1
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Darwish SF, Elbadry AMM, Elbokhomy AS, Salama GA, Salama RM. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. FRONTIERS IN AGING 2023; 4:1231706. [PMID: 37744008 PMCID: PMC10513083 DOI: 10.3389/fragi.2023.1231706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
The pathophysiology of different neurodegenerative illnesses is significantly influenced by the polarization regulation of microglia and macrophages. Traditional classifications of macrophage phenotypes include the pro-inflammatory M1 and the anti-inflammatory M2 phenotypes. Numerous studies demonstrated dynamic non-coding RNA modifications, which are catalyzed by microglia-induced neuroinflammation. Different nutraceuticals focus on the polarization of M1/M2 phenotypes of microglia and macrophages, offering a potent defense against neurodegeneration. Caeminaxin A, curcumin, aromatic-turmerone, myricetin, aurantiamide, 3,6'-disinapoylsucrose, and resveratrol reduced M1 microglial inflammatory markers while increased M2 indicators in Alzheimer's disease. Amyloid beta-induced microglial M1 activation was suppressed by andrographolide, sulforaphane, triptolide, xanthoceraside, piperlongumine, and novel plant extracts which also prevented microglia-mediated necroptosis and apoptosis. Asarone, galangin, baicalein, and a-mangostin reduced oxidative stress and pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha in M1-activated microglia in Parkinson's disease. Additionally, myrcene, icariin, and tenuigenin prevented the nod-like receptor family pyrin domain-containing 3 inflammasome and microglial neurotoxicity, while a-cyperone, citronellol, nobiletin, and taurine prevented NADPH oxidase 2 and nuclear factor kappa B activation. Furthermore, other nutraceuticals like plantamajoside, swertiamarin, urolithin A, kurarinone, Daphne genkwa flower, and Boswellia serrata extracts showed promising neuroprotection in treating Parkinson's disease. In Huntington's disease, elderberry, curcumin, iresine celosia, Schisandra chinensis, gintonin, and pomiferin showed promising results against microglial activation and improved patient symptoms. Meanwhile, linolenic acid, resveratrol, Huperzia serrata, icariin, and baicalein protected against activated macrophages and microglia in experimental autoimmune encephalomyelitis and multiple sclerosis. Additionally, emodin, esters of gallic and rosmarinic acids, Agathisflavone, and sinomenine offered promising multiple sclerosis treatments. This review highlights the therapeutic potential of using nutraceuticals to treat neurodegenerative diseases involving microglial-related pathways.
Collapse
Affiliation(s)
- Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdullah M. M. Elbadry
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Egypt
| | | | - Ghidaa A. Salama
- Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
4
|
Montilla A, Zabala A, Er-Lukowiak M, Rissiek B, Magnus T, Rodriguez-Iglesias N, Sierra A, Matute C, Domercq M. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis. Cell Death Dis 2023; 14:16. [PMID: 36635255 PMCID: PMC9835747 DOI: 10.1038/s41419-023-05551-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
In multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, both resident microglia and infiltrating macrophages contribute to demyelination as well as spontaneous remyelination. Nevertheless, the specific roles of microglia versus macrophages are unknown. We investigated the influence of microglia in EAE using the colony stimulating factor 1 receptor (CSF-1R) inhibitor, PLX5622, to deplete microglial population and Ccr2RFP/+ fmsEGFP/+ mice, to distinguish blood-derived macrophages from microglia. PLX5622 treatment depleted microglia and meningeal macrophages, and provoked a massive infiltration of CCR2+ macrophages into demyelinating lesions and spinal cord parenchyma, albeit it did not alter EAE chronic phase. In contrast, microglia and meningeal macrophages depletion reduced the expression of major histocompatibility complex II and CD80 co-stimulatory molecule in dendritic cells, macrophages and microglia. In addition, it diminished T cell reactivation and proliferation in the spinal cord parenchyma, inducing a significant delay in EAE onset. Altogether, these data point to a specific role of CNS microglia and meningeal macrophages in antigen presentation and T cell reactivation at initial stages of EAE.
Collapse
Affiliation(s)
- Alejandro Montilla
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alazne Zabala
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Marco Er-Lukowiak
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Noelia Rodriguez-Iglesias
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Domercq
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| |
Collapse
|
5
|
Phenethyl Ester of Gallic Acid Ameliorates Experimental Autoimmune Encephalomyelitis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248770. [PMID: 36557903 PMCID: PMC9782083 DOI: 10.3390/molecules27248770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Gallic acid is a phenolic acid present in various plants, nuts, and fruits. It is well known for its anti-oxidative and anti-inflammatory properties. The phenethyl ester of gallic acid (PEGA) was synthesized with the aim of increasing the bioavailability of gallic acid, and thus its pharmacological potential. Here, the effects of PEGA on encephalitogenic cells were examined, and PEGA was found to modulate the inflammatory activities of T cells and macrophages/microglia. Specifically, PEGA reduced the release of interleukin (IL)-17 and interferon (IFN)-γ from T cells, as well as NO, and IL-6 from macrophages/microglia. Importantly, PEGA ameliorated experimental autoimmune encephalomyelitis, an animal model of chronic inflammatory disease of the central nervous system (CNS)-multiple sclerosis. Thus, PEGA is a potent anti-inflammatory compound with a perspective to be further explored in the context of CNS autoimmunity and other chronic inflammatory disorders.
Collapse
|
6
|
Mundt S, Greter M, Becher B. The CNS mononuclear phagocyte system in health and disease. Neuron 2022; 110:3497-3512. [PMID: 36327896 DOI: 10.1016/j.neuron.2022.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
CNS-resident macrophages-including parenchymal microglia and border-associated macrophages (BAMs)-contribute to neuronal development and health, vascularization, and tissue integrity at steady state. Border-patrolling mononuclear phagocytes such as dendritic cells and monocytes confer important immune functions to the CNS, protecting it from pathogenic threats including aberrant cell growth and brain malignancies. Even though we have learned much about the contribution of lymphocytes to CNS pathologies, a better understanding of differential roles of tissue-resident and -invading phagocytes is slowly emerging. In this perspective, we propose that in CNS neuroinflammatory diseases, tissue-resident macrophages (TRMs) contribute to the clearing of debris and resolution of inflammation, whereas blood-borne phagocytes are drivers of immunopathology. We discuss the remaining challenges to resolve which specialized mononuclear phagocyte populations are driving or suppressing immune effector function, thereby potentially dictating the outcome of autoimmunity or brain cancer.
Collapse
Affiliation(s)
- Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Zhu Y, Owens SJ, Murphy CE, Ajulu K, Rothmond D, Purves-Tyson T, Middleton F, Webster MJ, Weickert CS. Inflammation-related transcripts define "high" and "low" subgroups of individuals with schizophrenia and bipolar disorder in the midbrain. Brain Behav Immun 2022; 105:149-159. [PMID: 35764269 DOI: 10.1016/j.bbi.2022.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
Dopamine dysregulation in schizophrenia may be associated with midbrain inflammation. Previously, we found elevated levels of pro-inflammatory cytokine mRNAs in the post-mortem midbrain of people with schizophrenia (46%) but not from unaffected controls (0%) using a brain cohort from Sydney, Australia. Here, we measured cytokine mRNAs and proteins in the midbrain in the Stanley Medical Research Institute (SMRI) array cohort (N = 105). We tested if the proportions of individuals with schizophrenia and with high inflammation can be replicated, and if individuals with bipolar disorder with elevated midbrain cytokines can be identified. mRNA levels of 7 immune transcripts from post-mortem midbrain tissue were measured via RT-PCR and two-step recursive clustering analysis was performed using 4 immune transcripts to define "high and low" inflammatory subgroups. The clustering predictors used were identical to our earlier midbrain study, and included: IL1B, IL6, TNF, and SERPINA3 mRNA levels. 46% of schizophrenia cases (16/35 SCZ), 6% of controls (2/33 CTRL), and 29% of bipolar disorder cases (10/35 BPD) were identified as belonging to the high inflammation (HI) subgroups [χ2 (2) = 13.54, p < 0.001]. When comparing inflammatory subgroups, all four mRNAs were significantly increased in SCZ-HI and BPD-HI compared to low inflammation controls (CTRL-LI) (p < 0.05). Additionally, protein levels of IL-1β, IL-6, and IL-18 were elevated in SCZ-HI and BPD-HI compared to all other low inflammatory subgroups (all p < 0.05). Surprisingly, TNF-α protein levels were unchanged according to subgroups. In conclusion, we determined that almost half of the individuals with schizophrenia were defined as having high inflammation in the midbrain, replicating our previous findings. Further, we detected close to one-third of those with bipolar disorder to be classified as having high inflammation. Elevations in some pro-inflammatory cytokine mRNAs (IL-1β and IL-6) were also found at the protein level, whereas TNF mRNA and protein levels were not concordant.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Samantha J Owens
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Caitlin E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Kachikwulu Ajulu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Debora Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Tertia Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Frank Middleton
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Stegnjaić G, Lazarević M, Diamantis D, Djedović N, Jevtić B, Stanisavljević S, Dimitrijević M, Momčilović M, Tzakos AG, Miljković Đ. Phenethyl ester of rosmarinic acid ameliorates experimental autoimmune encephalomyelitis. Immunol Lett 2022; 251-252:9-19. [DOI: 10.1016/j.imlet.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/13/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
9
|
Zhao R, Pan Z, Li B, Zhao S, Zhang S, Qi Y, Qiu J, Gao Z, Fan Y, Guo Q, Qiu W, Wang S, Wang Q, Zhang P, Guo X, Deng L, Xue H, Li G. Comprehensive Analysis of the Tumor Immune Microenvironment Landscape in Glioblastoma Reveals Tumor Heterogeneity and Implications for Prognosis and Immunotherapy. Front Immunol 2022; 13:820673. [PMID: 35309323 PMCID: PMC8924366 DOI: 10.3389/fimmu.2022.820673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 01/10/2023] Open
Abstract
Background Glioblastoma (GBM) is a fatal brain tumor with no effective treatment. The specific GBM tumor immune microenvironment (TIME) may contribute to resistance to immunotherapy, a tumor therapy with great potential. Thus, an in-depth understanding of the characteristics of tumor-infiltrating immune cells is essential for exploring biomarkers in GBM pathogenesis and immunotherapy. Methods We estimated the relative abundances of 25 immune cell types in 796 GBM samples using single sample gene set enrichment analysis (ssGSEA). Unsupervised clustering was used to identify different GBM-associated TIME immune cell infiltration (GTMEI) patterns. The GTMEIscore system was constructed with principal component analysis (PCA) to determine the immune infiltration pattern of individual tumors. Results We revealed three distinct GTMEI patterns with different clinical outcomes and modulated biological pathways. We developed a scoring system (GTMEIscore) to determine the immune infiltration pattern of individual tumors. We comprehensively analyzed the genomic characteristics, molecular subtypes and clinicopathological features as well as proteomic, phosphoproteomic, acetylomic, lipidomic and metabolomic properties associated with the GTMEIscore and revealed many novel dysregulated pathways and precise targets in GBM. Moreover, the GTMEIscore accurately quantified the immune status of many other cancer types. Clinically, the GTMEIscore was found to have significant potential therapeutic value for chemotherapy/radiotherapy, immune checkpoint inhibitor (ICI) therapy and targeted therapy. Conclusions For the first time, we employed a multilevel and multiplatform strategy to construct a multidimensional molecular map of tumors with different immune infiltration patterns. These results may provide theoretical basises for identifying more effective predictive biomarkers and developing more effective drug combination strategies or novel immunotherapeutic agents for GBM.
Collapse
Affiliation(s)
- Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Shouji Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Jiawei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
McGill MM, Richman AR, Boyd JR, Sabikunnahar B, Lahue KG, Montgomery TL, Caldwell S, Varnum S, Frietze S, Krementsov DN. p38 MAP Kinase Signaling in Microglia Plays a Sex-Specific Protective Role in CNS Autoimmunity and Regulates Microglial Transcriptional States. Front Immunol 2021; 12:715311. [PMID: 34707603 PMCID: PMC8542909 DOI: 10.3389/fimmu.2021.715311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system, representing the leading cause of non-traumatic neurologic disease in young adults. This disease is three times more common in women, yet more severe in men, but the mechanisms underlying these sex differences remain largely unknown. MS is initiated by autoreactive T helper cells, but CNS-resident and CNS-infiltrating myeloid cells are the key proximal effector cells regulating disease pathology. We have previously shown that genetic ablation of p38α MAP kinase broadly in the myeloid lineage is protective in the autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), but only in females, and not males. To precisely define the mechanisms responsible, we used multiple genetic approaches and bone marrow chimeras to ablate p38α in microglial cells, peripheral myeloid cells, or both. Deletion of p38α in both cell types recapitulated the previous sex difference, with reduced EAE severity in females. Unexpectedly, deletion of p38α in the periphery was protective in both sexes. In contrast, deletion of p38α in microglia exacerbated EAE in males only, revealing opposing roles of p38α in microglia vs. periphery. Bulk transcriptional profiling revealed that p38α regulated the expression of distinct gene modules in male vs. female microglia. Single-cell transcriptional analysis of WT and p38α-deficient microglia isolated from the inflamed CNS revealed a diversity of complex microglial states, connected by distinct convergent transcriptional trajectories. In males, microglial p38α deficiency resulted in enhanced transition from homeostatic to disease-associated microglial states, with the downregulation of regulatory genes such as Atf3, Rgs1, Socs3, and Btg2, and increased expression of inflammatory genes such as Cd74, Trem2, and MHC class I and II genes. In females, the effect of p38α deficiency was divergent, exhibiting a unique transcriptional profile that included an upregulation of tissue protective genes, and a small subset of inflammatory genes that were also upregulated in males. Taken together, these results reveal a p38α-dependent sex-specific molecular pathway in microglia that is protective in CNS autoimmunity in males, suggesting that autoimmunity in males and females is driven by distinct cellular and molecular pathways, thus suggesting design of future sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Mahalia M McGill
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Alyssa R Richman
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Joseph R Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Bristy Sabikunnahar
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Stella Varnum
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
11
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
12
|
Dadwal N, Mix C, Reinhold A, Witte A, Freund C, Schraven B, Kliche S. The Multiple Roles of the Cytosolic Adapter Proteins ADAP, SKAP1 and SKAP2 for TCR/CD3 -Mediated Signaling Events. Front Immunol 2021; 12:703534. [PMID: 34295339 PMCID: PMC8290198 DOI: 10.3389/fimmu.2021.703534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed "inside-out signaling". Subsequently, ligand bound LFA-1 transmits a signal into the T cells ("outside-in signaling") which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.
Collapse
Affiliation(s)
- Nirdosh Dadwal
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Charlie Mix
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Amelie Witte
- Coordination Center of Clinical Trials, University Medicine Greifswald, Greifswald, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty of the Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
13
|
Xu X, Wang K, Cao X, Li Z, Zhou Y, Ren J, Liu F. Gut Microbial Metabolite Short-Chain Fatt Acids Partially Reverse Surgery and Anesthesia-Induced Behavior Deficits in C57BL/6J Mice. Front Neurosci 2021; 15:664641. [PMID: 34168535 PMCID: PMC8217457 DOI: 10.3389/fnins.2021.664641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has demonstrated that damages of gut microbiota are strongly associated with central nervous system (CNS) diseases, such as perioperative neurocognitive disorders (PND). The present study investigated the role of gut microbial metabolite short-chain fatty acids (SCFAs) in surgery-induced cognitive deficits and neuroinflammation in the hippocampus. Adult male C57BL/6J mice received either SCFA mixture or saline orally for 4 weeks, and then partial hepatectomy was performed. The fecal supernatant of surgical mice was transplanted to normal mice for 3 weeks. The Morris water maze (MWM) and open-field tests were used to evaluate behavioral performance on postoperative or post-transplantation days 3 and 7. In the MWM test, pretreatment with exogenous SCFAs partially reversed surgery-induced impairments in crossing times and the time spent in the target quadrant on postoperative day 3 (p < 0.05, p < 0.05, respectively). In the open-field test, compared with the surgical mice, exogenous SCFA administration prior to surgery partially improved the locomotor activity (p < 0.05) and anxiety-like behavior (p < 0.05) on postoperative day 3. Surgical trauma and anesthesia enhanced ionized calcium-binding adapter molecule 1 (Iba-1) expression (p < 0.001), increased the levels of interleukin (IL)-1β (p < 0.001) and IL-6 (p < 0.001), and inhibited SCFA production (p < 0.001) on postoperative day 3. The expression of the brain-derived neurotrophic factor (BDNF) was also decreased (p < 0.001). Overall, surgical trauma and anesthesia exacerbated cognitive impairment, enhanced neuroinflammatory responses, and inhibited SCFA production. Pretreatment with SCFAs attenuated these effects partially by reversing microglial overactivation, inhibiting neuroinflammatory responses, and enhancing BDNF expression.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kexin Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuezhao Cao
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Li
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongjian Zhou
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiancong Ren
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Ross JL, Vega JV, Plant A, MacDonald TJ, Becher OJ, Hambardzumyan D. Tumor immune landscape of paediatric high-grade gliomas. Brain 2021; 144:2594-2609. [PMID: 33856022 DOI: 10.1093/brain/awab155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, remarkable progress has been made towards elucidating the origin and genomic landscape of childhood high-grade brain tumors. It has become evident that pediatric high-grade gliomas (pHGGs) differ from adult HGGs with respect to multiple defining aspects including: DNA copy number, gene expression profiles, tumor locations within the central nervous system, and genetic alterations such as somatic histone mutations. Despite these advances, clinical trials for children with glioma have historically been based on ineffective adult regimens that fail to take into consideration the fundamental biological differences between the two. Additionally, although our knowledge of the intrinsic cellular mechanisms driving tumor progression has considerably expanded, little is known concerning the dynamic tumor immune microenvironment (TIME) in pHGGs. In this review, we explore the genetic and epigenetic landscape of pHGGs and how this drives the creation of specific tumor sub-groups with meaningful survival outcomes. Further, we provide a comprehensive analysis of the pHGG TIME and discuss emerging therapeutic efforts aimed at exploiting the immune functions of these tumors.
Collapse
Affiliation(s)
- James L Ross
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jose Velazquez Vega
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ashley Plant
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Oren J Becher
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, New York, USA.,Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
15
|
Li C, Xu X, Wei S, Jiang P, Xue L, Wang J. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021; 9:jitc-2020-001341. [PMID: 33504575 PMCID: PMC8728363 DOI: 10.1136/jitc-2020-001341] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | | | | |
Collapse
|
16
|
Fujita Y, Yamashita T. Alterations in Chromatin Structure and Function in the Microglia. Front Cell Dev Biol 2021; 8:626541. [PMID: 33553166 PMCID: PMC7858661 DOI: 10.3389/fcell.2020.626541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 12/01/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS). Microglia exhibit diversity in their morphology, density, electrophysiological properties, and gene expression profiles, and play various roles in neural development and adulthood in both physiological and pathological conditions. Recent transcriptomic analysis using bulk and single-cell RNA-seq has revealed that microglia can shift their gene expression profiles in various contexts, such as developmental stages, aging, and disease progression in the CNS, suggesting that the heterogeneity of microglia may be associated with their distinct functions. Epigenetic changes, including histone modifications and DNA methylation, coordinate gene expression, thereby contributing to the regulation of cellular state. In this review, we summarize the current knowledge regarding the epigenetic mechanisms underlying spatiotemporal and functional diversity of microglia that are altered in response to developmental stages and disease conditions. We also discuss how this knowledge may lead to advances in therapeutic approaches for diseases.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Quarta A, Berneman Z, Ponsaerts P. Functional consequences of a close encounter between microglia and brain-infiltrating monocytes during CNS pathology and repair. J Leukoc Biol 2020; 110:89-106. [PMID: 33155726 DOI: 10.1002/jlb.3ru0820-536r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is recognized as an important factor contributing to the development and progression of several central nervous system (CNS) disorders. Upon CNS trauma or disease, parenchymal microglia highly proliferate and accumulate in and around the lesion site. In addition, blood-derived monocytes can infiltrate the inflamed CNS in response to cellular damage and/or a compromised blood-brain barrier. Both microglia and infiltrating monocytes are characterized by multiple functional states and can either display highly proinflammatory properties or promote resolution of inflammation and tissue regeneration. Despite sharing some basic immunologic functions, microglia and monocytes display many distinctive features, which ultimately define their contribution to neuropathology. Understanding how the innate immune system participates to brain disease is imperative to identify novel treatment options for CNS inflammatory disorders. In this context, existing and newly developed in vitro platforms for disease modeling are fundamental tools to investigate and modulate microglia and monocyte immune functions within a specific neuropathologic context. In this review, we first briefly summarize the current knowledge on microglia and monocyte ontogenesis, as well as their complex and interconnected contributions to the development of various CNS pathologies. Following the well-recognized concept that both microglia and monocytes can either exert neuroprotective functions or exacerbate tissue damage, we provide a comprehensive overview of cellular models currently available for in vitro study of neuroinflammatory responses. In this context, we highlight how simplified single-cell models may not always correctly recapitulate in vivo biology, hence future research should move toward novel models with higher and multicellular complexity.
Collapse
Affiliation(s)
- Alessandra Quarta
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Borst K, Prinz M. Deciphering the heterogeneity of myeloid cells during neuroinflammation in the single-cell era. Brain Pathol 2020; 30:1192-1207. [PMID: 33058309 PMCID: PMC8018048 DOI: 10.1111/bpa.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a disabling neuroinflammatory disease, which is little understood and lacks a sufficient therapeutic regimen. Myeloid cells have repeatedly shown to play a pivotal role in the disease progression. During homeostasis, only the CNS‐resident microglia and CNS‐associated macrophages are present in the CNS. Neuroinflammation causes peripheral immune cells to infiltrate the CNS contributing to disease progression and neurological sequelae. The differential involvement of the diverse peripheral and resident myeloid cell subsets to the disease pathogenesis and outcome are highly debated and difficult to assess. However, novel technological advances (new mouse models, single‐cell RNA‐Sequencing, and CYTOF) have improved the depth of immune profiling, which allows the characterization of distinct myeloid subsets. This review provides an overview of current knowledge on the phenotypes and roles of these different myeloid subsets in neuroinflammatory disease and their therapeutic relevance.
Collapse
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Chen Z, Herting CJ, Ross JL, Gabanic B, Puigdelloses Vallcorba M, Szulzewsky F, Wojciechowicz ML, Cimino PJ, Ezhilarasan R, Sulman EP, Ying M, Ma'ayan A, Read RD, Hambardzumyan D. Genetic driver mutations introduced in identical cell-of-origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia 2020; 68:2148-2166. [PMID: 32639068 DOI: 10.1002/glia.23883] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor. In addition to being genetically heterogeneous, GBMs are also immunologically heterogeneous. However, whether the differences in immune microenvironment are driven by genetic driver mutation is unexplored. By leveraging the versatile RCAS/tv-a somatic gene transfer system, we establish a mouse model for Classical GBM by introducing EGFRvIII expression in Nestin-positive neural stem/progenitor cells in adult mice. Along with our previously published Nf1-silenced and PDGFB-overexpressing models, we investigate the immune microenvironments of the three models of human GBM subtypes by unbiased multiplex profiling. We demonstrate that both the quantity and composition of the microenvironmental myeloid cells are dictated by the genetic driver mutations, closely mimicking what was observed in human GBM subtypes. These myeloid cells express high levels of the immune checkpoint protein PD-L1; however, PD-L1 targeted therapies alone or in combination with irradiation are unable to increase the survival time of tumor-bearing mice regardless of the driver mutations, reflecting the outcomes of recent human trials. Together, these results highlight the critical utility of immunocompetent mouse models for preclinical studies of GBM, making these models indispensable tools for understanding the resistance mechanisms of immune checkpoint blockade in GBM and immune cell-targeting drug discovery.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cameron J Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Graduate Division of Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA
| | - James L Ross
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Ben Gabanic
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Montse Puigdelloses Vallcorba
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program of Solid Tumors, Center for the Applied Medical Research (CIMA), Pamplona, Navarra, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Megan L Wojciechowicz
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick J Cimino
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Mingyao Ying
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Winship Cancer Institute, Emory Usniversity School of Medicine, Atlanta, Georgia, USA.,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Zheng J, Sariol A, Meyerholz D, Zhang Q, Abrahante Lloréns JE, Narumiya S, Perlman S. Prostaglandin D2 signaling in dendritic cells is critical for the development of EAE. J Autoimmun 2020; 114:102508. [PMID: 32624353 PMCID: PMC7332282 DOI: 10.1016/j.jaut.2020.102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Priming of autoreactive T cells in lymph nodes by dendritic cells (DCs) is critical for the pathogenesis of experimental autoimmune encephalitis (EAE). DC activation reflects a balance of pro- and anti-inflammatory signals. One anti-inflammatory factor is prostaglandin D2 signaling through its cognate receptor, D-prostanoid receptor 1 (PTGDR), on myeloid cells. Loss of PTGDR signaling might be expected to enhance DC activation and EAE but here we show that PTGDR−/− mice developed only mild signs of MOG35-55 peptide immunization-induced EAE. Compared to wild type mice, PTGDR−/− mice exhibited less demyelination, decreased leukocyte infiltration and diminished microglia activation. These effects resulted from increased pro-inflammatory responses in the lymph nodes, most notably in IL-1β production, with the unexpected consequence of increased activation-induced apoptosis of MOG35-55 peptide-specific T cells. Conditional deletion of PTGDR on DCs, and not other myeloid cells ameliorated EAE. Together, these results demonstrate the indispensable role that PGD2/PTGDR signaling on DCs has in development of pathogenic T cells in autoimmune demyelination. Increased T cell activation occurred in PTGDR−/- mice resulting in T cell apoptosis. AICD decreased T cell infiltration into, and demyelination in CNS during EAE. Decreased PGD2/PTGDR signaling in DCs resulted in increased IL-1β expression. Anakinra treatment in PTGDR−/- mice increased EAE severity.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Alan Sariol
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Qinran Zhang
- School of Mathematics and Statistics, Wuhan University, Wuhan, PR China
| | | | - Shuh Narumiya
- Department of Pharmacology, Kyoto University, Tokyo, 606-8501, Japan
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
21
|
Pavelek Z, Angelucci F, Souček O, Krejsek J, Sobíšek L, Klímová B, Šarláková J, Halúsková S, Kuča K, Vališ M. Innate Immune System and Multiple Sclerosis. Granulocyte Numbers Are Reduced in Patients Affected by Relapsing-Remitting Multiple Sclerosis during the Remission Phase. J Clin Med 2020; 9:E1468. [PMID: 32422897 PMCID: PMC7290702 DOI: 10.3390/jcm9051468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system. The cause of MS is still unknown, and the role of innate immunity is still poorly understood. OBJECTIVE The goal of this study was to understand whether, compared to healthy controls, the elements of innate immunity are altered in the blood of MS patients in the remitting phase. METHODS A total of 77 naïve MS patients and 50 healthy controls were included in this cohort study. Peripheral blood samples were collected and analyzed. All the calculations were performed with the statistical system R (r-project.org). RESULTS The results showed that MS patients had significantly lower relative representations of granulocytes than healthy controls, while the relative representations of monocytes remained unchanged. CD64- and PD-L1-positive granulocytes exhibited a nonsignificant decreasing trend, while granulocytes with other membrane markers remained noticeably unchanged. CONCLUSION The results of this study suggest that studies of the causes of MS and its treatment should also be focused on the elements of the innate immune response.
Collapse
Affiliation(s)
- Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Ondřej Souček
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (O.S.); (J.K.)
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (O.S.); (J.K.)
| | - Lukáš Sobíšek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Blanka Klímová
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Jana Šarláková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Simona Halúsková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolská 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| |
Collapse
|
22
|
Stok M, de Boer H, Huston MW, Jacobs EH, Roovers O, Visser TP, Jahr H, Duncker DJ, van Deel ED, Reuser AJJ, van Til NP, Wagemaker G. Lentiviral Hematopoietic Stem Cell Gene Therapy Corrects Murine Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1014-1025. [PMID: 32462050 PMCID: PMC7240064 DOI: 10.1016/j.omtm.2020.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023]
Abstract
Pompe disease is an autosomal recessive lysosomal storage disorder characterized by progressive muscle weakness. The disease is caused by mutations in the acid α-glucosidase (GAA) gene. Despite the currently available enzyme replacement therapy (ERT), roughly half of the infants with Pompe disease die before the age of 3 years. Limitations of ERT are immune responses to the recombinant enzyme, incomplete correction of the disease phenotype, lifelong administration, and inability of the enzyme to cross the blood-brain barrier. We previously reported normalization of glycogen in heart tissue and partial correction of the skeletal muscle phenotype by ex vivo hematopoietic stem cell gene therapy. In the present study, using a codon-optimized GAA (GAAco), the enzyme levels resulted in close to normalization of glycogen in heart, muscles, and brain, and in complete normalization of motor function. A large proportion of microglia in the brain was shown to be GAA positive. All astrocytes contained the enzyme, which is in line with mannose-6-phosphate receptor expression and the key role in glycogen storage and glucose metabolism. The lentiviral vector insertion site analysis confirmed no preference for integration near proto-oncogenes. This correction of murine Pompe disease warrants further development toward a cure of the human condition.
Collapse
Affiliation(s)
- Merel Stok
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Helen de Boer
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marshall W Huston
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Edwin H Jacobs
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Onno Roovers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Trudi P Visser
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Holger Jahr
- Department of Orthopaedics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elza D van Deel
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Arnold J J Reuser
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands.,Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Niek P van Til
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerard Wagemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Nakazato Y, Fujita Y, Nakazato M, Yamashita T. Neurons promote encephalitogenic CD4 + lymphocyte infiltration in experimental autoimmune encephalomyelitis. Sci Rep 2020; 10:7354. [PMID: 32355314 PMCID: PMC7192891 DOI: 10.1038/s41598-020-64363-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by neuroinflammation, leading to demyelination and axonal degeneration. Neuronal excitotoxity mediated by Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) results in neuronal damage in experimental autoimmune encephalitis (EAE), an animal model of MS. Here, we define a critical role of excitatory neurons in the pathogenesis of CD4+ lymphocyte accumulation in EAE. We silenced the activity of excitatory neurons in a mouse model of targeted EAE using inhibitory designer receptors exclusively activated by designer drugs (DREADD) under a CaMKIIα promoter. Neuronal silencing mitigated clinical disease scores in EAE, reduced the expression of c-fos, Tnfα, Ccl2, and Ccr2 mRNAs in targeted EAE lesions, and prevented the migration of CD4+ lymphocytes towards neurons. Ccl2 shRNA treatment of targeted EAE suppressed the migration of CD4+ lymphocytes and alleviated the motor deficits of EAE. Our findings indicate that neuronal activation in EAE promotes the migration of CCR2+ CD4+ lymphocytes and that neuronal silencing with an inhibitory DREADD alleviates clinical and molecular markers of disease. Neuronal CCL2 is thought to be involved in promoting lymphocytes migration.
Collapse
Affiliation(s)
- Yuki Nakazato
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Internal Medicine, Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masamitsu Nakazato
- Department of Internal Medicine, Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan. .,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan. .,Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan. .,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
24
|
Van Hove H, Antunes ARP, De Vlaminck K, Scheyltjens I, Van Ginderachter JA, Movahedi K. Identifying the variables that drive tamoxifen-independent CreERT2 recombination: Implications for microglial fate mapping and gene deletions. Eur J Immunol 2020; 50:459-463. [PMID: 31785096 DOI: 10.1002/eji.201948162] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/26/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Ligand-dependent Cre recombinases such as the CreERT2 system allow for tamoxifen-inducible Cre recombination. Important examples are the Cx3cr1-CreERT2 and Sall1-CreERT2 lines that are widely used for fate mapping and gene deletion studies of brain macrophages. Our results now show that both CreERT2 lines can exhibit a high rate of tamoxifen-independent "leaky" excision with some reporter strains, while this is not observed with others. We suggest that this disparity is determined by the length of the floxed transcriptional STOP cassette that is incorporated in the various reporter lines. In addition, the rate of spontaneous recombination was also determined by the CreERT2 expression levels and the longevity of the CreERT2-expressing cells. The implications of these results are discussed in the context of fate mapping and inducible gene deletion studies in macrophages and microglia.
Collapse
Affiliation(s)
- Hannah Van Hove
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ana Rita Pombo Antunes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karen De Vlaminck
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
25
|
Rudolph J, Meinke C, Voss M, Guttek K, Kliche S, Reinhold D, Schraven B, Reinhold A. Immune Cell-Type Specific Ablation of Adapter Protein ADAP Differentially Modulates EAE. Front Immunol 2019; 10:2343. [PMID: 31632410 PMCID: PMC6779796 DOI: 10.3389/fimmu.2019.02343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023] Open
Abstract
The cytosolic adhesion and degranulation-promoting adapter protein ADAP is expressed in various hematopoietic cells including T cells, NK cells, myeloid cells, and platelets but absent in mature B cells. The role of ADAP in T cell activation, proliferation and integrin activation is well-accepted. We previously demonstrated that conventional ADAP knockout mice show a significantly attenuated course of experimental autoimmune encephalomyelitis (EAE). To dissect the impact of different ADAP expressing cell populations on the reduced EAE severity, here, we generated lineage-specific conditional knockout mice. ADAP was deleted in T cells, myeloid cells, NK cells and platelets, respectively. Specific loss of ADAP was confirmed on the protein level. Detailed immunophenotyping was performed to assess the consequence of deletion of ADAP with regard to the maturation and distribution of immune cells in primary and secondary lymphoid organs. The analysis showed equivalent results as for conventional ADAP knockout mice: impaired thymocyte development in ADAPfl/fl Lck-Cre mice, normal NK cell and myeloid cell distribution in ADAPfl/fl NKp46-Cre mice and ADAPfl/fl LysM-Cre mice, respectively as well as thrombocytopenia in ADAPfl/fl PF4-Cre mice. Active EAE was induced in these animals by immunization with the myelin oligodendrocyte glycoprotein35−55 peptide. The clinical course of EAE was significantly milder in mice with loss of ADAP in T cells, myeloid cells and NK cells compared to ADAP-sufficient control littermates. Surprisingly, specific deletion of ADAP in platelets resulted in a more exacerbated disease. These data show that T cell-independent as well as T cell-dependent mechanisms are responsible for the complex phenotype observed in conventional ADAP knockout mice.
Collapse
Affiliation(s)
- Jochen Rudolph
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Clara Meinke
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Martin Voss
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Karina Guttek
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Stefanie Kliche
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Dirk Reinhold
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| | - Annegret Reinhold
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Magdeburg, Germany
| |
Collapse
|
26
|
Huo W, Liu Y, Lei Y, Zhang Y, Huang Y, Mao Y, Wang C, Sun Y, Zhang W, Ma Z, Gu X. Imbalanced spinal infiltration of Th17/Treg cells contributes to bone cancer pain via promoting microglial activation. Brain Behav Immun 2019; 79:139-151. [PMID: 30685532 DOI: 10.1016/j.bbi.2019.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that T cells participate in the pathology of neuropathic pain, as well as the activation of microglia. However, whether T cells infiltrate into the spinal cord and contribute to the development of bone cancer pain (BCP) remains unknown. Here, we used a mouse model of BCP to show that numbers of T cells infiltrated into the spinal cord after sarcoma cell implantation with increased BCP, and most infiltrating T cells in the spinal cord were CD3+CD4+ T cells. Both Th17 and Treg subpopulations were analyzed by immunofluorescence. Treg cells in the spinal cord were transiently up-regulated, followed by an imbalance towards Th17 afterwards, and elevated IL-17/IL-17A levels were observed in both blood and spinal cord. Meanwhile, TGF-β, IL-6, and IL-23, the factors which regulate Th17/Treg differentiation, increased their expressions during the development of BCP. Additionally, IL-17A receptor (IL-17AR) was found to be expressed on microglia, and the level of IL-17AR increased with activated microglia during BCP development. Furthermore, BCP was ameliorated when IL-17/IL-17A neutralizing antibodies were intrathecally injected, accompanied with inhibited Th17/Treg infiltration and suppressed microglial activation. In conclusion, T cells infiltrated into the spinal cord with the imbalance of Th17/Treg towards Th17 during the development of BCP, which could promote the microglial activation and further increased BCP, while neutralizing IL-17/IL-17A in the spinal cord could ameliorate BCP. Our results suggest that targeting the imbalanced Th17/Treg infiltration in the spinal cord could be a novel strategy for BCP therapy.
Collapse
Affiliation(s)
- Wenwen Huo
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Ying Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yulin Huang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yanting Mao
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Chenchen Wang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
27
|
Fischer HJ, Finck TLK, Pellkofer HL, Reichardt HM, Lühder F. Glucocorticoid Therapy of Multiple Sclerosis Patients Induces Anti-inflammatory Polarization and Increased Chemotaxis of Monocytes. Front Immunol 2019; 10:1200. [PMID: 31191554 PMCID: PMC6549240 DOI: 10.3389/fimmu.2019.01200] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by the infiltration of mononuclear cells into the CNS and a subsequent inflammation of the brain. Monocytes are implicated in disease pathogenesis not only in their function as potential antigen-presenting cells involved in the local reactivation of encephalitogenic T cells but also by independent effector functions contributing to structural damage and disease progression. However, monocytes also have beneficial effects as they can exert anti-inflammatory activity and promote tissue repair. Glucocorticoids (GCs) are widely used to treat acute relapses in MS patients. They act on a variety of cell types but their exact mechanisms of action including their modulation of monocyte function are not fully understood. Here we investigated effects of the therapeutically relevant GC methylprednisolone (MP) on monocytes from healthy individuals and MS patients in vitro and in vivo. The monocyte composition in the blood was different in MS patients compared to healthy individuals, but it was only marginally affected by MP treatment. In contrast, application of MP caused a marked shift toward an anti-inflammatory monocyte phenotype in vitro and in vivo as revealed by an altered gene expression profile. Chemotaxis of monocytes toward CCL2, CCL5, and CX3CL1 was increased in MS patients compared to healthy individuals and further enhanced by MP pulse therapy. Both of these migration-promoting effects were more pronounced in MS patients with an acute relapse than in those with a progressive disease. Interestingly, the pro-migratory GC effect was independent of chemokine receptor levels as exemplified by results obtained for CCR2. Collectively, our findings suggest that GCs polarize monocytes toward an anti-inflammatory phenotype and enhance their migration into the inflamed CNS, endowing them with the capacity to suppress the pathogenic immune response.
Collapse
Affiliation(s)
- Henrike J Fischer
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Göttingen, Germany.,Institute for Cellular and Molecular Immunology, University Medical Center Goettingen, Göttingen, Germany
| | - Tobias L K Finck
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Göttingen, Germany
| | - Hannah L Pellkofer
- Department of Neurology, University Medical Center Goettingen, Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Goettingen, Göttingen, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Goettingen, Göttingen, Germany
| |
Collapse
|
28
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|
29
|
Hutter G, Theruvath J, Graef CM, Zhang M, Schoen MK, Manz EM, Bennett ML, Olson A, Azad TD, Sinha R, Chan C, Assad Kahn S, Gholamin S, Wilson C, Grant G, He J, Weissman IL, Mitra SS, Cheshier SH. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proc Natl Acad Sci U S A 2019; 116:997-1006. [PMID: 30602457 PMCID: PMC6338872 DOI: 10.1073/pnas.1721434116] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant brain tumor with fatal outcome. Tumor-associated macrophages and microglia (TAMs) have been found to be major tumor-promoting immune cells in the tumor microenvironment. Hence, modulation and reeducation of tumor-associated macrophages and microglia in GBM is considered a promising antitumor strategy. Resident microglia and invading macrophages have been shown to have distinct origin and function. Whereas yolk sac-derived microglia reside in the brain, blood-derived monocytes invade the central nervous system only under pathological conditions like tumor formation. We recently showed that disruption of the SIRPα-CD47 signaling axis is efficacious against various brain tumors including GBM primarily by inducing tumor phagocytosis. However, most effects are attributed to macrophages recruited from the periphery but the role of the brain resident microglia is unknown. Here, we sought to utilize a model to distinguish resident microglia and peripheral macrophages within the GBM-TAM pool, using orthotopically xenografted, immunodeficient, and syngeneic mouse models with genetically color-coded macrophages (Ccr2RFP) and microglia (Cx3cr1GFP). We show that even in the absence of phagocytizing macrophages (Ccr2RFP/RFP), microglia are effector cells of tumor cell phagocytosis in response to anti-CD47 blockade. Additionally, macrophages and microglia show distinct morphological and transcriptional changes. Importantly, the transcriptional profile of microglia shows less of an inflammatory response which makes them a promising target for clinical applications.
Collapse
Affiliation(s)
- Gregor Hutter
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurosurgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Johanna Theruvath
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Claus Moritz Graef
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael Zhang
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
| | - Matthew Kenneth Schoen
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Eva Maria Manz
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Mariko L Bennett
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Andrew Olson
- Neuroscience Microscopy Center, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
| | - Tej D Azad
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Carmel Chan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Suzana Assad Kahn
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Sharareh Gholamin
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Christy Wilson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
| | - Joy He
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305;
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
| | - Siddhartha S Mitra
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305;
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA 94305;
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford University School of Medicine, Stanford, CA 94305
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
30
|
Thompson KK, Nissen JC, Pretory A, Tsirka SE. Tuftsin Combines With Remyelinating Therapy and Improves Outcomes in Models of CNS Demyelinating Disease. Front Immunol 2018; 9:2784. [PMID: 30555470 PMCID: PMC6283261 DOI: 10.3389/fimmu.2018.02784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Though promoting remyelination in multiple sclerosis (MS) has emerged as a promising therapeutic strategy, it does not address inflammatory signals that continue to induce neuronal damage and inhibit effectiveness of repair mechanisms. Our lab has previously characterized the immunomodulatory tetrapeptide, tuftsin, which induces an anti-inflammatory shift in microglia and macrophages. This targeted anti-inflammatory agent improves physical deficits in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Here, we sought to determine whether tuftsin is also effective in combination with benztropine, an FDA-approved drug that stimulates remyelination, in both EAE and in the cuprizone model of demyelination. We show that combining these two agents to promote anti-inflammatory and remyelinating mechanisms alleviates symptoms in EAE and lessens pathological hallmarks in both MS models. Importantly, tuftsin is required to transform the inflammatory CNS environment normally present in EAE/MS into one of an anti-inflammatory nature, and benztropine is required in the cuprizone model to improve remyelination. Our data further support tuftsin's beneficial immunomodulatory activity in the context of EAE, and show that when studying remyelination in the absence of an autoimmune insult, tuftsin still activated microglia toward an anti-inflammatory fate, but benztropine was necessary for significant repair of the damaged myelin. Overall, tuftsin effectively combined with benztropine to significantly improve MS-like pathologies in both models.
Collapse
Affiliation(s)
- Kaitlyn K Thompson
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Jillian C Nissen
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Department of Biological Sciences, State University of New York, College at Old Westbury, Old Westbury, NY, United States
| | - Amanda Pretory
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
31
|
Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, Qin S, Wang R, Jin F, Kitazato K, Wang Y. The Gut-Microglia Connection: Implications for Central Nervous System Diseases. Front Immunol 2018; 9:2325. [PMID: 30344525 PMCID: PMC6182051 DOI: 10.3389/fimmu.2018.02325] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The importance of the gut microbiome in central nervous system (CNS) diseases has long been recognized; however, research into this connection is limited, in part, owing to a lack of convincing mechanisms because the brain is a distant target of the gut. Previous studies on the brain revealed that most of the CNS diseases affected by the gut microbiome are closely associated with microglial dysfunction. Microglia, the major CNS-resident macrophages, are crucial for the immune response of the CNS against infection and injury, as well as for brain development and function. However, the current understanding of the mechanisms controlling the maturation and function of microglia is obscure, especially regarding the extrinsic factors affecting microglial function during the developmental process. The gut microflora has been shown to significantly influence microglia from before birth until adulthood, and the metabolites generated by the microbiota regulate the inflammation response mediated by microglia in the CNS; this inspired our hypothesis that microglia act as a critical mediator between the gut microbiome and CNS diseases. Herein, we highlight and discuss current findings that show the influence of host microbiome, as a crucial extrinsic factor, on microglia within the CNS. In addition, we summarize the CNS diseases associated with both the host microbiome and microglia and explore the potential pathways by which the gut bacteria influence the pathogenesis of CNS diseases. Our work is thus a comprehensive theoretical foundation for studies on the gut-microglia connection in the development of CNS diseases; and provides great potential for researchers to target pathways associated with the gut-microglia connection and overcome CNS diseases.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yun Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Yan L, Zheng D, Xu RH. Critical Role of Tumor Necrosis Factor Signaling in Mesenchymal Stem Cell-Based Therapy for Autoimmune and Inflammatory Diseases. Front Immunol 2018; 9:1658. [PMID: 30079066 PMCID: PMC6062591 DOI: 10.3389/fimmu.2018.01658] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/04/2018] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been broadly used as a therapy for autoimmune disease in both animal models and clinical trials. MSCs inhibit T effector cells and many other immune cells, while activating regulatory T cells, thus reducing the production of pro-inflammatory cytokines, including tumor necrosis factor (TNF), and repressing inflammation. TNF can modify the MSC effects via two TNF receptors, i.e., TNFR1 in general mediates pro-inflammatory effects and TNFR2 mediates anti-inflammatory effects. In the central nervous system, TNF signaling plays a dual role, which enhances inflammation via TNFR1 on immune cells while providing cytoprotection via TNFR2 on neural cells. In addition, the soluble form of TNFR1 and membrane-bound TNF also participate in the regulation to fine-tune the functions of target cells. Other factors that impact TNF signaling and MSC functions include the gender of the host, disease course, cytokine concentrations, and the length of treatment time. This review will introduce the fascinating progress in this aspect of research and discuss remaining questions and future perspectives.
Collapse
Affiliation(s)
- Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dejin Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
33
|
Copland DA, Theodoropoulou S, Liu J, Dick AD. A Perspective of AMD Through the Eyes of Immunology. ACTA ACUST UNITED AC 2018; 59:AMD83-AMD92. [DOI: 10.1167/iovs.18-23893] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David A. Copland
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
| | - Sofia Theodoropoulou
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
| | - Jian Liu
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
- University College London–Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
34
|
Chen Z, Hambardzumyan D. Immune Microenvironment in Glioblastoma Subtypes. Front Immunol 2018; 9:1004. [PMID: 29867979 PMCID: PMC5951930 DOI: 10.3389/fimmu.2018.01004] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive primary brain tumors. Due to their malignant growth and invasion into the brain parenchyma coupled with resistance to therapy, GBMs are among the deadliest of all cancers. GBMs are highly heterogeneous at both the molecular and histological levels. Hallmark histological structures include pseudopalisading necrosis and microvascular proliferation. In addition to high levels of intratumoral heterogeneity, GBMs also exhibit high levels of inter-tumoral heterogeneity. The major non-neoplastic cell population in the GBM microenvironment includes cells of the innate immune system called tumor-associated macrophages (TAMs). Correlative data from the literature suggest that molecularly distinct GBM subtypes exhibit differences in their microenvironment. Data from mouse models of GBM suggest that genetic driver mutations can create unique microenvironments. Here, we review the origin, features, and functions of TAMs in distinct GBM subtypes. We also discuss their interactions with other immune cell constituents and discuss prospects of therapeutically targeting TAMs to increase the efficacy of T-cell functions.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Dolores Hambardzumyan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
35
|
Akaishi T, Takahashi T, Nakashima I. Peripheral blood monocyte count at onset may affect the prognosis in multiple sclerosis. J Neuroimmunol 2018; 319:37-40. [PMID: 29685288 DOI: 10.1016/j.jneuroim.2018.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disease with unknown causes. In this study, we comprehensively studied blood cell counts in the early phase of MS and compared their values with eventual prognostic variables. We found that the blood monocyte count in the early phase of MS was robustly associated with the clinical severity of MS (rho = 0.64; p = 0.0002) but that the counts of the other blood cells were not associated with severity. This correlation between monocyte count and severity was not observed in neuromyelitis optica. In conclusion, blood monocytes could be a candidate for the prognostic prediction of MS.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology, Yonezawa National Hospital, Yonezawa, Japan.
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology, Yonezawa National Hospital, Yonezawa, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
36
|
The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. Int J Mol Sci 2018. [PMID: 29533975 PMCID: PMC5877692 DOI: 10.3390/ijms19030831] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In physiological conditions, different types of macrophages can be found within the central nervous system (CNS), i.e., microglia, meningeal macrophages, and perivascular (blood-brain barrier) and choroid plexus (blood-cerebrospinal fluid barrier) macrophages. Microglia and tissue-resident macrophages, as well as blood-borne monocytes, have different origins, as the former derive from yolk sac erythromyeloid precursors and the latter from the fetal liver or bone marrow. Accordingly, specific phenotypic patterns characterize each population. These cells function to maintain homeostasis and are directly involved in the development and resolution of neuroinflammatory processes. Also, following inflammation, circulating monocytes can be recruited and enter the CNS, therefore contributing to brain pathology. These cell populations have now been identified as key players in CNS pathology, including autoimmune diseases, such as multiple sclerosis, and degenerative diseases, such as Amyotrophic Lateral Sclerosis and Alzheimer’s disease. Here, we review the evidence on the involvement of CNS macrophages in neuroinflammation and the advantages, pitfalls, and translational opportunities of pharmacological interventions targeting these heterogeneous cellular populations for the treatment of brain diseases.
Collapse
|
37
|
Liu X, Quan N. Microglia and CNS Interleukin-1: Beyond Immunological Concepts. Front Neurol 2018; 9:8. [PMID: 29410649 PMCID: PMC5787061 DOI: 10.3389/fneur.2018.00008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and expression of the inflammatory cytokine interleukin-1 (IL-1) in the CNS have become almost synonymous with neuroinflammation. In numerous studies, increased CNS IL-1 expression and altered microglial morphology have been used as hallmarks of CNS inflammation. A central concept of how CNS IL-1 and microglia influence functions of the nervous system was derived from the notion initially generated in the peripheral immune system: IL-1 stimulates monocyte/macrophage (the peripheral counterparts of microglia) to amplify inflammation. It is increasingly clear, however, CNS IL-1 acts on other targets in the CNS and microglia participates in many neural functions that are not related to immunological activities. Further, CNS exhibits immunological privilege (although not as absolute as previously thought), rendering amplification of inflammation within CNS under stringent control. This review will analyze current literature to evaluate the contribution of immunological and non-immunological aspects of microglia/IL-1 interaction in the CNS to gain insights for how these aspects might affect health and disease in the nervous tissue.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Ning Quan
- College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
38
|
Huo W, Zhang Y, Liu Y, Lei Y, Sun R, Zhang W, Huang Y, Mao Y, Wang C, Ma Z, Gu X. Dehydrocorydaline attenuates bone cancer pain by shifting microglial M1/M2 polarization toward the M2 phenotype. Mol Pain 2018; 14:1744806918781733. [PMID: 29882480 PMCID: PMC6009085 DOI: 10.1177/1744806918781733] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/13/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Bone cancer pain remains a major challenge in patients with primary or metastatic bone cancer due to a lack of understanding the mechanisms. Previous studies have revealed the two distinct functional polarization states of microglia (classically activated M1 and alternatively activated M2) in the spinal cord in nerve injury-induced neuropathic pain. However, whether microglia in the spinal cord polarize to M1 and M2 phenotypes and contribute to the development of bone cancer pain remains unclear. In this study, we used a mouse model with bone cancer to characterize the M1/M2 polarization of microglia in the spinal cord during the development of bone cancer pain, and investigated the antinociceptive effects of dehydrocorydaline, an alkaloidal component isolated from Rhizoma corydalis on bone cancer pain. Our results show that microglia in the spinal cord presented increased M1 polarization and decreased M2 polarization, while overproduction of IL-1β and inhibited expression of IL-10 was detected during bone cancer pain development. Intraperitoneal administration of dehydrocorydaline (10 mg/kg) had significant antinociceptive effects on day 14 after osteosarcoma cell implantation, accompanied by suppressed M1 phenotype and upregulated M2 phenotype of microglia in the spinal cord, while alleviated inflammatory response was observed then. These results suggest that the imbalanced polarization of microglia toward the M1 phenotype in the spinal cord may contribute to the development of bone cancer pain, while dehydrocorydaline helps to attenuate bone cancer pain, with microglial polarization shifting toward the M2 phenotype in the spinal cord.
Collapse
Affiliation(s)
- Wenwen Huo
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Ying Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Rao Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yulin Huang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yanting Mao
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Chenchen Wang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| |
Collapse
|
39
|
Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, Blecher R, Ulas T, Squarzoni P, Hoeffel G, Coulpier F, Siopi E, David FS, Scholz C, Shihui F, Lum J, Amoyo AA, Larbi A, Poidinger M, Buttgereit A, Lledo PM, Greter M, Chan JKY, Amit I, Beyer M, Schultze JL, Schlitzer A, Pettersson S, Ginhoux F, Garel S. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 2017; 172:500-516.e16. [PMID: 29275859 PMCID: PMC5786503 DOI: 10.1016/j.cell.2017.11.042] [Citation(s) in RCA: 553] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease. Microglia undergo sequential phases of differentiation during development The maternal microbiome influences microglial properties during prenatal stages The absence of the microbiome has a sex- and time-specific impact on microglia Microbiome depletions have acute and long-term effects on microglial properties
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Pauline Grisel
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Ronnie Blecher
- Department of Immunology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Thomas Ulas
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Paola Squarzoni
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Guillaume Hoeffel
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille, France
| | - Fanny Coulpier
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Eleni Siopi
- Institut Pasteur, Unité Perception et Mémoire, CNRS, UMR 3571, F-75015 Paris, France
| | - Friederike Sophie David
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Claus Scholz
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | | | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Anne Buttgereit
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Pierre-Marie Lledo
- Institut Pasteur, Unité Perception et Mémoire, CNRS, UMR 3571, F-75015 Paris, France
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Joachim Ludwig Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Platform of Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany
| | - Andreas Schlitzer
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Myeloid Cell Biology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Sven Pettersson
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17165, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore.
| | - Sonia Garel
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
40
|
McCarthy GM, Farris SP, Blednov YA, Harris RA, Mayfield RD. Microglial-specific transcriptome changes following chronic alcohol consumption. Neuropharmacology 2017; 128:416-424. [PMID: 29101021 DOI: 10.1016/j.neuropharm.2017.10.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/05/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Microglia are fundamentally important immune cells within the central nervous system (CNS) that respond to environmental challenges to maintain normal physiological processes. Alterations in steady-state cellular function and over-activation of microglia can facilitate the initiation and progression of neuropathological conditions such as Alzheimer's disease, Multiple Sclerosis, and Major Depressive Disorder. Alcohol consumption disrupts signaling pathways including both innate and adaptive immune responses that are necessary for CNS homeostasis. Coordinate expression of these genes is not ascertained from an admixture of CNS cell-types, underscoring the importance of examining isolated cellular populations to reveal systematic gene expression changes arising from mature microglia. Unbiased RNA-Seq profiling was used to identify gene expression changes in isolated prefrontal cortical microglia in response to recurring bouts of voluntary alcohol drinking behavior. The voluntary ethanol paradigm utilizes long-term consumption ethanol that results in escalated alcohol intake and altered cortical plasticity that is seen in humans. Gene coexpression analysis identified a coordinately regulated group of genes, unique to microglia, that collectively are associated with alcohol consumption. Genes within this group are involved in toll-like receptor signaling and transforming growth factor beta signaling. Network connectivity of this group identified Siglech as a putative hub gene and highlighted the potential importance of proteases in the microglial response to chronic ethanol. In conclusion, we identified a distinctive microglial gene expression signature for neuroimmune responses related to alcohol consumption that provides valuable insight into microglia-specific changes underlying the development of substance abuse, and possibly other CNS disorders.
Collapse
Affiliation(s)
- Gizelle M McCarthy
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| | - Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, United States; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, United States
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
41
|
Menzel F, Kaiser N, Haehnel S, Rapp F, Patties I, Schöneberg N, Haimon Z, Immig K, Bechmann I. Impact of X-irradiation on microglia. Glia 2017; 66:15-33. [DOI: 10.1002/glia.23239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nicole Kaiser
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Susann Haehnel
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Felicitas Rapp
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ina Patties
- Department of Radiation Therapy; Leipzig University; Leipzig Germany
| | | | - Zhana Haimon
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Kerstin Immig
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University; Leipzig Germany
| |
Collapse
|
42
|
Cheng Y, Sun L, Xie Z, Fan X, Cao Q, Han J, Zhu J, Jin T. Diversity of immune cell types in multiple sclerosis and its animal model: Pathological and therapeutic implications. J Neurosci Res 2017; 95:1973-1983. [PMID: 28084640 PMCID: PMC5573979 DOI: 10.1002/jnr.24023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system with an autoimmune attack on the components of the myelin sheath and axons. The etiology of the disease remains largely unknown, but it is commonly acknowledged that the development of MS probably results from the interaction of environmental factors in conjunction with a genetic predisposition. Current therapeutic approaches can only ameliorate the clinical symptoms or reduce the frequency of relapse in MS. Most drugs used in this disease broadly suppress the functions of immune effector cells, which can result in serious side effects. Thus, new therapeutic methods resulting in greater efficacy and lower toxicity are needed. Toward this end, cell-based therapies are of increasing interest in the treatment of MS. Several immunoregulatory cell types, including regulatory T cells, regulatory B cells, M2 macrophages, tolerogenic dendritic cells, and stem cells, have been developed as novel therapeutic tools for the treatment of MS. In this Review, we summarize studies on the application of these cell populations for the treatment of MS and its animal model, experimental autoimmune encephalomyelitis, and call for further research on applications and mechanisms by which these cells act in the treatment of MS. © 2017 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yun Cheng
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Li Sun
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Zhongxiang Xie
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Xueli Fan
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Qingqing Cao
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Jinming Han
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunChina
| | - Jie Zhu
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunChina
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstituteStockholmSweden
| | - Tao Jin
- Department of Neurology and Neuroscience CenterFirst Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
43
|
Lipski DA, Dewispelaere R, Foucart V, Caspers LE, Defrance M, Bruyns C, Willermain F. MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis. J Neuroinflammation 2017; 14:136. [PMID: 28720143 PMCID: PMC5516361 DOI: 10.1186/s12974-017-0915-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background Controversy exists regarding which cell types are responsible for autoantigen presentation in the retina during experimental autoimmune uveitis (EAU) development. In this study, we aimed to identify and characterize the retinal resident and infiltrating cells susceptible to express major histocompatibility complex (MHC) class II during EAU. Methods EAU was induced in C57BL/6 mice by adoptive transfer of autoreactive lymphocytes from IRBP1-20-immunized animals. MHC class II expression was studied by immunostainings on eye cryosections. For flow cytometry (FC) analysis, retinas were dissected and enzymatically digested into single-cell suspensions. Three MHC class II+ retinal cell populations were sorted by FC, and their RNA processed for RNA-Seq. Results Immunostainings demonstrate strong induction of MHC class II expression in EAU, especially in the inner retina at the level of inflamed vessels, extending to the outer retinal layers and the subretinal space in severely inflamed eyes. Most MHC class II+ cells express the hematopoietic marker IBA1. FC quantitative analyses demonstrate that MHC class II induction significantly correlates with disease severity and is associated with upregulation of co-stimulatory molecule expression. In particular, most MHC class IIhi cells express co-stimulatory molecules during EAU. Further phenotyping identified three MHC class II+ retinal cell populations: CD45−CD11b− non-hematopoietic cells with low MHC class II expression and CD45+CD11b+ hematopoietic cells with higher MHC class II expression, which can be further separated into Ly6C+ and Ly6C− cells, possibly corresponding to infiltrating macrophages and resident microglia. Transcriptome analysis of the three sorted populations leads to a clear sample clustering with some enrichment in macrophage markers and microglial cell markers in Ly6C+ and Ly6C− cells, respectively. Functional annotation analysis reveals that both hematopoietic cell populations are more competent in MHC class II-associated antigen presentation and in T cell activation than non-hematopoietic cells. Conclusion Our results highlight the potential of cells of hematopoietic origin in local antigen presentation, whatever their Ly6C expression. Our work further provides a first transcriptomic study of MHC class II-expressing retinal cells during EAU and delivers a series of new candidate genes possibly implicated in the pathogenesis of retinal autoimmunity. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0915-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah A Lipski
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070, Brussels, Belgium. .,Ophthalmology Department of Erasme Hospital, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070, Brussels, Belgium.
| | - Rémi Dewispelaere
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070, Brussels, Belgium.,Ophthalmology Department of CHU Saint-Pierre, 322 Rue Haute, 1000, Brussels, Belgium
| | - Vincent Foucart
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070, Brussels, Belgium.,Ophthalmology Department of CHU Saint-Pierre, 322 Rue Haute, 1000, Brussels, Belgium.,Ophthalmology Department of CHU Brugmann, 4 Place Van Gehuchten, 1020, Brussels, Belgium
| | - Laure E Caspers
- Ophthalmology Department of CHU Saint-Pierre, 322 Rue Haute, 1000, Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, La Plaine Campus, BC building, 6th floor, CP 263, Triomflaan, 1050, Brussels, Belgium
| | - Catherine Bruyns
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070, Brussels, Belgium
| | - François Willermain
- Ophthalmology Group, IRIBHM (Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire), Université Libre de Bruxelles (ULB), Erasme Campus, Building C, Room C6.117, 808 Route de Lennik, 1070, Brussels, Belgium.,Ophthalmology Department of CHU Saint-Pierre, 322 Rue Haute, 1000, Brussels, Belgium.,Ophthalmology Department of CHU Brugmann, 4 Place Van Gehuchten, 1020, Brussels, Belgium
| |
Collapse
|
44
|
Abstract
Major advances in mononuclear phagocyte biology have been made but key questions pertinent to their roles in health and disease remain, including in the visual system. One problem concerns how dendritic cells can trigger immune responses from certain tightly regulated immune- privileged sites of the eye. Another, albeit separate, problem involves whether there are functional specializations for microglia versus monocytes in retinal neurodegeneration. In this Review, we examine novel insights in eye immune privilege and, separately, we discuss recent inroads concerning retinal degeneration. Both themes have been extensively studied in the visual system and show parallels with recent findings concerning mononuclear phagocytes in the central nervous system and in the periphery.
Collapse
|
45
|
Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, Rasmussen R, Dwivedi B, Seby S, Wolf SA, Gutmann DH, Hambardzumyan D. Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. Cancer Res 2017; 77:2266-2278. [PMID: 28235764 DOI: 10.1158/0008-5472.can-16-2310] [Citation(s) in RCA: 479] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 01/17/2023]
Abstract
In glioblastoma (GBM), tumor-associated macrophages (TAM) represent up to one half of the cells of the tumor mass, including both infiltrating macrophages and resident brain microglia. In an effort to delineate the temporal and spatial dynamics of TAM composition during gliomagenesis, we used genetically engineered and GL261-induced mouse models in combination with CX3CR1GFP/WT;CCR2RFP/WT double knock-in mice. Using this approach, we demonstrated that CX3CR1LoCCR2Hi monocytes were recruited to the GBM, where they transitioned to CX3CR1HiCCR2Lo macrophages and CX3CR1HiCCR2- microglia-like cells. Infiltrating macrophages/monocytes constituted approximately 85% of the total TAM population, with resident microglia accounting for the approximately 15% remaining. Bone marrow-derived infiltrating macrophages/monocytes were recruited to the tumor early during GBM initiation, where they localized preferentially to perivascular areas. In contrast, resident microglia were localized mainly to peritumoral regions. RNA-sequencing analyses revealed differential gene expression patterns unique to infiltrating and resident cells, suggesting unique functions for each TAM population. Notably, limiting monocyte infiltration via genetic Ccl2 reduction prolonged the survival of tumor-bearing mice. Our findings illuminate the unique composition and functions of infiltrating and resident myeloid cells in GBM, establishing a rationale to target infiltrating cells in this neoplasm. Cancer Res; 77(9); 2266-78. ©2017 AACR.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Pediatrics and Aflac Cancer Center of Children's Health Care of Atlanta, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Xi Feng
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Cameron J Herting
- Department of Pediatrics and Aflac Cancer Center of Children's Health Care of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | | | - Kai Nie
- Department of Pediatrics and Aflac Cancer Center of Children's Health Care of Atlanta, Emory University School of Medicine, Atlanta, Georgia.,Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Winnie W Pong
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Rikke Rasmussen
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Sandra Seby
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Susanne A Wolf
- Department of Cellular Neuroscience, Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Dolores Hambardzumyan
- Department of Pediatrics and Aflac Cancer Center of Children's Health Care of Atlanta, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
46
|
Madeira MH, Boia R, Ambrósio AF, Santiago AR. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:4761081. [PMID: 28250576 PMCID: PMC5307009 DOI: 10.1155/2017/4761081] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria H. Madeira
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Raquel Boia
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - António F. Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Ana R. Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
47
|
Kipp M, Nyamoya S, Hochstrasser T, Amor S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 2017; 27:123-137. [PMID: 27792289 DOI: 10.1111/bpa.12454] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
There is a broad consensus that multiple sclerosis (MS) represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, that is, damage to axons, synapses and nerve cell bodies. While we are equipped with appropriate therapeutic options to prevent immune-cell driven relapses, effective therapeutic options to prevent the progressing neurodegeneration are still missing. In this review article, we will discuss to what extent pathology of the progressive disease stage can be modeled in MS animal models. While acute and relapsing-remitting forms of experimental autoimmune encephalomyelitis (EAE), which are T cell dependent, are aptly suited to model relapsing-remitting phases of MS, other EAE models, especially the secondary progressive EAE stage in Biozzi ABH mice is better representing the secondary progressive phase of MS, which is refractory to many immune therapies. Besides EAE, the cuprizone model is rapidly gaining popularity to study the formation and progression of demyelinating CNS lesions without T cell involvement. Here, we discuss these two non-popular MS models. It is our aim to point out the pathological hallmarks of MS, and discuss which pathological aspects of the disease can be best studied in the various animal models available.
Collapse
Affiliation(s)
- Markus Kipp
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany
| | - Stella Nyamoya
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany.,Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, D-52074, Germany
| | - Tanja Hochstrasser
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany
| | - Sandra Amor
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands.,Barts and The London School of Medicine and Dentistry, Neuroimmunology Unit, , Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, London, UK
| |
Collapse
|
48
|
Gao H, Danzi MC, Choi CS, Taherian M, Dalby-Hansen C, Ellman DG, Madsen PM, Bixby JL, Lemmon VP, Lambertsen KL, Brambilla R. Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Cell Rep 2017; 18:198-212. [PMID: 28052249 PMCID: PMC5218601 DOI: 10.1016/j.celrep.2016.11.083] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
In multiple sclerosis (MS), soluble tumor necrosis factor (TNF) is detrimental via activation of TNF receptor 1 (TNFR1), whereas transmembrane TNF is beneficial primarily by activating TNF receptor 2 (TNFR2). Here, we investigate the role of TNFR2 in microglia and monocytes/macrophages in experimental autoimmune encephalomyelitis (EAE), a model of MS, by cell-specific gene targeting. We show that TNFR2 ablation in microglia leads to early onset of EAE with increased leukocyte infiltration, T cell activation, and demyelination in the central nervous system (CNS). Conversely, TNFR2 ablation in monocytes/macrophages results in EAE suppression with impaired peripheral T cell activation and reduced CNS T cell infiltration and demyelination. Our work uncovers a dichotomy of function for TNFR2 in myeloid cells, with microglial TNFR2 providing protective signals to contain disease and monocyte/macrophagic TNFR2 driving immune activation and EAE initiation. This must be taken into account when targeting TNFR2 for therapeutic purposes in neuroinflammatory diseases.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/metabolism
- Cell Proliferation
- Chronic Disease
- Demyelinating Diseases/genetics
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Deletion
- Gene Expression Regulation
- Homeostasis/genetics
- Inflammation/pathology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Microglia/metabolism
- Myelin Sheath/metabolism
- Neuroprotection
- Phenotype
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Sequence Analysis, RNA
- Spinal Cord/pathology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcriptome/genetics
Collapse
Affiliation(s)
- Han Gao
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matt C Danzi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Mehran Taherian
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Camilla Dalby-Hansen
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - Ditte G Ellman
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - Pernille M Madsen
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - John L Bixby
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cellular and Molecular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark; Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense C 5000, Denmark; Department of Neurology, Odense University Hospital, Odense C 5000, Denmark
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
49
|
Italiani P, Boraschi D. Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions. Results Probl Cell Differ 2017; 62:23-43. [PMID: 28455704 DOI: 10.1007/978-3-319-54090-0_2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mononuclear phagocytes are key cells in tissue integrity and defense. Tissue-resident macrophages are abundantly present in all tissues of the body and have a complex role in ensuring tissue functions and homeostatic balance. Circulating blood monocytes can enter tissue both in steady-state conditions, for helping in replenishing the tissue-resident macrophage pool and, in particular, for acting as potent effector cells during inflammatory events such as infections, traumas, and diseases. The heterogeneity of monocytes and macrophages depends on their ontogeny, their tissue location, and their functional programming, with both monocytes and macrophages able to exert distinct or similar functions depending on the tissue-specific and stimulus-specific microenvironment. In this short review, we will review the current hypotheses on tissue-resident macrophage ontogeny and functions, as compared to blood-derived monocytes, with a particular focus on inflammatory conditions.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| |
Collapse
|
50
|
Harrison-Brown M, Liu GJ, Banati R. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. Int J Mol Sci 2016; 17:E2030. [PMID: 27918464 PMCID: PMC5187830 DOI: 10.3390/ijms17122030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as "assistants" in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several 'checkpoints' from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets.
Collapse
Affiliation(s)
- Meredith Harrison-Brown
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Guo-Jun Liu
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Richard Banati
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|