently affected by digoxin treatment after 48 hours (A549 IC50 = 31 nM and HeLa IC50 = 151 nM), a partial effect was observed for paclitaxel, with a maximal inhibitory effect of 45% at 1000 nM with A549 and around 70% with HeLa cells (IC50 = 1 nM). Although the two drugs were cytotoxic, their combined effect in HeLa cells was revealed to be antagonistic, as estimated by the combination index. No direct inhibitory effect of paclitaxel was detected in human, pig, rat, and mouse Na+ /K+ -ATPase enzymes, but high concentrations of paclitaxel decreased the Na+ /K+ -ATPase activity in HeLa cells after 48 hours without affecting protein expression. Our findings demonstrate that, under our conditions, paclitaxel and digoxin cotreatment produce antagonistic cytotoxic effects in HeLa cells, and the mechanism of action of paclitaxel does not involve a direct inhibition of Na+ /K+ -ATPase. More studies shall be designed to evaluate the consequences of the interaction of cardiotonic steroids and chemotherapy drugs.
Collapse
Affiliation(s)
- Duane Gischewski Pereira
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, Brazil
| | - Mariana Manzano Rendeiro
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Faria Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Divinópolis, Brazil
| | - Luis Eduardo M Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y, Mao J, Li L. Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol 2018; 52:1057-1070. [PMID: 29436618 DOI: 10.3892/ijo.2018.4270] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
Autophagy is a key catabolic process, in which cytosolic cargo is engulfed by the formation of a double membrane and then degraded through the fusing of autophagosomes with lysosomes. Autophagy is a constitutively active, evolutionarily conserved, catabolic process important for the maintenance of homeostasis in cellular stress responses and cell survival. Although the mechanisms of autophagy have not yet been fully elucidated, emerging evidence suggests that it plays a dual role in breast cancer and in maintaining the activity of breast cancer stem cells (CSCs). However, it may play a complex role in breast CSC therapy. Breast CSCs, a population of cells with the ability to self-renew, differentiate, and initiate and sustain tumor growth, play an essential role in cancer recurrence, anticancer resistance and metastasis. In addition, the elucidation of the association between autophagy and apoptosis in the tumor context is crucial in order to better address appropriate therapy strategies. In the present review, a summary of the mechanisms and roles of autophagy in breast cancer and CSCs is presented. The potential value of such autophagy modulators in the development of novel breast cancer therapies is discussed.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Tao Qin
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jinfeng Yang
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Yan Sun
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| |
Collapse
|
25
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|