1
|
Munhoz DD, Fonseca DLM, Filgueiras IS, Dias HD, Nakaya HI, Jurisica I, Ochs HD, Schimke LF, Rizzo LV, Cabral-Marques O. Integrative immunology identified interferome signatures in uveitis and systemic disease-associated uveitis. Front Immunol 2025; 16:1509805. [PMID: 40270958 PMCID: PMC12014655 DOI: 10.3389/fimmu.2025.1509805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Uveitis accounts for up to 25% of global legal blindness and involves intraocular inflammation, classifed as infectious or non-infectious. Its complex pathophysiology includes dysregulated cytokines, particularly interferons (IFNs). However, the global signature of type I, II, and III interferon-regulated genes (Interferome) remains largely uncharacterized in uveitis. Methods In this study, we conducted an integrative systems biology analysis of blood transcriptome data from 169 non-infectious uveitis patients (56 isolated uveitis, 113 systemic disease-associated uveitis) and 82 healthy controls. Results Modular co-expression analysis identified distinct cytokine signaling networks, emphasizing interleukin and interferon pathways. A meta-analysis revealed 110 differentially expressed genes (metaDEGs) in isolated uveitis and 91 in systemic disease-associated uveitis, predominantly linked to immune responses. The Interferome database confirmed a predominance of type I and II IFN signatures in both groups. Pathway enrichment analysis highlighted inflammatory responses, including cytokine production (IL-8, IL1-β, IFN-γ, β, and α) and toll-like receptor signaling (TLR4, TLR7, TLR8, CD180). Principal component analysis emphasized the IFN signature's discriminative power, particularly in systemic disease-associated uveitis. Machine learning identified IFN-associated genes as robust predictors, while linear discriminant analysis pinpointed CCR2, CD180, GAPT, and PTGS2 as key risk factors in isolated uveitis and CA1, SIAH2, and PGS in systemic disease-associated uveitis. Conclusion These findings highlight IFN-driven imune dysregulation and potential molecular targets for precision therapies in uveitis.
Collapse
Affiliation(s)
- Danielle Dias Munhoz
- Experimental Biology Laboratory Prof. Dr. Geraldo Medeiros-Neto, Hospital Israelita Albert Einsten, Sao Paulo, Brazil
| | - Dennyson Leandro M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Haroldo Dutra Dias
- Department of Neuroscience, Institute of Biomedical Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Helder I. Nakaya
- Experimental Biology Laboratory Prof. Dr. Geraldo Medeiros-Neto, Hospital Israelita Albert Einsten, Sao Paulo, Brazil
| | - Igor Jurisica
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Seattle Children’s Research Institute, Seattle, WA, United States
| | - Lena F. Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luiz Vicente Rizzo
- Experimental Biology Laboratory Prof. Dr. Geraldo Medeiros-Neto, Hospital Israelita Albert Einsten, Sao Paulo, Brazil
| | - Otavio Cabral-Marques
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network, (USERN), Sao Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
- D’Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Bhumika, Bora NS, Bora PS. Genetic Insights into Age-Related Macular Degeneration. Biomedicines 2024; 12:1479. [PMID: 39062052 PMCID: PMC11274963 DOI: 10.3390/biomedicines12071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
One of the major causes of vision impairment among elderly people in developed nations is age-related macular degeneration (AMD). The distinctive features of AMD are the accumulation of extracellular deposits called drusen and the gradual deterioration of photoreceptors and nearby tissues in the macula. AMD is a complex and multifaceted disease influenced by several factors such as aging, environmental risk factors, and a person's genetic susceptibility to the condition. The interaction among these factors leads to the initiation and advancement of AMD, where genetic predisposition plays a crucial role. With the advent of high-throughput genotyping technologies, many novel genetic loci associated with AMD have been identified, enhancing our knowledge of its genetic architecture. The common genetic variants linked to AMD are found on chromosome 1q32 (in the complement factor H gene) and 10q26 (age-related maculopathy susceptibility 2 and high-temperature requirement A serine peptidase 1 genes) loci, along with several other risk variants. This review summarizes the common genetic variants of complement pathways, lipid metabolism, and extracellular matrix proteins associated with AMD risk, highlighting the intricate pathways contributing to AMD pathogenesis. Knowledge of the genetic underpinnings of AMD will allow for the future development of personalized diagnostics and targeted therapeutic interventions, paving the way for more effective management of AMD and improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Bhumika
- Department of Zoology, Sunderwati Mahila College, Tilka Manjhi Bhagalpur University, Bihar 812007, India;
| | - Nalini S. Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| | - Puran S. Bora
- Pat & Willard Walker Eye Research Center, Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA;
| |
Collapse
|
3
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Carr DJJ, Filiberti A, Gmyrek GB. Complement Suppresses the Initial Type 1 Interferon Response to Ocular Herpes Simplex Virus Type 1 Infection in Mice. Pathogens 2024; 13:74. [PMID: 38251381 PMCID: PMC10820508 DOI: 10.3390/pathogens13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The complement system (CS) contributes to the initial containment of viral and bacterial pathogens and clearance of dying cells in circulation. We previously reported mice deficient in complement component 3 (C3KO mice) were more sensitive than wild-type (WT) mice to ocular HSV-1 infection, as measured by a reduction in cumulative survival and elevated viral titers in the nervous system but not the cornea between days three and seven post infection (pi). The present study was undertaken to determine if complement deficiency impacted virus replication and associated changes in inflammation at earlier time points in the cornea. C3KO mice were found to possess significantly (p < 0.05) less infectious virus in the cornea at 24 h pi that corresponded with a decrease in HSV-1 lytic gene expression at 12 and 24 h pi compared to WT animals. Flow cytometry acquisition found no differences in the myeloid cell populations residing in the cornea including total macrophage and neutrophil populations at 24 h pi with minimal infiltrating cell populations detected at the 12 h pi time point. Analysis of cytokine and chemokine content in the cornea measured at 12 and 24 h pi revealed that only CCL3 (MIP-1α) was found to be different between WT and C3KO mice with >2-fold increased levels (p < 0.05, ANOVA and Tukey's post hoc t-test) in the cornea of WT mice at 12 h pi. C3KO mouse resistance to HSV-1 infection at the early time points correlated with a significant increase in type I interferon (IFN) gene expression including IFN-α1 and IFN-β and downstream effector genes including tetherin and RNase L (p < 0.05, Mann-Whitney rank order test). These results suggest early activation of the CS interferes with the induction of the type I IFN response and leads to a transient increase in virus replication following corneal HSV-1 infection.
Collapse
Affiliation(s)
- Daniel J. J. Carr
- Department of Ophthalmology, Microbiology, and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.F.); (G.B.G.)
| |
Collapse
|
5
|
Terhaar HM, Henriksen MDL, Mehaffy C, Hess A, McMullen RJ. The use of shotgun label-free quantitative proteomic mass spectrometry to evaluate the inflammatory response in aqueous humor from horses with uveitis compared to ophthalmologically healthy horses. Vet Ophthalmol 2024; 27:40-52. [PMID: 37144658 DOI: 10.1111/vop.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE The objective of this study was to use shotgun label-free tandem mass spectrometry (LF-MS/MS) to evaluate aqueous humor (AH) from horses with uveitis (UH) compared to ophthalmologically healthy horses (HH). ANIMALS STUDIED Twelve horses diagnosed with uveitis based on ophthalmic examination and six ophthalmologically healthy horses (postmortem) purchased for teaching purposes. PROCEDURES All horses received a complete ophthalmic examination and physical exam. Aqueous paracentesis was performed on all horses and AH total protein concentrations were measured with nanodrop (TPn) and refractometry (TPr). AH samples were analyzed with shotgun LF-MS/MS and proteomic data were compared between groups using Wilcoxon rank-sum test. RESULTS A total of 147 proteins were detected, 11 proteins had higher abundance in UH, and 38 proteins had lower abundance in UH. Proteins with higher abundance included apolipoprotein E, alpha-2-macroglobulin (A2M), alpha-2-HS-glycoprotein, prothrombin, fibrinogen, complement component 4 (C4), joining chain for IgA and IgM, afamin, and amine oxidase. There were positive correlations between TPn (p = .003) and TPr (p = .0001) compared to flare scores. CONCLUSION Differential abundance of A2M, prothrombin, fibrinogen, and C4 indicate upregulation of the complement and coagulation cascade in equine uveitis. Proinflammatory cytokines and the complement cascade have potential as therapeutic targets for equine uveitis.
Collapse
Affiliation(s)
- Hannah M Terhaar
- Comparative Ophthalmology, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michala de Linde Henriksen
- Comparative Ophthalmology, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ann Hess
- Department of Statistics, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard J McMullen
- Equine Ophthalmology, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, JT Vaughan Large Animal Teaching Hospital, Auburn, Alabama, USA
| |
Collapse
|
6
|
Fanelli G, Romano M, Lombardi G, Sacks SH. Soluble Collectin 11 (CL-11) Acts as an Immunosuppressive Molecule Potentially Used by Stem Cell-Derived Retinal Epithelial Cells to Modulate T Cell Response. Cells 2023; 12:1805. [PMID: 37443840 PMCID: PMC10341155 DOI: 10.3390/cells12131805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal pigment epithelium (RPE) cell allotransplantation is seen as a possible solution to retinal diseases. However, the RPE-complement system triggered by the binding of collectin-11 (CL-11) is a potential barrier for RPE transplantation as the complement-mediated inflammatory response may promote T cell recognition. To address this, we investigated the role of CL-11 on T cell immuno-response. We confirmed that RPE cells up-regulated MHC class I and expressed MHC class II molecules in an inflammatory setting. Co-cultures of RPE cells with T cells led to the inhibition of T cell proliferation. We found that CL-11 was partially responsible for this effect as T cell binding of CL-11 inhibited T cell proliferation in association with the downregulation of CD28. We also found that the suppressive action of CL-11 was abrogated in the presence of the RGD peptide given to block the T cell binding of CL-11 by its collagen-like domain. Because RPE cells can bind and secrete CL-11 under stress conditions, we postulate that soluble CL-11 contributes to the immunosuppressive properties of RPE cells. The investigation of this dual biological activity of CL-11, namely as a trigger of the complement cascade and a modulator of T cell responses, may provide additional clues about the mechanisms that orchestrate the immunogenic properties of RPE cells.
Collapse
Affiliation(s)
- Giorgia Fanelli
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London SE1 9RT, UK; (M.R.); (G.L.); (S.H.S.)
| | | | | | | |
Collapse
|
7
|
Ong HS, Riau AK, Yam GHF, Yusoff NZBM, Han EJY, Goh TW, Lai RC, Lim SK, Mehta JS. Mesenchymal Stem Cell Exosomes as Immunomodulatory Therapy for Corneal Scarring. Int J Mol Sci 2023; 24:7456. [PMID: 37108619 PMCID: PMC10144287 DOI: 10.3390/ijms24087456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Corneal scarring is a leading cause of worldwide blindness. Human mesenchymal stem cells (MSC) have been reported to promote corneal wound healing through secreted exosomes. This study investigated the wound healing and immunomodulatory effects of MSC-derived exosomes (MSC-exo) in corneal injury through an established rat model of corneal scarring. After induction of corneal scarring by irregular phototherapeutic keratectomy (irrPTK), MSC exosome preparations (MSC-exo) or PBS vehicle as controls were applied to the injured rat corneas for five days. The animals were assessed for corneal clarity using a validated slit-lamp haze grading score. Stromal haze intensity was quantified using in-vivo confocal microscopy imaging. Corneal vascularization, fibrosis, variations in macrophage phenotypes, and inflammatory cytokines were evaluated using immunohistochemistry techniques and enzyme-linked immunosorbent assays (ELISA) of the excised corneas. Compared to the PBS control group, MSC-exo treatment group had faster epithelial wound closure (0.041), lower corneal haze score (p = 0.002), and reduced haze intensity (p = 0.004) throughout the follow-up period. Attenuation of corneal vascularisation based on CD31 and LYVE-1 staining and reduced fibrosis as measured by fibronectin and collagen 3A1 staining was also observed in the MSC-exo group. MSC-exo treated corneas also displayed a regenerative immune phenotype characterized by a higher infiltration of CD163+, CD206+ M2 macrophages over CD80+, CD86+ M1 macrophages (p = 0.023), reduced levels of pro-inflammatory IL-1β, IL-8, and TNF-α, and increased levels of anti-inflammatory IL-10. In conclusion, topical MSC-exo could alleviate corneal insults by promoting wound closure and reducing scar development, possibly through anti-angiogenesis and immunomodulation towards a regenerative and anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Hon Shing Ong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Andri K. Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Evelina J. Y. Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Tze-Wei Goh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Ruenn Chai Lai
- Institute of Medical Biology & Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology & Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
8
|
Manukonda R, Attem J, Yenuganti VR, Kaliki S, Vemuganti GK. Exosomes in the visual system: New avenues in ocular diseases. Tumour Biol 2022; 44:129-152. [PMID: 35964221 DOI: 10.3233/tub-211543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exosomes are a subgroup of membrane-bound extracellular vesicles secreted by all cell types and present virtually in all biological fluids. The composition of exosomes in the same cell type varies in healthy and disease conditions. Hence, exosomes research is a prime focus area for clinical research in cancer and numerous age-related metabolic syndromes. Functions of exosomes include crucial cell-to-cell communication that mediates complex cellular processes, such as antigen presentation, stem cell differentiation, and angiogenesis. However, very few studies reported the presence and role of exosomes in normal physiological and pathological conditions of specialized ocular tissues of the eye and ocular cancers. The eye being a protected sense organ with unique connectivity with the rest of the body through the blood and natural passages, we believe that the role of exosomes in ocular tissues will significantly improve our understanding of ocular diseases and their interactions with the rest of the body. We present a review that highlights the existence and function of exosomes in various ocular tissues, their role in the progression of some of the neoplastic and non-neoplastic conditions of the eyes.
Collapse
Affiliation(s)
- Radhika Manukonda
- School of Medical Sciences, University of Hyderabad, Hyderabad, India.,The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Jyothi Attem
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
9
|
Ratitong B, Marshall ME, Dragan MA, Anunciado CM, Abbondante S, Pearlman E. Differential Roles for IL-1α and IL-1β in Pseudomonas aeruginosa Corneal Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:548-558. [PMID: 35851538 PMCID: PMC9922050 DOI: 10.4049/jimmunol.2200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Pseudomonas aeruginosa is an important cause of dermal, pulmonary, and ocular disease. Our studies have focused on P. aeruginosa infections of the cornea (keratitis) as a major cause of blinding microbial infections. The infection leads to an influx of innate immune cells, with neutrophils making up to 90% of recruited cells during early stages. We previously reported that the proinflammatory cytokines IL-1α and IL-1β were elevated during infection. Compared with wild-type (WT), infected Il1b-/- mice developed more severe corneal disease that is associated with impaired bacterial killing as a result of defective neutrophil recruitment. We also reported that neutrophils are an important source of IL-1α and IL-1β, which peaked at 24 h postinfection. To examine the role of IL-1α compared with IL-1β in P. aeruginosa keratitis, we inoculated corneas of C57BL/6 (WT), Il1a-/-, Il1b-/-, and Il1a-/-Il1b-/- (double-knockout) mice with 5 × 104 ExoS-expressing P. aeruginosa. Il1b-/- and double-knockout mice have significantly higher bacterial burden that was consistent with delayed neutrophil and monocyte recruitment to the corneas. Surprisingly, Il1a-/- mice had the opposite phenotype with enhanced bacteria clearance compared with WT mice. Although there were no significant differences in neutrophil recruitment, Il1a-/- neutrophils displayed a more proinflammatory transcriptomic profile compared to WT with elevations in C1q expression that likely caused the phenotypic differences observed. To our knowledge, our findings identify a novel, non-redundant role for IL-1α in impairing bacterial clearance.
Collapse
Affiliation(s)
- Bridget Ratitong
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Institute for Immunology, University of California, Irvine, Irvine, CA
| | - Michaela E Marshall
- Department of Ophthalmology, University of California, Irvine, Irvine, CA; and
| | - Morgan A Dragan
- Institute for Immunology, University of California, Irvine, Irvine, CA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA
| | - Charissa M Anunciado
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Serena Abbondante
- Department of Ophthalmology, University of California, Irvine, Irvine, CA; and
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Institute for Immunology, University of California, Irvine, Irvine, CA
- Department of Ophthalmology, University of California, Irvine, Irvine, CA; and
| |
Collapse
|
10
|
Luo S, Chen Y, Yang L, Gong X, Wu Z. The complement system in retinal detachment with choroidal detachment. Curr Eye Res 2022; 47:809-812. [PMID: 35176953 DOI: 10.1080/02713683.2022.2038634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aims to explore the differences in the levels of complement components and complement regulatory factors in the vitreous humor of patients with retinal detachment with choroidal detachment (RRDCD), patients with rhegmatogenous retinal detachment (RRD). METHODS A prospective case-control study design was used to recruit 20 patients with RRDCD and 20 patients with RRD in consecutive cases who underwent pars plana vitrectomy from March 2019 to January 2020. The control group comprised 15 patients with epiretinal membrane and 5 eyes from cadavers. The concentrations of complement C2, complement C4b, complement C5/C5a, complement C9, complement factor D (CFD), lectin, and complement factor I (CFI) were measured using Multiplex Luminex Assay, and the concentration of soluble decay acceleration factor (sDAF) was measured using ELISA. RESULTS As compared with the RRD and control groups, complement C2, complement C4b, complement C5/C5a, complement C9, CFD, lectin, CFI, and sDAF were significantly increased in the RRDCD group. Additionally, as compared with the control group, the concentrations of complement component C2 and CFD were significantly increased in the vitreous humor of the RRD group. CONCLUSION Components of all three complement pathways were elevated in eyes with RRDCD. Interestingly, while there was evidence of early complement activation in RRD, the final common pathway components were not elevated. In contrast, RRDCD eyes showed significant elevations of the MAC complex components, underscoring a potential pathophysiologic impact of complement activation in this condition.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Yanghao Chen
- Department of Ophthalmology, Anqing No.2 People's Hospital, Anqing, Anhui Province, People's Republic of China
| | - Lufei Yang
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu Province, People's Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| |
Collapse
|
11
|
de Paiva CS, Trujillo-Vargas CM, Schaefer L, Yu Z, Britton RA, Pflugfelder SC. Differentially Expressed Gene Pathways in the Conjunctiva of Sjögren Syndrome Keratoconjunctivitis Sicca. Front Immunol 2021; 12:702755. [PMID: 34349764 PMCID: PMC8326832 DOI: 10.3389/fimmu.2021.702755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Sjögren syndrome (SS) is an autoimmune condition that targets the salivary and lacrimal glands, with cardinal clinical signs of dry eye (keratoconjunctivitis sicca, KCS) and dry mouth. The conjunctiva of SS patients is often infiltrated by immune cells that participate in the induction and maintenance of local inflammation. The purpose of this study was to investigate immune-related molecular pathways activated in the conjunctiva of SS patients. Female SS patients (n=7) and controls (n=19) completed a series of oral, ocular surface exams. Symptom severity scores were evaluated using validated questionnaires (OSDI and SANDE). All patients fulfilled the ACR/EULAR criteria for SS and the criteria for KCS. Fluorescein and lissamine green dye staining evaluated tear-break-up time (TBUT), corneal and conjunctival disease, respectively. Impression cytology of the temporal bulbar conjunctiva was performed to collect cells lysed and subjected to gene expression analysis using the NanoString Immunology Panel. 53/594 differentially expressed genes (DEGs) were observed between SS and healthy controls; 49 DEGs were upregulated, and 4 were downregulated (TRAF5, TGFBI, KLRAP1, and CMKLRI). The top 10 DEGs in descending order were BST2, IFITM1, LAMP3, CXCL1, IL19, CFB, LY96, MX1, IL4R, CDKN1A. Twenty pathways had a global significance score greater or equal to 2. Spearman correlations showed that 29/49 upregulated DEGs correlated with either TBUT (inverse) or OSDI or conjunctival staining score (positive correlations). Venn diagrams identified that 26/29 DEGs correlated with TBUT, 5/26 DEGs correlated with OSDI, and 16/26 correlated with conjunctival staining scores. Five upregulated DEGs (CFB, CFI, IL1R1, IL2RG, IL4R) were uniquely negatively correlated with TBUT. These data indicate that the conjunctiva of SS patients exhibits a phenotype of immune activation, although some genes could be inhibitory. Some of the DEGs and pathways overlap with previous DEGs in salivary gland biopsies, but new DEGs were identified, and some of these correlated with symptoms and signs of dry eye. Our results indicate that gene analysis of conjunctiva imprints is a powerful tool to understand the pathogenesis of SS and develop new therapeutic targets.
Collapse
Affiliation(s)
- Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Laura Schaefer
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | |
Collapse
|
12
|
Degroote RL, Deeg CA. Immunological Insights in Equine Recurrent Uveitis. Front Immunol 2021; 11:609855. [PMID: 33488614 PMCID: PMC7821741 DOI: 10.3389/fimmu.2020.609855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/05/2022] Open
Abstract
Horses worldwide suffer from equine recurrent uveitis (ERU), an organ-specific, immune-mediated disease with painful, remitting-relapsing inflammatory attacks alternating with periods of quiescence, which ultimately leads to blindness. In course of disease, both eyes can eventually be affected and since blind horses pose a threat to themselves and their surroundings, these animals have to be killed. Therefore, this disease is highly relevant for veterinary medicine. Additionally, ERU shows strong clinical and pathological resemblance to autoimmune uveitis in man. The exact cause for the onset of ERU is unclear to date. T cells are believed to be the main effector cells in this disease, as they overcome the blood retinal barrier to invade the eye, an organ physiologically devoid of peripheral immune cells. These cells cause severe intraocular inflammation, especially in their primary target, the retina. With every inflammatory episode, retinal degeneration increases until eyesight is completely lost. In ERU, T cells show an activated phenotype, with enhanced deformability and migration ability, which is reflected in the composition of their proteome and downstream interaction pathways even in quiescent stage of disease. Besides the dysregulation of adaptive immune cells, emerging evidence suggests that cells of the innate immune system may also directly contribute to ERU pathogenesis. As investigations in both the target organ and the periphery have rapidly evolved in recent years, giving new insights on pathogenesis-associated processes on cellular and molecular level, this review summarizes latest developments in ERU research.
Collapse
Affiliation(s)
- Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
13
|
Subbannayya Y, Pinto SM, Mohanty V, Dagamajalu S, Prasad TSK, Murthy KR. What Makes Cornea Immunologically Unique and Privileged? Mechanistic Clues from a High-Resolution Proteomic Landscape of the Human Cornea. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:129-139. [PMID: 32125911 DOI: 10.1089/omi.2019.0190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Success rates of corneal transplantation are particularly high owing to its unique, innate immune privilege derived from a phenomenon known as Anterior Chamber-Associated Immune Deviation (ACAID). Of note, cornea is a transparent, avascular structure that acts as a barrier along with sclera to protect the eye and contributes to optical power. Molecular and systems biology mechanisms underlying ACAID and the immunologically unique and privileged status of cornea are not well known. We report here a global unbiased proteomic profiling of the human cornea and the identification of 4824 proteins, the largest catalog of human corneal proteins identified to date. Moreover, signaling pathway analysis revealed enrichment of spliceosome, phagosome, lysosome, and focal adhesion pathways, thereby demonstrating the protective functions of corneal proteins. We observed an enrichment of neutrophil-mediated immune response processes in the cornea as well as proteins belonging to the complement and ER-Phagosome pathways that are suggestive of active immune and inflammatory surveillance response. This study provides a key expression map of the corneal proteome repertoire that should enable future translational medicine studies on the pathological conditions of the cornea and the mechanisms by which cornea immunology are governed. Molecular mechanisms of corneal immune privilege have broad relevance to understand and anticipate graft rejection in the field of organ transplantation.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Krishna R Murthy
- Vittala International Institute of Ophthalmology, Bangalore, India.,Prabha Eye Clinic and Research Centre, Bangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
14
|
Royer DJ, Echegaray-Mendez J, Lin L, Gmyrek GB, Mathew R, Saban DR, Perez VL, Carr DJ. Complement and CD4 + T cells drive context-specific corneal sensory neuropathy. eLife 2019; 8:48378. [PMID: 31414985 PMCID: PMC6783265 DOI: 10.7554/elife.48378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Whether complement dysregulation directly contributes to the pathogenesis of peripheral nervous system diseases, including sensory neuropathies, is unclear. We addressed this important question in a mouse model of ocular HSV-1 infection, where sensory nerve damage is a common clinical problem. Through genetic and pharmacologic targeting, we uncovered a central role for C3 in sensory nerve damage at the morphological and functional levels. Interestingly, CD4 T cells were central in facilitating this complement-mediated damage. This same C3/CD4 T cell axis triggered corneal sensory nerve damage in a mouse model of ocular graft-versus-host disease (GVHD). However, this was not the case in a T-dependent allergic eye disease (AED) model, suggesting that this inflammatory neuroimmune pathology is specific to certain disease etiologies. Collectively, these findings uncover a central role for complement in CD4 T cell-dependent corneal nerve damage in multiple disease settings and indicate the possibility for complement-targeted therapeutics to mitigate sensory neuropathies.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, Duke University Medical Center, Durham, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | | | - Liwen Lin
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Rose Mathew
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, United States.,Department of Immunology, Duke University Medical Center, Durham, United States
| | - Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, United States
| | - Daniel Jj Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|
15
|
Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol 2018; 11:1856-1864. [PMID: 30450319 DOI: 10.18240/ijo.2018.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Pathological neovascularisation, which is a critical component of diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP), is a frequent cause of compromised vision or blindness. Researchers continuously investigate the role of the complement system in the pathogenesis of retinopathy. Studies have confirmed the role of factors H and I in the development of AMD, and factors H and B in the development of DR. Other components, such as C2, C3, and C5, have also been considered. However, findings on the involvement of the complement system in the pathogenesis of ROP are still inconclusive. This paper presents a review of the current literature data, pointing to the novel results and achievements from research into the role of complement components in the development of retinopathy. There is still a need to continue research in new directions, and to gather more detailed information about this problem which will be useful in the treatment of these diseases.
Collapse
Affiliation(s)
- Martyna Chrzanowska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Anna Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Monika Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| |
Collapse
|
16
|
Huang C, Fisher KP, Hammer SS, Navitskaya S, Blanchard GJ, Busik JV. Plasma Exosomes Contribute to Microvascular Damage in Diabetic Retinopathy by Activating the Classical Complement Pathway. Diabetes 2018; 67:1639-1649. [PMID: 29866771 PMCID: PMC6054433 DOI: 10.2337/db17-1587] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes and is the leading cause of vision loss in working-age adults. Recent studies have implicated the complement system as a player in the development of vascular damage and progression of DR. However, the role and activation of the complement system in DR are not well understood. Exosomes, small vesicles that are secreted into the extracellular environment, have a cargo of complement proteins in plasma, suggesting that they can participate in causing the vascular damage associated with DR. We demonstrate that IgG-laden exosomes in plasma activate the classical complement pathway and that the quantity of these exosomes is increased in diabetes. Moreover, we show that a lack of IgG in exosomes in diabetic mice results in a reduction in retinal vascular damage. The results of this study demonstrate that complement activation by IgG-laden plasma exosomes could contribute to the development of DR.
Collapse
Affiliation(s)
- Chao Huang
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Kiera P Fisher
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI
| | | | - Gary J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, MI
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI
| |
Collapse
|
17
|
Abstract
The complement system is a vital component of the immune-priveliged human eye that is always active at a low-grade level, preventing harmful intraocular injuries caused by accumulation of turnover products and controlling pathogens to preserve eye homeostasis and vision. The complement system is a double-edged sword that is essential for protection but may also become harmful and contribute to eye pathology. Here, we review the evidence for the involvement of complement system dysregulation in age-related macular degeneration, glaucoma, uveitis, and neuromyelitis optica, highlighting the relationship between morphogical changes and complement system protein expression and regulation in these diseases. The potential benefits of complement inhibition in age-related macular degeneration, glaucoma, uveitis, and neuromyelitis optica are abundant, as are those of further research to improve our understanding of complement-mediated injury in these diseases.
Collapse
Affiliation(s)
- Camilla Mohlin
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| | - Kerstin Sandholm
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| | - Kristina N Ekdahl
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden; Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Lyzogubov VV, Bora PS, Wu X, Horn LE, de Roque R, Rudolf XV, Atkinson JP, Bora NS. The Complement Regulatory Protein CD46 Deficient Mouse Spontaneously Develops Dry-Type Age-Related Macular Degeneration-Like Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2088-2104. [PMID: 27295359 PMCID: PMC4973660 DOI: 10.1016/j.ajpath.2016.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
Abstract
In the mouse, membrane cofactor protein (CD46), a key regulator of the alternative pathway of the complement system, is only expressed in the eye and on the inner acrosomal membrane of spermatozoa. We noted that although Cd46(-/-) mice have normal systemic alternative pathway activating ability, lack of CD46 leads to dysregulated complement activation in the eye, as evidenced by increased deposition of C5b-9 in the retinal pigment epithelium (RPE) and choroid. A knockout of CD46 induced the following cardinal features of human dry age-related macular degeneration (AMD) in 12-month-old male and female mice: accumulation of autofluorescent material in and hypertrophy of the RPE, dense deposits in and thickening of Bruch's membrane, loss of photoreceptors, cells in subretinal space, and a reduction of choroidal vessels. Collectively, our results demonstrate spontaneous age-related degenerative changes in the retina, RPE, and choroid of Cd46(-/-) mice that are consistent with human dry AMD. These findings provide the exciting possibility of using Cd46(-/-) mice as a convenient and reliable animal model for dry AMD. Having such a relatively straight-forward model for dry AMD should provide valuable insights into pathogenesis and a test model system for novel drug targets. More important, tissue-specific expression of CD46 gives the Cd46(-/-) mouse model of dry AMD a unique advantage over other mouse models using knockout strains.
Collapse
Affiliation(s)
- Valeriy V Lyzogubov
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Puran S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Leah E Horn
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ryan de Roque
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas; University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas
| | - Xeniya V Rudolf
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Nalini S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
19
|
Abstract
BACKGROUND Uveitis is the most common extra-articular manifestation in patients with ankylosing spondylitis (AS). The prevalence and characteristics of uveitis in AS have been studied in previous literatures, whereas its associated risk factors have not been clarified. Therefore, this study analyzed the risk factors of uveitis in patients with AS. METHODS A total of 390 patients with AS who fulfilled the modified New York criteria were enrolled from January to December in 2015. The history of uveitis was accepted only if diagnosed by ophthalmologists. The medical records of the patients were retrospectively reviewed and associated information was collected, such as disease duration, HLA-B27, and the number of peripheral arthritis. Hip-joint lesion was identified by imaging examination. Meanwhile, biochemical examinations were performed to determine the patient's physical function. RESULTS Of 390 patients with AS (80.5% male, mean age 33.3 years), 38 (9.7%) had experienced 1 or more episodes of uveitis. The incidence rate for hip-joint lesion was obviously higher for patients with uveitis than the nonuveitis group (44.7% vs 22.2%; P < 0.01). The number of peripheral arthritis was also larger for the uveitis group than nonuveitis group (2.18 ± 0.23 vs 0.55 ± 0.04; P < 0.001). Meanwhile, patients with uveitis had a significantly higher level of antistreptolysin O (ASO) and circulating immune complex (CIC) than those without (P < 0.05 and P < 0.0001, respectively). However, there were no significant differences in disease duration, HLA-B27, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) between the 2 groups. Binary logistic regression results showed that ASO (OR = 12.2, 95% CI:3.6-41.3, P < 0.01) and the number of peripheral arthritis (OR = 4.1, 95%CI:2.6-6.3, P < 0.01) are significantly associated with uveitis in AS. CONCLUSTION This study provides some evidence that hip-joint lesion, the number of peripheral arthritis, ASO, and CIC may be associated with higher rates of uveitis in AS. The results of this comprehensive analysis suggest that the possible occurrence of uveitis in AS should not be neglected if the patients have those concomitant risk factors.
Collapse
Affiliation(s)
- Li Sun
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou
- Department of Ophthalmology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing
| | - Rui Wu
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qin Xue
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Correspondence: Peirong Lu, the First Affiliated Hospital of Soochow University, Suzhou, China (e-mail: ); Feng Wang, Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China (e-mail: )
| | - Peirong Lu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou
- Correspondence: Peirong Lu, the First Affiliated Hospital of Soochow University, Suzhou, China (e-mail: ); Feng Wang, Department of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China (e-mail: )
| |
Collapse
|
20
|
Lee SH, Kim KW, Joo K, Kim JC. Angiogenin ameliorates corneal opacity and neovascularization via regulating immune response in corneal fibroblasts. BMC Ophthalmol 2016; 16:57. [PMID: 27356868 PMCID: PMC4926301 DOI: 10.1186/s12886-016-0235-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/10/2016] [Indexed: 12/04/2022] Open
Abstract
Background Angiogenin (ANG), a component of tears, is involved in the innate immune system and is related with inflammatory disease. We investigated whether ANG has an immune modulatory function in human corneal fibroblasts (HCFs). Methods HCFs were cultured from excised corneal tissues. The gene or protein expression levels of interleukin (IL)-1beta (β), IL-4, IL-6, IL-8, IL-10, complements, toll-like receptor (TLR)4, myeloid differentiation primary response gene (MYD)88, TANK-binding kinase (TBK)1, IkappaB kinase-epsilon (IKK-ε) and nuclear factor-kappaB (NF-κB) were analyzed with or without ANG treatment in tumor necrosis factor-alpha (TNF-α)- or lipopolysaccharide (LPS)-induced inflammatory HCFs by real-time polymerase chain reaction (PCR), Western blotting and immunocytochemistry. Inflammatory cytokine profiles with or without ANG were evaluated through immunodot blot analysis in inflammatory HCFs. Corneal neovascularization and opacity in a rat model of corneal alkali burn were evaluated after application of ANG eye drops. Results ANG decreased the mRNA levels of IL-1β, IL-6, IL-8, TNF-α receptor (TNFR)1, 2, TLR4, MYD88, and complement components except for C1r and C1s and elevated the mRNA expression of IL-4 and IL-10. Increased signal intensity of IL-6, IL-8 and monocyte chemotactic protein (MCP)-1 and MCP-2 induced by TNF-α or LPS was weakened by ANG treatment. ANG reduced the protein levels of IKK-ε by either TNF-α and LPS, and decreased TBK1 production induced by TNF-α, but not induced by LPS. The expression of NF-κB in the nuclei was decreased after ANG treatment. ANG application lowered corneal neovascularization and opacity in rats compared to controls. Conclusion These results demonstrate that ANG reduces the inflammatory response induced by TNF-α or LPS in HCFs through common suppression of IKK-ε-mediated activation of NF-κB. This may support the targeting of immune-mediated corneal inflammation by using ANG.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Kyoung Woo Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Jae Chan Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.
| |
Collapse
|
21
|
Complement System in the Pathogenesis of Benign Lymphoepithelial Lesions of the Lacrimal Gland. PLoS One 2016; 11:e0148290. [PMID: 26849056 PMCID: PMC4743846 DOI: 10.1371/journal.pone.0148290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022] Open
Abstract
Objective We aimed to examine the potential involvement of local complement system gene expression in the pathogenesis of benign lymphoepithelial lesions (BLEL) of the lacrimal gland. Methods We collected data from 9 consecutive pathologically confirmed patients with BLEL of the lacrimal gland and 9 cases with orbital cavernous hemangioma as a control group, and adopted whole genome microarray to screen complement system-related differential genes, followed by RT-PCR verification and in-depth enrichment analysis (Gene Ontology analysis) of the gene sets. Results The expression of 14 complement system-related genes in the pathologic tissue, including C2, C3, ITGB2, CR2, C1QB, CR1, ITGAX, CFP, C1QA, C4B|C4A, FANCA, C1QC, C3AR1 and CFHR4, were significantly upregulated while 7 other complement system-related genes, C5, CFI, CFHR1|CFH, CFH, CD55, CR1L and CFD were significantly downregulated in the lacrimal glands of BLEL patients. The microarray results were consistent with RT-PCR analysis results. Immunohistochemistry analysis of C3c and C1q complement component proteins in the resected tissue were positive in BLEL patients, while the control group had negative expression of these proteins. Gene ontology (GO) analysis revealed that activation of the genes of complement system-mediated signaling pathways were the most enriched differential gene group in BLEL patients. Conclusions Local expression of complement components is prominently abnormal in BLEL, and may well play a role in its pathogenesis.
Collapse
|
22
|
Copy number variations and gene polymorphisms of complement components in ocular Behcet's disease and Vogt-Koyanagi-Harada syndrome. Sci Rep 2015; 5:12989. [PMID: 26269006 PMCID: PMC4534762 DOI: 10.1038/srep12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 01/30/2023] Open
Abstract
Complement is involved in many immune-mediated diseases. However, the association of its copy number variations (CNVs) and polymorphisms with Behcet’s disease (BD) and Vogt-Koyanagi-Harada syndrome (VKH) is unknown. We examined copy number and mRNA expression by real-time PCR. Cytokine production by stimulated peripheral blood mononuclear cells (PBMCs) in genotyped individuals was measured by ELISA. The frequencies of having more than two copies of C3 were significantly increased in BD and VKH, whereas CNV of C5 was only associated with BD. Increased frequencies of the GG genotype of C3 rs408290 and C5 rs2269067 were found in BD. No association was observed between C3 and C5 SNPs and VKH. mRNA expression in the high CNV group and GG cases of C3 and C5 was significantly higher compared to other genotypes. Increased interleukin-17 and IFN-γ was observed in the high CNV group and GG genotype cases of C3. Interleukin-17 but not IFN-γ was increased in the high CNV group and GG genotype cases of C5. No effect of C3 or C5 genetic variants was seen on the production of TNF-α, IL-10, IL-1β, MCP-1, IL-6 and IL-8. Our study thus provides further evidence for a role of complement in the pathogenesis of uveitis.
Collapse
|
23
|
Tao XY, Zheng SJ, Lei B. Activated complement classical pathway in a murine model of oxygen-induced retinopathy. Int J Ophthalmol 2015; 8:17-22. [PMID: 25709901 DOI: 10.3980/j.issn.2222-3959.2015.01.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/27/2014] [Indexed: 01/14/2023] Open
Abstract
AIM To investigate whether the complement system is involved in a murine model of oxygen-induced retinopathy (OIR). METHODS Forty C57BL/6J newborn mice were divided randomly into OIR group and control group. OIR was induced by exposing mice to 75%±2% oxygen from postnatal 7d (P7) to P12 and then recovered in room air. For the control group, the litters were raised in room air. At the postnatal 17d (P17), gene expressions of the complement components of the classical pathway (CP), the mannose-binding lectin (MBL) pathway and the alternative pathway (AP) in the retina were determined by quantitative real-time polymerase chain reaction (RT-PCR). Retinal protein expressions of the key components in the CP were examined by Western blotting. RESULTS Whole mounted retina in the OIR mice showed area of central hypoperfusion in both superficial and deep layers and neovascular tufts in the periphery. The expressions of C1qb and C4b genes in the OIR retina were significantly higher than those of the controls. The expression of retinal complement factor B (CFB) gene in OIR mice was significantly lower than those of the controls. However, the expressions of C3 and complement factor H (CFH) genes were higher. The protein synthesis of the key components involved in the CP (C1q, C4 and C3) were also significantly higher in OIR mouse retina. Although MBL-associated serine protease 1 (MASP1) and MASP2 were detected in both the OIR and the control groups, the expressions were weak and the difference between the two groups was not significant. CONCLUSION Our data suggest that the complement system CP is activated during the pathogenesis of murine model of OIR.
Collapse
Affiliation(s)
- Xue-Ying Tao
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China ; Department of Ophthalmology, Chongqing Maternal and Child Health-Care Hospital, Chongqing 400013, China
| | - Shi-Jie Zheng
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Bo Lei
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| |
Collapse
|
24
|
Bora NS, Matta B, Lyzogubov VV, Bora PS. Relationship between the complement system, risk factors and prediction models in age-related macular degeneration. Mol Immunol 2014; 63:176-83. [PMID: 25074023 DOI: 10.1016/j.molimm.2014.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 11/27/2022]
Abstract
Studies performed over the past decade in humans and experimental animals have been a major source of information and improved our understanding of how dysregulation of the complement system contributes to age-related macular degeneration (AMD) pathology. Drusen, the hall-mark of dry-type AMD are reported to be the by-product of complement mediated inflammatory processes. In wet AMD, unregulated complement activation results in increased production of angiogenic growth factors leading to choroidal neovascularization both in humans and in animal models. In this review article we have linked the complement system with modifiable and non-modifiable AMD risk factors as well as with prediction models of AMD. Understanding the association between the complement system, risk factors and prediction models will help improve our understanding of AMD pathology and management of this disease.
Collapse
Affiliation(s)
- Nalini S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA.
| | - Bharati Matta
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| | - Valeriy V Lyzogubov
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| | - Puran S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| |
Collapse
|
25
|
Lyzogubov V, Wu X, Jha P, Tytarenko R, Triebwasser M, Kolar G, Bertram P, Bora PS, Atkinson JP, Bora NS. Complement regulatory protein CD46 protects against choroidal neovascularization in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2537-48. [PMID: 25019227 DOI: 10.1016/j.ajpath.2014.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 01/12/2023]
Abstract
Dysregulation of the complement system is increasingly recognized as a contributing factor in age-related macular degeneration. Although the complement regulator CD46 is expressed ubiquitously in humans, in mouse it was previously thought to be expressed only on spermatozoa. We detected CD46 mRNA and protein in the posterior ocular segment (neuronal retina, retinal pigment epithelium, and choroid) of wild-type (WT) C57BL/6J mice. Cd46(-/-) knockout mice exhibited increased levels of the membrane attack complex and of vascular endothelial growth factor (VEGF) in the retina and choroid. The Cd46(-/-) mice were also more susceptible to laser-induced choroidal neovascularization (CNV). In Cd46(-/-) mice, 19% of laser spots were positive for CNV at day 2 after treatment, but no positive spots were detected in WT mice. At day 3, 42% of laser spots were positive in Cd46(-/-) mice, but only 11% in WT mice. A fully developed CNV complex was noted in both Cd46(-/-) and WT mice at day 7; however, lesion size was significantly (P < 0.05) increased in Cd46(-/-) mice. Our findings provide evidence for expression of CD46 in the mouse eye and a role for CD46 in protection against laser-induced CNV. We propose that the Cd46(-/-) mouse has a greater susceptibility to experimental CNV because of insufficient complement inhibition, which leads to increased membrane attack complex deposition and VEGF expression.
Collapse
Affiliation(s)
- Valeriy Lyzogubov
- Department of Ophthalmology, Pat and Willard Walker Eye Research Center, Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Purushottam Jha
- Department of Ophthalmology, Pat and Willard Walker Eye Research Center, Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ruslana Tytarenko
- Department of Ophthalmology, Pat and Willard Walker Eye Research Center, Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Michael Triebwasser
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Grant Kolar
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Paula Bertram
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Puran S Bora
- Department of Ophthalmology, Pat and Willard Walker Eye Research Center, Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Nalini S Bora
- Department of Ophthalmology, Pat and Willard Walker Eye Research Center, Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
26
|
Doudevski I, Rostagno A, Cowman M, Liebmann J, Ritch R, Ghiso J. Clusterin and complement activation in exfoliation glaucoma. Invest Ophthalmol Vis Sci 2014; 55:2491-9. [PMID: 24550356 DOI: 10.1167/iovs.13-12941] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The study was done to better understand the biological significance of clusterin co-localization with the exfoliation deposits (XF deposits), and provide insight into a pathogenic mechanism involving activation of the complement system and its pro-inflammatory consequences in patients with exfoliation glaucoma. METHODS Exfoliation lens deposits were analyzed by high resolution atomic force microscopy imaging and confocal immunofluorescence. Levels of clusterin and vitronectin, as well as of the complement activation products C3a and soluble C5b-9, were assessed via ELISA. RESULTS Atomic-force microscopy examination of lenses with exfoliation syndrome (XFS) revealed a dense fibrillar network on the anterior, aqueous-bathed surface of the lens, while the epithelial side displayed no discernible structural features at the same resolution. Clusterin colocalized with XF deposits, demonstrating integral association with the fibrils. Levels of activation-derived complement components C3a and soluble C5b-9, as well as the complement inhibitors clusterin and vitronectin, were found significantly elevated (1.7-fold, P < 0.05; 4.1-fold, P < 0.05; 1.8-fold, P < 0.01; and 3.0-fold, P < 0.01, respectively) in aqueous humor from glaucoma patients with XFS compared to non-XFS glaucoma controls. CONCLUSIONS The data provide compelling evidence for the activation of the complement system in XFS, highlighting the generation of subproducts with potent proinflammatory activity, which are capable of triggering and chronically maintaining levels of subclinical inflammation, suggesting novel targets for therapeutic intervention. The colocalization of clusterin in exfoliation fibrils suggests a failed attempt to prevent tissue accumulation of protein aggregates, as seen in other protein folding disorders, likely due to the abnormal high levels of misfolded proteins overwhelming its chaperone capacity.
Collapse
Affiliation(s)
- Ivo Doudevski
- Department of Pathology, New York University School of Medicine, New York, New York, United States
| | | | | | | | | | | |
Collapse
|
27
|
Astafurov K, Dong CQ, Panagis L, Kamthan G, Ren L, Rozenboym A, Perera TD, Coplan JD, Danias J. Complement expression in the retina is not influenced by short-term pressure elevation. Mol Vis 2014; 20:140-52. [PMID: 24505213 PMCID: PMC3913488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/28/2014] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To determine whether short-term pressure elevation affects complement gene expression in the retina in vitro and in vivo. METHODS Muller cell (TR-MUL5) cultures and organotypic retinal cultures from adult mice and monkeys were subjected to either 24-h or 72-h of pressure at 0, 15, 30, and 45 mmHg above ambient. C57BL/6 mice were subjected to microbead-induced intraocular pressure (IOP) elevation for 7 days. RNA and protein were extracted and used for analysis of expression levels of complement component genes and complement component 1, q subcomponent (C1q) and complement factor H (CFH) immunoblotting. RESULTS mRNA levels of complement genes and C1q protein levels in Muller cell cultures remained the same for all pressure levels after exposure for either 24 or 72 h. In primate and murine organotypic cultures, pressure elevation did not produce changes in complement gene expression or C1q and CFH protein levels at either the 24-h or 72-h time points. Pressure-related glial fibrillary acidic protein (GFAP) mRNA expression changes were detected in primate retinal organotypic cultures (analysis of variance [ANOVA]; p<0.05). mRNA expression of several other genes changed as a result of time in culture. Eyes subjected to microbead-induced IOP elevation had no differences in mRNA expression of complement genes and C1q protein levels (ANOVA; p>0.05 for both) with contralateral control and naïve control eyes. CONCLUSIONS Short-term elevation of pressure in vitro as well as short-term (1 week) IOP elevation in vivo does not seem to dramatically alter complement system gene expression in the retina. Prolonged expression to elevated pressure may be necessary to affect the complement system expression.
Collapse
Affiliation(s)
| | - Cecilia Q. Dong
- Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Lampros Panagis
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Gautam Kamthan
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY
| | - Lizhen Ren
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Anna Rozenboym
- Department of Biological Sciences, CUNY Kingsborough Community College, Brooklyn, NY
| | - Tarique D. Perera
- Department of Psychiatry, Columbia University Medical Center and New York State Psychiatric Institute, New York, NY
| | - Jeremy D. Coplan
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY
| | - John Danias
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY,Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY
| |
Collapse
|
28
|
Age-Related Macular Degeneration: Pathogenesis, Genetic Background, and the Role of Nutritional Supplements. J CHEM-NY 2014. [DOI: 10.1155/2014/317536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (ARMD) is the leading cause of severe vision loss and blindness worldwide, mainly affecting people over 65 years old. Dry and wet ARDM are the main types of the disease, which seem to have a multifactorial background. The aim of this review is to summarize the mechanisms of ARMD pathogenesis and exhibit the role of diet and nutritional supplements in the onset and progression of the disease. Environmental factors, such as smoking, alcohol, and, diet appear to interact with mutations in nuclear and mitochondrial DNA, contributing to the pathogenesis of ARMD. Inflammatory mediators and oxidative stress, induced by the daily exposure of retina to high pressure of oxygen and light radiation, have been also associated with ARMD lesions. Other than medical and surgical therapies, nutritional supplements hold a significant role in the prevention and treatment of ARMD, eliminating the progression of macular degeneration.
Collapse
|
29
|
Hou S, Qi J, Liao D, Zhang Q, Fang J, Zhou Y, Liu Y, Bai L, Zhang M, Kijlstra A, Yang P. Copy Number Variations of Complement Component C4 Are Associated With Behçet's Disease but Not With Ankylosing Spondylitis Associated With Acute Anterior Uveitis. ACTA ACUST UNITED AC 2013; 65:2963-70. [PMID: 23918728 DOI: 10.1002/art.38116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/30/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| | - Jian Qi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| | - Dan Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| | - Qi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| | - Jing Fang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| | - Yan Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| | - Yunjia Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| | - Lin Bai
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| | - Meifen Zhang
- Peking Union Medical College Hospital and Chinese Academy of Medical Sciences; Beijing China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht; Limburg The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, and Chongqing Key Laboratory of Ophthalmology; Chongqing China
| |
Collapse
|
30
|
Nitoda E, Moschos MM, Mavragani CP, Koutsilieris M. Ocular actions of platelet-activating factor: clinical implications. Expert Opin Ther Targets 2012; 16:1027-39. [DOI: 10.1517/14728222.2012.712961] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Zipplies JK, Hauck SM, Eberhardt C, Hirmer S, Amann B, Stangassinger M, Ueffing M, Deeg CA. Miscellaneous vitreous-derived IgM antibodies target numerous retinal proteins in equine recurrent uveitis. Vet Ophthalmol 2012; 15 Suppl 2:57-64. [PMID: 22432720 DOI: 10.1111/j.1463-5224.2012.01010.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE In equine recurrent uveitis (ERU), immune reactions are directed toward known antigens like S-antigen, interphotoreceptor retinoid-binding protein, and cellular retinalaldehyde-binding protein, and anti-retinal antibodies were detected in vitreous samples. The aim of this study was the investigation of intraocular immunoglobulin M (IgM) reactivities to retinal proteome. PROCEDURES Retina was separated by one- and two-dimensional gel electrophoresis and blotted semidry on PVDF membranes. To identify intraocular IgM antibody responses to retinal tissue, blots were incubated with vitreous samples of ERU-diseased horses (n = 50) and healthy controls (n = 30), followed by an HRP-labeled secondary antibody specific for equine IgM. Noticeable 2D western blot signals were aligned on a 2D gel of retinal proteome, excised, and subsequently identified by tandem mass spectrometry. RESULTS Interestingly, frequent and very miscellaneous IgM response patterns to the retinal proteome in 68% of ERU vitreous samples were detected. Binding of IgM antibodies was localized at 17 different molecular weights. The most frequently detected signal, in 21 of the 50 samples, was located at 49 kDa. Comparing the samples interindividually between one and up to nine different signals in one sample could be observed. All healthy vitreous samples were devoid of IgM antibodies. Analysis of targeted spots with mass spectrometry led to the clear identification of 11 different proteins (corresponding to 16 different spots). One candidate could not be discovered so far. CONCLUSION The considerable IgM response to retinal proteins demonstrates an ongoing immune response, which might contribute to the remitting relapsing character of ERU. Novel identified target proteins point to a diverse response pattern of individual ERU cases.
Collapse
Affiliation(s)
- Johanna K Zipplies
- Department of Veterinary Sciences, Institute of Animal Physiology, Ludwig-Maximilians University, Veterinärstr 13, D-80539 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tannic acid suppresses ultraviolet B-induced inflammatory signaling and complement factor B on human retinal pigment epithelial cells. Cell Immunol 2011; 273:79-84. [PMID: 22169226 DOI: 10.1016/j.cellimm.2011.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/26/2011] [Accepted: 11/15/2011] [Indexed: 12/29/2022]
Abstract
Ultraviolet B (UVB) radiation may cause the inflammation of retinal pigment epithelium (RPE) cells and play a role in development of age-related macular degeneration (AMD). The activation of the complement factor B (CFB) gene has been shown to be involved in formation of AMD. Here our results revealed that UVB induces IL-6/STAT3 signaling activation and the UVB-induced STAT3 is able to regulate the CFB expression in ARPE-19 cells. Tannic acid (TA) is a kind of water-soluble polyphenol and may have anti-inflammation effects. We also found that TA attenuates the UVB-induced IL-6 protein production, the STAT3 phosphorylation and the CFB expression. Taken together, these findings suggest UVB-induced inflammation of RPE can be mediated through the IL-6/STAT3/CFB pathway, and TA has a protected effect via the inhibition to the inflammatory response.
Collapse
|
33
|
Jia C, Zhu W, Ren S, Xi H, Li S, Wang Y. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization. Mol Vis 2011; 17:2386-99. [PMID: 21921991 PMCID: PMC3171500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Suture placement and alkali burn to the cornea are often used to induce inflammatory corneal neovascularization (CorNV) models in animals. This study compares the changes in genome-wide gene expression under these two CorNV conditions in mice. METHODS CorNV were induced in Balb/c mice by three interrupted 10-0 sutures placed at sites about 1 mm from the corneal apex, or by alkali burns that were 2 mm in size in the central area of the cornea. At the points in time when neovascularization progressed most quickly, some eyeballs were subjected to histological staining to examine CorNV and inflammatory cells infiltration, and some corneas were harvested to extract mRNA for microarray assay. After normalization and filtering, the microarray data were subject to statistical analysis using Significance Analysis of Microarray software, and interested genes were annotated using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) program. The expression change of classical proangiogenic molecule like vascular endothelial growth factor (VEGF) and antiangiogenic molecule like pigment epithelium-derived factor (PEDF) was further verified using western blotting. RESULTS Suture placement induced CorNV in the areas between the suture and limbus, but did not affect the transparency of the yet unvasuclarized areas of the corneas. In contrast, alkali burn caused edema and total loss of transparency of the whole cornea. Histology showed that sutures only caused localized epithelial loss and inflammatory infiltration between the suture and limbus, but chemical burn depleted the whole epithelial layer of the central cornea and caused heavy cellular infiltration of the whole cornea. At day 5 after suture placement, 1,055 differentially expressed probes were identified, out of which 586 probes were upregulated and 469 probes were downregulated. At a comparable time point, namely on day 6 after the alkali burn to the corneas, 472 probes were upregulated and 389 probes were downregulated. Among these differentially expressed probes, a significant portion (530 probes in total, including 286 upregulated and 244 downregulated probes) showed a similar pattern of change in both models. Annotation (using DAVID) of the overlapping differential genes revealed that the significant enrichment gene ontology terms were "chemotaxis" and "immune response" for the upregulated genes, and "oxidation reduction" and "programmed cell death" for the downregulated genes. Some genes or gene families (e.g., S100A family or α-, β-, or γ-crystallin family) that had not been related to corneal pathogenesis or neovascularization were also revealed to be involved in CorNV. VEGF was upregulated and PEDF was stable as shown with western blotting. CONCLUSIONS Sutures and alkali burn to the corneas produced types of damage that affected transparency differentially, but gene profiling revealed similar patterns of changes in gene expression in these two CorNV models. Further studies of the primary genes found to be involved in CorNV will supplement current understanding about the pathogenesis of neovascularization diseases.
Collapse
|
34
|
Haas P, Aggermann T, Nagl M, Steindl-Kuscher K, Krugluger W, Binder S. Implication of CD21, CD35, and CD55 in the pathogenesis of age-related macular degeneration. Am J Ophthalmol 2011; 152:396-399.e1. [PMID: 21669404 DOI: 10.1016/j.ajo.2011.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 02/15/2011] [Accepted: 02/20/2011] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine a possible implication of CD21, CD35, and CD55 in the pathogenesis of age-related macular degeneration (AMD) by assessing the difference in expression rates of these factors on AMD patients and a control group. DESIGN Case-control study. METHODS Fifty unrelated AMD patients and 48 unrelated sex- and age-matched control subjects participated in this case-control study. Samples of fresh EDTA-blood were stained and flow cytometry was chosen to measure fluorescence emissions. The association between exudative AMD and CD21, CD35, and CD55 was evaluated from all patients who completed the study. RESULTS Our study shows CD35 to be expressed in a significantly higher frequency in AMD patients on monocytes (P = .00586), lymphocytes (P = .000605), and granulocytes (P < .000033). In contrast, the expression rate of CD21 (P > .05) and CD55 (P > .05) are similar in both groups. CONCLUSION More regulative factors of the complement system are involved in pathogenesis of AMD. Our study underlines the key role of the complement system in AMD and shows the involvement of the whole immune system through more regulative factors.
Collapse
Affiliation(s)
- Paulina Haas
- Ludwig Boltzmann Institute for Retinology and Biomicroscopic Laser Surgery, Rudolf Foundation Clinic, Vienna, Austria; Department of Ophthalmology, Rudolf Foundation Clinic, Vienna, Austria.
| | - Tina Aggermann
- Department of Ophthalmology, Rudolf Foundation Clinic, Vienna, Austria
| | - Manfred Nagl
- Karl Landsteiner Institute for Cell Biology and Cell Therapy, Rudolf Foundation Clinic, Vienna, Austria
| | - Kerstin Steindl-Kuscher
- Ludwig Boltzmann Institute for Retinology and Biomicroscopic Laser Surgery, Rudolf Foundation Clinic, Vienna, Austria
| | - Walter Krugluger
- Department of Laboratory Medicine, Social Medical Center East, Vienna, Austria
| | - Susanne Binder
- Ludwig Boltzmann Institute for Retinology and Biomicroscopic Laser Surgery, Rudolf Foundation Clinic, Vienna, Austria; Department of Ophthalmology, Rudolf Foundation Clinic, Vienna, Austria
| |
Collapse
|
35
|
Complement mediated apoptosis leads to the loss of retinal ganglion cells in animal model of glaucoma. Mol Immunol 2011; 48:2151-8. [PMID: 21821293 DOI: 10.1016/j.molimm.2011.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/18/2011] [Accepted: 07/18/2011] [Indexed: 12/23/2022]
Abstract
This study investigated the role of complement in the protection of retinal ganglion cells (RGCs) in chronic ocular hypertension model of glaucoma. Intraocular pressure (IOP) was elevated in the right eye of Lewis rats by laser photocoagulation (two treatments, 7days apart) of episcleral and limbal veins. Left eye did not receive laser treatment and served as control. Animals were injected with cobra venom factor every fifth day starting day 7 after first laser, to deplete the complement system. Animals were sacrificed at 6-week post-laser. Levels of C3 split products and membrane attack complex (MAC) were elevated in the retina of eyes with increased IOP and complement depletion reduced the loss of Brn3a(+) RGCs accompanied by decreased expression of GFAP and reduced MAC deposition. In complement depleted rats with increased IOP, reduced TUNEL(+) cells in ganglion cell layer, and decreased levels of active caspase-8 and active caspase-9 was observed compared to PBS treated complement sufficient rats with increased IOP. Interestingly, complement depletion also resulted in reduction of calcium influx and levels of BAD in the retinal cells of the eyes with increased IOP. Together, our results provide evidence that complement mediated apoptosis plays a pivotal role in the loss of RGCs in chronic ocular hypertension model of glaucoma.
Collapse
|
36
|
Buschini E, Piras A, Nuzzi R, Vercelli A. Age related macular degeneration and drusen: neuroinflammation in the retina. Prog Neurobiol 2011; 95:14-25. [PMID: 21740956 DOI: 10.1016/j.pneurobio.2011.05.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 12/19/2022]
Abstract
Inflammation protects from dangerous stimuli, restoring normal tissue homeostasis. Inflammatory response in the nervous system ("neuroinflammation") has distinct features, which are shared in several diseases. The retina is an immune-privileged site, and the tight balance of immune reaction can be disrupted and lead to age-related macular disease (AMD) and to its peculiar sign, the druse. Excessive activation of inflammatory and immunological cascade with subsequent induction of damage, persistent activation of resident immune cells, accumulation of byproducts that exceeds the normal capacity of clearance giving origin to a chronic local inflammation, alterations in the activation of the complement system, infiltration of macrophages, T-lymphocytes and mast-cells from the bloodstream, participate in the mechanisms which originate the drusen. In addition, aging of the retina and AMD involve also para-inflammation, by which immune cells react to persistent stressful stimuli generating low-grade inflammation, aimed at restoring function and maintaining tissue homeostasis by varying the set point in relation to the new altered conditions. This mechanism is also seen in the normal aging retina, but, in the presence of noxious stimuli as in AMD, it can become chronic and have an adverse outcome. Finally, autophagy may provide new insights to understand AMD pathology, due to its contribution in the removal of defective proteins. Therefore, the AMD retina can represent a valuable model to study neuroinflammation, its mechanisms and therapy in a restricted and controllable environment. Targeting these pathways could represent a new way to treat and prevent both exudative and dry forms of AMD.
Collapse
Affiliation(s)
- Elisa Buschini
- NICO, Neuroscience Institute of the Cavalieri Ottolenghi Foundation, University of Torino, Regione Gonzole 10, Orbassano (TO), Italy.
| | | | | | | |
Collapse
|
37
|
Liu J, Jha P, Lyzogubov VV, Tytarenko RG, Bora NS, Bora PS. Relationship between complement membrane attack complex, chemokine (C-C motif) ligand 2 (CCL2) and vascular endothelial growth factor in mouse model of laser-induced choroidal neovascularization. J Biol Chem 2011; 286:20991-1001. [PMID: 21515678 DOI: 10.1074/jbc.m111.226266] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the interactions among the complement membrane attack complex (MAC), CCL2, and VEGF that occur in vivo during the development of choroidal neovascularization (CNV). We first investigated the sequential expression of MAC, CCL2, and VEGF during laser-induced CNV in C57BL/6 mice. Increased MAC deposition was detected at 1 h, CCL2 increased at 3 h, and VEGF was up-regulated at day 3 post-laser treatment. These results suggested that during laser-induced CNV, MAC, CCL2 and VEGF are formed and/or expressed in the following order: MAC → CCL2 → VEGF. To determine the cross-talk between MAC, CCL2, and VEGF during laser-induced CNV, neutralizing antibodies were injected both systemically and locally to block the bioactivity of each molecule. Blocking MAC formation inhibited CCL2 and VEGF expression and also limited CNV formation, whereas neutralization of CCL2 bioactivity did not affect MAC deposition; however, it reduced VEGF expression and CNV formation. When bioactivity of VEGF was blocked, CNV formation was significantly inhibited, but MAC deposition was not affected. Together, our results demonstrate that MAC is an upstream mediator and effect of MAC on the development of laser-induced CNV can be attributed to its direct effect on VEGF as well as its effect on VEGF that is mediated by CCL2. Understanding the interplay between immune mediators is critical to gain insight into the pathogenesis of CNV.
Collapse
Affiliation(s)
- Juan Liu
- Department of Ophthalmology, University of Arkansas for Medical Sciences, Little Rock, Arizona 72205, USA
| | | | | | | | | | | |
Collapse
|
38
|
Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells. Exp Eye Res 2011; 92:180-8. [PMID: 21255569 DOI: 10.1016/j.exer.2011.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 12/22/2022]
Abstract
In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by a membrane. Differential gene expression in the RPE cells of complement factor genes was identified using gene arrays, and selected gene transcripts were validated by q-RT-PCR. Protein expression was determined by ELISA and immunoblotting. Co-culture with activated T cells increased RPE mRNA and/or protein expression of complement components C3, factors B, H, H-like 1, CD46, CD55, CD59, and clusterin, in a dose-dependent manner. Soluble factors derived from activated T cells are capable of increasing expression of complement components in RPE cells. This is important for the further understanding of inflammatory ocular diseases such as uveitis and age-related macular degeneration.
Collapse
|
39
|
Manickam B, Jha P, Matta B, Liu J, Bora PS, Bora NS. Inhibition of complement alternative pathway suppresses experimental autoimmune anterior uveitis by modulating T cell responses. J Biol Chem 2011; 286:8472-8480. [PMID: 21216963 DOI: 10.1074/jbc.m110.197616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The objective of the current study was to delineate the pathway of complement activation that is crucial for the induction of experimental autoimmune anterior uveitis (EAAU). We studied the development of EAAU in melanin-associated antigen (MAA)-sensitized Lewis rats treated with antibody against C4 or factor B. Control animals received isotype IgG control. Antibody against C4 had no effect on EAAU, and all of the animals developed EAAU similar to those injected with control IgG. In contrast, EAAU was completely inhibited in all MAA-sensitized Lewis rats injected with factor B antibody. Treatment with anti-factor B antibody resulted in suppression of ocular complement activation. Adoptive transfer of T lymphocytes harvested from draining lymph nodes of donor animals treated with anti-factor B did not transfer EAAU to naïve syngenic rats. Anti-factor B antibody inhibited the ability of MAA-specific CD4(+) T cells to proliferate (in vitro) in response to MAA in a dose-dependent manner. Level of TNF-α and IFN-γ decreased in the presence of anti-factor B. Collectively, our results provide the novel finding that complement activation via the alternative pathway contributes to intraocular inflammation in EAAU, and anti-factor B-mediated inhibition of EAAU is due to diminished antigen-specific CD4(+) T cell responses to MAA. Our findings explain the interactions between the complement system and T cells that are critical for the induction of EAAU and may lead to the development of therapy for idiopathic anterior uveitis based on selective blockade of the alternative pathway.
Collapse
Affiliation(s)
- Balasubramanian Manickam
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Purushottam Jha
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Bharati Matta
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Juan Liu
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Puran S Bora
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Nalini S Bora
- From the Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
40
|
Zipplies JK, Kirschfink M, Amann B, Hauck SM, Stangassinger M, Deeg CA. Complement factor B expression profile in a spontaneous uveitis model. Immunobiology 2010; 215:949-55. [DOI: 10.1016/j.imbio.2010.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
41
|
Manickam B, Jha P, Hepburn NJ, Morgan BP, Harris CL, Bora PS, Bora NS. Suppression of complement activation by recombinant Crry inhibits experimental autoimmune anterior uveitis (EAAU). Mol Immunol 2010; 48:231-9. [PMID: 20843553 DOI: 10.1016/j.molimm.2010.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/28/2010] [Accepted: 08/10/2010] [Indexed: 12/12/2022]
Abstract
This study was initiated to explore the effect of recombinant rat Crry linked to the Fc portion of rat IgG2a (Crry-Ig) on the induction of experimental autoimmune anterior uveitis (EAAU) and on established disease. EAAU was induced in Lewis rats by immunization with bovine melanin-associated antigen (MAA). MAA sensitized animals received Crry-Ig, rat IgG2a (isotype control) or PBS separately before the onset of EAAU or after the onset of clinical disease. Administration of Crry-Ig suppressed the induction of EAAU while all animals injected with IgG2a or PBS developed the normal course of EAAU. Treatment with Crry-Ig resulted in the suppression of ocular complement activation as well as the functional activity of complement in the peripheral blood. At the peak of EAAU, levels of IFN-γ, IP-10, ICAM-1 and LECAM-1 were significantly reduced within the eyes of Crry-Ig treated Lewis rats. Importantly, administration of Crry-Ig even after the onset of EAAU resulted in a sharp decline in the disease activity and early resolution of EAAU. Collectively, the evidence presented here demonstrate that inhibition of complement by Crry-Ig results in low levels of inflammatory molecules-C3 activation products, MAC, cytokines, chemokines and adhesion molecules in the eye. Down-regulation of these molecules affects the infiltration and recruitment of inflammatory cells to the eye resulting in the inhibition of EAAU.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Blotting, Western
- Complement Activation/immunology
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique
- Immunohistochemistry
- Male
- Rats
- Rats, Inbred Lew
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Uveitis, Anterior/immunology
- Uveitis, Anterior/metabolism
- Uveitis, Anterior/pathology
Collapse
Affiliation(s)
- Balasubramanian Manickam
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Tan Y, Yu F, Qu Z, Su T, Xing GQ, Wu LH, Wang FM, Liu G, Yang L, Zhao MH. Modified C-reactive protein might be a target autoantigen of TINU syndrome. Clin J Am Soc Nephrol 2010; 6:93-100. [PMID: 20813859 DOI: 10.2215/cjn.09051209] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The cross-reactive antigen(s) of tubulointerstitial nephritis and uveitis (TINU) syndrome from renal tubulointerstitia and ocular tissue remain unidentified. The authors' recent study demonstrated that the presence of serum IgG autoantibodies against modified C-reactive protein (mCRP) was closely associated with the intensity of tubulointerstitial lesions in lupus nephritis. The study presented here investigates the possible role of IgG autoantibodies against mCRP in patients with TINU syndrome. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS mCRP autoantibodies were screened by ELISA with purified human C-reactive protein in 9 patients with TINU syndrome, 11 with drug-associated acute interstitial nephritis, 20 with IgA nephropathy, 19 with minimal change disease, 20 with ANCA-associated vasculitis, 6 with Sjogren's syndrome, and 12 with amyloidosis. mCRP expression was analyzed by immunohistochemistry in renal biopsy specimens from the 9 patients with TINU syndrome and 40 from disease controls. Frozen normal human kidney and iris were used to demonstrate co-localization of human IgG and mCRP from patients with TINU syndrome with laser scanning confocal microscopy. RESULTS The mCRP autoantibodies were detected in all nine patients with TINU syndrome, significantly higher than that of those with disease controls (P < 0.05). The renal histologic score of mCRP in TINU syndrome was significantly higher than that in disease controls (P < 0.05). The staining of mCRP and human IgG were co-localized in renal and ocular tissues. CONCLUSIONS It is concluded that mCRP might be a target autoantigen in TINU syndrome.
Collapse
Affiliation(s)
- Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital and Institute of Nephrology, Peking University Key Laboratory of Renal Disease, Ministry of Health of China, Peking, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lyzogubov VV, Tytarenko RG, Jha P, Liu J, Bora NS, Bora PS. Role of ocular complement factor H in a murine model of choroidal neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1870-80. [PMID: 20813971 DOI: 10.2353/ajpath.2010.091168] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to explore the relationship between local (ie, ocular) complement factor H (CFH) and choroidal neovascularization (CNV) associated with wet age-related macular degeneration (AMD), a leading cause of irreversible blindness, in laser-treated C57BL/6 mice. Immunohistochemical and RT-PCR analysis of retinal pigmented epithelium (RPE)-choroid sclera revealed that the expression of CFH was down-regulated on day 1 with a dramatic increase on days 5 and 7 postlaser injury. Flat mount and Western blot analysis further revealed that membrane attack complex (MAC) expression was up-regulated on days 1 and 3 postlaser injury; however, MAC was down-regulated on days 5 and 7 postinjury but was still higher than in non-injured mice. Similar patterns for CFH and MAC were observed for RPE cells when serial paraffin sections of the laser spots were analyzed. Subretinal injection of siRNA directed against CFH resulted in a threefold suppression of CFH in the RPE and choroid without affecting either CFH levels in the liver or the functional activity of the alternative pathway in the peripheral blood. Ocular knock-down of CFH resulted in increased MAC deposition, which leads to the early onset as well as exacerbation of laser-induced CNV. In conclusion, our findings provide evidence that CFH present on RPE and choroid regulates local MAC formation that is critical for the development of laser-induced CNV.
Collapse
Affiliation(s)
- Valeriy V Lyzogubov
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
44
|
Gronert K. Resolution, the grail for healthy ocular inflammation. Exp Eye Res 2010; 91:478-85. [PMID: 20637194 DOI: 10.1016/j.exer.2010.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/03/2010] [Accepted: 07/07/2010] [Indexed: 01/06/2023]
Abstract
Acute inflammation is a frequent, essential and beneficial response to maintain normal tissue function. PMN are the primary effector cells of acute inflammatory responses and their timely resolution by macrophages from an injured, stressed or infected tissues are required for the successful execution of this routine tissue response. Dysregulation of this fundamental program is a major factor in the global disease burden and contributes to many ocular diseases. Counter-regulatory signals are critical to the controlled activation of innate and adaptive immune responses in the eye and recent studies have identified two circuits in the cornea, uvea and/or retina, namely 15-lipoxygenase and heme-oxygenase, which control inflammation, promote resolution of PMN and afford neuroprotection. The role of these counter-regulator and pro-resolution circuits may provide insight into ocular inflammatory diseases and opportunities to restore stressed ocular tissue to a pre-inflammatory state, namely homeostasis, rather than limiting therapeutic options to palliative inhibition of pro-inflammatory circuits.
Collapse
Affiliation(s)
- Karsten Gronert
- Vision Science Program, School of Optometry, University of California, 594 Minor Hall, MC 2020, Berkeley, CA 94720, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Teri A Manolio
- Office of Population Genomics, National Human Genome Research Institute, Bldg. 31, Rm. 4B-09, 31 Center Dr., MSC 2152, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology 2010; 216:225-33. [PMID: 20627448 DOI: 10.1016/j.imbio.2010.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/30/2010] [Accepted: 05/02/2010] [Indexed: 11/22/2022]
Abstract
Acanthamoeba can cause severe ocular and cerebral diseases in healthy and immunocompromised individuals, respectively. Activation of complement appears to play an important role in host defence against infection. The exact mechanism, however, is still unclear. The aim of the present study was to investigate the effect of normal human serum (NHS) and normal mouse serum (NMS) on Acanthamoeba trophozoites, the binding of different complement factors to Acanthamoeba and the activation of the complement system. Moreover, we aimed to work out any possible differences between different strains of Acanthamoeba. A virulent T4 strain, a non-virulent T4 strain and a virulent T6 strain were included in the study. It was shown that NHS, but not NMS clearly has amoebicidal properties. After 5min of incubation with NHS, amoebae showed plasma membrane disruption and extrusion of intracellular components. Cells were completely destroyed within 60min of incubation in NHS but stayed intact after incubation in heat-inactivated serum. The binding of human C3 and C9 to amoebae was established by immunoblotting. Although incubation with mouse serum did not result in lysis of Acanthamoeba trophozoites an immunofluorescence assay (IFA) demonstrated a strong deposition of mouse complement factor C3 activation products, moderate binding of C1q, but no binding of MBL-A and MBL-C. EDTA inhibited the binding of C3 to acanthamoebae. Binding of amoebae to C3b was observed with sera from C1qa-/- and MBL-A/C-/- mice, but not with serum from Bf/C2-/- mice demonstrating an activation of complement via the alternative pathway. There were no significant differences between the three Acanthamoeba strains investigated. Altogether, our results prove that NHS is amoebolytic and that Acanthamoeba binds to C3 and C9 and activates the complement system via the alternative pathway.
Collapse
|
47
|
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.
Collapse
Affiliation(s)
- Yureeda Qazi
- Department of Ophthalmology, John Moran Eye Center, University of Utah, Salt Lake City, UT-84132, USA
| | | | | |
Collapse
|
48
|
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch's membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, Bethesda, MD 20892-1857, USA
| | | | | |
Collapse
|