1
|
Lu Z, Zhu L, Yi C, Su B, Wang R. C5a/C5aR regulates Th1/Th2 imbalance in sepsis-associated lung injury by promoting neutrophil activation to increase PAD4 expression. Ann Med 2025; 57:2447406. [PMID: 39831526 PMCID: PMC11749016 DOI: 10.1080/07853890.2024.2447406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Multi-organ failure frequently complicates sepsis, with lungs being the primary target. T helper (Th) cell activation and phenotypic imbalance among them contribute significantly to sepsis-associated lung injury. Additionally, the complement system could regulate the polarized phenotype of T lymphocytes. Therefore, this study investigated the effect of C5a/C5a receptor (C5aR)/Peptidylarginine deiminase 4 (PAD4) on the Th1/Th2 ratio in sepsis-induced lung injury. METHODS ELISA was used to detect the expression of PAD4, HBP, MPO, IL-1β, IL-10, IL-6, IL-4, syndecan-1, endocan and H3Cit. An LPS-induced septic lung injury mouse model was constructed, with HE and PAS stains evaluating lung damage. BCA kit quantified BALF total protein, Western blot examined C5aR, syndecan-1, endocan, PAD4 levels, while TUNEL and flow cytometry assessed tissue cellular apoptosis. Furthermore, flow cytometry was used to detect the +Th1 and Th2 cells proportion in peripheral blood, and CCK-8 was used to detect BEAS-2B activity. RESULTS The results indicated that PAD4 and inflammatory factors were increased in lesion samples compared with controls. In sepsis-induced lung injury mice, addition of GSK484, a PAD4 inhibitor, effectively alleviated sepsis-induced lung edema and inflammatory responses. GSK484 was found to inhibit C5a/C5aR expression and suppress apoptosis and lung injury. Furthermore, GSK484 markedly inhibited Th1 cell phenotypes in vitro. Additionally, GSK484 intervention on Th1 cell phenotype further affected lung epithelial cell injury. CONCLUSION In summary, we revealed the mechanism of C5a/C5aR-induced PAD4 upregulation via neutrophil activation in sepsis-associated lung injury, causing a Th1/Th2 imbalance and lung injury, providing a novel approach for sepsis-associated lung injuries treatment.
Collapse
Affiliation(s)
- Zhenbing Lu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changlin Yi
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bi Su
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renying Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chao Y, Li R, Shao Y, Fei Y, Zhou J, Zhao L. Factors associated with early clinical remission in patients with idiopathic retroperitoneal fibrosis. Rheumatology (Oxford) 2025; 64:3676-3684. [PMID: 39689024 DOI: 10.1093/rheumatology/keae676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVES Idiopathic retroperitoneal fibrosis (IRF) is a rare autoimmune-mediated condition characterized by fibro-inflammatory tissue development around the abdominal aorta and iliac arteries. Ureteral entrapment and hydronephrosis are the most common manifestations and acute renal failure or chronic renal insufficiency may occur as the consequence. Glucocorticoids and immunosuppressants may be effective but the therapeutic response and outcome are heterogeneous and hard to predict. This study aimed to investigate the factors associated with early remission in patients with IRF. METHODS This retrospective study included 91 IRF patients who visited Peking Union Medical College Hospital between May 2013 and December 2023. Clinical data and outcomes were reviewed, and the time to remission was calculated. RESULTS Over a median follow-up of 2.63 years (IQR, 1.29-3.41), 38 patients achieved remission within six months after treatment initiation. In multivariable analysis, male gender (OR 5.297, 95% CI 1.445-19.420, P=0.012) and higher baseline complement component 3 (C3) (OR 2.153, 95% CI 1.131-4.097, P=0.019) levels were significantly associated with early clinical remission (≤6 months). The time to remission was negatively associated with C3 levels (r =-0.243, P=0.014). Patients with high C3 levels (≥1.144 g/l) tended to achieve remission in a shorter time than their counterparts with low C3 levels(<1.144 g/l) (P=0.028). An effective nomogram model for predicting disease remission was constructed with gender and C3 (AUC=0.73, 95% CI 0.62-0.84). CONCLUSION Male gender and higher baseline C3 levels may act as potential predictors for achieving early remission in patients with IRF.
Collapse
Affiliation(s)
- Yuyan Chao
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Rong Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuxia Shao
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Rheumatology and immunology, Binzhou People's Hospital, Binzhou, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Wang C, Wang Y, Duan Y, Dong Y, Hua H, Cui H, Huang S, Huang Z, Lu J, Ding C, Cai Z, Feng J. Design, Synthesis, and Biological Evaluation of a Novel Long-Acting Human Complement C3 Inhibitor Synthesized via the PASylation-Lipidation Modular (PLM) Platform. Bioconjug Chem 2025. [PMID: 40359518 DOI: 10.1021/acs.bioconjchem.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The complement system is essential for immune defense, but its dysregulation contributes to various complement-mediated disorders, including paroxysmal nocturnal hemoglobinuria (PNH). CP40 (a cyclic peptide also known as AMY101), effectively inhibits complement activation by preventing the initial binding of the C3 substrate to convertase. Despite its potency, CP40 has a very short plasma half-life when unbound to human C3, necessitating frequent dosing. We developed a novel PASylation-Lipidation Modular (PLM) platform. This platform incorporates a solubilizing PAS module and a half-life-extending lipid moiety into CP40 via a chemical linker. Systematic optimization of the spacer and lipid components in PLM-modified CP40 analogues identified 6C1 as a lead compound. Compared to CP40, 6C1 exhibited a 5-fold increase in antihemolytic potency in the classical complement pathway and a 6.3-fold improvement in solubility. In vivo studies demonstrated that PLM-CP40 analogues possess superior pharmacokinetic properties, with a 15.6-fold extension in half-life relative to unmodified CP40. Mechanistic studies revealed that the PLM platform extends half-life by interacting with albumin, which serves as a circulating depot for the compound. Surface plasmon resonance analysis and hemolysis assays postalbumin incubation demonstrated that PLM modifications maintain receptor affinity by strategically positioning the albumin-binding moiety away from the peptide region, preserving its biological activity. In a clinically relevant in vitro model of complement-mediated hemolysis in PNH, 6C1 effectively reduced erythrocyte lysis. The PLM platform thus offers a versatile strategy for enhancing peptide therapeutics by improving solubility, extending circulation time, and increasing efficacy, broadening their therapeutic potential.
Collapse
Affiliation(s)
- Chengcheng Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Yapeng Wang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yu Duan
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Yuanzhen Dong
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Haoju Hua
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Huixin Cui
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Shuaiyi Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Zongqing Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Jianguang Lu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengyan Cai
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Jun Feng
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| |
Collapse
|
4
|
Sun Y, Hu Y, Luo S. Complement C5a promotes human retinal pigment epithelial cell viability and migration through SLC38A1-mediated glutamine metabolism. Med Microbiol Immunol 2025; 214:22. [PMID: 40358757 DOI: 10.1007/s00430-025-00832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
The pathological basis of many visual disorders involves the abnormal viability and migration of retinal pigment epithelium (RPE) cells. Complement response disorder is a significant pathogenic factor causing some autoimmune and inflammation diseases. The complement activation product anaphylatoxin C5a signaling pathway may be associated with RPE cell dysfunction. This study aimed to analyze the molecular mechanisms by which C5a affects RPE cell viability and migration. Recombinant human complement component C5a protein stimulated RPE cells. Cell biological behavior, including cell viability, invasion, and migration were analyzed with Cell Counting Kit-8 and transwell methods. Bioinformatics analysis identified the differentially expressed genes (DEGs) involved in C5a-treated RPE cells based on RNA sequencing. SLC38A1 was knocked down or overexpressed by vector transfection to investigate its involvement in C5a-stimulated RPE cells. C5a promotes RPE cell viability and migration. C5a-induced DEGs are enriched in migration-associated pathways. C5a increased SLC38A1, and SLC38A1 knockdown or overexpression inhibited or promoted RPE cell viability and migration. Glutaminase inhibition abrogated the promoting effect of C5a and SLC38A1 on cell biological behaviors. METTL3-HNRNPC-mediated m6A modification mediated C5a-induced SLC38A1. C5a, METTL3, and SLC38A1 constituted a signaling axis in regulating cell biological behaviors of C5a-treated RPE cells. C5a promotes RPE cell viability and migration, and SLC38A1-mediated improved glutamine metabolism is the downstream signal pathway of the C5a complement pathway. The C5a complement system may target the SLC38A1 to promote RPE cell migration.
Collapse
Affiliation(s)
- Ye Sun
- Jiangnan University Wuxi School of Medicine, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, 214000, China
| | - Yifan Hu
- Jiangnan University Wuxi School of Medicine, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, 214000, China
| | - Shasha Luo
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214000, China.
| |
Collapse
|
5
|
Parker Z, Salie MT, Engel K, Zühlke LJ, Engel ME, Spracklen TF. Evaluation of Ficolin-3 deficiency as a risk factor in the development of rheumatic heart disease. BMC Res Notes 2025; 18:205. [PMID: 40340734 PMCID: PMC12060289 DOI: 10.1186/s13104-025-07251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/09/2025] [Indexed: 05/10/2025] Open
Abstract
OBJECTIVE Ficolin-3 is a crucial protein for the activation of the complement system. Previous work has indicated this protein may play a role in the pathogenesis of rheumatic heart disease (RHD), and it has been hypothesised that ficolin-3 has potential as a biomarker for early identification of patients with suspected RHD. This study investigated FCN3 gene polymorphisms rs532781899 (c.349del) and rs4494157 (c.658 + 250 C > A) and ficolin-3 serum concentrations in an ethnically diverse cohort of 53 RHD cases and 45 healthy controls from across Africa. RESULTS Ficolin-3 was found to be increased by 16% in RHD patients (p = 0.03) compared to controls, but polymorphisms did not associate with the risk of developing RHD nor with ficolin-3 concentrations. Carriers of the c.349del haploinsufficiency locus had normal levels of ficolin-3, while the previously described c.658 + 250 C > A RHD susceptibility locus was found equally in cases and controls. The higher serum ficolin-3 in RHD supports the potential role of this protein in RHD pathogenesis. However, these results suggest that rs532781899 and rs4494157 are not risk factors for the development of RHD in patients from sub-Saharan Africa and would not be reliable as early-stage markers of RHD susceptibility.
Collapse
Affiliation(s)
- Zahra Parker
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M Taariq Salie
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kélin Engel
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Liesl J Zühlke
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Cape Town, South Africa
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark E Engel
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa.
| | - Timothy F Spracklen
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Ozen A, Can S, Sefer AP, Ozturk NK, Colak BC. Complement dysregulation at lymphatics. J Allergy Clin Immunol 2025:S0091-6749(25)00460-9. [PMID: 40300720 DOI: 10.1016/j.jaci.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
The complement system is a central component of innate immunity, orchestrating pathogen clearance while regulating inflammation, tissue repair, and homeostasis. Its activation is tightly controlled by multiple inhibitors to prevent self-damage. However, complement dysregulation is implicated in numerous organ-specific diseases, including paroxysmal nocturnal hemoglobinuria (erythrocytes), atypical hemolytic uremic syndrome (kidneys), and age-related macular degeneration (eyes). Recent discoveries have revealed that complement hyperactivation also drives lymphatic dysfunction, most notably in CHAPLE (CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy) disease-a rare pediatric disorder caused by biallelic CD55 mutations. Impaired regulation of C3 and C5 convertases leads to unchecked complement and coagulation activation, resulting in membrane attack complex deposition, severe intestinal lymphangiectasia, and protein-losing enteropathy. Patients typically present with hypoalbuminemia, edema, gastrointestinal symptoms, growth retardation, and recurrent thromboembolic events, reflecting a severe thrombophilic phenotype. C5-blocking antibodies, including pozelimab and eculizumab, transformed CHAPLE management. In a phase 2/3 study, pozelimab led to normalization of serum albumin levels and notable reductions in hospitalizations and transfusion needs, leading to Food and Drug Administration approval. Emerging evidence suggests that complement-driven protein-losing enteropathy may also arise in other pathological contexts, expanding the clinical impact of complement dysregulation. As research progresses, novel diagnostic and therapeutic strategies are expected to emerge for a broader spectrum of complement-mediated lymphatic disorders.
Collapse
Affiliation(s)
- Ahmet Ozen
- Division of Allergy and Immunology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey.
| | - Salim Can
- Division of Allergy and Immunology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
| | - Asena Pinar Sefer
- Division of Allergy and Immunology, Department of Pediatrics, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey
| | - Necmiye Keser Ozturk
- Division of Allergy and Immunology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
| | - Burkay Cagan Colak
- Division of Allergy and Immunology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
| |
Collapse
|
7
|
Xu J, Ge Z, Wang H, Zhang C, Xu J, Li Y, Yang X, Zhang L, Li Z, Liu Z, Wang G, Du J. Long-term GABA supplementation mitigates anxiety by modulating complement and neuroinflammatory pathways. NPJ Sci Food 2025; 9:60. [PMID: 40274802 PMCID: PMC12022253 DOI: 10.1038/s41538-025-00423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Anxiety disorders are among the most prevalent mental health conditions, often linked with neuroinflammation and imbalances in neurotransmitter systems. This study examined the anxiolytic effects of oral GABA in chronic restraint stress (CRS) mice. Mice were divided into control, CRS, and two GABA-treated groups (10 mg/kg, 20 mg/kg). After 14 days of administration, anxiety-like behaviors were assessed using elevated-plus maze and open-field tests. GABA levels in the prefrontal cortex were quantified via ELISA, while anti-inflammatory cytokines were measured using an antibody array. Proteomic analysis of the hippocampus identified differentially expressed proteins, validated through Parallel Reaction Monitoring and immunoblotting. Results showed that GABA significantly alleviated anxiety-like behaviors, increased GABA levels in the prefrontal cortex, and elevated anti-inflammatory factors IL-10 and TGF-β1. Proteomic analysis and validation revealed GABA reversed complement dysregulation (C3, C4b, Cfh, Cfi). These findings suggest GABA alleviates anxiety by modulating immune homeostasis and complement activation, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Jiyi Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Ziyu Ge
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Han Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Chenhui Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Jinjie Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Ying Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Xiangyun Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Zhanjiang Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Zhe Liu
- Bloomage Biotechnology Co., Ltd. BITC Build D, No. 6, Jianguomenwai Street, Chaoyang District, Beijing, 100022, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China.
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China.
| |
Collapse
|
8
|
Zechini L, Todd H, Sanchez T, Tudor DR, Campbell JS, Antonian E, Jenkins SJ, Lucas CD, Davidson AJ, van den Elsen J, Schumacher LJ, Scopelliti A, Wood W. Drosophila complement-like Mcr acts as a wound-induced inflammatory chemoattractant. Curr Biol 2025; 35:1656-1664.e4. [PMID: 40107264 DOI: 10.1016/j.cub.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Sterile tissue injury is accompanied by an acute inflammatory response whereby innate immune cells rapidly migrate to the site of injury guided by pro-inflammatory chemotactic damage signals released at the wound. Understanding this immune response is key to improving human health, and recent advances in imaging technology have allowed researchers using different model organisms to observe this inflammatory response in vivo. Over recent decades, offering a unique combination of live time-lapse microscopy and genetics, the fruit fly Drosophila has emerged as a powerful model system to study inflammatory cell migration within a living animal.1,2,3,4 However, we still know relatively little regarding the identity of the earliest signals that drive this immune cell recruitment and the mechanisms by which they act within the complex, in vivo setting of a multicellular organism. Here, we couple the powerful genetics and live imaging of Drosophila with mathematical modeling to identify the fly complement ortholog-macroglobulin complement-related (Mcr)-as an early, wound-induced chemotactic signal responsible for the inflammatory recruitment of immune cells to injury sites in vivo. We show that epithelial-specific knockdown of Mcr suppresses the recruitment of macrophages to wounds and combine predictive mathematical modeling with in vivo genetics to understand macrophage migration dynamics following manipulation of this chemoattractant. We propose a model whereby Mcr operates alongside hydrogen peroxide to ensure a rapid and efficient immune response to damage, uncovering a novel function for this protein that parallels the chemotactic role of the complement component C5a in mammals.
Collapse
Affiliation(s)
- Luigi Zechini
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Henry Todd
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Thibaut Sanchez
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daniel R Tudor
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennie S Campbell
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Edward Antonian
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Stephen J Jenkins
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Christopher D Lucas
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jean van den Elsen
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Linus J Schumacher
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK; School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - Alessandro Scopelliti
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Will Wood
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
9
|
Tang ZM, Yuan P, Gao N, Lei JG, Ahmed M, Hua YX, Yang ZR, Li QY, Li HY. C-reactive protein attenuates CCl 4-induced acute liver injury by regulating complement system activation. Mol Immunol 2025; 180:44-54. [PMID: 40010008 DOI: 10.1016/j.molimm.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
Acute liver injury is liver dysfunction caused by multiple factors without any pre-existing liver disease. C-reactive protein (CRP) is an acute-phase protein produced by hepatocytes, serving as a marker of inflammation and tissue damage. However, its role in CCl4-induced acute liver injury has not been elucidated. Here, we report that CRP protects against CCl4-induced acute liver injury by regulating complement activation. CRP knockout exacerbates CCl4-induced acute liver injury in mice and rats, markedly enhances tissue damage, and reduces survival. Administration of exogenous CRP to CRP-knockout mice rescues the CCl4-induced liver injury phenotype. The protective effect of CRP is independent of its cellular receptor FcγR2b and early metabolic pathways. Instead, CRP suppresses the late-phase amplification of inflammation by inhibiting terminal complement pathway overactivation in injured hepatocytes via factor H recruitment. In complement C3 knockout (C3-/-) mice, the protective effect of CRP against CCl4-induced acute liver injury is lost. These results suggest that CRP can alleviate CCl4-induced acute liver injury by regulating the complement pathway, providing a theoretical basis for CRP's potential involvement and regulation of disease severity.
Collapse
Affiliation(s)
- Zhao-Ming Tang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ning Gao
- Department of Infectious Disease, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia-Geng Lei
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mustafa Ahmed
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu-Xin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ze-Rui Yang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiu-Yu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Hai-Yun Li
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China..
| |
Collapse
|
10
|
Qu C, Koskinen Holm C. Impact of a Heterozygous C1R R301P/WT Mutation on Collagen Metabolism and Inflammatory Response in Human Gingival Fibroblasts. Cells 2025; 14:479. [PMID: 40214433 PMCID: PMC11987961 DOI: 10.3390/cells14070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Periodontal Ehlers-Danlos syndrome arising from heterozygous pathogenic mutation in C1R and/or C1S genes is an autosomal-dominant disorder characterized by early-onset periodontitis. Due to the difficulties in obtaining and culturing the patient-derived gingival fibroblasts, we established a model system by introducing a heterozygous C1RR301P/WT mutation into human TERT-immortalized gingival fibroblasts (hGFBs) to investigate its specific effects on collagen metabolism and inflammatory responses. A heterozygous C1RR301P/WT mutation was introduced into hGFBs using engineered prime editing. The functional consequences of this mutation were assessed at cellular, molecular, and enzymatic levels using a variety of techniques, including cell growth analysis, collagen deposition quantification, immunocytochemistry, enzyme-linked immunosorbent assay, and quantitative real-time reverse transcription polymerase chain reaction. The C1RR301P/WT-mutated hGFBs (mhGFBs) exhibited normal morphology and growth rate compared to wild-type hGFBs. However, mhGFBs displayed upregulated procollagen α1(V), MMP-1, and IL-6 mRNA expression while simultaneously downregulating collagen deposition and C1r protein levels. A modest accumulation of unfolded collagens was observed in mhGFBs. The mhGFBs exhibited a heightened inflammatory response, with a more pronounced increase in MMP-1 and IL-6 mRNA expression compared to TNF-α/IL-1β-stimulated hGFBs. Unlike cytokine-stimulated hGFBs, cytokine-stimulated mhGFB did not increase C1R, C1S, procollagen α1(III), and procollagen α1(V) mRNA expression. Our results suggest that the C1RR301P/WT mutation specifically disrupts collagen metabolism and inflammatory pathways in hGFBs, highlighting the mutation's role in these processes. While other cellular functions appear largely unaffected, these findings underscore the potential of targeting collagen metabolism and inflammation for therapeutic interventions in pEDS.
Collapse
Affiliation(s)
- Chengjuan Qu
- Department of Odontology, Umeå University, 90185 Umeå, Sweden;
| | | |
Collapse
|
11
|
Tschongov T, Konwar S, Kleindienst J, Dabrowska-Schlepp P, Busch A, Schaaf A, Schell C, Rogg M, Häffner K. Effective long-term treatment with moss-produced factor H by overcoming the antibody response in a mouse model of C3G. Front Immunol 2025; 16:1535547. [PMID: 40124383 PMCID: PMC11925764 DOI: 10.3389/fimmu.2025.1535547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Complement-associated disorders are caused by the dysregulation and disbalance of the complement system, especially excessive activation. Most drugs that target the complement system are designed to inhibit the complement pathway at either the proximal or terminal levels. The use of a natural complement regulator such as factor H (FH) could provide a superior treatment option by restoring balance to an overactive complement system. We recently reported the moss-based production of an analog of human FH with an optimized glycan profile (CPV-104), which showed in vitro and in vivo characteristics comparable to its human counterpart. Here, we follow up our previous work, focusing in more detail on the time course and long-term efficacy of CPV-104 treatment in FH-deficient (FH -/-) mice. The analysis of long-term treatment effects following multiple injections of human FH into mice was previously hindered by the immune response, so we developed a protocol for the sustained depletion of CD20+ B-cells and CD4+ T-cells, preventing antibody formation without influencing the C3G phenotype. Using this dual-depletion method, we were able to complete dosing interval experiments in FH -/- mice, administering up to three injections of CPV-104 at different intervals. Repeated CPV-104 administration was able to lastingly resolve C3 deposits, offering additional rationale for the clinical testing of CPV-104 in human C3G patients. Moreover, our novel dual-depletion method has the potential for adaptation to different mouse models, allowing the testing of multiple doses of other therapeutic proteins.
Collapse
Affiliation(s)
- Todor Tschongov
- Department of Internal Medicine IV, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Swagata Konwar
- Department of Internal Medicine IV, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Biology, Albert-Ludwig University Freiburg, Freiburg, Germany
| | - Jessika Kleindienst
- Department of Internal Medicine IV, Medical Faculty, University of Freiburg, Freiburg, Germany
| | | | - Andreas Busch
- Nonclinical Development, Eleva GmbH, Freiburg, Germany
| | | | - Christoph Schell
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karsten Häffner
- Department of Internal Medicine IV, Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Abe T, Saito K, Nagano T, Yamada Y, Ochiai H. Complement system activation through the alternative pathway associates with disseminated intravascular coagulation to increase mortality in sepsis. Thromb Res 2025; 247:109281. [PMID: 39952229 DOI: 10.1016/j.thromres.2025.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/04/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Sepsis-induced disseminated intravascular coagulation (DIC) increases mortality in sepsis patients. Complement system activation is concomitant with sepsis-induced DIC; however, it is unclear how these two pathologies influence clinical parameters of sepsis individually and in combination, and which of the complement pathways activation is predominantly associated with mortality. METHODS In this ancillary analysis of a prospective observational study, 49 adult sepsis patients were assigned to four groups according to the absence/presence of DIC and complement activation. Effects of complement activation and DIC on clinical demographics including parameters of DIC, systemic severities, and 60-days all-cause mortality were assessed by comparing the groups. We analyzed each complement pathway by comparing Bb, C3a/C3 ratio, SC5b-9/C3 ratio, C4d, C4d/C4 ratio, C3a, C5a, and SC5b-9 between survivors/non-survivors both in all the patients and in the DIC+ subgroup. RESULTS Complement system activation induced thrombocytopenia and enhanced sepsis severity measured as APACHE2 and SOFA scores. 60-days all-cause mortality was different between groups, with 0 % in the complement activation alone group, 14 % in the DIC alone group and 66 % in the combined DIC and complement activation group. Bb and C3a/C3 and SC5b-9/C3 ratios were higher in non-survivors, with Bb and SC5b-9/C3 ratio still higher in DIC+ non-survivors. CONCLUSION Complement activation worsen the severity of sepsis and cause thrombocytopenia. Co-occurrence of complement activation and DIC increased sepsis mortality. The alternative pathway of complement activation plays a major role in sepsis mortality.
Collapse
Affiliation(s)
- Tomohiro Abe
- Department of Emergency and Critical Care Medicine, University of Miyazaki Hospital, Miyazaki, Japan; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Katsutoshi Saito
- Department of Emergency and Critical Care Medicine, University of Miyazaki Hospital, Miyazaki, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takehiko Nagano
- Department of Emergency and Critical Care Medicine, University of Miyazaki Hospital, Miyazaki, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Yamada
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan; Yamada Clinic, Akune, Kagoshima, Japan
| | - Hidenobu Ochiai
- Department of Emergency and Critical Care Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| |
Collapse
|
13
|
Xu Y, Zhou J, Wu Y, Shen J, Fu X, Liu M, Liang S. New insights into the role of complement system in colorectal cancer (Review). Mol Med Rep 2025; 31:68. [PMID: 39791217 PMCID: PMC11751662 DOI: 10.3892/mmr.2025.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. With the growing understanding of immune regulation in tumors, the complement system has been recognized as a key regulator of tumor immunity. Traditionally, the complement cascade, considered an evolutionarily conserved defense mechanism against invading pathogens, has been viewed as a crucial inhibitor of tumor progression. Complement components or activation products produced via cascade‑dependent or ‑independent processes are associated with the regulation of tumor‑associated inflammation. Various forms of complement activation products present in body fluids or inside cells, along with complement regulatory proteins and complement receptors, are involved in tumor cell growth and modulating the tumor microenvironment. In the present review, the role of the complement system in the tumor immunity of CRC is discussed. In addition, the contribution of the unconventional cascade‑independent pathway of complement activation in CRC progression is highlighted. A deeper understanding of the mechanism underlying the complement system in colitis‑associated colorectal cancer (CAC) may provide novel insights to assist the development of methods to prevent tumor progression and identify potential targets for the treatment of CAC.
Collapse
Affiliation(s)
- Yuwen Xu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiaqi Zhou
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuanyuan Wu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jie Shen
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaoyan Fu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Meifang Liu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Shujuan Liang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
14
|
Chen Z, Wang M, Duan W, Xia Y, Liu H, Qian F. Modulating the complement system through epitope-specific inhibition by complement C3 inhibitors. J Biol Chem 2025; 301:108250. [PMID: 39894217 PMCID: PMC11910092 DOI: 10.1016/j.jbc.2025.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/01/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
As an integral part of the innate immune system, the complement system is a tightly regulated proteolytic cascade, playing a critical role in microbial defense, inflammation activation, and dying host cell clearance. Complement proteins are now emerging as subjects of intense research and drug development, since dysregulation of the complement system plays a critical role in several diseases and disorders, such as paroxysmal nocturnal hemoglobinuria (PNH) and geographic atrophy (GA). Within the complement cascade, complement C3 is the central component, situated at the convergence of all complement activation pathways, rendering it an attractive target for complement-related diseases. However, due to the complicated structure-activity relationship (SAR) of C3, elucidating the mechanisms of C3 inhibition on diverse epitopes is the basis for the rational design of C3-targeted therapeutics. Here, we have developed a set of comprehensive biochemical assays that are tailored to the specific steps within the complement cascade, allowing for a thorough understanding of the pharmacological consequences of different C3 inhibitors at each stage. Utilizing three model inhibitors (MIs) with different epitopes, we found that inhibition of MG4/MG5 domains has potent inhibition efficacy across all the complement activation pathways by interrupting C3-C3 convertase interaction, while inhibition of C345C domain displays a bias over the Alternative pathway (AP) inhibition by impairing AP C3 proconvertase formation. This study elucidates the intricate impact of C3 inhibition by targeting different epitopes, offering valuable insights into understanding the mechanism and facilitating the rational design of C3-targeted therapeutics.
Collapse
Affiliation(s)
- Zhidong Chen
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, PR China
| | - Mingshuang Wang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, PR China; Quaerite Biopharm Research Co., Ltd., Beijing, PR China
| | - Wenqian Duan
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, PR China
| | - Yi Xia
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, PR China
| | - Huiqin Liu
- Quaerite Biopharm Research Co., Ltd., Beijing, PR China.
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, PR China.
| |
Collapse
|
15
|
Ruthsatz T, Wymann S, Velkoska E, Mansour M, Schu D, Lichtfuss M, Rossato P, FitzPatrick M, Hosback S, Dyson A, Herzog E, Martin K, Dietrich B, Hardy MP. Preclinical safety and efficacy of the recombinant CR1 drug product CSL040 in rats and cynomolgus monkeys. Toxicol Appl Pharmacol 2025; 495:117191. [PMID: 39647511 DOI: 10.1016/j.taap.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
CSL040 is a soluble, recombinant fragment of the complement receptor 1 (CR1) extracellular domain that acts as an inhibitor of all three pathways of the complement system. Systemic toxicity, toxicokinetics (TK), and pharmacodynamics (PD) of CSL040 were assessed in two-week intravenous (IV) bolus studies in Han Wistar rats and cynomolgus monkeys. Recovery from any effects was evaluated during a four-week recovery period. Daily repeat-dose administration for 2 weeks at doses of up to 500 mg/kg CSL040 IV was well tolerated in rats and cynomolgus monkeys, leading to a no observed adverse effect level (NOAEL) of 500 mg/kg for both species. Safety pharmacology parameters such as electrophysiology of the heart, blood pressure, heart rate, and respiratory rate measurements, and general toxicological readouts were considered unaffected by CSL040 treatment. Anti-drug antibodies (ADAs) were observed in all cynomolgus monkeys and in some rats at the highest dose of CSL040, but with no effect on pharmacokinetics (PK), supportive of adequate exposure levels as required for a safety assessment. All three complement pathways were inhibited dose-dependently by CSL040. Additionally, no effect on cytokine levels by CSL040 was detected in vitro using a cytokine release assay. These non-clinical studies with CSL040 demonstrated PD activity consistent with its mode of action, adequate PK properties, and a safety profile supporting a phase 1 clinical strategy. A small follow-up study comparing the PK/PD effects of CSL040 following IV and subcutaneous (SC) administration also suggested that the latter route of administration might be a viable alternative to IV administration.
Collapse
Affiliation(s)
| | - Sandra Wymann
- CSL Biologics Research Centre, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | | | | | - Daniel Schu
- CSL Behring Innovation GmbH, Marburg, Germany
| | | | | | | | | | | | - Eva Herzog
- CSL Behring LLC, 1020 First Avenue, King of Prussia, PA, USA
| | | | | | | |
Collapse
|
16
|
Zhao H, Lv Y, Xu J, Song X, Wang Q, Zhai X, Ma X, Qiu J, Cui L, Sun Y. The activation of microglia by the complement system in neurodegenerative diseases. Ageing Res Rev 2025; 104:102636. [PMID: 39647582 DOI: 10.1016/j.arr.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Neurodegenerative diseases (NDDs) are a group of neurological disorders characterized by the progressive loss of neuronal structure and function, leading to cognitive and behavioral impairments. Despite significant research advancements, there is currently no definitive cure for NDDs. With global aging on the rise, the burden of these diseases is becoming increasingly severe, highlighting the urgency of understanding their pathogenesis and developing effective therapeutic strategies. Microglia, specialized macrophages in the central nervous system, play a dual role in maintaining neural homeostasis. They are involved in clearing cellular debris and apoptotic cells, but in their activated state, they release inflammatory factors that contribute significantly to neuroinflammation. The complement system (CS), a critical component of the innate immune system, assists in clearing damaged cells and proteins. However, excessive or uncontrolled activation of the CS can lead to chronic neuroinflammation, exacerbating neuronal damage. This review aims to explore the roles of microglia and the CS in the progression of NDDs, with a specific focus on the mechanisms through which the CS activates microglia by modulating mitochondrial function. Understanding these interactions may provide insights into potential therapeutic targets for mitigating neuroinflammation and slowing neurodegeneration.
Collapse
Affiliation(s)
- He Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Yayun Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jiasen Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Qi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaoyu Zhai
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Xiaohui Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong 264000, China.
| |
Collapse
|
17
|
Ghosh M, Gupta PK, Jena S, Rana S. The interaction of methotrexate with the human C5a and its potential therapeutic implications. Comput Biol Chem 2025; 114:108283. [PMID: 39579472 DOI: 10.1016/j.compbiolchem.2024.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Methotrexate (MTX) is an antimetabolite drug that mimics folate and inhibits dihydrofolic acid reductase, resulting in the impairment of malignant growth in actively proliferating tissues. MTX is approved by the FDA for primarily treating non-Hodgkin lymphoma, lymphoblastic leukemia, and osteosarcoma. In addition, MTX is also prescribed as a preferred anti-rheumatic medication for the management of rheumatoid arthritis, including psoriasis, indicating that MTX has a multipronged mechanism of action. MTX is also known to exert anti-inflammatory effects, and interestingly, the role of C5a, a pro-inflammatory glycoprotein of the complement system, is well established in several chronic inflammatory diseases, including rheumatoid arthritis and psoriasis, through the recruitment of C5a receptors (C5aR1/C5aR2) expressed in both immune and non-immune cells. Notably, through drug repurposing studies, we have earlier shown that non-steroidal anti-inflammatory drugs (NSAIDS) can potentially neutralize the function of C5a. Though MTX binds to serum albumin and can affect the immune system, whether its interaction with C5a could be therapeutically beneficial due to the downregulation of both extracellular and intracellular signaling of C5a is not yet established in the literature. In the current study, we have hypothesized and provided preliminary evidence through computational studies that MTX can strongly bind to the hotspot regions on C5a involved in the interactions with its receptors, which is likely to alter the downstream signaling of C5a and contribute to the overall therapeutic efficacy of MTX.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Shobhan Jena
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
18
|
Guo T, Zhao Y, Liang S, Wang J, Liu H, Zhou Y, Xu H, Chen Z. Dynamic Complement Protein Changes in Aqueous Humor and Plasma of Patients With Retinal Vein Occlusion During Ranibizumab Treatment. J Inflamm Res 2025; 18:1435-1445. [PMID: 39906134 PMCID: PMC11790804 DOI: 10.2147/jir.s502481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Purpose To assess dynamic changes of complement protein in aqueous humor (AH) and plasma of retinal vein occlusion (RVO) patients during ranibizumab treatment, and to explore the differential expression of complement proteins in branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO). Patients and Methods This prospective, consecutive case series study collected AH and plasma samples from 27 RVO patients at baseline, 1 and 2 months after ranibizumab treatment, including 19 BRVO and 8 CRVO patients. The concentrations of 13 complement proteins and vascular endothelial growth factor A (VEGF-A) were measured using Luminex® × MAP® technology. Results During ranibizumab treatment, a reduction in the levels of C1q (p < 0.001), C2 (p = 0.030), C4 (p = 0.001), C4b (p = 0.026), C3b/iC3b (p < 0.001), C5 (p = 0.007), C5a (p = 0.005), CFD (p = 0.022), CFH (p < 0.001), and CFI (p < 0.001) in AH was observed. No significant changes were observed in the plasma levels of all measured factors. At baseline, CRVO had higher levels of C4 (p = 0.003), C4b (p < 0.001), C3b/iC3b (p < 0.001), C5 (p = 0.020), C5a (p = 0.007), CFD (p = 0.002), CFH (p < 0.001), and CFI (p < 0.001) in AH compared to BRVO. Conclusion Ranibizumab treatment reduced the intraocular but not circulating activation of classical and alternative complement pathways in RVO patients. Differences in intraocular complement proteins were observed between BRVO and CRVO patients, which may reflect different pathogenesis.
Collapse
Affiliation(s)
- Tingting Guo
- Aier Eye Hospital, Jinan University, Guangzhou, People’s Republic of China
- Changsha Aier Eye Hospital, Changsha, People’s Republic of China
| | - Yanying Zhao
- Changsha Aier Eye Hospital, Changsha, People’s Republic of China
- Aier Academy of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Shengnan Liang
- Changsha Aier Eye Hospital, Changsha, People’s Republic of China
- Aier Academy of Ophthalmology, Central South University, Changsha, People’s Republic of China
| | - Jie Wang
- Changsha Aier Eye Hospital, Changsha, People’s Republic of China
| | - Hengwei Liu
- Changsha Aier Eye Hospital, Changsha, People’s Republic of China
| | - Yufan Zhou
- Changsha Aier Eye Hospital, Changsha, People’s Republic of China
| | - Heping Xu
- Aier Academy of Ophthalmology, Central South University, Changsha, People’s Republic of China
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, People’s Republic of China
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Zhongping Chen
- Aier Eye Hospital, Jinan University, Guangzhou, People’s Republic of China
- Changsha Aier Eye Hospital, Changsha, People’s Republic of China
- Aier Academy of Ophthalmology, Central South University, Changsha, People’s Republic of China
- School of Stomatology and Ophthalmology, Xianning Medical College, Xianning, People’s Republic of China
| |
Collapse
|
19
|
Sun K, Yao C, Xu G, Wang J, Shou S, Jin H. Research progress on the pathogenesis of AKI complicated by ECMO. Clin Exp Nephrol 2025; 29:10-20. [PMID: 39340702 PMCID: PMC11807062 DOI: 10.1007/s10157-024-02559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) stands as a pivotal intervention for patients grappling with cardiopulmonary insufficiency. However, alongside its therapeutic benefits, ECMO carries the risk of complications, with acute kidney injury (AKI) emerging as a significant concern. The precise pathophysiological underpinnings of AKI in the context of ECMO remain incompletely elucidated. METHODS A comprehensive literature review was conducted to explore the epidemiology and pathophysiological mechanisms underlying the utilization of ECMO in the management of AKI. RESULTS ECMO initiates a multifaceted cascade of inflammatory reactions, encompassing complement activation, endothelial dysfunction, white blood cell activation, and cytokine release. Furthermore, factors such as renal hypoperfusion, ischemia-reperfusion injury, hemolysis, and fluid overload exacerbate AKI. Specifically, veno-arterial ECMO (VA-ECMO) may directly induce renal hypoperfusion, whereas veno-venous ECMO (VV-ECMO) predominantly impacts pulmonary function, indirectly influencing renal function. CONCLUSION While ECMO offers significant therapeutic advantages, AKI persists as a potentially fatal complication. A thorough comprehension of the pathogenesis underlying ECMO-associated AKI is imperative for effective prevention and management strategies. Moreover, additional research is warranted to delineate the incidence of AKI secondary to ECMO and to refine clinical approaches accordingly.
Collapse
Affiliation(s)
- Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Guowu Xu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinxiang Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
20
|
Sager REH, North HF, Weissleder C, Clearwater MS, Walker AK, Fullerton JM, Webster MJ, Shannon Weickert C. Divergent changes in complement pathway gene expression in schizophrenia and bipolar disorder: Links to inflammation and neurogenesis in the subependymal zone. Schizophr Res 2025; 275:25-34. [PMID: 39616737 DOI: 10.1016/j.schres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 01/23/2025]
Abstract
Deficits in neurogenesis markers in the subependymal zone (SEZ) are associated with elevated inflammation in schizophrenia and bipolar disorder. However, the extent to which complement factors are also changed in the SEZ of these major psychiatric disorders and their impact on neurogenesis remains poorly understood. We extracted RNA from the SEZ of 93 brains, including controls (n = 32), schizophrenia (n = 32), and bipolar disorder (n = 29) cases. Quantitative RT-PCR measured 13 complement transcripts encoding initiators, convertases, effectors or inhibitors. Differences in abundance were analysed by diagnosis and inflammatory subgroups (high- or low-inflammation), which were previously defined by SEZ cytokine and inflammation marker expression. Complement mRNAs C1QA (p = 0.011), C1QB (p < 0.001), C1R (p = 0.027), and Factor B (p = 0.025) were increased in high-inflammation schizophrenia versus low-inflammation controls. Conversely, high-inflammation bipolar cases had decreased C1QC (p = 0.011) and C3 (p = 0.003). Complement mRNAs C1R (SCZ, p = 0.010; BD, p = 0.047), C1S (SCZ, p = 0.026; BD, p = 0.017), and Factor B (BD, p = 0.025) were decreased in low-inflammation schizophrenia and bipolar subgroups versus low-inflammation controls. Complement inhibitors varied by subgroup: Factor H was increased in high-inflammation schizophrenia (p < 0.001), and CD59 in high-inflammation bipolar disorder (p = 0.020). Complement activator and inhibitor mRNAs were positively correlated with quiescent neural stem cell marker GFAPD (q < 0.05) but negatively with immature neuron markers DLX6-AS1 (q < 0.05) and DCX (q < 0.05). These findings suggest altered complement cascade expression in the SEZ in high- and low-inflammation schizophrenia and bipolar disorder, with opposite directional changes suggesting distinct molecular pathology. Complement activation may promote stem cell quiescence and reduce differentiation or survival of newborn neurons.
Collapse
Affiliation(s)
- Rachel E H Sager
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Hayley F North
- Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Mechanism and therapy for genetic brain diseases, Institut Imagine, Paris, France
| | - Misaki S Clearwater
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Adam K Walker
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Li Y, Ye Q, Li J, Zhang L, Yu C, Xue S, Li S, Duan X, Peng D. Exploring the mechanism of Taohong Siwu Decoction in treating ischemic stroke injury via the circDnajc1/miR-27a-5p/C1qc signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156305. [PMID: 39626448 DOI: 10.1016/j.phymed.2024.156305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Ischemic stroke (IS) is the most prevalent type of cerebrovascular disease. Taohong Siwu Decoction (THSWD) has been demonstrated to have neuroprotective benefits during Cerebral Ischemia-Reperfusion Injury (CIRI). Whether THSWD mitigates CIRI by modulating the circDnajc1/miR-27a-5p/C1qc signaling axis is not known. OBJECTIVE Examine how THSWD provides neuroprotective benefits in reducing the damage wrought by IS. METHODS We employed middle cerebral artery occlusion/reperfusion (MCAO/R) rat model and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro model. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot (WB), and immunofluorescence analyses (IF) were utilized to detect microglial activation markers TMEM119, CD11b, and Iba1, inflammatory mediators CCL2, CCL6, IL1, IL6, IL10, and TNF-α, as well as circDnajc1, miR-27a-5p, C1qc, C3, and C5aR. CONCLUSION Our data suggest that THSWD can mitigate inflammatory response, inhibit microglial activation and neuron apoptosis, and exert neuroprotective effects by regulating the circDnajc1/miR-27a-5p/C1qc signaling axis.
Collapse
Affiliation(s)
- Yumeng Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qingping Ye
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jingjing Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lijuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Chao Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sujun Xue
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuangping Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Xin 'an Medical Research Institute, Hefei, 230038, China; Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Xin 'an Medical Research Institute, Hefei, 230038, China; Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Modern Chinese Medicine Industry Common Technology Research Center, Hefei, 230012, China.
| |
Collapse
|
22
|
Cao Y, Liang J, Dai B, Shan F, Xia Q. Peripheral blood complement factors C2 and C3 as biomarkers of clinical efficacy in patients with first-episode schizophrenia after aripiprazole treatment. BMC Psychiatry 2024; 24:961. [PMID: 39741241 DOI: 10.1186/s12888-024-06437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE The objective of this study was to identify serum complement factor-based biomarkers indicative of clinical efficacy in patients with first-episode schizophrenia (SCZ) following treatment with aripiprazole. METHODS The retrospective study cohort comprised 40 patients diagnosed with first-episode SCZ (SCZ group) and 40 healthy individuals (control group). Quantitative analyses were conducted on five complement factors, namely complement component 1 (C1), C2, C3, C4, and the 50% hemolytic complement (CH50). Baseline serum complement factor levels were compared between the SCZ and control groups. Patients diagnosed with SCZ underwent a 4-week treatment regimen with aripiprazole. The severity of psychiatric symptoms in these patients was assessed using the Positive and Negative Symptom Scale (PANSS) and the Brief Psychiatric Rating Scale-18 Item Version (BPRS). Comparative analyses were conducted on PANSS and BPRS scores, as well as serum complement factor levels, both prior to (pre-treatment group) and following aripiprazole administration (post-treatment group). Pearson's correlation test was employed to evaluate the relationships between changes in serum complement factor levels and the reduction rates of PANSS/BPRS scores. RESULTS At baseline, patients with SCZ exhibited significantly elevated levels of C1, C2, C3, C4, and CH50 compared to the control group (P < 0.05). Moreover, following treatment, there was a significant reduction in the PANSS total score, positive symptom score, negative symptom score, and BPRS score in the post-treatment group compared to the pre-treatment group (P < 0.05). Furthermore, patients in the post-treatment group exhibited a significant reduction in serum levels of C2, C3, and C4, alongside a significant increase in the serum level of CH50 compared to those in the pre-treatment group (P < 0.05). Additionally, the baseline serum C2 levels and the variations in serum C2 levels pre- and post-treatment exhibited a negative correlation with the reduction rate of PANSS/BPRS scores (P < 0.05). Similarly, both the baseline serum C3 levels and the changes in serum C3 levels pre- and post-treatment were negatively correlated with the reduction rate of PANSS/BPRS scores (P < 0.05). CONCLUSION Baseline serum levels of C2 and C3, as well as their variations pre- and post-treatment, may serve as biomarkers for predicting clinical efficacy in patients with first-episode SCZ undergoing treatment with aripiprazole.
Collapse
Affiliation(s)
- Yin Cao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230000, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230000, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Biao Dai
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230000, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230000, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
- Department of Pharmacy, Hefei Fourth People's Hospital, 316 Huangshan Road, Hefei, 230000, China.
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
- Anhui Clinical Research Center for Mental Disorders, Hefei, China.
| |
Collapse
|
23
|
Kombe Kombe AJ, Fotoohabadi L, Gerasimova Y, Nanduri R, Lama Tamang P, Kandala M, Kelesidis T. The Role of Inflammation in the Pathogenesis of Viral Respiratory Infections. Microorganisms 2024; 12:2526. [PMID: 39770727 PMCID: PMC11678694 DOI: 10.3390/microorganisms12122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Viral respiratory infections (VRIs) are a leading cause of morbidity and mortality worldwide, making them a significant public health concern. During infection, respiratory viruses, including Influenza virus, SARS-CoV-2, and respiratory syncytial virus (RSV), trigger an antiviral immune response, specifically boosting the inflammatory response that plays a critical role in their pathogenesis. The inflammatory response induced by respiratory viruses can be a double-edged sword since it can be initially induced to be antiviral and protective/reparative from virus-induced injuries. Still, it can also be detrimental to host cells and tissues. However, the mechanisms that differentiate the complex crosstalk between favorable host inflammatory responses and harmful inflammatory responses are poorly understood. This review explores the complex interplay between viral pathogens and the host immune response, mainly focusing on the role of inflammation in the pathogenesis of VRIs. We discuss how inflammation can both contain and exacerbate the progression of viral infections, highlighting potential therapeutic targets and emerging drugs for modulating the aberrant inflammatory responses during VRIs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine and Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
24
|
Ricklin D. Complement-targeted therapeutics: Are we there yet, or just getting started? Eur J Immunol 2024; 54:e2350816. [PMID: 39263829 PMCID: PMC11628912 DOI: 10.1002/eji.202350816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Therapeutic interventions in the complement system, a key immune-inflammatory mediator and contributor to a broad range of clinical conditions, have long been considered important yet challenging or even unfeasible to achieve. Almost 20 years ago, a spark was lit demonstrating the clinical and commercial viability of complement-targeted therapies. Since then, the field has experienced an impressive expansion of targeted indications and available treatment modalities. Currently, a dozen distinct complement-specific therapeutics covering several intervention points are available in the clinic, benefiting patients suffering from eight disorders, not counting numerous clinical trials and off-label uses. Observing this rapid rise of complement-targeted therapy from obscurity to mainstream with amazement, one might ask whether the peak of this development has now been reached or whether the field will continue marching on to new heights. This review looks at the milestones of complement drug discovery and development achieved so far, surveys the currently approved drug entities and indications, and ventures a glimpse into the future advancements yet to come.
Collapse
Affiliation(s)
- Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
25
|
Guo Z, Zhang Y, Peng Z, Rao H, Yang J, Chen Z, Song W, Wan Q, Chen H, Wang M. Complement factor B, not the membrane attack complex component C9, promotes neointima formation after arterial wire injury. Atherosclerosis 2024; 399:118586. [PMID: 39500113 DOI: 10.1016/j.atherosclerosis.2024.118586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Vascular restenosis due to neointima hyperplasia limits the long-term patency of stented arteries, resulting in angioplasty failure. The complement system has been implicated in restenosis. This study aimed to investigate the role of complement factor B (fB), an essential component of the alternative pathway of complement activation, in neointima formation. METHODS Angioplasty wire injury was conducted using 12-week-old mice deficient in fB or C9 (the main component of the membrane attacking complex, C5b-9) and littermate controls and neointima formation were assessed. Vascular smooth muscle cell (SMC) and endothelial cell (EC) proliferation and migration were examined in vitro. RESULTS fB was mainly detected in SMCs of stenotic arteries from humans and mice. Deletion of fB substantially reduced the neointima area and intima-to-media area ratio without affecting the media area at 28 days after injury. At 7 days after injury, fB deficiency decreased SMC proliferation, unaltering neointimal macrophage infiltration and EC reendothelialization. Vascular SMC-expressed fB, not the circulation-sourced fB, played an essential role in SMC proliferation and migration in vitro. fB deficient mice exhibited lower levels of the soluble form of C5b-9, however, deletion of C9 did not alter neointima formation after wire injury, consistent with the null impact of C9 deficiency on SMC proliferation in vitro. CONCLUSIONS fB promotes neointima formation following wire-induced artery injury independent of forming the membrane-attacking complex. This is attributable to fB-dependent SMC proliferation and migration without affecting EC function. Targeting fB might protect against restenosis after percutaneous coronary intervention.
Collapse
MESH Headings
- Animals
- Neointima
- Cell Proliferation
- Cell Movement
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/injuries
- Mice, Inbred C57BL
- Disease Models, Animal
- Mice
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Male
- Complement Membrane Attack Complex/metabolism
- Cells, Cultured
- Vascular System Injuries/pathology
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
Collapse
Affiliation(s)
- Ziyi Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yuze Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jianfeng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zengrong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenchao Song
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, China.
| |
Collapse
|
26
|
Baylis A, Zhou W, Menkhorst E, Dimitriadis E. Prediction and prevention of late-onset pre-eclampsia: a systematic review. Front Med (Lausanne) 2024; 11:1459289. [PMID: 39640984 PMCID: PMC11617856 DOI: 10.3389/fmed.2024.1459289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pre-eclampsia is a major cause of perinatal morbidity and mortality worldwide. Late-onset pre-eclampsia (LOP), which results in delivery ≥34 weeks gestation, is the most common type. However, there is a lack of knowledge in its prediction and prevention. Improving our understanding in this area will allow us to have better surveillance of high-risk patients and thus improve clinical outcomes. Methods A systematic review was performed using a search of articles on PubMed. The search terms were ((late-onset) AND (pre-eclampsia)) AND ((risk factor) OR (risk) OR (prediction) OR (management) OR (prevention)). Primary literature published between 1 January 2013 and 31 December 2023 was included. Human studies assessing the prediction or prevention of late-onset pre-eclampsia were eligible for inclusion. Results Sixteen articles were included in the final review. The key risk factors identified were Body Mass Index (BMI), chronic hypertension, elevated mean arterial pressures (MAPs), nulliparity, and maternal age. No clinically useful predictive model for LOP was found. Initiating low dose aspirin before 17 weeks gestation in high-risk patients may help reduce the risk of LOP. Conclusion While aspirin is a promising preventor of LOP, preventative measures for women not deemed to be at high-risk or measures that can be implemented at a later gestation are required. Biomarkers for LOP need to be identified, and examining large cohorts during the second or third trimester may yield useful results, as this is when the pathogenesis is hypothesized to occur. Biomarkers that identify high-risk LOP patients may also help find preventative measures.
Collapse
Affiliation(s)
- Anna Baylis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Ellen Menkhorst
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| |
Collapse
|
27
|
Bhattacharya M, Spencer BL, Kwiecinski JM, Podkowik M, Putzel G, Pironti A, Shopsin B, Doran KS, Horswill AR. Collagen binding adhesin restricts Staphylococcus aureus skin infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621145. [PMID: 39554114 PMCID: PMC11565922 DOI: 10.1101/2024.11.01.621145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Staphylococcus aureus causes approximately 80% of skin and soft tissue infections (SSTIs). Collagen is the most abundant human extracellular matrix protein with critical roles in wound healing, and S. aureus encodes a collagen binding adhesin (Cna). The role of this protein during skin infections is unknown. Here we report that inability to bind collagen results in worsened pathology of intradermal Δcna S. aureus infection. WT/Cna+ S. aureus showed reduced infection severity, aggregate formation, and significantly improved clearance of bacteria. Cna binds to the collagen-like domain of serum C1q protein to reduce its opsonophagocytic functions. We demonstrate that infection of C1qKO mice with WT bacteria show results similar to the Δcna group. Conversely, inability to bind collagen resulted in an amplified inflammatory response caused in part by macrophage and neutrophil small molecule mediators released at the infection site (MMP-9, MMP-12, LTB4), resulting in increased immune cell infiltration and death.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Jakub M. Kwiecinski
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, CO, USA
- Lead author
| |
Collapse
|
28
|
Jayaraman A, Walachowski S, Bosmann M. The complement system: A key player in the host response to infections. Eur J Immunol 2024; 54:e2350814. [PMID: 39188171 PMCID: PMC11623386 DOI: 10.1002/eji.202350814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Infections are one of the most significant healthcare and economic burdens across the world as underscored by the recent coronavirus pandemic. Moreover, with the increasing incidence of antimicrobial resistance, there is an urgent need to better understand host-pathogen interactions to design effective treatment strategies. The complement system is a key arsenal of the host defense response to pathogens and bridges both innate and adaptive immunity. However, in the contest between pathogens and host defense mechanisms, the host is not always victorious. Pathogens have evolved several approaches, including co-opting the host complement regulators to evade complement-mediated killing. Furthermore, deficiencies in the complement proteins, both genetic and therapeutic, can lead to an inefficient complement-mediated pathogen eradication, rendering the host more susceptible to certain infections. On the other hand, overwhelming infection can provoke fulminant complement activation with uncontrolled inflammation and potentially fatal tissue and organ damage. This review presents an overview of critical aspects of the complement-pathogen interactions during infection and discusses perspectives on designing therapies to mitigate complement dysfunction and limit tissue injury.
Collapse
Affiliation(s)
- Archana Jayaraman
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sarah Walachowski
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
29
|
Wojciuk B, Frulenko I, Brodkiewicz A, Kita D, Baluta M, Jędrzejczyk F, Budkowska M, Turkiewicz K, Proia P, Ciechanowicz A, Kostrzewa-Nowak D, Nowak R. The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue. Int J Mol Sci 2024; 25:11608. [PMID: 39519159 PMCID: PMC11545998 DOI: 10.3390/ijms252111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The precise molecular processes underlying the complement's activation, which follows exposure to physical stress still remain to be fully elucidated. However, some possible mechanisms could play a role in initiating changes in the complement's activity, which are observed post-exposure to physical stress stimuli. These are mainly based on metabolic shifts that occur in the microenvironment of muscle tissue while performing its function with increased intensity, as well as the adipose tissue's role in sterile inflammation and adipokine secretion. This review aims to discuss the current opinions on the possible link between the complement activation and diet, age, sex, and health disorders with a particular emphasis on endocrinopathies and, furthermore, the type of physical activity and overall physical fitness. It has been indicated that regular physical activity incorporated into therapeutic strategies potentially improves the management of particular diseases, such as, e.g., autoimmune conditions. Moreover, it represents a favorable influence on immunoaging processes. A better understanding of the complement system's interaction with physical activity will support established clinical therapies targeting complement components.
Collapse
Affiliation(s)
- Bartosz Wojciuk
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Ignacy Frulenko
- Pomeranian Medical University in Szczecin, 1 Rybacka St., 70-204 Szczecin, Poland;
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Dagmara Kita
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Monica Baluta
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Filip Jędrzejczyk
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Karolina Turkiewicz
- Department of Laboratory Diagnostics, University Clinical Hospital No. 2, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdańsk, Poland
| | - Robert Nowak
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland
| |
Collapse
|
30
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
31
|
Shi Q, Chen Z, Yang J, Liu X, Su Y, Wang M, Xi J, Yang F, Li F. Review of Codonopsis Radix biological activities: A plant of traditional Chinese tonic. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118334. [PMID: 38740108 DOI: 10.1016/j.jep.2024.118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis Radix, commonly known as Dangshen in Chinese, is frequently used to treat deficiencies of spleen and lung Qi, gastrointestinal discomfort, fatigue, asthmatic breathing, sallow complexion, lack of strength, shortness of breath, deficiencies of both Qi and blood, as well as impairments to both Qi and body fluids in suboptimal health status. AIM OF THE REVIEW This review systematically expounds on the modern pharmacological studies related to the use of Codonopsis Radix in invigorating Qi and nourishing the body in recent years. The aim is to provide theoretical research and reference for the in-depth and systematic exploration and development of the applications of Codonopsis Radix in the fields of food and medicine. MATERIALS AND METHODS This study employs "Codonopsis Radix," "Codonopsis," and "Dangshen" as keywords to gather pertinent information on Codonopsis Radix medicine through electronic searches of classical literature and databases such as PubMed, Elsevier, Google Scholar, Wiley, EMBASE, Cochrane Library, Web of Science, CNKI, Wanfang, VIP, and Baidu Scholar. RESULTS From previous studies, activities such as immune system modulation, gastrointestinal motility regulation, cardiac function revitalization, lung function improvement, blood circulation enhancement, aging process deceleration, learning and memory augmentation, fatigue resistance enhancement, and liver and kidney damage protection of Codonopsis Radix have been reported. Recognized as an important medicine and food homologous traditional Chinese herbal remedy for supplementing deficiencies, its mode of action is multi-elemental, multi-systemic, multi-organ, multi-mechanistic, and multi-targeted. Furthermore, the benefits of its tonic surpass its therapeutic value, establishing it as an extraordinary preventive and therapeutic medicine. CONCLUSIONS With its long history of traditional applications and the revelations of contemporary pharmacological research, Codonopsis Radix exhibits great potential as both a therapeutic agent and a dietary supplement for further research in medicine, nutrition, and healthcare.
Collapse
Affiliation(s)
- Qi Shi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Zhengjun Chen
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuxia Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuanjin Su
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Miao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jiayu Xi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Fude Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Fang Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
32
|
Panse JP, Höchsmann B, Schubert J. Paroxysmal Nocturnal Hemoglobinuria, Pathophysiology, Diagnostics, and Treatment. Transfus Med Hemother 2024; 51:310-320. [PMID: 39371251 PMCID: PMC11452172 DOI: 10.1159/000540474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/19/2024] [Indexed: 10/08/2024] Open
Abstract
Background Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by intravascular hemolysis (IVH) due to diminished or absent inhibition of the complement system because of deficient expression of cell-anchored complement regulating surface proteins. IVH leads to heterogeneous symptoms such as anemia, abdominal pain, dyspnea, fatigue and increased rates of thrombophilia. Inhibitors of the terminal Complement cascade can reverse IVH leading to a significant reduction of disease burden such as thrombembolic events and also mortality. Summary Therapeutic inhibitors of the terminal complement cascade such as eculizumab or ravulizumab significantly improve overall survival through IVH-inhibition. However, not all patients experience complete disease control with normalization of hemoglobin levels and absolute reticulocyte counts (ARC) under terminal complement inhibition as a significant part of patients develop extravascular hemolysis (EVH). EVH can be clinically relevant causing persistent anemia and fatigue. New proximal complement inhibitors (CI) mainly targeting complement component C3 or factors of the amplification pathway such as pegcetacoplan, danicopan, and iptacopan became available and are meanwhile approved for marketing. Additional complement-inhibiting strategies are under clinical development. A switch from terminal to proximal CI in patients with significant EVH can achieve hemoglobin and ARC normalization and significant improvement in quality of life (QoL). Additional approvals of proximal CI agents for the treatment of hemolytic PNH in the first line are available for pegcetacoplan and iptacopan. So far, no evidence-based algorithm is available for decision-making in first-line treatment of which type of drug should be used for individual patients. Key Messages Terminal CIs in hemolytic PNH patients can block IVH and have led to a dramatically improved survival. Proximal CIs ameliorate anemia and improve QoL in patients with relevant EVH. However, more (real-world) data are needed to demonstrate long-term improvement in all patients with hemolytic PNH, especially those under first-line treatment with proximal CI.
Collapse
Affiliation(s)
- Jens Peter Panse
- Department of Hematology, Oncology, University RWTH Medical School, Aachen, Germany
| | - Britta Höchsmann
- Institute for Clinical Transfusion Medicine and Immunogenetics, University Clinic, Ulm, Germany
| | - Jörg Schubert
- Department of Hematology, Oncology, Elblandklinikum, Riesa, University Hospital, Dresden, Germany
| |
Collapse
|
33
|
Yang L, Wu J, Zhang F, Zhang L, Zhang X, Zhou J, Pang J, Xie B, Xie H, Jiang Y, Peng J. Microglia aggravate white matter injury via C3/C3aR pathway after experimental subarachnoid hemorrhage. Exp Neurol 2024; 379:114853. [PMID: 38866102 DOI: 10.1016/j.expneurol.2024.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The activation of glial cells is intimately associated with the pathophysiology of neuroinflammation and white matter injury (WMI) during both acute and chronic phases following subarachnoid hemorrhage (SAH). The complement C3a receptor (C3aR) has a dual role in modulating inflammation and contributes to neurodevelopment, neuroplasticity, and neurodegeneration. However, its impact on WMI in the context of SAH remains unclear. In this study, 175 male C57BL/6J mice underwent SAH through endovascular perforation. Oxyhemoglobin (oxy-Hb) was employed to simulate SAH in vitro. A suite of techniques, including immunohistochemistry, transcriptomic sequencing, and a range of molecular biotechnologies, were utilized to evaluate the activation of the C3-C3aR pathway on microglial polarization and WMI. Results revealed that post-SAH abnormal activation of microglia was accompanied by upregulation of complement C3 and C3aR. The inhibition of C3aR decreased abnormal microglial activation, attenuated neuroinflammation, and ameliorated WMI and cognitive deficits following SAH. RNA-Seq indicated that C3aR inhibition downregulated several immune and inflammatory pathways and mitigated cellular injury by reducing p53-induced death domain protein 1 (Pidd1) and Protein kinase RNA-like ER kinase (Perk) expression, two factors mainly function in sensing and responding to cellular stress and endoplasmic reticulum (ER) stress. The deleterious effects of the C3-C3aR axis in the context of SAH may be related to endoplasmic reticulum (ER) stress-dependent cellular injury and inflammasome formation. Agonists of Perk can exacerbate the cellular injury and neuroinflammation, which was attenuated by C3aR inhibition after SAH. Additionally, intranasal administration of C3a during the subacute phase of SAH was found to decrease astrocyte reactivity and alleviate cognitive deficits post-SAH. This research deepens our understanding of the complex pathophysiology of WMI following SAH and underscores the therapeutic potential of C3a treatment in promoting white matter repair and enhancing functional recovery prognosis. These insights pave the way for future clinical application of C3a-based therapies, promising significant benefits in the treatment of SAH and its related complications.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Huangfan Xie
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
34
|
Hillmen P, Horneff R, Yeh M, Kolev M, Deschatelets P. Navigating the Complement Pathway to Optimize PNH Treatment with Pegcetacoplan and Other Currently Approved Complement Inhibitors. Int J Mol Sci 2024; 25:9477. [PMID: 39273426 PMCID: PMC11395449 DOI: 10.3390/ijms25179477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare and potentially life-threatening hematologic disorder caused by a somatic mutation in a relevant portion of hematopoietic stem cells. Mutation of the phosphatidylinositol glycan biosynthesis class A (PIGA) gene prevents the expression of cell-surface proteins, including the complement regulatory proteins CD55 and CD59. With decreased or a lack of CD55 and CD59 expression on their membranes, PNH red blood cells become susceptible to complement-mediated hemolysis (symptoms of which include anemia, dysphagia, abdominal pain, and fatigue), leading to thrombosis. State-of-the-art PNH treatments act by inhibiting the dysregulated complement at distinct points in the activation pathway: late at the C5 level (C5 inhibitors, eculizumab, ravulizumab, and crovalimab), centrally at the C3 level (C3/C3b inhibitors and pegcetacoplan), and early at the initiation and amplification of the alternative pathway (factor B inhibitor, iptacopan; factor D inhibitor, danicopan). Through their differing mechanisms of action, these treatments elicit varying profiles of disease control and offer valuable insights into the molecular underpinnings of PNH. This narrative review provides an overview of the mechanisms of action of the six complement inhibitors currently approved for PNH, with a focus on the C3/C3b-targeted therapy, pegcetacoplan.
Collapse
Affiliation(s)
- Peter Hillmen
- Apellis Pharmaceuticals, Inc., Waltham, MA 02451, USA
| | | | - Michael Yeh
- Apellis Pharmaceuticals, Inc., Waltham, MA 02451, USA
| | - Martin Kolev
- Apellis Pharmaceuticals, Inc., Waltham, MA 02451, USA
| | | |
Collapse
|
35
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L. Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V. Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
36
|
Ghosh M, Gupta PK, Behera LM, Rana S. Structure of Designer Antibody-like Peptides Binding to the Human C5a with Potential to Modulate the C5a Receptor Signaling. J Med Chem 2024; 67:14110-14124. [PMID: 39051153 DOI: 10.1021/acs.jmedchem.4c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
C5a is an integral glycoprotein of the complement system that plays an important role in inflammation and immunity. The physiological concentration of C5a is observed to be elevated under various immunoinflammatory pathophysiological conditions in humans. The pathophysiology of C5a is linked to the "two-site" protein-protein interactions (PPIs) with two genomically related receptors, such as C5aR1 and C5aR2. Therefore, pharmacophores that can potentially block the PPIs between C5a-C5aR1 and C5a-C5aR2 have tremendous potential for development as future therapeutics. Notably, the FDA has already approved antibodies that target the precursors of C5a (Eculizumab, 148 kDa) and C5a (Vilobelimab, 149 kDa) for marketing as complement-targeted therapeutics. In this context, the current study reports the structural characterization of a pair of synthetic designer antibody-like peptides (DePA and DePA1; ≤3.8 kDa) that bind to hotspot regions on C5a and also demonstrates potential traits to neutralize the function of C5a under pathophysiological conditions.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Lalita Mohan Behera
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
37
|
Gao C, Lai S, Zeng J, Peng Y, Li J. Toxicity Evaluation and Transcriptome Analysis of Yellowstripe Goby ( Mugilogobius chulae) in Response to 2,7-Dibromocarbazole Exposure during Early Development. TOXICS 2024; 12:609. [PMID: 39195711 PMCID: PMC11359896 DOI: 10.3390/toxics12080609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are a class of nitrogen-containing heterocyclic compounds that are widely distributed throughout the marine environment and sediment. These compounds share structural and toxicity similarities with dioxins. However, our understanding of the toxicological effects of PHCZs on marine organisms and their underlying molecular mechanisms remains limited. In this study, we employed the marine model organism Mugilogobius chulae as the experimental subject and selected 2,7-dibromocarbazole (2,7-DBCZ), a compound known for its high toxicity and detection frequency, to conduct both an acute toxicity test and transcriptome analysis on M. chulae embryos. Our findings revealed that the 96 h median lethal concentration (LC50) of 2,7-DBCZ for M. chulae embryos was 174 μg/L, with a median effective concentration (EC50) resulting in pericardial edema deformity of 88.82 μg/L. Transcriptome analysis revealed significant impacts on various systems in M. chulae embryos following exposure to 2,7-DBCZ, including the sensory, cardiovascular, immune, and endocrine systems. Furthermore, this compound perturbed signaling pathways such as phototransduction, protein folding and processing, amino acid metabolism, lipid transport, and exogenous compound metabolism. Notably, transcript abundance of the CYP1A gene associated with the activation of the AhR signaling pathway, similar to dioxin-like compounds, was 18.18 times higher than that in the control group. This observation suggests that M. chulae embryos mount a stress response when exposed to PHCZs. In summary, this study contributes to our understanding of the toxicological implications of PHCZ in marine fish and offers a theoretical foundation for risk assessment and regulatory frameworks for PHCZs in the marine environment.
Collapse
Affiliation(s)
- Caixia Gao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (C.G.); (S.L.); (J.Z.)
| | - Suqun Lai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (C.G.); (S.L.); (J.Z.)
| | - Jin Zeng
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (C.G.); (S.L.); (J.Z.)
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China;
- Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guangdong Higher Education Institutes, Beijing Normal University, Zhuhai 519087, China
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jianjun Li
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (C.G.); (S.L.); (J.Z.)
| |
Collapse
|
38
|
Yu P, Wang J, Liu J, Zhou Y, Luo F, Yang M, Ai X. Preparation techniques, structural features, and bioactivities of Eucommia ulmoides polysaccharides: A review. Int J Biol Macromol 2024; 275:133686. [PMID: 38972653 DOI: 10.1016/j.ijbiomac.2024.133686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Eucommia ulmoides Oliv. (tu-chung), as a famous nature medical and edible plant, has the effect of tonifying liver and kidney, strengthening the function of the muscles and bones, and miscarriage prevention. Accumulating evidence has demonstrated that the polysaccharides from Eucommia ulmoides Oliv. (EUPs) are a kind of vital and representative biologically active macromolecules and have various health-promoting biological activities in vivo and in vitro, such as antioxidant activity, immunomodulatory activity, hypolipidemic and hypoglycemic activities, anti-inflammatory activities, anti-tumor activity, and among others. The review aims to comprehensively and systematically collate the recent research progress on extraction and purification methods, structural characteristics, biological activities, mechanism of action, structural modification, and toxicity of EUPs to support their therapeutic potential and health-care functions. New valuable insights for future research with EUPs were also proposed in the areas of structural characterization and pharmacological activities to promoting the development of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, PR China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, PR China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Jia Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, PR China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, PR China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, PR China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, PR China; School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China.
| |
Collapse
|
39
|
Zhang C, Shi G, Meng Q, Hu R, Li Y, Hu G, Wang K, Huang M. An approach based on a combination of toxicological experiments and in silico predictions to investigate the adverse outcome pathway (AOP) of paraquat neuro-immunotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134607. [PMID: 38761765 DOI: 10.1016/j.jhazmat.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
40
|
Zhang T, Ma N, Wang J, Min X, Wei L, Li K. C5aR2 Deficiency Lessens C5aR1 Distribution and Expression in Neutrophils and Macrophages. J Immunol Res 2024; 2024:2899154. [PMID: 39021433 PMCID: PMC11254461 DOI: 10.1155/2024/2899154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
As another receptor for complement activation product C5a, C5aR2 has been paid much attention these years. Although controversial and complex, its specific signals or roles in modulating the classic receptor C5aR1 have been investigated and gradually revealed. The hypothesis of the heterodimer of C5aR1 and C5aR2 has also been suggested and observed under extremely high C5a concentrations. In this article, we tried to investigate whether C5aR2 would affect C5aR1 expression under normal or inflammatory conditions in WT and C5ar2 -/- mice of C57BL/6 background. We focused on the innate immune cells-neutrophils and macrophages. The mRNA levels of C5ar1 in normal kidney, liver, and the mRNA or protein levels of naïve-bone marrow and peripheral blood leukocytes and peritoneal Mφs were comparable between WT and C5ar2 -/- mice, indicating the technique of C5aR2 knockout did not affect the transcription of its neighboring gene C5aR1. However, the mean fluorescence intensity of surface C5aR1 on naïve circulating C5ar2 -/- neutrophils detected by FACS was reduced, which might be due to the reduced internalization of C5aR1 on C5ar2 -/- neutrophils. In the peritonitis model induced by i.p. injection of thioglycollate, more neutrophils were raised after 10 hr in C5ar2 -/- peritoneal cavity, indicating the antagonism of C5aR2 on C5aR1 signal in neutrophil chemotaxis. After 3 days of thioglycollate injection, the mainly infiltrating macrophages were comparable between WT and C5ar2 -/- mice, but the C5ar1 mRNA and surface or total C5aR1 protein expression were both reduced in C5ar2 -/- macrophages, combined with our previous study of reduced chemokines and cytokines expression in C5ar2 -/- peritoneal macrophages, indicating that C5aR2 in macrophages may cooperate with C5aR1 inflammatory signals. Our article found C5aR2 deficiency lessened C5aR1 distribution and expression in neutrophils and macrophages with different functions, indicating C5aR2 might function differently in different cells.
Collapse
Affiliation(s)
- Ting Zhang
- Department of PathologyThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Ning Ma
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Jiaxing Wang
- Institute of HematologySchool of MedicineNorthwest University, Xi'an 710069, China
| | - Xiaoyun Min
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Linlin Wei
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| | - Ke Li
- Core Research LaboratoryThe Second Affiliated HospitalSchool of MedicineXi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
41
|
Liu H, Jiang M, Chen Z, Li C, Yin X, Zhang X, Wu M. The Role of the Complement System in Synaptic Pruning after Stroke. Aging Dis 2024; 16:1452-1470. [PMID: 39012667 PMCID: PMC12096917 DOI: 10.14336/ad.2024.0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Stroke is a serious disease that can lead to local neurological dysfunction and cause great harm to the patient's health due to blood cerebral circulation disorder. Synaptic pruning is critical for the normal development of the human brain, which makes the synaptic circuit completer and more efficient by removing redundant synapses. The complement system is considered a key player in synaptic loss and cognitive impairment in neurodegenerative disease. After stroke, the complement system is over-activated and complement proteins can be labeled on synapses. Microglia and astrocytes can recognize and engulf synapses through corresponding complement receptors. Complement-mediated excessive synaptic pruning can cause post-stroke cognitive impairment (PSCI) and secondary brain damage. This review summarizes the latest progress of complement-mediated synaptic pruning after stroke and the potential mechanisms. Targeting complement-mediated synaptic pruning may be essential for exploring therapeutic strategies for secondary brain injury (SBI) and neurological dysfunction after stroke.
Collapse
Affiliation(s)
- Hongying Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China.
| | - Chuan Li
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China.
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| | - Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
| |
Collapse
|
42
|
Wang M, Yu A, Hu W, Zhang Z, Wang Z, Meng Y, Yang B, Kuang H. Extraction, purification, structural characteristic, health benefit, and product application of the polysaccharides from bamboo shoot: A review. Int J Biol Macromol 2024; 271:132581. [PMID: 38797301 DOI: 10.1016/j.ijbiomac.2024.132581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Bamboo shoot is a kind of widely distributed natural green vegetable, which has a long history of consumption and cultivation, and has edible, nutritional and economic value. Bamboo shoot is nutrient-rich food with carbohydrates, fats, proteins, polysaccharides, flavonoids, alkaloids and other chemical components, can meet the body's needs. Notably, bamboo shoot polysaccharides are the most attractive saccharides, most of which are water-soluble polysaccharides, and their various biological activities have been paid more attention by researchers. With the deepening of research on bamboo shoot polysaccharides, they have been found to have anti-diabetic, anti-oxidant, anti-inflammatory, anti-complement activities, immunomodulatory, etc. Further research on bamboo shoot polysaccharides, their sources, molecular weights, chemical structures, monosaccharide compositions and structural characteristics are constantly explored. In order to better research and development of bamboo shoot polysaccharides, it is necessary to carry on a comprehensive arrangement. Here, the extraction and purification methods, structural characteristics, health benefits, structure-activity relationships and product applications of bamboo shoot polysaccharides were systematically reviewed. This article will deepen the understanding of bamboo shoot polysaccharides, provide knowledge base for further research on bamboo shoot polysaccharides, and expand the vision for developing related products.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Yonghai Meng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
43
|
Spaide RF, Vavvas DG. Health Span vs Lifespan in Geographic Atrophy. JAMA Ophthalmol 2024; 142:558-559. [PMID: 38722647 DOI: 10.1001/jamaophthalmol.2024.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston
| |
Collapse
|
44
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
45
|
Zhu XL, Zhang L, Qi SX. Association of complement components with risk of colorectal cancer: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:2168-2180. [PMID: 38764810 PMCID: PMC11099464 DOI: 10.4251/wjgo.v16.i5.2168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response. Nevertheless, their role in colorectal cancer (CRC) remains a contentious subject. AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics. METHODS Searches were conducted in PubMed, the Cochrane Library, and the China National Knowledge Infrastructure database until June 1, 2023. We included cohort studies encompassing participants aged ≥ 18 years, investigating the association between complement components and CRC. The studies were of moderate quality or above, as determined by the Agency for Healthcare Research and Quality. The meta-analysis employed fixed-effects or random-effects models based on the I² test, utilizing risk ratio (RR) and their corresponding 95% confidence interval (CI) for outcomes. Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity. RESULTS Data from 15 studies, comprising 1631 participants that met the inclusion criteria, were included in the meta-analysis. Our findings indicated that protein levels of cluster of differentiation 46 (CD46) (RR = 3.66, 95%CI: 1.75-7.64, P < 0.001), CD59 (RR = 2.86, 95%CI: 1.36-6.01, P = 0.005), and component 1 (C1) (RR = 5.88, 95%CI: 1.75-19.73, P = 0.004) and serum levels of C3 (standardized mean difference = 1.82, 95%CI: 0.06-3.58, P = 0.040) were significantly elevated in patients with CRC compared to healthy controls. Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis, whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression (P < 0.05 for all). Although specific pooled results demonstrated notable heterogeneity, subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies. CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC, emphasizing the potential significance of monitoring elevated complement component levels.
Collapse
Affiliation(s)
- Xiao-Lin Zhu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| | - Lu Zhang
- Department of Medical Administration, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| | - Su-Xia Qi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| |
Collapse
|
46
|
Li Q, Deng Y, Xu Z, Zhou H. Combined transcriptomics and TMT-proteomics reveal abnormal complement and coagulation cascades in cow's milk protein allergy. Int Immunopharmacol 2024; 131:111806. [PMID: 38457985 DOI: 10.1016/j.intimp.2024.111806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Cow's milk protein allergy (CMPA) is primarily due to the inability of the intestinal mucosa to establish typical immunological tolerance to proteins found in cow's milk, and the specific molecular mechanism is still unclear. In order to investigate molecular alterations in intestinal tissues during CMPA occurrence, this study analyzed the jejunal tissue of β-lactoglobulin (BLG)-sensitized mice through transcriptomics and quantitative tandem mass tag (TMT)-labeled proteomics. A total of 475 differentially expressed genes (256 up-regulated, 219 down-regulated) and 94 differentially expressed proteins (65 up-regulated, 29 down-regulated) were identified. Comparing the KEGG pathways of the two groups, it was found that both were markedly enriched in the signaling pathways of complement and coagulation cascade. Among these, kallikrein B1 (KLKB1) in this pathway is speculated to be pivotal in CMPA. It may potentially enhance the release of bradykinin by activating the kallikrein-kinin system, leading to pro-inflammatory effects and exacerbating intestinal mucosal damage. This study suggests that the pathways of complement and coagulation cascades could be significant in the context of intestinal immunity in CMPA, and KLKB1 may be its potential therapeutic target.
Collapse
Affiliation(s)
- Qunchao Li
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yan Deng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Zhiwei Xu
- Bengbu Medical College, Bengbu, China
| | - Haoquan Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.
| |
Collapse
|
47
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
48
|
Jiao Y, Zhou L, Huo J, Li H, Zhu H, Chen D, Lu Y. Flavonoid substituted polysaccharides from Tamarix chinensis Lour. alleviate H1N1-induced acute lung injury via inhibiting complement system. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117651. [PMID: 38135232 DOI: 10.1016/j.jep.2023.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viral pneumonia is a highly pathogenic respiratory infectious disease associated with excessive activation of the complement system. Our previous studies found that the anticomplement polysaccharides from some medicinal plants could significantly alleviate H1N1-induced acute lung injury (H1N1-ALI). The leaves and twigs of Tamarix chinensis Lour. are traditionally used as a Chinese medicine Xiheliu for treating inflammatory disorders. Interestingly, its crude polysaccharides (MBAP90) showed potent anticomplement activity in vitro. AIM OF THE STUDY To evaluate the therapeutic effects and possible mechanism of MBAP90 on viral pneumonia and further isolate and characterize the key active substance of MBAP90. MATERIALS AND METHODS The protective effects of MBAP90 were evaluated by survival tests and pharmacodynamic experiments on H1N1-ALI mice. Histopathological changes, viral load, inflammatory markers, and complement deposition in lungs were analyzed by H&E staining, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. An anticomplement homogenous polysaccharide (MBAP-3) was obtained from MBAP90 by bio-guided separation, and its structure was further characterized by methylation analysis and NMR spectroscopy. RESULTS Oral administration of MBAP90 at a dose of 400 mg/kg significantly increased the survival rate of mice infected with the lethal H1N1 virus. In H1N1-induced ALI, mice treated with MBAP90 (200 and 400 mg/kg) could decrease the lung index, lung pathological injury, the levels of excessive proinflammatory cytokines (IL-6, TNF-α, MCP-1, IL-18, and IL-1β), and complement levels (C3c and C5b-9). In addition, MBAP-3 was characterized as a novel homogenous polysaccharide with potent in vitro anticomplement activity (CH50: 0.126 ± 0.002 mg/mL), containing 10.51% uronic acids and 9.67% flavonoids, which were similar to the composition of MBAP90. The backbone of MBAP-3 consisted of →4)-α-D-Glcp-(1→, →3,4,6)-α-D-Glcp-(1→, and →3,4)-α-D-Glcp-(1→, with branches comprising α-L-Araf-(1→, α-D-GlcpA-(1→, →4,6)-α-D-Manp-(1→ and →4)-β-D-Galp-(1 → . Particularly, O-6 of →4)-β-D-Galp-(1→ was conjugated with a flavonoid, myricetin. CONCLUSIONS MBAP90 could ameliorate H1N1-ALI by inhibiting inflammation and over-activation of the complement system. These polysaccharides (MBAP90 and MBAP-3) with relative high contents of uronic acid and flavonoid substituent might be vital components of T. chinensis for treating viral pneumonia.
Collapse
Affiliation(s)
- Yukun Jiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Lishuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Jiangyan Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
50
|
Norte-Muñoz M, García-Bernal D, García-Ayuso D, Vidal-Sanz M, Agudo-Barriuso M. Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina. Neural Regen Res 2024; 19:542-547. [PMID: 37721282 PMCID: PMC10581591 DOI: 10.4103/1673-5374.380876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 09/19/2023] Open
Abstract
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models. Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration, namely trophic factor deprivation and neuroinflammation. Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement. However, little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system. Here, we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system, focusing on recent work in the retina and the importance of the type of transplantation.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - David García-Bernal
- Grupo de Investigación Trasplante Hematopoyético y Terapia celular, Departamento de Bioquímica e Inmunología. Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|