1
|
Liu NN, Guo BH, Wang L, Wang XX, Wang X, Meng YL, Tang GX, Wang WM. The efficacy of ophiopogonanone B in treating the cough in mice infected with Mycoplasma pneumoniae. Front Pharmacol 2025; 16:1397543. [PMID: 40206065 PMCID: PMC11979145 DOI: 10.3389/fphar.2025.1397543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Ophiopogonanone B is a potent component of Qinbai Qingfei-concentrated pills (Qinbai), a new traditional Chinese medicine developed by our hospital for the treatment of Mycoplasma pneumoniae pneumonia in children. We aim to study how ophiopogonanone B influences the expression of transient receptor potential anchor protein 1 (TRPA1), substance P (SP), and calcitonin gene-related peptide (CGRP) to treat coughing in MP-infected mice. Methods Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to detect ophiopogonanone B. Molecular docking of ophiopogonanone B with TRPA1 was performed using Autodock Vina 1.1.2, and subsequent visualization and analysis of docking outcomes were facilitated using Pymol 2.1 and Discovery Studio. For the evaluation of the pathological structure and morphology, lung tissue sections from mice were prepared for animal experiments and subjected to hematoxylin-eosin (HE) and Masson staining. The impact of ophiopogonanone B on the protein and mRNA expression levels of TRPA1, SP, and CGRP in mouse lung tissue was assessed using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Results The samples acquired through Biacore fishing, which were identified and analyzed by UPLC-Q-TOF-MS, confirmed the presence of ophiopogonanone B. This compound exhibited robust and specific binding affinity for TRPA1. Histological staining using HE and Masson techniques revealed that the lung tissue morphology and structure in the ophiopogonanone B-treated group closely mirrored those observed in the blank group. Subsequent immunohistochemistry and RT-PCR revealed a significant reduction (P < 0.01 or P < 0.05) in the proteins and mRNA expression levels of TRPA1, SP, and CGRP in the lung tissue of mice treated with high and medium doses of ophiopogonanone B. Conclusion By decreasing the expression of TRPA1, SP, and CGRP in the lung tissues of mice afflicted with coughing due to M. pneumoniae infection, ophiopogonanone B effectively alleviated post-infection cough symptoms.
Collapse
Affiliation(s)
- Nan-Nan Liu
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Bai-Hui Guo
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lei Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiao-Xi Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xin Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan-Li Meng
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Gui-Xin Tang
- Advanced Microscopy and Instrumentation Research Center, Harbin Institute of Technology, Harbin, China
| | - Wei-Ming Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zhu J, Cheng W, He TT, Hou BL, Lei LY, Wang Z, Liang YN. Exploring the Anti-Inflammatory Effect of Tryptanthrin by Regulating TLR4/MyD88/ROS/NF-κB, JAK/STAT3, and Keap1/Nrf2 Signaling Pathways. ACS OMEGA 2024; 9:30904-30918. [PMID: 39035974 PMCID: PMC11256115 DOI: 10.1021/acsomega.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Tryptanthrin (TRYP) is the main active ingredient in Indigo Naturalis. Studies have shown that TRYP had excellent anti-inflammatory activity, but its specific mechanism has been unclear. In this work, the differentially expressed proteins resulting from TRYP intervention in LPS-stimulated RAW264.7 cells were obtained based on tandem mass tag proteomics technology. The anti-inflammatory mechanism of TRYP was further validated by a combination of experiments using the LPS-induced RAW264.7 cell model in vitro and the DSS-induced UC mouse model (free drinking 2.5% DSS) in vivo. The results demonstrated that TRYP could inhibit levels of NO, IL-6, and TNF-α in LPS-induced RAW264.7 cells. Twelve differential proteins were screened out. And the results indicated that TRYP could inhibit upregulated levels of gp91phox, p22phox, FcεRIγ, IKKα/β, and p-IκBα and reduce ROS levels in vitro. Besides, after TRYP treatment, the health conditions of colitis mice were all improved. Furthermore, TRYP inhibited the activation of JAK/STAT3, nuclear translocation of NF-κB p65, and promoted the nuclear expression of Nrf2 in vitro and in vivo. This work preliminarily indicated that TRYP might suppress the TLR4/MyD88/ROS/NF-κB and JAK/STAT3 signaling pathways to exert anti-inflammatory effects. Additionally, TRYP could achieve antioxidant effects by regulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Wen Cheng
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Tian-Tian He
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Bao-Long Hou
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Li-Yan Lei
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zheng Wang
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yan-Ni Liang
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| |
Collapse
|
3
|
Li Y, Zhao R, Zhang M, Shen K, Hou X, Liu B, Li C, Sun B, Xiang M, Lin J. Xingbei antitussive granules ameliorate cough hypersensitivity in post-infectious cough guinea pigs by regulating tryptase/PAR2/TRPV1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117243. [PMID: 37777025 DOI: 10.1016/j.jep.2023.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xingbei antitussive granules (XB) is a classic Chinese Medicine prescription for treating post-infectious cough(PIC), based on the Sanao Decoction from Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and Jiegeng decoction from Essentials of the Golden Chamber in the Han Dynasty. However, the therapeutic effects and pharmacological mechanisms are still ambiguous. In the present study, we endeavored to elucidate these underlying mechanisms. AIMS OF THE STUDY This study aimed to explore the potential impact and mechanism of XB on PIC, and provide a scientific basis for its clinical application. MATERIALS AND METHODS Cigarette smoking (CS) combined with lipopolysaccharide (LPS) nasal drops were administered to induce the PIC guinea pig with cough hypersensitivity status. Subsequently, the model guinea pigs were treated with XB and the cough frequency was observed by the capsaicin cough provocation test. The pathological changes of lung tissue were assessed by HE staining, and the levels of inflammatory mediators, mast cell degranulating substances, and neuropeptides were detected. The protein and mRNA expression of transient receptor potential vanilloid type 1(TRPV1), proteinase-activated receptor2(PAR2), and protein kinase C (PKC) were measured by Immunohistochemical staining, Western blot, and RT-qPCR. Changes in the abundance and composition of respiratory bacterial microbiota were determined by 16S rRNA sequencing. RESULTS After XB treatment, the model guinea pigs showed a dose-dependent decrease in cough frequency, along with a significant alleviation in inflammatory infiltration of lung tissue and a reduction in inflammatory mediators. In addition, XB high-dose treatment significantly decreased the levels of mast cell Tryptase as well as β-hexosaminidase (β-Hex) and downregulated the expression of TRPV1, PAR2, and p-PKC. Simultaneously, levels of neuropeptides like substance P (SP), calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and nerve growth factor (NGF) were improved. Besides, XB also can modulate the structure of respiratory bacterial microbiota and restore homeostasis. CONCLUSION XB treatment alleviates cough hypersensitivity and inflammatory responses, inhibits the degranulation of mast cells, and ameliorates neurogenic inflammation in PIC guinea pigs whose mechanism may be associated with the inhibition of Tryptase/PAR2/PKC/TRPV1 and the recovery of respiratory bacterial microbiota.
Collapse
Affiliation(s)
- Yun Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Ruiheng Zhao
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Mengyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Kunlu Shen
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Xin Hou
- Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Bowen Liu
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Chunxiao Li
- Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Bingqing Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Min Xiang
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| |
Collapse
|
4
|
Li C, Xu J, Abdurehim A, Sun Q, Xie J, Zhang Y. TRPA1: A promising target for pulmonary fibrosis? Eur J Pharmacol 2023; 959:176088. [PMID: 37777106 DOI: 10.1016/j.ejphar.2023.176088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scar formation and the ultimate manifestation of numerous lung diseases. It is known as "cancer that is not cancer" and has attracted widespread attention. However, its formation process is very complex, and the mechanism of occurrence has not been fully elucidated. Current research has found that TRPA1 may be a promising target in the pathogenesis of pulmonary fibrosis. The TRPA1 channel was first successfully isolated in human lung fibroblasts, and it was found to have a relatively concentrated distribution in the lungs and respiratory tract. It is also involved in various acute and chronic inflammatory processes of lung diseases and may even play a core role in the progression and/or prevention of pulmonary fibrosis. Natural ligands targeting TRPA1 could offer a promising alternative treatment for pulmonary diseases. Therefore, this review delves into the current understanding of pulmonary fibrogenesis, analyzes TRPA1 biological properties and regulation of lung disease with a focus on pulmonary fibrosis, summarizes the TRPA1 molecular structure and its biological function, and summarizes TRPA1 natural ligand sources, anti-pulmonary fibrosis activity and potential mechanisms. The aim is to decipher the exact role of TRPA1 channels in the pathophysiology of pulmonary fibrosis and to consider their potential in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
5
|
Stinson RJ, Morice AH, Ahmad B, Sadofsky LR. Ingredients of Vicks VapoRub inhibit rhinovirus-induced ATP release. Drugs Context 2023; 12:2023-3-2. [PMID: 37849655 PMCID: PMC10578958 DOI: 10.7573/dic.2023-3-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/28/2023] [Indexed: 10/19/2023] Open
Abstract
Background Over-the-counter therapies, such as Vicks VapoRub, are frequently used in the management of upper respiratory tract infection symptoms. Of these, acute cough is the most bothersome; however, the mechanisms involved have not been fully elucidated. The temperature-sensitive transient receptor potential (TRP) channels, including TRPA1, TRPV1, TRPM8 and TRPV4, are potential candidates. TRPV4 is also thought to be involved in cough through the TRPV4-ATP-P2X3 pathway. Here, we hypothesise that Vicks VapoRub ingredients (VVRIs) modulate the TRP cough channels. Methods Stably transfected HEK cells expressing TRP channels were challenged with VVRIs, individually or in combination, and the agonist and antagonist effects were measured using calcium signalling responses. In addition, rhinovirus serotype-16 (RV16)-infected A549 airway epithelial cells were pre-incubated with individual or combinations of VVRIs prior to hypotonic challenge and extracellular ATP release analysis. Results Calcium signalling reconfirmed some previously defined activation of TRP channels by specific VVRIs. The combined VVRIs containing menthol, camphor and eucalyptus oil activated TRPV1, TRPV4, TRPM8 and untransfected wild-type HEK293 cells. However, pre-incubation with VVRIs did not significantly inhibit any of the channels compared with the standard agonist responses. Pre-incubation of RV16-infected A549 cells with individual or combined VVRIs, except menthol, resulted in a 0.45-0.55-fold reduction in total ATP release following hypotonic stimulation, compared with infected cells not treated with VVRIs. Conclusion These findings suggest that some VVRIs may reduce symptoms associated with upper respiratory tract infection by modulating specific TRP receptors and by reducing RV16-induced ATP release.
Collapse
Affiliation(s)
- Rebecca J Stinson
- Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, UK
| | - Alyn H Morice
- Clinical Sciences Centre, Hull York Medical School, Castle Hill Hospital, Hull, UK
| | - Basir Ahmad
- Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, UK
| | - Laura R Sadofsky
- Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, UK
| |
Collapse
|
6
|
Mažerik J, Gondáš E, Smieško L, Fraňová S, Šutovská M. Effects of TRPV4 channel blocker on airway inflammation and airway defense reflexes in experimentally induced model of allergic asthma. Respir Physiol Neurobiol 2023; 316:104123. [PMID: 37495166 DOI: 10.1016/j.resp.2023.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The transient receptor potential (TRP) channels regulate physiological and pathological processes. Changes in their activity and sensitivity may be involved in the pathophysiology of asthma. The present study investigates the effect of an inhaled TRPV4 channel blocker HC-067047 in an experimental guinea pig model of ovalbumin-induced allergic asthma. We monitored the effect of 50 nM, 100 nM, and 150 nM HC-067047 concentrations on airway defense reflexes in vivo and tracheal smooth muscle contractility in vitro. The anti-inflammatory action of HC-067047 was investigated by analysis of chronic inflammation markers from lung homogenates. The results suggest that HC-067047 can suppress airway defense reflexes in vivo and acetylcholine-induced contractility in vitro. Immunological analysis revealed that TRPV4 channel blockade leads to a decrease in the levels of inflammatory cytokines. An effect on airway defence reflexes and airway inflammation was observed using tested concentrations (50 mM, 100 mM, 150 mM) of HC-067047. The effects of HC-067047 on both airway defense reflexes and inflammation underline the role of TRPV4 channels in asthma and uncover therapeutic targets for developing innovative drugs in asthma therapy.
Collapse
Affiliation(s)
- Jozef Mažerik
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Eduard Gondáš
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lukáš Smieško
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
7
|
Yao K, Dou B, Zhang Y, Chen Z, Li Y, Fan Z, Ma Y, Du S, Wang J, Xu Z, Liu Y, Lin X, Wang S, Guo Y. Inflammation-the role of TRPA1 channel. Front Physiol 2023; 14:1093925. [PMID: 36875034 PMCID: PMC9977828 DOI: 10.3389/fphys.2023.1093925] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, increasing numbers of studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1) can be used as a potential target for the treatment of inflammatory diseases. TRPA1 is expressed in both neuronal and non-neuronal cells and is involved in diverse physiological activities, such as stabilizing of cell membrane potential, maintaining cellular humoral balance, and regulating intercellular signal transduction. TRPA1 is a multi-modal cell membrane receptor that can sense different stimuli, and generate action potential signals after activation via osmotic pressure, temperature, and inflammatory factors. In this study, we introduced the latest research progress on TRPA1 in inflammatory diseases from three different aspects. First, the inflammatory factors released after inflammation interacts with TRPA1 to promote inflammatory response; second, TRPA1 regulates the function of immune cells such as macrophages and T cells, In addition, it has anti-inflammatory and antioxidant effects in some inflammatory diseases. Third, we have summarized the application of antagonists and agonists targeting TRPA1 in the treatment of some inflammatory diseases.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baomin Dou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanwei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Ma
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simin Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangshan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Sun YB, Ni Y, Fan XS, Zhou LP, Yue QF, Shang EX. Effect of Houpo-Mahuang Decoction on aggravated asthma induced by cigarette smoke and the expression of TRPA1 and tight junctions in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115217. [PMID: 35337920 DOI: 10.1016/j.jep.2022.115217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cigarette smoke (CS) is a common environmental irritant and a risk factor for asthma, as it induces as well as aggravates asthmatic attacks. The injured airway epithelial tight junctions (TJs) aggravate asthma. CS can aggravate asthma by activating the transient receptor potential ankyrin A1 (TRPA1) channel and enhancing TJs destruction. Houpo Mahuang decoction (HPMHD) is a classic traditional Chinese prescription for the treatment of asthma. However, its underlying action mechanism is unclear. AIM OF THE STUDY The present study aimed to evaluate the effect of HPMHD on the asthma phenotype and the regulation of TRPA1 and TJs in a CS-induced mouse model of aggravated asthma. MATERIALS AND METHODS Under optimized chromatographic and mass spectrometry conditions, the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) technique was used to detect and analyze the major chemical components of HPMHD. C57BL/6 female mice were randomly divided into seven groups, viz, normal saline (NS) group, ovalbumin (OVA) + CS group, dexamethasone group, HPMHD high-dose group and low-dose groups, n-butanol extract group, and ethyl acetate extract group, with 10 mice in each group. OVA sensitization and challenge, and CS exposure were used to establish the aggravated asthma model. As the main indices to evaluate the protective effect of HPMHD, the eosinophils count in peripheral blood, percentages of inflammatory cells classified and the levels of interleukin (IL)-4, IL-5, IL-13 in the bronchoalveolar lavage fluid (BALF), airway responsiveness enhanced pause (Penh), and changes in lung histopathology were determined and compared among the groups. The mRNA and protein expression of TRPA1 and TJs in lung tissue was also examined. RESULTS Using UPLC-QTOF-MS, the chemical components of HPMHD, including ephedrine, pseudoephedrine, laetrile, and amygdalin amide, were identified by 51 signal peaks. Compared with those in the NS group, the eosinophil number in the peripheral blood and the eosinophils and neutrophils percentages in BALF of the OVA + CS group were remarkably increased. Following the inhalation of 50 μl of acetylcholine chloride (ACH) at doses of 25 and 50 mg/mL, the Penh increased significantly (p < 0.01). Moreover, in the OVA + CS group, hematoxylin and eosin (H&E) staining of lung tissue showed a significant number of infiltrated inflammatory cells, increased mucus secretion in the lumen, damaged bronchial mucosa, increased thickness of tracheal wall, and increased score of lung damage (p < 0.01). The IL-4/5/13 levels were also remarkably increased (p < 0.01). The protein as well as gene expression of both ZO-1 and occludin decreased markedly in the lung tissue, while the expression of TRPA1 and claudin-2 was increased (p < 0.05, p < 0.01). Next, the OVA + CS group and the treatment groups were compared. The inflammatory cells, Penh value, and levels of IL-4/5/13 were significantly reduced, and less lung injury was observed in the treatment groups. The gene and protein levels of TRPA1 and TJs were corrected (p < 0.05, p < 0.01); the effects on the HPMHD high-dose and ethyl acetate extract groups were particularly remarkable. CONCLUSIONS HPMHD reduced airway hyperresponsiveness, inflammatory cell recruitment and Th2 cytokine secretion in CS-induced aggravated asthma mice, in a manner potentially dependent on regulation of the expression of TRPA1 and TJ proteins. Both the n-butanol and ethyl acetate extracts contained the active ingredients, especially the ethyl acetate extract.
Collapse
Affiliation(s)
- Yu-Bo Sun
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Ni
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin-Sheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li-Ping Zhou
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin-Fei Yue
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
9
|
Niu L, Wang J, Shen F, Gao J, Jiang M, Bai G. Magnolol and honokiol target TRPC4 to regulate extracellular calcium influx and relax intestinal smooth muscle. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115105. [PMID: 35157953 DOI: 10.1016/j.jep.2022.115105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a classical traditional Chinese medicine (TCM) widely used to treat digestive system diseases. It effectively regulates gastrointestinal motility to improve abdominal pain, abdominal distension and other symptoms. Magnolol (MAG) and honokiol (HON) are the main pharmacodynamic components responsible for the gastrointestinal activity of M. officinalis. AIM OF THE STUDY The transient receptor potential (TRP) family is highly expressed in the gastrointestinal tract and participates in the regulation of gastrointestinal motility, visceral hypersensitivity, visceral secretion and other physiological activities. In this study, the calcium-lowering mechanisms of MAG and HON contributing to the smooth muscle relaxation associated with TRP are discussed. MATERIALS AND METHODS The relaxation smooth muscle effects of MAG and HON were tested by the isolated intestine tone tests. A synthetic MAG probe (MAG-P) was used to target fishing for their possible target. The distribution of MAG on the smooth muscle was identified by a molecular tracer based on chemical biology. Ca2+ imaging and dual-luciferase reporter assays were used to determine the effects on the target proteins. Finally, the calcium-mediating effects of MAG and HON on smooth muscle cells and TRPC4-knockdown cells were compared to verify the potential mechanism. RESULTS After confirming the smooth muscle relaxation in the small intestine induced by MAG and HON, the relaxation effect was identified mainly due to the downregulation of intracellular calcium by controlling external calcium influx. Although MAG and HON inhibited both TRPV4 and TRPC4 channels to reduce calcium levels, the inhibitory effect on TRPC4 channels is an important mechanism of their smooth muscle relaxation effect, since TRPC4 is widely expressed in the small intestinal smooth muscle cells. CONCLUSIONS The inhibition of MAG and HON on TRPC4 channels contributes to the relaxation of intestinal smooth muscle.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Jie Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China.
| |
Collapse
|
10
|
Thermosensory Transient Receptor Potential Ion Channels and Asthma. Biomedicines 2021; 9:biomedicines9070816. [PMID: 34356881 PMCID: PMC8301310 DOI: 10.3390/biomedicines9070816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a widespread chronic disease of the bronchopulmonary system with a heterogeneous course due to the complex etiopathogenesis. Natural-climatic and anthropogenic factors play an important role in the development and progression of this pathology. The reception of physical and chemical environmental stimuli and the regulation of body temperature are mediated by thermosensory channels, members of a subfamily of transient receptor potential (TRP) ion channels. It has been found that genes encoding vanilloid, ankyrin, and melastatin TRP channels are involved in the development of some asthma phenotypes and in the formation of exacerbations of this pathology. The review summarizes modern views on the role of high and low temperatures in airway inflammation in asthma. The participation of thermosensory TRP channels (vanilloid, ankyrin, and melastatin TRP channels) in the reaction to high and low temperatures and air humidity as well as in the formation of bronchial hyperreactivity and respiratory symptoms accompanying asthma is described. The genetic aspects of the functioning of thermosensory TRP channels are discussed. It is shown that new methods of treatment of asthma exacerbations caused by the influence of temperature and humidity should be based on the regulation of channel activity.
Collapse
|
11
|
Sun YB, Liu M, Fan XS, Zhou LP, Li MW, Hu FY, Yue QF, Zhang YM. Effects of cigarette smoke on the aggravation of ovalbumin-induced asthma and the expressions of TRPA1 and tight junctions in mice. Mol Immunol 2021; 135:62-72. [PMID: 33873095 DOI: 10.1016/j.molimm.2021.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The occurrence of asthma is closely related to environmental factors such as cigarette smoke (CS), one of the common risk factors. Environmental stimuli have the potential to activate transient receptor potential ankyrin 1 (TRPA1) and cause or aggravate asthma. The destruction of tight junctions (TJs) between airway epithelial cells by environmental stimuli in asthma has been researched. It is worth exploring whether CS can injury TJs and aggravate asthma by activating TRPA1. The objective of this study was to investigate the aggravation of CS on ovalbumin (OVA)-induced asthma related phenotypes and TJs expression in mice, and to explore the relationship between TRPA1 and the expression of TJs protein. Female wild type (WT) C57BL/6 mice, induced by OVA, CS and OVA plus CS (OVA + CS) respectively, were used to establish a 42-day asthma model, and mice with TRPA1 knockout (TRPA1-/-) were treated in the same way. This study detected the number of inflammatory cells in peripheral blood and bronchoalveolar lavage fluid (BALF), the levels of IL-4, IL-5, IL-13 in BALF, enhanced pause (Penh) of lung function, pathological changes and the gene and protein expressions of TRPA1 and TJs (including ZO-1, Occludin and Claudin-2) in lung tissues. Compared with normal saline (NS) group, WT mice in the OVA group and OVA + CS group were significantly higher in asthma related phenotypes. The WT-OVA + CS group also showed higher Penh value, levels of IL-5 and IL-13 in BALF and lung tissue injury scores when compared with the WT-OVA group and WT-CS group. However, WT-OVA + CS group mice had significantly larger number of neutrophils in BALF than the WT-OVA group, and had larger number of eosinophils in peripheral blood and higher levels of IL-4 in BALF than the WT-CS group. Meanwhile, compared with the WT-NS group, the expressions of TRPA1 and Claudin-2 in lung tissues increased in other three groups while their expressions of ZO-1 and Occludin decreased, among which, the WT-OVA + CS group showed more remarkable changes. Compared with the WT-OVA + CS group, mice in the TRPA1-/--OVA + CS showed a significant decrease in the number of inflammatory cells, levels of IL-4, IL-5 and IL-13 in BALF, Penh value and lung tissue injury score, and a downregulation of Claudin-2 expression while an upregulation of ZO-1 and Occludin expressions. In addition, the airway inflammation and injury, and the expressions of ZO-1, Occluding and Claudin-2 expressions were found with no statistic differences between TRPA1-/--OVA group and TRPA1-/--OVA + CS group. These results suggest that CS has aggravated the airway inflammation, pathological damage and destruction of TJs in airway epithelium of OVA-induced asthmatic mice, the processes of which are related to the increase of TRPA1 expression.
Collapse
Affiliation(s)
- Yu-Bo Sun
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Mo Liu
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xin-Sheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing, 210023, Jiangsu Province, China.
| | - Li-Ping Zhou
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Meng-Wen Li
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Fang-Yuan Hu
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Qin-Fei Yue
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Yi-Ming Zhang
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
12
|
Dumitrache MD, Jieanu AS, Scheau C, Badarau IA, Popescu GDA, Caruntu A, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. Comparative effects of capsaicin in chronic obstructive pulmonary disease and asthma (Review). Exp Ther Med 2021; 22:917. [PMID: 34306191 PMCID: PMC8280727 DOI: 10.3892/etm.2021.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are chronic respiratory diseases with high prevalence and mortality that significantly alter the quality of life in affected patients. While the cellular and molecular mechanisms engaged in the development and evolution of these two conditions are different, COPD and asthma share a wide array of symptoms and clinical signs that may impede differential diagnosis. However, the distinct signaling pathways regulating cough and airway hyperresponsiveness employ the interaction of different cells, molecules, and receptors. Transient receptor potential cation channel subfamily V member 1 (TRPV1) plays a major role in cough and airway inflammation. Consequently, its agonist, capsaicin, is of substantial interest in exploring the cellular effects and regulatory pathways that mediate these respiratory conditions. Increasingly more studies emphasize the use of capsaicin for the inhalation cough challenge, yet the involvement of TRPV1 in cough, bronchoconstriction, and the initiation of inflammation has not been entirely revealed. This review outlines a comparative perspective on the effects of capsaicin and its receptor in the pathophysiology of COPD and asthma, underlying the complex entanglement of molecular signals that bridge the alteration of cellular function with the multitude of clinical effects.
Collapse
Affiliation(s)
- Mihai-Daniel Dumitrache
- Department of Pneumology IV, 'Marius Nasta' Institute of Pneumophtysiology, 050159 Bucharest, Romania
| | - Ana Stefania Jieanu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Internal Medicine and Gastroenterology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Prof. N.C. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
13
|
Cui X, Chen W, Zhou H, Gong Y, Zhu B, Lv X, Guo H, Duan J, Zhou J, Marcon E, Ma H. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front Pharmacol 2021; 12:664349. [PMID: 34163357 PMCID: PMC8215379 DOI: 10.3389/fphar.2021.664349] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 mortality is primarily driven by abnormal alveolar fluid metabolism of the lung, leading to fluid accumulation in the alveolar airspace. This condition is generally referred to as pulmonary edema and is a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are multiple potential mechanisms leading to pulmonary edema in severe Coronavirus Disease (COVID-19) patients and understanding of those mechanisms may enable proper management of this condition. Here, we provide a perspective on abnormal lung humoral metabolism of pulmonary edema in COVID-19 patients, review the mechanisms by which pulmonary edema may be induced in COVID-19 patients, and propose putative drug targets that may be of use in treating COVID-19. Among the currently pursued therapeutic strategies against COVID-19, little attention has been paid to abnormal lung humoral metabolism. Perplexingly, successful balance of lung humoral metabolism may lead to the reduction of the number of COVID-19 death limiting the possibility of healthcare services with insufficient capacity to provide ventilator-assisted respiration.
Collapse
Affiliation(s)
- Xinyu Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wuyue Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoyan Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Gong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bowen Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Chen L, Liu S, Xiao L, Chen K, Tang J, Huang C, Luo W, Ferrandon D, Lai K, Li Z. An initial assessment of the involvement of transglutaminase2 in eosinophilic bronchitis using a disease model developed in C57BL/6 mice. Sci Rep 2021; 11:11946. [PMID: 34099759 PMCID: PMC8184915 DOI: 10.1038/s41598-021-90950-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
The detailed pathogenesis of eosinophilic bronchitis (EB) remains unclear. Transglutaminase 2 (TG2) has been implicated in many respiratory diseases including asthma. Herein, we aim to assess preliminarily the relationship of TG2 with EB in the context of the development of an appropriate EB model through ovalbumin (OVA) sensitization and challenge in the C57BL/6 mouse strain. Our data lead us to propose a 50 μg dose of OVA challenge as appropriate to establish an EB model in C57BL/6 mice, whereas a challenge with a 400 μg dose of OVA significantly induced asthma. Compared to controls, TG2 is up-regulated in the airway epithelium of EB mice and EB patients. When TG2 activity was inhibited by cystamine treatment, there were no effects on airway responsiveness; in contrast, the lung pathology score and eosinophil counts in bronchoalveolar lavage fluid were significantly increased whereas the cough frequency was significantly decreased. The expression levels of interleukin (IL)-4, IL-13, IL-6, mast cell protease7 and the transient receptor potential (TRP) ankyrin 1 (TRPA1), TRP vanilloid 1 (TRPV1) were significantly decreased. These data open the possibility of an involvement of TG2 in mediating the increased cough frequency in EB through the regulation of TRPA1 and TRPV1 expression. The establishment of an EB model in C57BL/6 mice opens the way for a genetic investigation of the involvement of TG2 and other molecules in this disease using KO mice, which are often generated in the C57BL/6 genetic background.
Collapse
Affiliation(s)
- Lan Chen
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Shuyan Liu
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Linzhuo Xiao
- Sino-French Hoffmann Institute, Guangzhou, China
| | - Kanyao Chen
- Sino-French Hoffmann Institute, Guangzhou, China
| | | | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, M3I UPR9022 du CNRS, 67000, Strasbourg, France
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Guan M, Ying S, Wang Y. Increased expression of transient receptor potential channels and neurogenic factors associates with cough severity in a guinea pig model. BMC Pulm Med 2021; 21:187. [PMID: 34078339 PMCID: PMC8173754 DOI: 10.1186/s12890-021-01556-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies suggest that transient receptor potential (TRP) channels and neurogenic inflammation may be involved in idiopathic pulmonary fibrosis (IPF)-related high cough sensitivity, although the details of mechanism are largely unknown. Here, we aimed to further explore the potential mechanism involved in IPF-related high cough sensitivity to capsaicin challenge in a guinea pig model of pulmonary fibrosis induced by bleomycin. METHODS Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR) were employed to measure the expression of TRP channel subfamily A, member 1 (TRPA1) and TRP vanilloid 1 (TRPV1), which may be involved in the cough reflex pathway. Immunohistochemical analysis and RT-qPCR were used to detect the expression of neuropeptides substance P (SP), Neurokinin-1 receptor (NK1R), and calcitonin gene-related peptide (CGRP) in lung tissues. Concentrations of nerve growth factor (NGF), SP, neurokinin A (NKA), neurokinin B (NKB), and brain-derived neurotrophic factor (BDNF) in lung tissue homogenates were measured by ELISA. RESULTS Cough sensitivity to capsaicin was significantly higher in the model group than that of the sham group. RT-qPCR and immunohistochemical analysis showed that the expression of TRPA1 and TRPV1 in the jugular ganglion and nodal ganglion, and SP, NK1R, and CGRP in lung tissue was significantly higher in the model group than the control group. In addition, expression of TRP and neurogenic factors was positively correlated with cough sensitivity of the experimental animals. CONCLUSION Up-regulated expression of TRPA1 and TRPV1 in the cough reflex pathway and neurogenic inflammation might contribute to the IPF-related high cough sensitivity in guinea pig model.
Collapse
Affiliation(s)
- Mengyue Guan
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23rd Art Museum Backstreet, Dongcheng District, Beijing, 10010, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10th Xitoutiao, You'anmenwai Street, Fengtai District, Beijing, China
| | - Yuguang Wang
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23rd Art Museum Backstreet, Dongcheng District, Beijing, 10010, China.
| |
Collapse
|
16
|
Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett 2021; 748:135719. [PMID: 33587987 PMCID: PMC7988689 DOI: 10.1016/j.neulet.2021.135719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
17
|
Abstract
The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.
Collapse
|
18
|
Achanta S, Jordt SE. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci 2020; 1480:73-103. [PMID: 32892378 PMCID: PMC7933981 DOI: 10.1111/nyas.14472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
The lung is highly sensitive to chemical injuries caused by exposure to threat agents in industrial or transportation accidents, occupational exposures, or deliberate use as weapons of mass destruction (WMD). There are no antidotes for the majority of the chemical threat agents and toxic inhalation hazards despite their use as WMDs for more than a century. Among several putative targets, evidence for transient receptor potential (TRP) ion channels as mediators of injury by various inhalational chemical threat agents is emerging. TRP channels are expressed in the respiratory system and are essential for homeostasis. Among TRP channels, the body of literature supporting essential roles for TRPA1, TRPV1, and TRPV4 in pulmonary chemical injuries is abundant. TRP channels mediate their function through sensory neuronal and nonneuronal pathways. TRP channels play a crucial role in complex pulmonary pathophysiologic events including, but not limited to, increased intracellular calcium levels, signal transduction, recruitment of proinflammatory cells, neurogenic inflammatory pathways, cough reflex, hampered mucus clearance, disruption of the integrity of the epithelia, pulmonary edema, and fibrosis. In this review, we summarize the role of TRP channels in chemical threat agents-induced pulmonary injuries and how these channels may serve as medical countermeasure targets for broader indications.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Dong Y, Yin Y, Vu S, Yang F, Yarov-Yarovoy V, Tian Y, Zheng J. A distinct structural mechanism underlies TRPV1 activation by piperine. Biochem Biophys Res Commun 2019; 516:365-372. [PMID: 31213294 DOI: 10.1016/j.bbrc.2019.06.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Piperine, the principle pungent compound in black peppers, is known to activate the capsaicin receptor TRPV1 ion channel. How piperine interacts with the channel protein, however, remains unclear. Here we show that piperine binds to the same ligand-binding pocket as capsaicin but in different poses. There was no detectable detrimental effect when T551 and E571, two major sites known to form hydrogen bond with capsaicin, were mutated to a hydrophobic amino acid. Computational structural modeling suggested that piperine makes interactions with multiple amino acids within the ligand binding pocket, including T671 on the pore-forming S6 segment. Mutations of this residue could substantially reduce or even eliminate piperine-induced activation, confirming that T671 is an important site. Our results suggest that the bound piperine may directly interact with the pore-forming S6 segment to induce channel opening. These findings help to explain why piperine is a weak agonist, and may guide future efforts to develop novel pharmaceutical reagents targeting TRPV1.
Collapse
Affiliation(s)
- Yawen Dong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Yue Yin
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Simon Vu
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, 95616, USA
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, 95616, USA
| | - Yuhua Tian
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China.
| | - Jie Zheng
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
20
|
Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5806321. [PMID: 31263706 PMCID: PMC6556840 DOI: 10.1155/2019/5806321] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
TRPV1 has been originally cloned as the heat and capsaicin receptor implicated in acute pain signalling, while further research has shifted the focus to its importance in chronic pain caused by inflammation and associated with this TRPV1 sensitization. However, accumulating evidence suggests that, apart from pain signalling, TRPV1 subserves many other unrelated to nociception functions in the nervous system. In the brain, TRPV1 can modulate synaptic transmission via both pre- and postsynaptic mechanisms and there is a functional crosstalk between GABA receptors and TRPV1. Other fundamental processes include TRPV1 role in plasticity, microglia-to-neuron communication, and brain development. Moreover, TRPV1 is widely expressed in the peripheral tissues, including the vasculature, gastrointestinal tract, urinary bladder, epithelial cells, and the cells of the immune system. TRPV1 can be activated by a large array of physical (heat, mechanical stimuli) and chemical factors (e.g., protons, capsaicin, resiniferatoxin, and endogenous ligands, such as endovanilloids). This causes two general cell effects, membrane depolarization and calcium influx, thus triggering depending on the cell-type diverse functional responses ranging from neuronal excitation to secretion and smooth muscle contraction. Here, we review recent research on the diverse TRPV1 functions with focus on the brain, vasculature, and some visceral systems as the basis of our better understanding of TRPV1 role in different human disorders.
Collapse
|
21
|
Shimada T, Takahashi K, Tominaga M, Ohta T. Identification of molecular targets for toxic action by persulfate, an industrial sulfur compound. Neurotoxicology 2019; 72:29-37. [PMID: 30738091 DOI: 10.1016/j.neuro.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 02/02/2023]
Abstract
Persulfate salts are broadly used as industrial chemicals and exposure to them causes occupational asthma, occupational rhinitis and contact dermatitis. However, the mechanisms underlying these toxic actions are not fully elucidated. Transient receptor potential (TRP) vanilloid 1 (V1), ankyrin 1 (A1) and melastatin 8 (M8) are non-selective cation channels preferentially expressing sensory neurons. These channels are known to be involved in respiratory and skin diseases. In the present study, we investigated the effects of sodium persulfate on these TRP channels. In wild-type mouse sensory neurons, persulfate evoked [Ca2+]i increases that were inhibited by removal of extracellular Ca2+ or blockers of TRPA1 but not by those of TRPV1 and TRPM8. Persulfate failed to evoke [Ca2+]i responses in neurons from TRPA1(-/-) mice, but did evoke them in neurons from TRPV1(-/-) mice. In HEK 293 cells expressing mouse TRPA1 (mTRPA1-HEK), persulfate induced [Ca2+]i increases. Moreover, in HEK 293 cells expressing mouse TRPV1 (mTRPV1-HEK), a high concentration of persulfate also evoked [Ca2+]i increases. Similar [Ca2+]i responses were observed in HEK 293 cells expressing human TRPA1 and human TRPV1. Current responses were also elicited by persulfate in mTRPA1- and mTRPV1-HEK. Analysis using mutated channels revealed that persulfate acted on electrophilic agonist-sensitive cysteine residues of TRPA1, and it indirectly activated TRPV1 due to the external acidification, because of the disappearance of [Ca2+]i responses in acid-insensitive mTRPV1 mutant. These results demonstrate that persulfate activates nociceptive TRPA1 and TRPV1 channels. It is suggested that activation of these nociceptive channels may be involved in respiratory and skin injuries caused by exposure to this industrial sulfur compound. Thus, selective TRPA1 and TRPV1 channel blockers may be effective to remedy persulfate-induced toxic actions.
Collapse
Affiliation(s)
- Takahisa Shimada
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan.
| |
Collapse
|
22
|
Guo Y, Ying S, Zhao X, Liu J, Wang Y. Increased expression of lung TRPV1/TRPA1 in a cough model of bleomycin-induced pulmonary fibrosis in Guinea pigs. BMC Pulm Med 2019; 19:27. [PMID: 30717786 PMCID: PMC6360795 DOI: 10.1186/s12890-019-0792-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Chronic cough is a difficult-to-treat comorbidity of idiopathic pulmonary fibrosis (IPF), and significantly impacts on the quality of life of patients with IPF. Transient receptor potential (TRP) channel proteins may play an important role in chronic cough. However, expression of these proteins in lung of IPF is largely unknown. Methods Guinea pig model of pulmonary fibrosis was established by single intratracheal delivery of bleomycin. Respiratory ungated micro-CT scans were performed on days 7, 14, 21 and 28 to assess progression of pulmonary fibrosis. Cough sensitivity to capsaicin was evaluated in conscious animals on days 13 and 27. Real-time PCR (qPCR) and immunohistochemistry were employed to measure expression of TRPV1 and TRPA1 in lung tissue. Results Micro-CT showed that lung consolidation was detectable from day 7 distributing mainly in the middle and lower lung fields, which was significantly correlated to Ashcroft fibrosis score (r = 0.7993, p < 0.001). Cough sensitivity to capsaicin in bleomycin-treated animals was significantly increased on days 13 and 27. qPCR showed that expression of TRPV1 and TRPA1 was positively correlated each other and significantly upregulated in lung tissues of model group compared with that of controls, which was further supported by immunohistochemistry. Furthermore, immunoreactivity for TRPV1 and TRPA1 was negatively correlated with Ashcroft fibrosis score. Conclusion Expression of TRPV1/TRPA1 was upregulated in the chronic cough related to bleomycin induced pulmonary fibrosis in guinea pigs, which provided new insights into the mechanism of IPF-associated cough hypersensitivity. Micro-CT is very helpful methodology to access pulmonary fibrosis progression in small animal models.
Collapse
Affiliation(s)
- Yali Guo
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23rd Art Museum Backstreet, Dongcheng District, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10rd Xitoutiao, You'anmenwai street, Fengtai District, Beijing, China
| | - Xuehui Zhao
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23rd Art Museum Backstreet, Dongcheng District, Beijing, China
| | - Jian Liu
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23rd Art Museum Backstreet, Dongcheng District, Beijing, China
| | - Yuguang Wang
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23rd Art Museum Backstreet, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
23
|
Dagenais A, Desjardins J, Shabbir W, Roy A, Filion D, Sauvé R, Berthiaume Y. Loss of barrier integrity in alveolar epithelial cells downregulates ENaC expression and activity via Ca 2+ and TRPV4 activation. Pflugers Arch 2018; 470:1615-1631. [PMID: 30088081 DOI: 10.1007/s00424-018-2182-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023]
Abstract
The epithelial Na channel (ENaC) plays an essential role in lung physiology by modulating the amount of liquid lining the respiratory epithelium. Here, we tested the effect of breaking alveolar epithelial cell barrier integrity on ENaC expression and function. We found that either mechanical wounding by scratching the monolayer or disruption of tight junction with EDTA induced a ~ 50% decrease of α,β and γENaC mRNA expression and an 80% reduction of ENaC short-circuit current (Isc) at 6 h. Scratching the cell monolayer generated a Ca2+ wave that spread from the margin of the scratch to distant cells. Pretreatment with BAPTA-AM, an intracellular Ca2+ chelator, abolished the effect of mechanical wounding and EDTA on αENaC mRNA expression, suggesting that [Ca2+]i is important for this modulation. We tested the hypothesis that a mechanosensitive channel such as TRPV4, a cationic channel known to increase [Ca2+]i, could mediate this effect. Activation of the channel with the TRPV4 specific agonist GSK-1016790A (GSK) decreased αENAC mRNA expression and almost completely abolished ENaC Isc. Pretreatment of alveolar epithelial cells with HC-067047 (HC0), a specific TRPV4 antagonist, reduced the extent of αENAC mRNA downregulation by mechanical wounding and EDTA. Altogether, our results suggest that mechanical stress induced by wounding or TRPV4-mediated loss of tight junction increases [Ca2+]i and elicits a Ca2+ wave that affects ENaC expression and function away from the site of injury. These data are important to better understand how Ca2+ signaling affects lung liquid clearance in injured lungs.
Collapse
Affiliation(s)
- André Dagenais
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada.
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada.
| | - Julie Desjardins
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Waheed Shabbir
- Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Antoine Roy
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Dominic Filion
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Rémy Sauvé
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of Pain and Itch by TRP Channels. Neurosci Bull 2018; 34:120-142. [PMID: 29282613 PMCID: PMC5799130 DOI: 10.1007/s12264-017-0200-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.
Collapse
Affiliation(s)
- Carlene Moore
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
25
|
Lamb JG, Romero EG, Lu Z, Marcus SK, Peterson HC, Veranth JM, Deering-Rice CE, Reilly CA. Activation of Human Transient Receptor Potential Melastatin-8 (TRPM8) by Calcium-Rich Particulate Materials and Effects on Human Lung Cells. Mol Pharmacol 2017; 92:653-664. [PMID: 29038158 PMCID: PMC5695664 DOI: 10.1124/mol.117.109959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
To better understand how adverse health effects are caused by exposure to particulate materials, and to develop preventative measures, it is important to identify the properties of particles and molecular targets that link exposure with specific biologic outcomes. Coal fly ash (CFA) is a by-product of coal combustion that can affect human health. We report that human transient receptor potential melastatin-8 (TRPM8) and an N-terminally truncated TRPM8 variant (TRPM8-Δ801) are activated by CFA and calcium-rich nanoparticles and/or soluble salts within CFA. TRPM8 activation by CFA was potentiated by cold temperature involving the phosphatidylinositol 4,5-bisphosphate binding residue (L1008), but was independent of the icilin and menthol binding site residue Y745 and, essentially, the N-terminal amino acids 1-800. CFA, calcium nanoparticles, and calcium salts also activated transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential ankyrin-1 (TRPA1), but not TRPV4. CFA treatment induced CXCL1 and interleukin-8 mRNA in BEAS-2B and primary human bronchial epithelial cells through activation of both TRPM8 and TRPV1. However, neither mouse nor rat TRPM8 was activated by these materials, and Trpm8 knockout had no effect on cytokine induction in the lungs of CFA-instilled mice. Amino acids S921 and S927 in mouse Trpm8 were identified as important for the lack of response to CFA. These results imply that TRPM8, in conjunction with TRPV1 and TRPA1, might sense selected forms of inhaled particulate materials in human airways, shaping cellular responses to these materials, and improving our understanding of how and why certain particulate materials elicit different responses in biologic systems, affecting human health.
Collapse
Affiliation(s)
- John G Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Erin G Romero
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Zhenyu Lu
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Seychelle K Marcus
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Hannah C Peterson
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - John M Veranth
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
26
|
Belvisi MG, Birrell MA. The emerging role of transient receptor potential channels in chronic lung disease. Eur Respir J 2017; 50:50/2/1601357. [PMID: 28775042 DOI: 10.1183/13993003.01357-2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are a major and increasing global health burden with a high unmet need. Drug discovery efforts in this area have been largely disappointing and so new therapeutic targets are needed. Transient receptor potential ion channels are emerging as possible therapeutic targets, given their widespread expression in the lung, their role in the modulation of inflammatory and structural changes and in the production of respiratory symptoms, such as bronchospasm and cough, seen in chronic lung disease.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
27
|
Schwellnus MP, Hoffman MD. Transient receptor potential channels and exercise-associated muscle cramping: A tale of multiple complexities. Muscle Nerve 2017; 56:355-357. [PMID: 28437833 DOI: 10.1002/mus.25668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/03/2023]
Affiliation(s)
- M P Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI) and Section Sports Medicine, Faculty of Health Sciences, Section Sports Medicine, University of Pretoria Sports Campus, Burnett Street, Hatfield, Pretoria, 0020, South Africa.,IOC Research Centre, South Africa
| | - M D Hoffman
- Department of Veterans Affairs, Northern California Health Care System, Sacramento, California, USA.,Department of Physical Medicine and Rehabilitation, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
28
|
Modulation of TRP Channel Activity by Hydroxylation and Its Therapeutic Potential. Pharmaceuticals (Basel) 2017; 10:ph10020035. [PMID: 28346371 PMCID: PMC5490392 DOI: 10.3390/ph10020035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Two transient receptor potential (TRP) channels—TRPA1 and TRPV3—are post-translationally hydroxylated, resulting in oxygen-dependent regulation of channel activity. The enzymes responsible are the HIF prolyl hydroxylases (PHDs) and the asparaginyl hydroxylase factor inhibiting HIF (FIH). The PHDs and FIH are well characterized for their hydroxylation of the hypoxic inducible transcription factors (HIFs), mediating their hypoxic regulation. Consequently, these hydroxylases are currently being targeted therapeutically to modulate HIF activity in anemia, inflammation, and ischemic disease. Modulating the HIFs by targeting these hydroxylases may result in both desirable and undesirable effects on TRP channel activity, depending on the physiological context. For the best outcomes, these hydroxylases could be therapeutically targeted in pathologies where activation of both the HIFs and the relevant TRP channels are predicted to independently achieve positive outcomes, such as wound healing and obesity.
Collapse
|
29
|
Marine Cyclic Guanidine Alkaloids Monanchomycalin B and Urupocidin A Act as Inhibitors of TRPV1, TRPV2 and TRPV3, but not TRPA1 Receptors. Mar Drugs 2017; 15:md15040087. [PMID: 28333079 PMCID: PMC5408233 DOI: 10.3390/md15040087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 12/26/2022] Open
Abstract
Marine sponges contain a variety of low-molecular-weight compounds including guanidine alkaloids possessing different biological activities. Monanchomycalin B and urupocidin A were isolated from the marine sponge Monanchora pulchra. We found that they act as inhibitors of the TRPV1, TRPV2, and TRPV3 channels, but are inactive against the TRPA1 receptor. Monanchomycalin B is the most active among all published marine alkaloids (EC50 6.02, 2.84, and 3.25 μM for TRPV1, TRPV2, and TRPV3, correspondingly). Moreover, monanchomycalin B and urupocidin A are the first samples of marine alkaloids affecting the TRPV2 receptor. Two semi-synthetic urupocidin A derivatives were also obtained and tested against TRP (Transient Receptor Potential) receptors that allowed us to collect some data concerning the structure-activity relationship in this series of compounds. We showed that the removal of one of three side chains or double bonds in the other side chains in urupocidin A led to a decrease of the inhibitory activities. New ligands specific to the TRPV subfamily may be useful for the design of medicines as in the study of TRP channels biology.
Collapse
|
30
|
Achanta S, Jordt SE. TRPA1: Acrolein meets its target. Toxicol Appl Pharmacol 2017; 324:45-50. [PMID: 28284857 DOI: 10.1016/j.taap.2017.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, United States; Yale Tobacco Center of Regulatory Science (TCORS), Department of Psychiatry, Yale School of Medicine, New Haven, CT 06519, United States.
| |
Collapse
|
31
|
Hasegawa-Moriyama M, Mukaihara K, Yamada T, Kuwaki T, Kanmura Y. Transient Receptor Potential Ankyrin 1 Ion Channel Facilitates Acute Inflammation Induced by Surgical Incision in Mice. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ojanes.2017.75014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|