1
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2025; 9:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
2
|
Guryanova SV. Bacteria and Allergic Diseases. Int J Mol Sci 2024; 25:10298. [PMID: 39408628 PMCID: PMC11477026 DOI: 10.3390/ijms251910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; ; Tel.: +7-(915)3150073
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
3
|
Zhang B, Tian M, Wu J, Qiu Y, Xu X, Tian C, Hou J, Wang L, Gao K, Yang X, Jiang Z. Chlorogenic Acid Enhances the Intestinal Health of Weaned Piglets by Inhibiting the TLR4/NF-κB Pathway and Activating the Nrf2 Pathway. Int J Mol Sci 2024; 25:9954. [PMID: 39337442 PMCID: PMC11432128 DOI: 10.3390/ijms25189954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol with potent antioxidant and anti-inflammatory activities. However, the exact role of it in regulating intestinal health under oxidative stress is not fully understood. This study aims to investigate the effects of dietary CGA supplementation on the intestinal health of weaned piglets under oxidative stress, and to explore its regulatory mechanism. Twenty-four piglets were randomly divided into two groups and fed either a basal diet (CON) or a basal diet supplemented with 200 mg/kg CGA (CGA). CGA reduced the diarrhea rate, increased the villus height in the jejunum, and decreased the crypt depth in the duodenum, jejunum, and ileum of the weaned piglets (p < 0.05). Moreover, CGA increased the protein abundance of Claudin-1, Occludin, and zonula occludens (ZO)-1 in the jejunum and ileum (p < 0.05). In addition, CGA increased the mRNA expression of pBD2 in the jejunum, and pBD1 and pBD2 in the ileum (p < 0.05). The results of 16S rRNA sequencing showed that CGA altered the ileal microbiota composition and increased the relative abundance of Lactobacillus reuteri and Lactobacillus pontis (p < 0.05). Consistently, the findings suggested that the enhancement of the intestinal barrier in piglets was associated with increased concentrations of T-AOC, IL-22, and sIgA in the serum and T-AOC, T-SOD, and sIgA in the jejunum, as well as T-AOC and CAT in the ileum caused by CGA (p < 0.05). Meanwhile, CGA decreased the concentrations of MDA, IL-1β, IL-6, and TNF-α in the serum and jejunum and IL-1β and IL-6 in the ileum (p < 0.05). Importantly, this study found that CGA alleviated intestinal inflammation and oxidative stress in the piglets by inhibiting the TLR4/NF-κB signaling pathway and activating the Nrf2 signaling pathway. These findings showed that CGA enhances the intestinal health of weaned piglets by inhibiting the TLR4/NF-κB pathway and activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xiaoming Xu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chaoyang Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
4
|
Meng T, Liu C, Chen Y, Yu M, He J, Tan B, Fu X, He J, Xiao D. Dietary Chito-oligosaccharide attenuates LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathway. Int Immunopharmacol 2024; 126:111153. [PMID: 37979451 DOI: 10.1016/j.intimp.2023.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
To investigate the regulatory effects of Chito-oligosaccharide (COS) on the anti-oxidative, anti-inflammatory, and MAPK signaling pathways. A total of 40 28-day-old weaned piglets were randomly allotted to 4 equal groups [including the control group, lipopolysaccharide (LPS) group, COS group, and COS*LPS group]. On the morning of d 14 and 21, piglets were injected with saline or LPS. At 2 h post-injection, whole blood samples were collected on d 14 and 21, and small intestine and liver samples were collected and analyzed on d 21. The results showed that COS inhibited the LPS-induced increase of malondialdehyde (MDA) concentration and hepatic TNF-α cytokines. COS significantly increased the serum total antioxidant capability (T-AOC) value on d 14, and total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) activities in both serum and liver on d 21. Furthermore, it increased hepatic catalase (CAT) activity. COS also increased the LPS-induced decrease in serum IgG concentrations. Immunohistochemical analysis results showed that COS significantly increased the jejunal and ileal Caspase 3, and ileal CD4+ values challenged by LPS. Dietary COS decreased the LPS-induced jejunal and ileal BAX and CCL2 mRNA levels, markedly decreased ileal COX2 and SOD1 mRNA levels, while increasing ileal iNOS. Furthermore, COS significantly increased the LPS-induced jejunal and ileal p-P38 and MyD88, as well as jejunal P38, while it effectively suppressed jejunal JNK1, and jejunal and ileal JNK2, p-JNK1, and p-JNK2 protein expressions. These results demonstrated that COS could be beneficial by attenuating LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathways.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Chunming Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Manrong Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianfu He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bihui Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoqin Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Zheng W, Lv X, Tao Y, Cui Y, Zhu X, Zhu T, Xu T. A circRNA therapy based on Rnf103 to inhibit Vibrio anguillarum infection. Cell Rep 2023; 42:113314. [PMID: 37874674 DOI: 10.1016/j.celrep.2023.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
The losses caused by Vibrio infections in the aquaculture industry are challenging to quantify. In the face of antibiotic resistance, a natural and environmentally friendly alternative is urgently needed. In this study, we identify E3 ubiquitin-protein ligase RNF103 (rnf103) as a crucial target involved in immune evasion by Vibrio anguillarum. Our research demonstrates that Rnf103 promotes immune escape by inhibiting Traf6. Interestingly, we discover a circular RNA (circRNA), circRnf103, formed by reverse splicing of the Rnf103 gene. Predictive analysis and experimentation reveal that circRnf103 encodes Rnf103-177aa, a protein that competes with Rnf103 and binds to Traf6, preventing its degradation. Notably, circRnf103 therapy induces Rnf103-177aa protein production in zebrafish. In zebrafish models, circRnf103 exhibits significant effectiveness in treating V. anguillarum infections, reducing organ burden. These findings highlight the potential of circRNA therapy as a natural and innovative approach to combat infectious diseases sustainably, particularly in aquaculture and environmental management.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yaqi Tao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanqiu Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiangxiang Zhu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tongtong Zhu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
6
|
Chen X, Zhang F, Li H, Liu J, Jiang Y, Ren F, Huang L, Yuan X, Li Y, Yang W, Yang C, Li S, Jiao N, Jiang S. The combination of macleaya extract and glucose oxidase improves the growth performance, antioxidant capacity, immune function and cecal microbiota of piglets. Front Vet Sci 2023; 10:1173494. [PMID: 37576836 PMCID: PMC10421655 DOI: 10.3389/fvets.2023.1173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
This study aims to investigate the effects of macleaya extract and glucose oxidase combination (MGO) on growth performance, antioxidant capacity, immune function, and cecal microbiota in piglets. A total of 120 healthy 28-day-old weaned piglets were randomly divided into two treatments of six replicates. Piglets were either received a basal diet or a basal diet supplemented with 250 mg/kg MGO (2 g/kg sanguinarine, 1 g/kg chelerythrine, and 1 × 106 U/kg glucose oxidase). The results showed that MGO supplementation increased average daily gain (ADG) and decreased feed:gain ratio (F/G) (p < 0.05). MGO increased serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and immunoglobulin G (IgG) content (p < 0.05), but decreased malondialdehyde (MDA) and interleukin 1β (IL-1β) content (p < 0.05). The jejunal mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (HO-1) were increased in MGO group (p < 0.05), while that of kelch like ECH associated protein 1 (Keap1) was decreased (p < 0.05). The Firmicutes was significantly increased at phylum levels in MGO group (p < 0.05). In conclusion, 250 mg/kg MGO improved piglet growth, and regulated intestinal flora of piglets, which provided a theoretical basis for MGO as an alternative additive for antibiotics.
Collapse
Affiliation(s)
- Xing Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Huirong Li
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Jie Liu
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Yanping Jiang
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Furong Ren
- Zhongcheng Feed Technology Co., Ltd., Feicheng, Shandong, China
| | - Libo Huang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xuejun Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Weiren Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Chongwu Yang
- Ciyao Animal Husbandry Station, Ningyang, Shandong, China
| | - Shuang Li
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Ning Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Shuzhen Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
7
|
Blanco NG, Machado NM, Castro LL, Antunes MA, Takiya CM, Trugilho MRO, Silva LR, Paes Leme AF, Domingues RR, Pauletti BA, Miranda BT, Silva JD, Dos Santos CC, Silva PL, Rocco PRM, Cruz FF. Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis. Int J Mol Sci 2023; 24:ijms24098234. [PMID: 37175936 PMCID: PMC10179270 DOI: 10.3390/ijms24098234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The effects of the administration of mesenchymal stromal cells (MSC) may vary according to the source. We hypothesized that MSC-derived extracellular vesicles (EVs) obtained from bone marrow (BM), adipose (AD), or lung (L) tissues may also lead to different effects in sepsis. We profiled the proteome from EVs as a first step toward understanding their mechanisms of action. Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (SEPSIS) and SHAM (control) animals only underwent laparotomy. Twenty-four hours after surgery, animals in the SEPSIS group were randomized to receive saline or 3 × 106 MSC-derived EVs from BM, AD, or L. The diffuse alveolar damage was decreased with EVs from all three sources. In kidneys, BM-, AD-, and L-EVs reduced edema and expression of interleukin-18. Kidney injury molecule-1 expression decreased only in BM- and L-EVs groups. In the liver, only BM-EVs reduced congestion and cell infiltration. The size and number of EVs from different sources were not different, but the proteome of the EVs differed. BM-EVs were enriched for anti-inflammatory proteins compared with AD-EVs and L-EVs. In conclusion, BM-EVs were associated with less organ damage compared with the other sources of EVs, which may be related to differences detected in their proteome.
Collapse
Affiliation(s)
- Natália G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Natália M Machado
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ligia L Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Christina M Takiya
- Laboratory of Immunopathology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Monique R O Trugilho
- Toxinology Laboratory, Center for Technological Development Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Luana R Silva
- Toxinology Laboratory, Center for Technological Development Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| | - Adriana F Paes Leme
- Mass Spectrometry Laboratory, Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, SP, Brazil
| | - Romênia R Domingues
- Mass Spectrometry Laboratory, Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, SP, Brazil
| | - Bianca A Pauletti
- Mass Spectrometry Laboratory, Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, SP, Brazil
| | - Beatriz T Miranda
- Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
8
|
Bai YM, Liang S, Zhou B. Revealing immune infiltrate characteristics and potential immune-related genes in hepatic fibrosis: based on bioinformatics, transcriptomics and q-PCR experiments. Front Immunol 2023; 14:1133543. [PMID: 37122694 PMCID: PMC10140356 DOI: 10.3389/fimmu.2023.1133543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Background The occurrence and progression of hepatic fibrosis (HF) is accompanied by inflammatory damage. Immune genes play a pivotal role in fibrogenesis and inflammatory damage in HF by regulating immune cell infiltration. However, the immune mechanisms of HF are inadequately studied. Therefore, this research aims to identify the immune genes and biological pathway which involved in fibrosis formation and inflammatory damage in HF and explore immune target-based therapeutics for HF. Methods The expression dataset GSE84044 of HF was downloaded from the GEO database. The crucial module genes for HF were screened according to weighted gene co-expression network analysis (WGCNA). The crucial module genes were mapped to immune-related genes obtained from the ImmPort database to obtain the hepatic fibrosis immune genes (HFIGs). In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed on HFIGs. Then, the protein-protein interaction (PPI) network was conducted on HFIGs and hub genes were identified from the PPI network. Moreover, immune infiltration analysis was performed to identified correlation between hub gene and immune cell infiltration. To verify the reliability of the GSE84044 expression profile data analysis, a rat model of CCl4-induced HF was established, followed by transcriptome sequencing and immunofluorescence analysis and quantitative reverse transcription (q-PCR) experiments were performed in HF rats and normal rat liver tissues. Finally, CMAP platform was used to explore immune target-based therapeutics for HF. Results In the bioinformatics analysis of GSE84044 data, 98 HFIGs were screened. These genes were mainly involved in inflammation-related biological pathways such as NOD-like receptor signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway and PI3K-Akt signaling pathway. From the PPI network, 10 hub genes were identified, including CXCL8, IL18, CXCL10, CD8A, IL7, PTPRC, CCL5, IL7R, CXCL9 and CCL2. Immune infiltration analysis showed that immune cells like neutrophils, natural killer (NK) cells, macrophages M1 and macrophages M2 were significantly correlated with the hepatic fibrosis process and hub gene expression was significantly correlated with these immune cells. Notably, most of the biological pathways HFIGs riched and all the hub gene expression except CXCL8 were validated in subsequent transcriptome and qRCR experiments. Finally, 15 small molecule compounds with the potential to reverse the high expression of hub genes were screen out as potential therapeutic agents for HF. Conclusion The immune genes CXCL8, IL18, CXCL10, CD8A, IL7, PTPRC, CCL5, IL7R, CXCL9 and CCL2 may play an essential role in the fibrosis formation and inflammatory damage in HF. The outcomes of this research provide a basis for the study of the immune mechanisms of HF and contribute to the diagnosis and prevention and treatment of HF in clinical practice.
Collapse
Affiliation(s)
- Yan-Ming Bai
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Shuang Liang
- Yinchuan Hospital of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Bo Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of High Incidence, Ningxia Medical University, Yinchuan, China
- *Correspondence: Bo Zhou,
| |
Collapse
|
9
|
Zhao T, Zou Y, Yan H, Chang Y, Zhan Y. Non-coding RNAs targeting NF-κB pathways in aquatic animals: A review. Front Immunol 2023; 14:1091607. [PMID: 36825023 PMCID: PMC9941745 DOI: 10.3389/fimmu.2023.1091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) pathways have a close relationship with many diseases, especially in terms of the regulation of inflammation and the immune response. Non-coding RNAs (ncRNAs) are a heterogeneous subset of endogenous RNAs that directly affect cellular function in the absence of proteins or peptide products; these include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), etc. Studies on the roles of ncRNAs in targeting the NF-κB pathways in aquatic animals are scarce. A few research studies have confirmed detailed regulatory mechanisms among ncRNAs and the NF-κB pathways in aquatic animals. This comprehensive review is presented concerning ncRNAs targeting the NF-κB pathway in aquatic animals and provides new insights into NF-κB pathways regulatory mechanisms of aquatic animals. The review discusses new possibilities for developing non-coding-RNA-based antiviral applications in fisheries.
Collapse
Affiliation(s)
- Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
10
|
Chen X, Chen L, Jia G, Zhao H, Liu G, Huang Z. L-theanine improves intestinal barrier functions by increasing tight junction protein expression and attenuating inflammatory reaction in weaned piglets. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
11
|
Dong Z, Sun X, Tang Y, Luo S, Jia H, Xu Q, Jiang Q, Loor JJ, Xu W, Xu C. β-hydroxybutyrate impairs monocyte function via the ROS-NLR family pyrin domain-containing three inflammasome (NLRP3) pathway in ketotic cows. Front Vet Sci 2022; 9:925900. [PMID: 36105004 PMCID: PMC9464975 DOI: 10.3389/fvets.2022.925900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cows with ketosis display severe metabolic stress and immune dysfunction which renders them more susceptible to infections. Monocytes, one of the major subtypes of white blood cells, play an important role in innate immune defense against infections. Thus, the aim of this study was to investigate alterations in immune function, reactive oxygen species (ROS) production and activity of the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in monocytes (CD14+) of cows with clinical ketosis (CK). Twelve healthy multiparous Holstein cows [blood β-hydroxybutyrate (BHB) concentration < 1.2 mM] and 12 cows with CK (BHB > 3.0 mM) at 3 to 14 days in milk were used for blood sample collection. To determine effects of BHB on phagocytosis, ROS and protein abundance of the NLRP3 inflammasome pathway in vitro, monocytes isolated from healthy cows were treated with 3.0 mM BHB for 0, 6, 12 or 24 h. Dry matter intake (22.7 vs. 19.0 kg) was lower in cows with CK. Serum concentrations of fatty acids (0.30 vs. 0.88 mM) and BHB (0.52 vs. 3.78 mM) were greater in cows with CK, whereas concentration of glucose was lower (4.09 vs. 2.23 mM). The adhesion, migration and phagocytosis of monocytes were lower in cows with CK, but apoptosis and ROS content were greater. Protein abundance of NLRP3, cysteinyl aspartate specific proteinase 1 (caspase 1) and interleukin-1B p17 (IL1B p17) were greater in monocytes of cows with CK, while abundance of NADPH oxidase isoform 2 (NOX2) was lower. Compared with 0 h BHB, ROS content and apoptosis were greater in the monocytes challenged for 6, 12 or 24 h BHB. Compared with 0 h BHB, protein abundance of NLRP3, caspase 1, IL1B p17 and concentration of IL1B in medium were greater in the monocytes challenged for 6, 12 or 24 h BHB. However, compared with 0 h BHB, protein abundance of NOX2 and phagocytosis of monocytes were lower in the monocytes challenged for 6, 12 or 24 h BHB. Overall, the data suggested that exogenous BHB activated the ROS-NLRP3 pathway, which might be partly responsible for immune dysfunction of dairy cows with CK.
Collapse
Affiliation(s)
- Zhihao Dong
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Tang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shengbin Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongdou Jia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiushi Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Wei Xu
- Department of Biosystems, Biosystems Technology Cluster, KULeuven, Geel, Belgium
| | - Chuang Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
12
|
Zhao H, Wang H, Liu R, Liang Y, Li K, Shan S, An L, Yang G, Li H. Activation of the NLRP1 inflammasome and its ligand recognition in the antibacterial immune response of common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2022; 125:238-246. [PMID: 35588906 DOI: 10.1016/j.fsi.2022.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
NLRP1 (NLR family pyrin domain containing 1) is the first member of NOD-like receptors (NLRs) which can form inflammasome and play critical roles in innate immunity and pathogenesis of various diseases. To date, many NLRs and inflammasome-related genes have been identified in teleost, however, the activation of NLRP1 inflammasome is only found in zebrafish, and the activator of fish NLRP1 is unclear. In the present study, the activation of CcNLRP1 inflammasome and its function in innate immune defence of common carp was investigated. The expression of CcNLRP1 was induced in immune-related tissues of common carp upon challenge with Edwardsiella tarda and Aeromonas hydrophila. The colocalization of CcNLRP1 and CcASC, ASC oligomerization, and interaction between CcNLRP1CARD and CcASC was observed in 293T, Hela and EPC cells, suggesting that the CcNLRP1 inflammasome was activated in common carp. Furthermore, we found that MDP may be the specific ligand of CcNLRP1, which can activate the CcNLRP1 inflammasome. Taken together, the present study identifies a new inflammasome in common carp, and is beneficial to the control of infectious diseases in carp farming.
Collapse
Affiliation(s)
- Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Yaxin Liang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Kaimin Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| |
Collapse
|
13
|
Nrf2 in the Field of Dentistry with Special Attention to NLRP3. Antioxidants (Basel) 2022; 11:antiox11010149. [PMID: 35052653 PMCID: PMC8772975 DOI: 10.3390/antiox11010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this review article was to summarize the functional implications of the nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with special attention to the NACHT (nucleotide-binding oligomerization), LRR (leucine-rich repeat), and PYD (pyrin domain) domains-containing protein 3 (NLRP3) inflammasome in the field of dentistry. NLRP3 plays a crucial role in the progression of inflammatory and adaptive immune responses throughout the body. It is already known that this inflammasome is a key regulator of several systemic diseases. The initiation and activation of NLRP3 starts with the oral microbiome and its association with the pathogenesis and progression of several oral diseases, including periodontitis, periapical periodontitis, and oral squamous cell carcinoma (OSCC). The possible role of the inflammasome in oral disease conditions may involve the aberrant regulation of various response mechanisms, not only in the mouth but in the whole body. Understanding the cellular and molecular biology of the NLRP3 inflammasome and its relationship to Nrf2 is necessary for the rationale when suggesting it as a potential therapeutic target for treatment and prevention of oral inflammatory and immunological disorders. In this review, we highlighted the current knowledge about NLRP3, its likely role in the pathogenesis of various inflammatory oral processes, and its crosstalk with Nrf2, which might offer future possibilities for disease prevention and targeted therapy in the field of dentistry and oral health.
Collapse
|
14
|
Activation of TLR4 induces severe acute pancreatitis-associated spleen injury via ROS-disrupted mitophagy pathway. Mol Immunol 2021; 142:63-75. [PMID: 34965485 DOI: 10.1016/j.molimm.2021.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Severe acute pancreatitis (SAP) is complicated by systemic inflammatory response syndrome and multiple organ dysfunction, the disease will eventually result in death in almost half of the case. The spleen, as the largest immune organ adjacent to the pancreas, is prone to damage in SAP, thereby aggravating the damage of other organs and increasing mortality. However, to date, the research on the mechanism and treatment of spleen injury caused by SAP is still in its infancy. Herein, we investigated the mechanism of spleen injury, and explored the application potential of tuftsin for relieving spleen damage in SAP mice. Firstly, SAP mice model was constructed via the retrograde infusion of 3.5 % sodium taurocholate into the biliopancreatic duct. Then, we proved that the up-regulation of Toll-like receptor 4 (TLR4) in spleen would lead to the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction under SAP conditions. The splenic ROS and mitochondrial dysfunction could be improved by N-acetylcysteine (NAC) treatment or knocking out TLR4 in SAP mice. Meanwhile, we found that NAC treatment could also improve the autophagy of spleen tissue, suggesting that splenic ROS may affect impaired autophagy, causing the accumulation of damaged mitochondria, aggravating spleen damage. Furthermore, we verified the mechanism of spleen injury is caused by splenic ROS affecting PI3K/p-AKT/mTOR pathway-mediated autophagy. In addition, we detected the spleen injury caused by SAP could decrease the concentration of tuftsin in the serum of mice. Whereas, exogenous supplementation of tuftsin ameliorated the pathological damage, ROS accumulation, impaired autophagy, inflammation expression and apoptosis in damaged spleen. In summary, we verified the new mechanism of SAP-caused spleen damage that TLR4-induced ROS provoked mitophagy impairment and mitochondrial dysfunction in spleen via PI3K/p-AKT mTOR signaling, and the application potential of tuftsin in treating spleen injury, which might expand novel ideas and methods for the treatment of pancreatitis.
Collapse
|
15
|
Shaker T, Chattopadhyaya B, Amilhon B, Cristo GD, Weil AG. Transduction of inflammation from peripheral immune cells to the hippocampus induces neuronal hyperexcitability mediated by Caspase-1 activation. Neurobiol Dis 2021; 160:105535. [PMID: 34673150 DOI: 10.1016/j.nbd.2021.105535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/30/2021] [Accepted: 10/17/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recent studies report infiltration of peripheral blood mononuclear cells (PBMCs) into the central nervous system (CNS) in epileptic disorders, suggestive of a potential contribution of PBMC extravasation to the generation of seizures. Nevertheless, the underlying mechanisms involved in PBMC infiltrates promoting neuronal predisposition to ictogenesis remain unclear. Therefore, we developed an in vitro model mimicking infiltration of activated PBMCs into the brain in order to investigate potential transduction of inflammatory signals from PBMCs to the CNS. METHODS To establish our model, we first extracted PBMCs from rat spleen, then, immunologically primed PBMCs with lipopolysaccharide (LPS), followed by further activation with nigericin. Thereafter, we co-cultured these activated PBMCs with organotypic cortico-hippocampal brain slice cultures (OCHSCs) derived from the same rat, and compared PBMC-OCHSC co-cultures to OCHSCs exposed to PBMCs in the culture media. We further targeted a potential molecular pathway underlying transduction of peripheral inflammation to OCHSCs by incubating OCHSCs with the Caspase-1 inhibitor VX-765 prior to co-culturing PBMCs with OCHSCs. After 24 h, we analyzed inflammation markers in the cortex and the hippocampus using semiquantitative immunofluorescence. In addition, we analyzed neuronal activity by whole-cell patch-clamp recordings in cortical layer II/III and hippocampal CA1 pyramidal neurons. RESULTS In the cortex, co-culturing immunoreactive PBMCs treated with LPS + nigericin on top of OCHSCs upregulated inflammatory markers and enhanced neuronal excitation. In contrast, no excitability changes were detected after adding primed PBMCs (i.e. treated with LPS only), to OCHSCs. Strikingly, in the hippocampus, both immunoreactive and primed PBMCs elicited similar pro-inflammatory and pro-excitatory effects. However, when immunoreactive and primed PBMCs were cultured in the media separately from OCHSCs, only immunoreactive PBMCs gave rise to neuroinflammation and hyperexcitability in the hippocampus, whereas primed PBMCs failed to produce any significant changes. Finally, VX-765 application to OCHSCs, co-cultured with either immunoreactive or primed PBMCs, prevented neuroinflammation and hippocampal hyperexcitability in OCHSCs. CONCLUSIONS Our study shows a higher susceptibility of the hippocampus to peripheral inflammation as compared to the cortex, mediated via Caspase-1-dependent signaling pathways. Thus, our findings suggest that Caspase-1 inhibition may potentially provide therapeutic benefits during hippocampal neuroinflammation and hyperexcitability secondary to peripheral innate immunity.
Collapse
Affiliation(s)
- Tarek Shaker
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada.
| | | | - Bénédicte Amilhon
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada
| | - Graziella Di Cristo
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada
| | - Alexander G Weil
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
16
|
Zheng W, Sun L, Yang L, Xu T. The circular RNA circBCL2L1 regulates innate immune responses via microRNA-mediated downregulation of TRAF6 in teleost fish. J Biol Chem 2021; 297:101199. [PMID: 34536420 PMCID: PMC8487061 DOI: 10.1016/j.jbc.2021.101199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Growing numbers of studies have shown that circular RNAs (circRNAs) can function as regulatory factors to regulate the innate immune response, cell proliferation, cell migration, and other important processes in mammals. However, the function and regulatory mechanism of circRNAs in lower vertebrates are still unclear. Here, we discovered a novel circRNA derived from the gene encoding Bcl-2-like protein 1 (BCL2L1) gene, named circBCL2L1, which was related to the innate immune responses in teleost fish. Results indicated that circBCL2L1 played essential roles in host antiviral immunity and antibacterial immunity. Our study also identified a microRNA, miR-30c-3-3p, which could inhibit the innate immune response by targeting inflammatory mediator TRAF6. And TRAF6 is a key signal transduction factor in innate immune response mediated by TLRs. Moreover, we also found that the antiviral and antibacterial effects inhibited by miR-30c-3-3p could be reversed with the expression of circBCL2L1. Our data revealed that circBCL2L1 functioned as a competing endogenous RNA (ceRNA) of TRAF6 by competing for binding with miR-30c-3-3p, leading to activation of the NF-κB/IRF3 inflammatory pathway and then enhancing the innate immune responses. Our results suggest that circRNAs can play an important role in the innate immune response of teleost fish.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lingping Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
17
|
Salvi V, Nguyen HO, Sozio F, Schioppa T, Gaudenzi C, Laffranchi M, Scapini P, Passari M, Barbazza I, Tiberio L, Tamassia N, Garlanda C, Del Prete A, Cassatella MA, Mantovani A, Sozzani S, Bosisio D. SARS-CoV-2-associated ssRNAs activate inflammation and immunity via TLR7/8. JCI Insight 2021; 6:e150542. [PMID: 34375313 PMCID: PMC8492321 DOI: 10.1172/jci.insight.150542] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
The inflammatory and IFN pathways of innate immunity play a key role in the resistance and pathogenesis of coronavirus disease 2019 (COVID-19). Innate sensors and SARS-CoV-2–associated molecular patterns (SAMPs) remain to be completely defined. Here, we identified single-stranded RNA (ssRNA) fragments from the SARS-CoV-2 genome as direct activators of endosomal TLR7/8 and MyD88 pathway. The same sequences induced human DC activation in terms of phenotype and function, such as IFN and cytokine production and Th1 polarization. A bioinformatic scan of the viral genome identified several hundreds of fragments potentially activating TLR7/8, suggesting that products of virus endosomal processing potently activate the IFN and inflammatory responses downstream of these receptors. In vivo, SAMPs induced MyD88-dependent lung inflammation characterized by accumulation of proinflammatory and cytotoxic mediators and immune cell infiltration, as well as splenic DC phenotypical maturation. These results identified TLR7/8 as a crucial cellular sensor of ssRNAs encoded by SARS-CoV-2 involved in host resistance and the disease pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Hoang Oanh Nguyen
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Cecilia Garlanda
- Research in Immunology and Infectious Disease, IRCCS Humanities Research Hospital, Milan, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Alberto Mantovani
- Research in Immunology and Infectious Disease, IRCCS Humanities Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Protective effects of the NLRP3 inflammasome against infectious bursal disease virus replication in DF-1 cells. Arch Virol 2021; 166:1943-1950. [PMID: 33982180 DOI: 10.1007/s00705-021-05099-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory responses are an important part of the innate immune response during viral infection. Various inflammasome complexes have been identified. The pyrin domain-containing 3 (NLRP3) inflammasome plays a critical role in detecting some RNA viruses, such as influenza virus. However, the effect of the NLRP3 inflammasome on infectious bursal disease virus (IBDV) replication is still unclear. Here, we report that IBDV-infection induces the transcription of NLRP3 inflammasome and IL-1β genes in the immortalized chicken embryo fibroblast cell line DF-1. Inhibition of caspase-1 by Belnacasan (VX-765) suppressed the transcription of IL-1β, reduced cell lysis, and significantly promoted IBDV replication in DF-1 cells. Furthermore, knockdown of NLRP3 by small interfering RNA promoted IBDV replication in the host cells. Thus, IBDV can induce NLRP3 inflammasome activation in DF-1 cells through a mechanism requiring viral replication, revealing a new antiviral mechanism employed by the host.
Collapse
|
19
|
Morimoto N, Kono T, Sakai M, Hikima JI. Inflammasomes in Teleosts: Structures and Mechanisms That Induce Pyroptosis during Bacterial Infection. Int J Mol Sci 2021; 22:4389. [PMID: 33922312 PMCID: PMC8122782 DOI: 10.3390/ijms22094389] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pattern recognition receptors (PRRs) play a crucial role in inducing inflammatory responses; they recognize pathogen-associated molecular patterns, damage-associated molecular patterns, and environmental factors. Nucleotide-binding oligomerization domain-leucine-rich repeat-containing receptors (NLRs) are part of the PRR family; they form a large multiple-protein complex called the inflammasome in the cytosol. In mammals, the inflammasome consists of an NLR, used as a sensor molecule, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as an adaptor protein, and pro-caspase1 (Casp1). Inflammasome activation induces Casp1 activation, promoting the maturation of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and the induction of inflammatory cell death called pyroptosis via gasdermin D cleavage in mammals. Inflammasome activation and pyroptosis in mammals play important roles in protecting the host from pathogen infection. Recently, numerous inflammasome-related genes in teleosts have been identified, and their conservation and/or differentiation between their expression in mammals and teleosts have also been elucidated. In this review, we summarize the current knowledge of the molecular structure and machinery of the inflammasomes and the ASC-spec to induce pyroptosis; moreover, we explore the protective role of the inflammasome against pathogenic infection in teleosts.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan;
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| |
Collapse
|
20
|
Influences of Selenium-Enriched Yeast on Growth Performance, Immune Function, and Antioxidant Capacity in Weaned Pigs Exposure to Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5533210. [PMID: 33855070 PMCID: PMC8019624 DOI: 10.1155/2021/5533210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
This study elucidated the function role of dietary selenium-enriched yeast (SeY) supplementation on growth performance, immune function, and antioxidant capacity in weaned pigs exposure to oxidative stress. Thirty-two similarity weight pigs were randomly divided into four treatments: (1) nonchallenged control, (2) control+SeY, (3) control+diquat, and (4) control+SeY+diquat. The period of experiment was 21 days; on day 16, pigs were injected with diquat or sterile saline. Results revealed that oxidative stress was notably detrimental to the growth performance of piglets, but SeY supplementation ameliorated this phenomenon, which might be regarding the increasing of body antioxidant capacity and immune functions. In details, SeY supplementation improved the digestibility of crude protein (CP), ash, and gross energy (GE). Moreover, the serum concentrations of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), glutamic-pyruvic transaminase(GPT), and glutamic-oxaloacetic transaminase (GOT) were reduced via SeY supplemented, and serum concentrations of immunoglobulins A (IgA), IgG, and activities of antioxidant enzymes such as the superoxide dismutase (SOD), catalase (CAT) ,and glutathione peroxidase (GSH-Px) were improved in the diquat-challenged pigs (P < 0.05). In addition, SeY supplementation acutely enhanced the activities of these antioxidant enzymes in the liver and thymus upon diquat challenge, which involved with the upregulation of the critical genes related antioxidant signaling such as the nuclear factor erythroid-derived 2-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) (P < 0.05). Importantly, we also found that SeY supplementation apparently reduced the malondialdehyde (MDA) concentrations in the liver, thymus, and serum (P < 0.05). Specifically, the expression levels of TNF-α, IL-6, IL-1β, Toll-like receptor 4 (TLR-4), and nuclear factor-κB (NF-κB) in the liver and thymus were downregulated by SeY upon diquat challenge. These results suggested that SeY can attenuate oxidative stress-induced growth retardation, which was associated with elevating body antioxidant capacity, immune functions, and suppressed inflammatory response.
Collapse
|
21
|
Choudhury SKM, Ma X, Abdullah SW, Zheng H. Activation and Inhibition of the NLRP3 Inflammasome by RNA Viruses. J Inflamm Res 2021; 14:1145-1163. [PMID: 33814921 PMCID: PMC8009543 DOI: 10.2147/jir.s295706] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation refers to the response of the immune system to viral, bacterial, and fungal infections, or other foreign particles in the body, which can involve the production of a wide array of soluble inflammatory mediators. It is important for the development of many RNA virus-infected diseases. The primary factors through which the infection becomes inflammation involve inflammasome. Inflammasomes are proteins complex that the activation is responsive to specific pathogens, host cell damage, and other environmental stimuli. Inflammasomes bring about the maturation of various pro-inflammatory cytokines such as IL-18 and IL-1β in order to mediate the innate immune defense mechanisms. Many RNA viruses and their components, such as encephalomyocarditis virus (EMCV) 2B viroporin, the viral RNA of hepatitis C virus, the influenza virus M2 viroporin, the respiratory syncytial virus (RSV) small hydrophobic (SH) viroporin, and the human rhinovirus (HRV) 2B viroporin can activate the Nod-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome to influence the inflammatory response. On the other hand, several viruses use virus-encoded proteins to suppress inflammation activation, such as the influenza virus NS1 protein and the measles virus (MV) V protein. In this review, we summarize how RNA virus infection leads to the activation or inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- S K Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| |
Collapse
|
22
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|
23
|
Imran M, Shah FA, Nadeem H, Zeb A, Faheem M, Naz S, Bukhari A, Ali T, Li S. Synthesis and Biological Evaluation of Benzimidazole Derivatives as Potential Neuroprotective Agents in an Ethanol-Induced Rodent Model. ACS Chem Neurosci 2021; 12:489-505. [PMID: 33430586 DOI: 10.1021/acschemneuro.0c00659] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most devastating and progressive neurodegenerative disease in middle to elder aged people, which can be exacerbated by lifestyle factors. Recent longitudinal studies demonstrated that alcohol consumption exacerbates memory impairments in adults. However, the underlying mechanism of alcohol-induced memory impairment is still elusive. The increased cellular manifestation of reactive oxygen species (ROS) and the production of numerous proinflammatory markers play a critical role in the neurodegeneration and pathogenesis of AD. Therefore, reducing neurodegeneration by decreasing oxidative stress and neuroinflammation may provide a potential therapeutic roadmap for the treatment of AD. In this study, eight new benzimidazole acetamide derivatives (FP1, FP2, FP5-FP10) were synthesized and characterized to investigate its neuroprotective effects in ethanol-induced neurodegeneration in a rat model. Further, three derivatives (FP1, FP7, and FP8) were selected for in vivo molecular analysis based on preliminary in vitro antioxidant screening assay. Molecular docking analysis was performed to assess the affinity of synthesized benzimidazole acetamide derivatives against selected proinflammatory targets (TNF-α, IL-6). Biochemical analysis revealed elevated expression of neuroinflammatory markers (TNF-α, NF-κB, IL-6, NLRP3), increased cellular oxidative stress, and reduced antioxidant enzymes in ethanol-exposed rats brain. Notably, pretreatment with new benzimidazole acetamide derivatives (FP1, FP7, and FP8) significantly modulated the ethanol-induced memory deficits, oxidative stress, and proinflammatory markers (TNF-α, NF-κB, IL-6, NLRP3) in the cortex. The multipurpose nature of acetamide containing benzimidazole nucleus and its versatile affinity toward numerous receptors highlight its multistep targeting potential. These results indicated the neuroprotective potential of benzimidazole acetamide derivatives (FP1, FP7, and FP8) as novel therapeutic candidates in ethanol-induced neurodegeneration which may partially be due to inhibition of the neuroinflammatory-oxidative stress vicious cycle.
Collapse
Affiliation(s)
- Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Shagufta Naz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Asma Bukhari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
24
|
Burn injury induces elevated inflammatory traffic: the role of NF-κB. Inflamm Res 2020; 70:51-65. [PMID: 33245371 DOI: 10.1007/s00011-020-01426-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
A burn insult generally sustains a hypovolemic shock due to a significant loss of plasma from the vessels. The burn injury triggers the release of various mediators, such as reactive oxygen species (ROS), cytokines, and inflammatory mediators. Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), stemming from foreign microbial discharge and damaged tissue or necrotic cells from the burn-injured site, enter the systemic circulation, activate toll-like receptors (TLRs), and trigger the excessive secretion of cytokines and inflammatory mediators. Inflammation plays a vital role in remodeling an injured tissue, detoxifying toxins, and helps in the healing process. A transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), contributes to a variety of physiological and pathological conditions, including immune response, cell death, cell survival, and inflammatory processes. During the pathogenesis of a burn wound, upregulation of various cytokines and growth factors lead to undesirable tissue inflammation. Thus, NF-κB, a dominant moderator of inflammation, needs to be altered to prove beneficial to the treatment of burns or other inflammation-associated diseases. This review addresses the relationship between NF-κB and elevated inflammation in a burn condition that could potentially be altered to induce an early wound-healing mechanism of burn wounds.
Collapse
|
25
|
TLR9 Rs352140 polymorphism contributes to a decreased risk of bacterial meningitis: evidence from a meta-analysis. Epidemiol Infect 2020; 148:e294. [PMID: 33143777 PMCID: PMC7770465 DOI: 10.1017/s0950268820002666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Some studies have suggested that the Toll-like receptor 9 polymorphism (TLR9 rs352140) is closely related to the risk of bacterial meningitis (BM), but this is subject to controversy. This study set out to estimate whether the TLR9 rs352140 polymorphism confers an increased risk of BM. Relevant literature databases were searched including PubMed, Embase, the Cochrane Library and China National Knowledge Infrastructure (CNKI) up to August 2020. Seven case-control studies from four publications were enrolled in the present meta-analysis. Odds ratios (OR) and confidence intervals (95% CI) were calculated to estimate associations between BM risk and the target polymorphism. Significant associations identified were allele contrast (A vs. G: OR 0.66, 95% CI 0.59–0.75, P = 0.000), homozygote comparison (AA vs. AG/GG: OR 0.62, 95% CI 0.49–0.78, P = 0.000), heterozygote comparison (A vs. G: OR 0.74, 95% CI 0.61–0.91, P = 0.005), recessive genetic model (AA vs. AG/GG: OR 0.78, 95% CI 0.65–0.93, P = 0.006) and dominant genetic model (AA vs. AG/GG: OR 0.70, 95% CI 0.57–0.85, P = 0.000). The findings indicate that, in contrast to some studies, the TLR9 rs352140 polymorphism is associated with a decreased risk for BM.
Collapse
|
26
|
Huertas A, Tu L, Humbert M, Guignabert C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovasc Res 2020; 116:885-893. [PMID: 31813986 DOI: 10.1093/cvr/cvz308] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
This review seeks to provide an update of preclinical findings and available clinical data on the chronic persistent inflammation and its direct role on the pulmonary arterial hypertension (PAH) progression. We reviewed the different mechanisms by which the inflammatory and immune pathways contribute to the structural and functional changes occurring in the three vascular compartments: the tunica intima, tunica media, and tunica adventitia. We also discussed how these inflammatory mediator changes may serve as a biomarker of the PAH progression and summarize unanswered questions and opportunities for future studies in this area.
Collapse
Affiliation(s)
- Alice Huertas
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.,Service de Pneumologie, AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 133, Avenue de la Résistance; 92350 Le Plessis-Robinson, France.,Faculté de Médecine, Université Paris-Sud and Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
27
|
Zhao W, Shi CS, Harrison K, Hwang IY, Nabar NR, Wang M, Kehrl JH. AKT Regulates NLRP3 Inflammasome Activation by Phosphorylating NLRP3 Serine 5. THE JOURNAL OF IMMUNOLOGY 2020; 205:2255-2264. [PMID: 32929041 DOI: 10.4049/jimmunol.2000649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The cytosolic pattern recognition receptor NLRP3 senses host-derived danger signals and certain microbe-derived products in both humans and rodents. NLRP3 activation assembles an inflammasome complex that contains the adapter proteins ASC and caspase-1, whose activation triggers the maturation and release of the proinflammatory cytokines IL-1β and IL-18. S5 phosphorylation of NLRP3 prevents its oligomerization and activation, whereas dephosphorylation of this residue by the phosphatase PP2A allows NLRP3 activation. However, the protein kinase that mediates NLRP3 S5 phosphorylation is unknown. In this study, we show that AKT associates with NLRP3 and phosphorylates it on S5, limiting NLRP3 oligomerization. This phosphorylation event also stabilizes NLRP3 by reducing its ubiquitination on lysine 496, which inhibits its proteasome-mediated degradation by the E3 ligase Trim31. Pharmacologic manipulation of AKT kinase activity reciprocally modulates NLRP3 inflammasome-mediated IL-1β production. Inhibition of AKT reduced IL-1β production following the i.p. injection of LPS into mice. We propose that AKT, Trim31, and PP2A together modulate NLRP3 protein levels and the tendency to oligomerize, thereby setting a tightly regulated threshold for NLRP3 activation.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.,B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; and.,Department of Prosthodontics, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen Harrison
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Min Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; and
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
28
|
Liu TY, Zhao LL, Chen SB, Hou BC, Huang J, Hong X, Qing L, Fang Y, Tao Z. Polygonatum sibiricum polysaccharides prevent LPS-induced acute lung injury by inhibiting inflammation via the TLR4/Myd88/NF-κB pathway. Exp Ther Med 2020; 20:3733-3739. [PMID: 32855724 PMCID: PMC7444378 DOI: 10.3892/etm.2020.9097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation plays an important role in cases of acute lung injury (ALI), and the Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway, which can be regulated by Polygonatum sibiricum polysaccharides (PSPs), is closely related to the dynamics of lipopolysaccharide (LPS)-induced inflammation. Thus, we sought to evaluate whether or not PSPs prevent LPS-induced ALI by way of inhibiting inflammation via the TLR4/NF-κB pathway in rats. We established an ALI rat model by tracheal instillation of LPS, and by pre-injection of PSPs into rats to examine PSPs in the ALI rat model. We found that PSPs attenuated LPS-induced lung pathological changes in ALI rats, decreased LPS-induced myeloperoxidase (MOP) activity, and elevated malondialdehyde (MDA) levels in lung tissue. However, PSPs also decreased the LPS-induced increase in the neutrophil ratio, and decreased inflammatory factor levels in bronchoalveolar lavage fluid (BALF). Moreover, PSPs decreased LPS-induced increases in inflammatory factors measured by mRNA expression, and altered the levels of expression of TLR4, medullary differentiation protein 88 (Myd88), p-IKB-α/IKB-α and p-p65/p65 proteins in lung tissue. In vitro, PSPs also reduced apoptosis induced by LPS in BEAS-2B cells by suppressing inflammation through its effect of inhibiting the TLR4/NF-κB pathway. In conclusion, our results suggest that PSPs may be a potential drug for effective treatment of LPS-induced ALI, due to the ability to inhibit inflammation through effects exerted on the TLR4/Myd88/NF-κB pathway.
Collapse
Affiliation(s)
- Tian-Yin Liu
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Li Zhao
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shi-Biao Chen
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ben-Chao Hou
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Huang
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiu Hong
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lian Qing
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Fang
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhe Tao
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
29
|
Jin X, Yin S, Zhang Y, Chen X. Association between TLR2 Arg677Trp polymorphism and tuberculosis susceptibility: A meta-analysis. Microb Pathog 2020; 144:104173. [PMID: 32224213 DOI: 10.1016/j.micpath.2020.104173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Toll-like receptor 2 (TLR2) is an important member of TLRs, which is significant in the initial of inflammatory response against bacteria. Several studies have been conducted to investigate the TLR2 Arg677Trp polymorphism and Tuberculosis (TB) susceptibility. Unfortunately, the results of previous studies were inconsistent. OBJECTIVES The aim of present study was to investigate the relationship between TLR2 Arg677Trp polymorphisms and TB susceptibility. METHODS The association between the TLR2 Arg677Trp polymorphism and TB susceptibility was assessed by odds ratios (OR) together with their 95% confidence intervals (95%CI). RESULTS Six case-control studies were enrolled in the meta-analysis. Overall, significant association between TLR2 Arg677Trp polymorphism and TB risk were found neither under allele contrast (C vs. T: OR = 0.59, 95%CI = 0.28-1.23, P = 0.158) nor under recessive genetic model (CC vs. CT/TT: OR = 0.43, 95%CI = 0.12-1.51, P = 0.188). CONCLUSION We conclude that TLR2 Arg677Trp polymorphism is not associated with TB susceptibility.
Collapse
Affiliation(s)
- Xiaochun Jin
- Department of Anesthesiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215028, PR China.
| | - Shuzhou Yin
- Department of Anesthesiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medcine, Suzhou, 215028, PR China.
| | - Youtao Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China.
| | - Xu Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China.
| |
Collapse
|
30
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
31
|
Kasimsetty SG, Hawkes A, Barekatain K, Soo E, Welch AK, McKay DB. TLR2 and NODs1 and 2 cooperate in inflammatory responses associated with renal ischemia reperfusion injury. Transpl Immunol 2020; 58:101260. [PMID: 31760144 PMCID: PMC7041897 DOI: 10.1016/j.trim.2019.101260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 11/21/2022]
Abstract
Pattern recognition receptors (PRRs) are potent triggers of tissue injury following renal ischemia/reperfusion injury (IRI). Specific PRRs, such as the toll-like receptor 2 (TLR2) and the nucleotide-binding oligomerization domain-like receptors (NLRs) NOD1 and NOD2 are promising targets to abrogate inflammatory injury associated with renal IRI. Several recent reports have shown there is crosstalk between TLRs and NODs, which might boost inflammatory responses to tissue injury. This study examined the relative roles of TLR2 and NODs 1 and 2 in activation of myeloid cells that contribute to inflammation after renal IRI. We found that TLR2 and NOD1 and 2 signaling induces neutrophil, macrophage and dendritic cell migration in vitro, however their blockade only decreases neutrophil infiltration into ischemic kidneys. The results of this study suggest that future therapies targeted to innate immune blockade should consider that either TLR2 or NOD1/2 blockade could decrease neutrophil inflammation following an ischemic insult to the kidney, however blockade of these PRRs would not likely impact infiltration of dendritic cells or macrophages. Developing rational approaches that target innate immunity in IRI-induced acute kidney injury requires an understanding of the relative role of PRRs in directing inflammation in the kidney.
Collapse
Affiliation(s)
- Sashi G Kasimsetty
- Department of Immunology and Microbial Sciences, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America
| | - Alana Hawkes
- Department of Immunology and Microbial Sciences, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America; Scripps Clinic and Green Hospital, Division of Transplantation, 10660 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America
| | - Kayvan Barekatain
- University of California San Diego, Department of Medicine, Division of Nephrology and Hypertension, 9500 Gilman Drive, La Jolla, CA 92093, United States of America
| | - Elizabeth Soo
- Department of Immunology and Microbial Sciences, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America; Scripps Clinic and Green Hospital, Division of Transplantation, 10660 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America
| | - Alexander K Welch
- Department of Immunology and Microbial Sciences, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America; University of California San Diego, Department of Medicine, Division of Nephrology and Hypertension, 9500 Gilman Drive, La Jolla, CA 92093, United States of America
| | - Dianne B McKay
- Department of Immunology and Microbial Sciences, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America; Scripps Clinic and Green Hospital, Division of Transplantation, 10660 N. Torrey Pines Rd, La Jolla, CA 92037, United States of America.
| |
Collapse
|
32
|
Gene microarray integrated with iTRAQ-based proteomics for the discovery of NLRP3 in LPS-induced inflammatory response of bovine mammary epithelial cells. J DAIRY RES 2019; 86:416-424. [PMID: 31722754 DOI: 10.1017/s0022029919000761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mastitis, a major infectious disease in dairy cows, is characterized by an inflammatory response to pathogens such as Escherichia coli and Staphylococcus aureus. To better understand the immune and inflammatory response of the mammary gland, we stimulated bovine mammary gland epithelial cells (BMECs) with E. coli-derived lipopolysaccharide (LPS). Using transcriptomic and proteomic analyses, we identified 1019 differentially expressed genes (DEGs, fold change ≥2 and P-value < 0.05) and 340 differentially expressed proteins (DEPs, fold change ≥1.3 and P-value < 0.05), of which 536 genes and 162 proteins were upregulated and 483 genes and 178 proteins were downregulated following exposure to LPS. These differentially expressed genes were associated with 172 biological processes; 15 Gene Ontology terms associated with response to stimulus, 4 associated with immune processes, and 3 associated with inflammatory processes. The DEPs were associated with 51 biological processes; 2 Gene Ontology terms associated with response to stimulus, 1 associated with immune processes, and 2 associated with inflammatory processes. Meanwhile, several pathways involved in mammary inflammation, such as Toll-like receptor, NF-κB, and NOD-like receptor signaling pathways were also represented. NLRP3 depletion significantly inhibited the expression of IL-1β and PTGS2 by blocking caspase-1 activity in LPS-induced BMECs. These results suggest that NLR signaling pathways works in coordination with TLR4/NF-κB signaling pathways via NLRP3-inflammasome activation and pro-inflammatory cytokine secretion in LPS-induced mastitis. The study highlights the function of NLRP3 in an inflammatory microenvironment, making NLRP3 a promising therapeutic target in Escherichia coli mastitis.
Collapse
|
33
|
Chen L, Liu Z. Downregulation of FSTL‑1 attenuates the inflammation injury during Streptococcus pneumoniae infection by inhibiting the NLRP3 and TLR4/NF‑κB signaling pathway. Mol Med Rep 2019; 20:5345-5352. [PMID: 31638229 DOI: 10.3892/mmr.2019.10752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/05/2019] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae‑induced pneumonia is a common disease and major cause of community‑acquired pneumonia. Previous studies have shown that Follistatin‑like protein 1 (FSTL‑1) serves important roles in regulating the inflammatory response. The present study aimed to investigate the effect of FSTL‑1 on the inflammatory response during S. pneumoniae infection using in vitro and in vivo models. ELISAs were used to detect the production of interleukin (IL)‑1β, tumor necrosis factor‑α and IL‑6. Western blotting and reverse transcription‑quantitative PCR were performed to determine the protein and mRNA expression of these factors. The results of the present study indicated that S. pneumoniae infection triggered a strong proinflammatory response and a high level of FSTL‑1 expression in mouse bone marrow‑derived macrophages. Moreover, FSTL‑1 may be required for the production of inflammatory factors during S. pneumoniae infection by regulating nucleotide oligomerization domain‑like receptor protein 3 in vitro and in vivo. In addition, it was found that the Toll‑like receptor 4/nuclear factor‑κB signaling pathway was involved in the inflammatory response regulated by FSTL‑1. The findings of the present study suggested that FSTL‑1 plays an important role in the inflammatory response during S. pneumoniae infection, providing a potential therapeutic target for reducing morbidity and mortality in patients with pneumonia.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Disease, Beijing Jishuitan Hospital, 4th Medical College of Peking University, Beijing 100096, P.R. China
| | - Zhenshe Liu
- Department of Laboratory, Xian Yang Central Hospital, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
34
|
Hou C, Zhu X, Shi C, Peng Y, Huang D, Li Q, Miao Y. Iguratimod (T-614) attenuates severe acute pancreatitis by inhibiting the NLRP3 inflammasome and NF-κB pathway. Biomed Pharmacother 2019; 119:109455. [PMID: 31541854 DOI: 10.1016/j.biopha.2019.109455] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Severe acute pancreatitis (SAP) is an acute abdominal disease that can develop locally to the multiple organs. It is characterized by pancreatic tissue self-digestion, and the rapid release of inflammatory cytokines, which play a dominant role in local or even systemic inflammation. In this study, we investigate the protective effect of T-614 against SAP induced by cerulein plus LPS in mice. Biochemical markers associated with pancreatitis in serum such as inflammatory cytokines, amylase and lipase activities were measured. Related proteins of NLRP3 inflammasome and NF-κB signaling pathway were evaluated by western blotting. Hematoxylin-eosin staining (HE) and immunohistochemistry (IHC) were used to evaluate changes of inflammation in pancreatic tissue. T-614 significantly alleviated the elevation markers of pancreatitis and suppresses the pancreatic tissue damage, including histopathological and molecular manifestations. In conclusion, T-614 plays a protective role in experimental SAP mice model via anti-inflammatory effects.
Collapse
Affiliation(s)
- Chaoqun Hou
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaole Zhu
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chenyuan Shi
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yunpeng Peng
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongya Huang
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiang Li
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yi Miao
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
35
|
Azam S, Jakaria M, Kim IS, Kim J, Haque ME, Choi DK. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Front Immunol 2019; 10:1000. [PMID: 31134076 PMCID: PMC6522942 DOI: 10.3389/fimmu.2019.01000] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Neuronal dysfunction initiates several intracellular signaling cascades to release different proinflammatory cytokines and chemokines, as well as various reactive oxygen species. In addition to neurons, microglia, and astrocytes are also affected by this signaling cascade. This release can either be helpful, neutral or detrimental for cell survival. Toll-like receptors (TLRs) activate and signal their downstream pathway to activate NF-κB and pro-IL-1β, both of which are responsible for neuroinflammation and linked to the pathogenesis of different age-related neurological conditions. However, herein, recent aspects of polyphenols in the treatment of neurodegenerative diseases are assessed, with a focus on TLR regulation by polyphenols. Different polyphenol classes, including flavonoids, phenolic acids, phenolic alcohols, stilbenes, and lignans can potentially target TLR signaling in a distinct pathway. Further, some polyphenols can suppress overexpression of inflammatory mediators through TLR4/NF-κB/STAT signaling intervention, while others can reduce neuronal apoptosis via modulating the TLR4/MyD88/NF-κB-pathway in microglia/macrophages. Indeed, neurodegeneration etiology is complex and yet to be completely understood, it may be that targeting TLRs could reveal a number of molecular and pharmacological aspects related to neurodegenerative diseases. Thus, activating TLR signaling modulation via natural resources could provide new therapeutic potentiality in the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea
| | - Md Jakaria
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience & Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju-si, South Korea
| | - Joonsoo Kim
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea
| | - Md Ezazul Haque
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju-si, South Korea.,Department of Integrated Bioscience & Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju-si, South Korea
| |
Collapse
|
36
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
37
|
Ranson N, Veldhuis M, Mitchell B, Fanning S, Cook AL, Kunde D, Eri R. NLRP3-Dependent and -Independent Processing of Interleukin (IL)-1β in Active Ulcerative Colitis. Int J Mol Sci 2018; 20:ijms20010057. [PMID: 30583612 PMCID: PMC6337576 DOI: 10.3390/ijms20010057] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
A contributing factor in the development of ulcerative colitis (UC) and Crohn’s disease (CD) is the disruption of innate and adaptive signaling pathways due to aberrant cytokine production. The cytokine, interleukin (IL)-1β, is highly inflammatory and its production is tightly regulated through transcriptional control and both inflammasome-dependent and inflammasome- independent proteolytic cleavage. In this study, qRT-PCR, immunohistochemistry, immunofluorescence confocal microscopy were used to (1) assess the mRNA expression of NLRP3, IL-1β, CASP1 and ASC in paired biopsies from UC and CD patient, and (2) the colonic localization and spatial relationship of NLRP3 and IL-1β in active and quiescent disease. NLRP3 and IL-1β were found to be upregulated in active UC and CD. During active disease, IL-1β was localized to the infiltrate of lamina propria immune cells, which contrasts with the near-exclusive epithelial cell layer expression during non-inflammatory conditions. In active disease, NLRP3 was consistently expressed within the neutrophils and other immune cells of the lamina propria and absent from the epithelial cell layer. The disparity in spatial localization of IL-1β and NLRP3, observed only in active UC, which is characterized by a neutrophil-dominated lamina propria cell population, implies inflammasome-independent processing of IL-1β. Consistent with other acute inflammatory conditions, these results suggest that blocking both caspase-1 and neutrophil-derived serine proteases may provide an additional therapeutic option for treating active UC.
Collapse
Affiliation(s)
- Nicole Ranson
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Mark Veldhuis
- Launceston General Hospital, Launceston, Tasmania 7250, Australia.
| | - Brent Mitchell
- Launceston General Hospital, Launceston, Tasmania 7250, Australia.
| | - Scott Fanning
- Launceston General Hospital, Launceston, Tasmania 7250, Australia.
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Hobart, Tasmania 7000, Australia.
| | - Dale Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
38
|
Scott TE, Kemp-Harper BK, Hobbs AJ. Inflammasomes: a novel therapeutic target in pulmonary hypertension? Br J Pharmacol 2018; 176:1880-1896. [PMID: 29847700 DOI: 10.1111/bph.14375] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare, progressive pulmonary vasculopathy characterized by increased mean pulmonary arterial pressure, pulmonary vascular remodelling and right ventricular failure. Current treatments are not curative, and new therapeutic strategies are urgently required. Clinical and preclinical evidence has established that inflammation plays a key role in PH pathogenesis, and recently, inflammasomes have been suggested to be central to this process. Inflammasomes are important regulators of inflammation, releasing the pro-inflammatory cytokines IL-1β and IL-18 in response to exogenous pathogen- and endogenous damage-associated molecular patterns. These cytokines are elevated in PH patients, but whether this is a consequence of inflammasome activation remains to be determined. This review will briefly summarize current PH therapies and their pitfalls, introduce inflammasomes and the mechanisms by which they promote inflammation and, finally, highlight the preclinical and clinical evidence for the potential involvement of inflammasomes in PH pathobiology and how they may be targeted therapeutically. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Tara Elizabeth Scott
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK.,Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
39
|
Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J Nutr Biochem 2018; 59:84-92. [PMID: 29986311 DOI: 10.1016/j.jnutbio.2018.06.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022]
Abstract
Intestinal barrier plays key roles in maintaining intestinal homeostasis. Inflammation and oxidative damage can severely destroy the intestinal integrity of mammals. Chlorogenic acid (CGA) is a natural polyphenol present in human diet and plants, possessing potent antioxidant and anti-inflammatory activities. This study was conducted to investigate the protective effects of CGA and its molecular mechanisms on intestinal barrier function in a porcine model. Twenty-four weaned pigs were allotted to two groups and fed with a basal diet or a basal diet containing 1000 mg/kg CGA. The results showed that CGA decreased serum D-lactate and diamine oxidase levels, and enhanced the expression and localization of claudin-1 protein in apical intercellular region of small intestinal epithelium. Interestingly, CGA significantly decreased the mucosa histamine and tryptase contents, as well as the tryptase-positive mast cell counts. Moreover, the expression levels of critical inflammation molecules (interleukin-1β, interleukin-6, tumor necrosis factor-α, and nuclear factor-κB) were down-regulated by CGA in jejunal and ileal mucosa. However, the expression levels of inflammation repressors (suppressor of cytokine signaling 1 and toll-interacting protein) were up-regulated by CGA. Importantly, CGA decreased the malondialdehyde content but elevated glutathione peroxidase and catalase content in duodenal and jejunal mucosa. The expression levels of critical molecules in antioxidant signaling (nuclear factor erythroid-derived 2-related factor 2 and heme oxygenase-1) were elevated by CGA in duodenal and jejunal mucosa. These results suggested that CGA could ameliorate intestinal barrier disruption in weaned pigs, which might be mediated by suppressing the TLR4/NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway.
Collapse
|
40
|
Zhu H, Wang H, Wang S, Tu Z, Zhang L, Wang X, Hou Y, Wang C, Chen J, Liu Y. Flaxseed Oil Attenuates Intestinal Damage and Inflammation by Regulating Necroptosis and TLR4/NOD Signaling Pathways Following Lipopolysaccharide Challenge in a Piglet Model. Mol Nutr Food Res 2018; 62:e1700814. [PMID: 29510469 DOI: 10.1002/mnfr.201700814] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/19/2018] [Indexed: 12/29/2022]
Abstract
SCOPE Flaxseed oil is a rich source of α-linolenic acid (ALA), which is the precursor of the long-chain n-3 polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). This study investigates the protective effect of flaxseed oil against intestinal injury induced by lipopolysaccharide (LPS). MATERIALS AND RESULTS Twenty-four weaned pigs were used in a 2 × 2 factorial experiment with dietary treatment (5% corn oil vs 5% flaxseed oil) and LPS challenge (saline vs LPS). On day 21 of the experiment, pigs were administrated with LPS or saline. At 2 h and 4 h post-administration, blood samples were collected. After the blood harvest at 4 h, all piglets were slaughtered and intestinal samples were collected. Flaxseed oil supplementation led to the enrichment of ALA, EPA, and total n-3 PUFAs in intestine. Flaxseed oil improved intestinal morphology, jejunal lactase activity, and claudin-1 protein expression. Flaxseed oil downregulated the mRNA expression of intestinal necroptotic signals. Flaxseed oil also downregulated the mRNA expression of intestinal toll-like receptors 4 (TLR4) and its downstream signals myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB), and nucleotide-binding oligomerization domain proteins 1, 2 (NOD1, NOD2) and its adapter molecule, receptor-interacting protein kinase 2 (RIPK2). CONCLUSION These results suggest that dietary addition of flaxseed oil enhances intestinal integrity and barrier function, which is involved in modulating necroptosis and TLR4/NOD signaling pathways.
Collapse
Affiliation(s)
- Huiling Zhu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Haibo Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shuhui Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Zhixiao Tu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Lin Zhang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiuying Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chunwei Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Jie Chen
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
41
|
Jin X, Yin S, Zhang Y, Chen X. Association between TLR2 + 2477G/A polymorphism and bacterial meningitis: a meta-analysis. Epidemiol Infect 2018; 146:642-647. [PMID: 29457581 PMCID: PMC9134541 DOI: 10.1017/s0950268818000298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 01/27/2023] Open
Abstract
Toll-like receptor 2 (TLR2) is a key member of TLRs, which is crucial in the initial inflammatory response against bacteria. TLR2, is also the initial barrier against bacterial infection and plays an important role in recognising a variety of bacterial lipoproteins. Several studies have been performed to investigate the TLR2 + 2477G/A polymorphism and bacterial meningitis susceptibility. Unfortunately, the results of previous studies were controversial. Therefore, we performed a meta-analysis to derive a more precise estimation of the association. The association between the TLR2 + 2477G/A polymorphism and bacterial meningitis susceptibility was assessed by odds ratios together with their 95% confidence intervals (CI). Six studies were enrolled in the present meta-analysis. Overall, no significant association between TLR2 + 2477G/A polymorphism and bacterial meningitis risk were found under allele contrast (A vs. G: OR = 1.15, 95% CI = 0.93-1.43, P = 0.202), recessive genetic model (AA vs. AG/GG: OR = 1.12, 95% CI = 0.90-1.41, P = 0.313). The significant association was found between TLR2 + 2477G/A polymorphism and pneumococcal meningitis risk under allele contrast (A vs. G: OR = 1.54, 95% CI = 1.01-2.36, P = 0.046), recessive genetic model (AA vs. AG/GG: OR = 1.63, 95% CI = 1.03-2.57, P = 0.035). We conclude that TLR2 + 2477G/A polymorphism is not associated with meningococcal meningitis risk but contributes an increased risk of pneumococcal meningitis.
Collapse
Affiliation(s)
- Xiaochun Jin
- Department of Anesthesiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, People's Republic of China
| | - Shuzhou Yin
- Department of Anesthesiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, People's Republic of China
| | - Youtao Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| | - Xu Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| |
Collapse
|
42
|
Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, Mommen GPM, Metz B, Kersten GFA, Pennings JLA, Meiring HD. Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness. J Proteomics 2018; 175:144-155. [PMID: 29317357 DOI: 10.1016/j.jprot.2017.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022]
Abstract
Aluminum-based adjuvants are the most widely used adjuvants in human vaccines. A comprehensive understanding of the mechanism of action of aluminum adjuvants at the molecular level, however, is still elusive. Here, we unravel the effects of aluminum hydroxide Al(OH)3 by a systems-wide analysis of the Al(OH)3-induced monocyte response. Cell response analysis by cytokine release was combined with (targeted) transcriptome and full proteome analysis. Results from this comprehensive study revealed two novel pathways to become activated upon monocyte stimulation with Al(OH)3: the first pathway was IFNβ signaling possibly induced by DAMP sensing pathways like TLR or NOD1 activation, and second the HLA class I antigen processing and presentation pathway. Furthermore, known mechanisms of the adjuvant activity of Al(OH)3 were elucidated in more detail such as inflammasome and complement activation, homeostasis and HLA-class II upregulation, possibly related to increased IFNγ gene expression. Altogether, our study revealed which immunological pathways are activated upon stimulation of monocytes with Al(OH)3, refining our knowledge on the adjuvant effect of Al(OH)3 in primary monocytes. SIGNIFICANCE Aluminum salts are the most used adjuvants in human vaccines but a comprehensive understanding of the working mechanism of alum adjuvants at the molecular level is still elusive. Our Systems Vaccinology approach, combining complementary molecular biological, immunological and mass spectrometry-based techniques gave a detailed insight in the molecular mechanisms and pathways induced by Al(OH)3 in primary monocytes. Several novel immunological relevant cellular pathways were identified: type I interferon secretion potentially induced by TLR and/or NOD like signaling, the activation of the inflammasome and the HLA Class-I and Class-II antigen presenting pathways induced by IFNγ. This study highlights the mechanisms of the most commonly used adjuvant in human vaccines by combing proteomics, transcriptomics and cytokine analysis revealing new potential mechanisms of action for Al(OH)3.
Collapse
Affiliation(s)
- Sietske Kooijman
- Intravacc, Bilthoven, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | | | - Gideon F A Kersten
- Intravacc, Bilthoven, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
43
|
Ranson N, Kunde D, Eri R. Regulation and Sensing of Inflammasomes and Their Impact on Intestinal Health. Int J Mol Sci 2017; 18:ijms18112379. [PMID: 29120406 PMCID: PMC5713348 DOI: 10.3390/ijms18112379] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Pattern recognition receptors such as nucleotide-binding oligomerization domain (NOD)-containing protein receptors (NLRs) and the pyrin and hematopoitic interferon-inducible nuclear protein (HIN) domain (PYHIN) receptors initiate the inflammatory response following cell stress or pathogenic challenge. When activated, some of these receptors oligomerize to form the structural backbone of a signalling platform known as an inflammasome. Inflammasomes promote the activation of caspase-1 and the maturation of the proinflammatory cytokines, interleukin (IL)-1β and IL-18. The gut dysregulation of the inflammasome complex is thought to be a contributing factor in the development of inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). The importance of inflammasomes to intestinal health has been emphasized by various inflammasome-deficient mice in dextran sulphate sodium (DSS) models of intestinal inflammation and by the identification of novel potential candidate genes in population-based human studies. In this review, we summarise the most recent findings with regard to the formation, sensing, and regulation of the inflammasome complex and highlight their importance in maintaining intestinal health.
Collapse
Affiliation(s)
- Nicole Ranson
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Dale Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
44
|
Hu YW, Wu XM, Ren SS, Cao L, Nie P, Chang MX. NOD1 deficiency impairs CD44a/Lck as well as PI3K/Akt pathway. Sci Rep 2017; 7:2979. [PMID: 28592872 PMCID: PMC5462776 DOI: 10.1038/s41598-017-03258-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) are crucial for host defense and tissue homeostasis against infecting pathogens. PRRs are highly conserved cross species, suggesting their key roles in fundamental biological processes. Though much have been learned for NOD1 receptor in the innate and adaptive immune responses, the roles of NOD1 during embryonic and larval stages remain poorly understood. Here, we report that NOD1 is necessary for the modulation of PI3K-Akt pathway and larval survival in zebrafish. Transcriptome analysis revealed that the significantly enriched pathways in NOD1 -/- zebrafish larvae were mainly involved in metabolism and immune system processes. Biochemical analysis demonstrated that NOD1 was required for the expression of CD44a that, in turn, activated the PI3K-Akt pathway during larval development. Conversely, over-expression of CD44a in NOD1-deficient zebrafish restored the modulation of the PI3K-Akt pathway and improved larval survival. Collectively, our work indicates that NOD1 plays a previously undetected protective role in larval survival through CD44a-mediated activation of the PI3K-Akt signaling.
Collapse
Affiliation(s)
- Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shi Si Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China.
| |
Collapse
|
45
|
Singh DP, Bagam P, Sahoo MK, Batra S. Immune-related gene polymorphisms in pulmonary diseases. Toxicology 2017; 383:24-39. [PMID: 28366820 PMCID: PMC5464945 DOI: 10.1016/j.tox.2017.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/12/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
Between the DNA sequences of two randomly-selected human genomes, which consist of over 3 billion base pairs and twenty five thousand genes, there exists only 0.1% variation and 99.9% sequence identity. During the last couple of decades, extensive genome-wide studies have investigated the association between single-nucleotide polymorphisms (SNPs), the most common DNA variations, and susceptibility to various diseases. Because the immune system's primary function is to defend against myriad infectious agents and diseases, the large number of people who escape serious infectious diseases underscores the tremendous success of this system at this task. In fact, out of the third of the global human population infected with Mycobacterium tuberculosis during their lifetime, only a few people develop active disease, and a heavy chain smoker may inexplicably escape all symptoms of chronic obstructive pulmonary disease (COPD), lung cancer, and other smoke-associated lung diseases. This may be attributable to the genetic makeup of the individual(s), including their SNPs, which provide some resistance to the disease. Pattern recognition receptors (PRRs), transcription factors, cytokines and chemokines all play critical roles in orchestrating immune responses and their expression/activation is directly linked to human disease tolerance. Moreover, genetic variations present in the immune-response genes of various ethnicities may explain the huge differences in individual outcomes to various diseases and following exposure to infectious agents. The current review focuses on recent advances in our understanding of pulmonary diseases and the relationship of genetic variations in immune response genes to these conditions.
Collapse
Affiliation(s)
- Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94304, United States
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States.
| |
Collapse
|
46
|
Hu M, Zhao W, Gao W, Li W, Meng C, Yan Q, Wang Y, Zhou X, Geng S, Pan Z, Cui G, Jiao X. Recombinant Salmonella expressing SspH2-EscI fusion protein limits its colonization in mice. BMC Immunol 2017; 18:21. [PMID: 28468643 PMCID: PMC5415771 DOI: 10.1186/s12865-017-0203-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Background Activation of inflammasome contributes to the clearance of intracellular bacteria. C-terminus of E. coli EscI protein can activate NLRC4 (NLR family, CARD domain containing-4) inflammasome in macrophages. The purpose of this study was to determine if activation of NLRC4 inflammasome by EscI can reduce the colonization of Salmonella in mice. Results A recombinant S. typhimurium strain expressing fusion protein of the N-terminal SspH2 (a Salmonella type III secretion system 2 effector) and C-terminal EscI was constructed and designated as X4550(pYA3334-SspH2-EscI). In vitro assay showed that X4550(pYA3334-SspH2-EscI) significantly enhanced IL-1β and IL-18 secretion (P < 0.05) and pyroptotic cell death of mouse peritoneal macrophages, compared with those infected with control strain, X4550(pYA3334-SspH2). In vivo studies showed that colonization of X4550(pYA3334-SspH2-EscI) in both spleen and liver were significantly lower than that of X4550(pYA3334-SspH2) (P < 0.05). The bacterial counts of X4550(pYA3334-SspH2-EscI) in mice decreased, while those of X4550(pYA3334-SspH2) increased over the time after infection. Additionally, X4550(pYA3334-SspH2-EscI) induced a less pathological alteration in spleen and liver than X4550(pYA3334-SspH2). Conclusion Fusion protein SspH2-EscI may be translocated into macrophages and activate NLRC4 inflammasome, which limits Salmonella colonization in spleen and liver of mice.
Collapse
Affiliation(s)
- Maozhi Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Weixin Zhao
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wei Gao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenhua Li
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chuang Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiuxiang Yan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuyang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaohui Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, 06269-3089, CT, USA
| | - Shizhong Geng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guiyou Cui
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
47
|
Kramer CD, Genco CA. Microbiota, Immune Subversion, and Chronic Inflammation. Front Immunol 2017; 8:255. [PMID: 28348558 PMCID: PMC5346547 DOI: 10.3389/fimmu.2017.00255] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 12/12/2022] Open
Abstract
Several host-adapted pathogens and commensals have evolved mechanisms to evade the host innate immune system inducing a state of low-grade inflammation. Epidemiological studies have also documented the association of a subset of these microorganisms with chronic inflammatory disorders. In this review, we summarize recent studies demonstrating the role of the microbiota in chronic inflammatory diseases and discuss how specific microorganisms subvert or inhibit protective signaling normally induced by toll-like receptors (TLRs). We highlight our work on the oral pathogen Porphyromonas gingivalis and discuss the role of microbial modulation of lipid A structures in evasion of TLR4 signaling and resulting systemic immunopathology associated with atherosclerosis. P. gingivalis intrinsically expresses underacylated lipid A moieties and can modify the phosphorylation of lipid A, leading to altered TLR4 signaling. Using P. gingivalis mutant strains expressing distinct lipid A moieties, we demonstrated that expression of antagonist lipid A was associated with P. gingivalis-mediated systemic inflammation and immunopathology, whereas strains expressing agonist lipid A exhibited modest systemic inflammation. Likewise, mice deficient in TLR4 were more susceptible to vascular inflammation after oral infection with P. gingivalis wild-type strain compared to mice possessing functional TLR4. Collectively, our studies support a role for P. gingivalis-mediated dysregulation of innate and adaptive responses resulting in immunopathology and systemic inflammation. We propose that anti-TLR4 interventions must be designed with caution, given the balance between the protective and destructive roles of TLR signaling in response to microbiota and associated immunopathologies.
Collapse
Affiliation(s)
- Carolyn D Kramer
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine , Boston, MA , USA
| | - Caroline Attardo Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine , Boston, MA , USA
| |
Collapse
|
48
|
Zhang A, Xu J, Lai H, Huang W, Fang N, Chen R. Age-related changes and distribution of T cell markers (CD3 and CD4) and toll-like receptors(TLR2, TLR3,TLR4 and TLR7) in the duck lymphoid organs. Immunobiology 2017; 222:857-864. [PMID: 28356195 DOI: 10.1016/j.imbio.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
T lymphocytes and Toll-like receptors have been confirmed to have correlation with the ability to resistance to pathogenic challenges and play an important role in duck immune system. However, the information of ontogeny of T lymphocytes and Toll-like receptors is scarcely in duck. Therefore, to address these questions, we report the development and distribution of CD3 and CD4 by immunocytochemistry and the age-related mRNA level of duck T cell markers (CD3 and CD4) and Toll-like receptors (TLR2, TLR3, TLR4 and TLR7) by real time quantitative PCR in duck lymphoid organs (thymus, bursa of Fabricius and spleen). Results indicated that CD3 and CD4 positive cells can be observed in all test organs and partly change in an age-related way. CD4 positive T cell of duck spleen mainly distributed in periarterial lymphatic sheaths and red pulp, not in white pulp. Both of CD3 and CD4 were experienced significant increased wave twice in duck lymphoid organs and T cell dependent cellular immunity of duck may well established until 5 weeks old. The mRNA expression levels of duck TLRs were age and organ dependent, and duck TLR3 and TLR7 were significantly lower abundance in the spleen but higher in thymus and bursa of Fabricius, respectively. This study provide the essential knowledge of the ontogeny of T cells and Toll-like receptors in duck, which may shed lights on the T-cell mediate immunity and innate immunity in duck.
Collapse
Affiliation(s)
- Aiguo Zhang
- College of Veterinary Medicine, South China Agricultural University,483 Wushan Street, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Jiahua Xu
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing 526238, China
| | - Hanzhang Lai
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing 526238, China
| | - Wenke Huang
- Guangdong Enterprise Key Laboratory of Biotechnology R&D of Veterinary Biologics, Guangdong, Zhaoqing 526238, China
| | - Niran Fang
- College of Veterinary Medicine, South China Agricultural University,483 Wushan Street, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University,483 Wushan Street, Tianhe District, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
49
|
Wang Q, Zhao X, Zhang Z, Zhao H, Huang D, Cheng G, Yang Y. Proteomic analysis of physiological function response to hot summer in liver from lactating dairy cows. J Therm Biol 2017; 65:82-87. [PMID: 28343581 DOI: 10.1016/j.jtherbio.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature.
Collapse
Affiliation(s)
- Qiangjun Wang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaowei Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiling Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dongwei Huang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Guanglong Cheng
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yongxin Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
50
|
Inflammasomes in the lung. Mol Immunol 2017; 86:44-55. [PMID: 28129896 DOI: 10.1016/j.molimm.2017.01.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
Innate immune responses act as first line defences upon exposure to potentially noxious stimuli. The innate immune system has evolved numerous intracellular and extracellular receptors that undertake surveillance for potentially damaging particulates. Inflammasomes are intracellular innate immune multiprotein complexes that form and are activated following interaction with these stimuli. Inflammasome activation leads to the cleavage of pro-IL-1β and release of the pro-inflammatory cytokine, IL-1β, which initiates acute phase pro-inflammatory responses, and other responses are also involved (IL-18, pyroptosis). However, excessive activation of inflammasomes can result in chronic inflammation, which has been implicated in a range of chronic inflammatory diseases. The airways are constantly exposed to a wide variety of stimuli. Inflammasome activation and downstream responses clears these stimuli. However, excessive activation may drive the pathogenesis of chronic respiratory diseases such as severe asthma and chronic obstructive pulmonary disease. Thus, there is currently intense interest in the role of inflammasomes in chronic inflammatory lung diseases and in their potential for therapeutic targeting. Here we review the known associations between inflammasome-mediated responses and the development and exacerbation of chronic lung diseases.
Collapse
|