1
|
Zhao W, Ji Y, Zhou Y, Wang X. Geminivirus C4/AC4 proteins hijack cellular COAT PROTEIN COMPLEX I for chloroplast targeting and viral infections. PLANT PHYSIOLOGY 2024; 196:1826-1839. [PMID: 39162474 DOI: 10.1093/plphys/kiae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Geminiviruses infect numerous crops and cause extensive agricultural losses worldwide. During viral infection, geminiviral C4/AC4 proteins relocate from the plasma membrane to chloroplasts, where they inhibit the production of host defense signaling molecules. However, mechanisms whereby C4/AC4 proteins are transported to chloroplasts are unknown. We report here that tomato (Solanum lycopersicum) COAT PROTEIN COMPLEX I (COPI) components play a critical role in redistributing Tomato yellow leaf curl virus C4 protein to chloroplasts via an interaction between the C4 and β subunit of COPI. Coexpression of both proteins promotes the enrichment of C4 in chloroplasts that is blocked by a COPI inhibitor. Overexpressing or downregulating gene expression of COPI components promotes or inhibits the viral infection, respectively, suggesting a proviral role of COPI components. COPI components play similar roles in C4/AC4 transport and infections of two other geminiviruses: Beet curly top virus and East African cassava mosaic virus. Our results reveal an unconventional role of COPI components in protein trafficking to chloroplasts during geminivirus infection and suggest a broad-spectrum antiviral strategy in controlling geminivirus infections in plants.
Collapse
Affiliation(s)
- Wenhao Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yinghua Ji
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yijun Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Kunjumon TK, Ghosh PP, Currie LMJ, Mathur J. Proximity driven plastid-nucleus relationships are facilitated by tandem plastid-ER dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6275-6294. [PMID: 39034638 PMCID: PMC11523032 DOI: 10.1093/jxb/erae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Peri-nuclear clustering (PNC) of chloroplasts has largely been described in senescent and pathogen- or reactive oxygen species-stressed cells. Stromules, tubular plastid extensions, are also observed under similar conditions. Coincident observations of PNC and stromules associate the two phenomena in facilitating retrograde signaling between chloroplasts and the nucleus. However, PNC incidence in non-stressed cells under normal growth and developmental conditions, when stromules are usually not observed, remains unclear. Using transgenic Arabidopsis expressing different organelle-targeted fluorescent proteins, we show that PNC is a dynamic subcellular phenomenon that continues in the absence of light and is not dependent on stromule formation. PNC is facilitated by tandem plastid-endoplasmic reticulum (ER) dynamics created through membrane contact sites between the two organelles. While PNC increases upon ER membrane expansion, some plastids may remain in the peri-nuclear region due to their localization in ER-lined nuclear indentions. Moreover, some PNC plastids may sporadically extend stromules into ER-lined nuclear grooves. Our findings strongly indicate that PNC is not an exclusive response to stress caused by pathogens, high light, or exogenous H2O2 treatment, and does not require stromule formation. However, morphological and behavioral alterations in ER and concomitant changes in tandem, plastid-ER dynamics play a major role in facilitating the phenomenon.
Collapse
Affiliation(s)
- Thomas Kadanthottu Kunjumon
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Laura M J Currie
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| |
Collapse
|
3
|
Jung S, Woo J, Park E. Talk to your neighbors in an emergency: Stromule-mediated chloroplast-nucleus communication in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102529. [PMID: 38604000 DOI: 10.1016/j.pbi.2024.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Hypersensitive response-programmed cell death (HR-PCD) is a response mounted by plants to defend themselves against pathogens. Communication between the chloroplast and the nucleus is critical for the progression of HR-PCD. Tubular protrusions of chloroplasts, known as stromules, are tightly associated with the HR-PCD progression. There is emerging evidence that signaling molecules originating from chloroplasts are transferred to the nucleus through stromules. The translocation of signaling molecules from the chloroplast to the nucleus might trigger defense responses, including transcriptional reprogramming. In this review, we discuss the possible functions of stromules in the rapid transfer of signaling molecules in the chloroplast-nucleus communication.
Collapse
Affiliation(s)
- Seungmee Jung
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Jongchan Woo
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Eunsook Park
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
4
|
Erickson JL, Prautsch J, Reynvoet F, Niemeyer F, Hause G, Johnston IG, Schattat MH. Stromule Geometry Allows Optimal Spatial Regulation of Organelle Interactions in the Quasi-2D Cytoplasm. PLANT & CELL PHYSIOLOGY 2024; 65:618-630. [PMID: 37658689 PMCID: PMC11094753 DOI: 10.1093/pcp/pcad098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.
Collapse
Affiliation(s)
- Jessica Lee Erickson
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Weinbergweg 10, Halle 06120, Germany
| | - Jennifer Prautsch
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| | - Frisine Reynvoet
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| | - Frederik Niemeyer
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| | - Gerd Hause
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Realfagbygget, Bergen, Vestland 5007, Norway
- Computational Biology Unit, University of Bergen, Høyteknologisenteret, Bergen, Vestland 5006, Norway
| | - Martin Harmut Schattat
- Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany
| |
Collapse
|
5
|
Clayton EJ, Islam NS, Pannunzio K, Kuflu K, Sirjani R, Kohalmi SE, Dhaubhadel S. Soybean AROGENATE DEHYDRATASES (GmADTs): involvement in the cytosolic isoflavonoid metabolon or trans-organelle continuity? FRONTIERS IN PLANT SCIENCE 2024; 15:1307489. [PMID: 38322824 PMCID: PMC10845154 DOI: 10.3389/fpls.2024.1307489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Soybean (Glycine max) produces a class of phenylalanine (Phe) derived specialized metabolites, isoflavonoids. Isoflavonoids are unique to legumes and are involved in defense responses in planta, and they are also necessary for nodule formation with nitrogen-fixing bacteria. Since Phe is a precursor of isoflavonoids, it stands to reason that the synthesis of Phe is coordinated with isoflavonoid production. Two putative AROGENATE DEHYDRATASE (ADT) isoforms were previously co-purified with the soybean isoflavonoid metabolon anchor ISOFLAVONE SYNTHASE2 (GmIFS2), however the GmADT family had not been characterized. Here, we present the identification of the nine member GmADT family. We determined that the GmADTs share sequences required for enzymatic activity and allosteric regulation with other characterized plant ADTs. Furthermore, the GmADTs are differentially expressed, and multiple members have dual substrate specificity, also acting as PREPHENATE DEHYDRATASES. All GmADT isoforms were detected in the stromules of chloroplasts, and they all interact with GmIFS2 in the cytosol. In addition, GmADT12A interacts with multiple other isoflavonoid metabolon members. These data substantiate the involvement of GmADT isoforms in the isoflavonoid metabolon.
Collapse
Affiliation(s)
- Emily J. Clayton
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Nishat S. Islam
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Kelsey Pannunzio
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kuflom Kuflu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ramtin Sirjani
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Susanne E. Kohalmi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Hall MR, Kunjumon TK, Ghosh PP, Currie L, Mathur J. Organelle Interactions in Plant Cells. Results Probl Cell Differ 2024; 73:43-69. [PMID: 39242374 DOI: 10.1007/978-3-031-62036-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The sequestration of enzymes and associated processes into sub-cellular domains, called organelles, is considered a defining feature of eukaryotic cells. However, what leads to specific outcomes and allows a eukaryotic cell to function singularly is the interactivity and exchanges between discrete organelles. Our ability to observe and assess sub-cellular interactions in living plant cells has expanded greatly following the creation of fluorescent fusion proteins targeted to different organelles. Notably, organelle interactivity changes quickly in response to stress and reverts to a normal less interactive state as homeostasis is re-established. Using key observations of some of the organelles present in a plant cell, this chapter provides a brief overview of our present understanding of organelle interactions in plant cells.
Collapse
Affiliation(s)
- Maya-Renee Hall
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Thomas Kadanthottu Kunjumon
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Laura Currie
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
7
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
8
|
Mackenzie SA, Mullineaux PM. Plant environmental sensing relies on specialized plastids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7155-7164. [PMID: 35994779 DOI: 10.1093/jxb/erac334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In plants, plastids are thought to interconvert to various forms that are specialized for photosynthesis, starch and oil storage, and diverse pigment accumulation. Post-endosymbiotic evolution has led to adaptations and specializations within plastid populations that align organellar functions with different cellular properties in primary and secondary metabolism, plant growth, organ development, and environmental sensing. Here, we review the plastid biology literature in light of recent reports supporting a class of 'sensory plastids' that are specialized for stress sensing and signaling. Abundant literature indicates that epidermal and vascular parenchyma plastids display shared features of dynamic morphology, proteome composition, and plastid-nuclear interaction that facilitate environmental sensing and signaling. These findings have the potential to reshape our understanding of plastid functional diversification.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
9
|
Mathur J, Kroeker OF, Lobbezoo M, Mathur N. The ER Is a Common Mediator for the Behavior and Interactions of Other Organelles. FRONTIERS IN PLANT SCIENCE 2022; 13:846970. [PMID: 35401583 PMCID: PMC8990311 DOI: 10.3389/fpls.2022.846970] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 05/29/2023]
Abstract
Optimal functioning of a plant cell depends upon the efficient exchange of genetic information, ions, proteins and metabolites between the different organelles. Intuitively, increased proximity between organelles would be expected to play an important role in facilitating exchanges between them. However, it remains to be seen whether under normal, relatively non-stressed conditions organelles maintain close proximity at all. Moreover, does interactivity involve direct and frequent physical contact between the different organelles? Further, many organelles transition between spherical and tubular forms or sporadically produce thin tubular extensions, but it remains unclear whether changes in organelle morphology play a role in increasing their interactivity. Here, using targeted multicolored fluorescent fusion proteins, we report observations on the spatiotemporal relationship between plastids, mitochondria, peroxisomes and the endoplasmic reticulum in living plant cells. Under normal conditions of growth, we observe that the smaller organelles do not establish direct, physical contacts with each other but, irrespective of their individual form they all maintain intimate connectivity with the ER. Proximity between organelles does increase in response to stress through concomitant alterations in ER dynamics. Significantly, even under increased proximity the ER still remains sandwiched between the different organelles. Our observations provide strong live-imaging-based evidence for the ER acting as a common mediator in interactions between other organelles.
Collapse
|
10
|
Lamelas L, Valledor L, López-Hidalgo C, Cañal MJ, Meijón M. Nucleus and chloroplast: A necessary understanding to overcome heat stress in Pinus radiata. PLANT, CELL & ENVIRONMENT 2022; 45:446-458. [PMID: 34855991 DOI: 10.1111/pce.14238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The recovery and maintenance of plant homeostasis under stressful environments are complex processes involving organelle crosstalk for a coordinated cellular response. Here, we revealed through nuclear and chloroplast subcellular proteomics, biochemical cell profiles and targeted transcriptomics how chloroplasts and nuclei developed their responses under increased temperatures in a long-lived species (Pinus radiata). Parallel to photosynthetic impairment and reactive oxygen species production in the chloroplast, a DNA damage response was triggered in the nucleus followed by an altered chromatin conformation. In addition, in the nuclei, we found several proteins, such as HEMERA or WHIRLY, which change their locations from the chloroplasts to the nuclei carrying the stress message. Additionally, our data showed a deep rearrangement of RNA metabolism in both organelles, revealing microRNAs and AGO1 as potential regulators of the acclimation mechanisms. Altogether, our study highlights the synchronisation among the different stages required for thermotolerance acquisition in P. radiata, pointing out the role of chromatin conformation and posttranscriptional gene regulation in overcoming heat stress and assuring plant survival for the following years.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Cristina López-Hidalgo
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
11
|
Mathur J. Organelle extensions in plant cells. PLANT PHYSIOLOGY 2021; 185:593-607. [PMID: 33793902 PMCID: PMC8133556 DOI: 10.1093/plphys/kiaa055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 05/03/2023]
Abstract
The life strategy of plants includes their ability to respond quickly at the cellular level to changes in their environment. The use of targeted fluorescent protein probes and imaging of living cells has revealed several rapidly induced organelle responses that create the efficient sub-cellular machinery for maintaining homeostasis in the plant cell. Several organelles, including plastids, mitochondria, and peroxisomes, extend and retract thin tubules that have been named stromules, matrixules, and peroxules, respectively. Here, I combine all these thin tubular forms under the common head of organelle extensions. All extensions change shape continuously and in their elongated form considerably increase organelle outreach into the surrounding cytoplasm. Their pleomorphy reflects their interactions with the dynamic endoplasmic reticulum and cytoskeletal elements. Here, using foundational images and time-lapse movies, and providing salient information on some molecular and biochemically characterized mutants with increased organelle extensions, I draw attention to their common role in maintaining homeostasis in plant cells.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular biology, University of Guelph, 50 Stone Road, Guelph, Ontario, N1G2W1 Canada
- Author for communication:
| |
Collapse
|
12
|
Yang F, Xiao K, Pan H, Liu J. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:637853. [PMID: 33747017 PMCID: PMC7966814 DOI: 10.3389/fpls.2021.637853] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 05/08/2023]
Abstract
Higher plants and some algae convert the absorbed light into chemical energy through one of the most important organelles, chloroplast, for photosynthesis and store it in the form of organic compounds to supply their life activities. However, more and more studies have shown that the role of chloroplasts is more than a factory for photosynthesis. In the process of light conversion to chemical energy, any damage to the components of chloroplast may affect the photosynthesis efficiency and promote the production of by-products, reactive oxygen species, that are mainly produced in the chloroplasts. Substantial evidence show that chloroplasts are also involved in the battle of plants and microbes. Chloroplasts are important in integrating a variety of external environmental stimuli and regulate plant immune responses by transmitting signals to the nucleus and other cell compartments through retrograde signaling pathways. Besides, chloroplasts can also regulate the biosynthesis and signal transduction of phytohormones, including salicylic acid and jasmonic acid, to affect the interaction between the plants and microbes. Since chloroplasts play such an important role in plant immunity, correspondingly, chloroplasts have become the target of pathogens. Different microbial pathogens target the chloroplast and affect its functions to promote their colonization in the host plants.
Collapse
Affiliation(s)
| | | | | | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Hanson MR, Conklin PL. Stromules, functional extensions of plastids within the plant cell. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:25-32. [PMID: 33137706 DOI: 10.1016/j.pbi.2020.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Stromules are thin tubular extensions of the plastid compartment surrounded by the envelope membrane. A myriad of functions have been proposed for them, and they likely have multiple roles. Recent work has illuminated aspects of their formation, especially the important of microtubules in their movement and microfilaments in anchoring. A variety of biotic and abiotic stresses result in induction of stromule formation, and in recent years, stromule formation has been strongly implicated as part of the innate immune response. Both stromules and chloroplasts relocate to surround the nucleus when pathogens are sensed, possibly to supply signaling molecules such as reactive oxygen species. In addition to the nucleus, stromules have been observed in close proximity to other compartments such as mitochondria, endoplasmic reticulum, and the plasma membrane, potentially facilitating exchange of substrates and products to carry out important biosynthetic pathways. Much remains to be learned about the identity of proteins and other molecules released from chloroplasts and stromules and how they function in plant development and defense.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | - Patricia L Conklin
- Biological Sciences Department, State University of New York, Cortland, NY 13045, USA
| |
Collapse
|
14
|
Ge Q, Zhang Y, Xu Y, Bai M, Luo W, Wang B, Niu Y, Zhao Y, Li S, Weng Y, Wang Z, Qian Q, Chong K. Cyclophilin OsCYP20-2 with a novel variant integrates defense and cell elongation for chilling response in rice. THE NEW PHYTOLOGIST 2020; 225:2453-2467. [PMID: 31736073 PMCID: PMC7064896 DOI: 10.1111/nph.16324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 05/20/2023]
Abstract
Coordinating stress defense and plant growth is a survival strategy for adaptation to different environments that contains a series of processes, such as, cell growth, division and differentiation. However, little is known about the coordination mechanism for protein conformation change. A cyclophilin OsCYP20-2 with a variant interacts with SLENDER RICE1 (SLR1) and OsFSD2 in the nucleus and chloroplasts, respectively, to integrate chilling tolerance and cell elongation in rice (Oryza sativa) (FSD2, Fe-superoxide dismutase 2). Mass spectrum assay showed that OsNuCYP20-2 localized at the nucleus (nuclear located OsCYP20-2) was a new variant of OsCYP20-2 that truncated 71 amino-acid residues in N-terminal. The loss-of function OsCYP20-2 mutant showed sensitivity to chilling stress with accumulation of extra reactive oxygen species (ROS). In chloroplasts, the full-length OsCYP20-2 promotes OsFSD2 forming homodimers which enhance its activity, eliminating the accumulation of ROS under chilling stress. However, the mutant had shorter epidermal cells in comparison with wild-type Hwayoung (HY). In the nucleus, OsCYP20-2 caused conformation change of SLR1 to promote its degradation for cell elongation. Our data reveal a cyclophilin with a variant with dual-localization in chloroplasts and the nucleus, which mediate chilling tolerance and cell elongation.
Collapse
Affiliation(s)
- Qiang Ge
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijing100101China
| | - Mingyi Bai
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of EducationSchool of Life SciencesShandong UniversityJinan250100China
| | - Wei Luo
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Bo Wang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuda Niu
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Yuan Zhao
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shanshan Li
- Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Yuxiang Weng
- Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Zhiyong Wang
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCA94305USA
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Kang Chong
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijing100101China
| |
Collapse
|
15
|
Postiglione AE, Muday GK. The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:968. [PMID: 32695131 PMCID: PMC7338657 DOI: 10.3389/fpls.2020.00968] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/12/2020] [Indexed: 05/19/2023]
Abstract
The hormonal and environmental regulation of stomatal aperture is mediated by a complex signaling pathway found within the guard cells that surround stomata. Abscisic acid (ABA) induces stomatal closure in response to drought stress by binding to its guard cell localized receptor, initiating a signaling cascade that includes synthesis of reactive oxygen species (ROS). Genetic evidence in Arabidopsis indicates that ROS produced by plasma membrane respiratory burst oxidase homolog (RBOH) enzymes RBOHD and RBOHF modulate guard cell signaling and stomatal closure. However, ABA-induced ROS accumulates in many locations such as the cytoplasm, chloroplasts, nucleus, and endomembranes, some of which do not coincide with plasma membrane localized RBOHs. ABA-induced guard cell ROS accumulation has distinct spatial and temporal patterns that drive stomatal closure. Productive ROS signaling requires both rapid increases in ROS, as well as the ability of cells to prevent ROS from reaching damaging levels through synthesis of antioxidants, including flavonols. The relationship between locations of ROS accumulation and ABA signaling and the role of enzymatic and small molecule ROS scavengers in maintaining ROS homeostasis in guard cells are summarized in this review. Understanding the mechanisms of ROS production and homeostasis and the role of ROS in guard cell signaling can provide a better understanding of plant response to stress and could provide an avenue for the development of crop plants with increased stress tolerance.
Collapse
|
16
|
Ding X, Jimenez‐Gongora T, Krenz B, Lozano‐Duran R. Chloroplast clustering around the nucleus is a general response to pathogen perception in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:1298-1306. [PMID: 31257720 PMCID: PMC6715600 DOI: 10.1111/mpp.12840] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
It is increasingly clear that chloroplasts play a central role in plant stress responses. Upon activation of immune responses, chloroplasts are the source of multiple defensive signals, including reactive oxygen species (ROS). Intriguingly, it has been described that chloroplasts establish physical contact with the nucleus, through clustering around it and extending stromules, following activation of effector-triggered immunity (ETI). However, how prevalent this phenomenon is in plant-pathogen interactions, how its induction occurs, and what the underlying biological significance is are important questions that remain unanswered. Here, we describe that the chloroplast perinuclear clustering seems to be a general plant response upon perception of an invasion threat. Indeed, activation of pattern-triggered immunity, ETI, transient expression of the Rep protein from geminiviruses, or infection with viruses or bacteria all are capable of triggering this response in Nicotiana benthamiana. Interestingly, this response seems non-cell-autonomous, and exogenous treatment with H2 O2 is sufficient to elicit this relocalization of chloroplasts, which appears to require accumulation of ROS. Taken together, our results indicate that chloroplasts cluster around the nucleus during plant-pathogen interactions, suggesting a fundamental role of this positioning in plant defence, and identify ROS as sufficient and possibly required for the onset of this response.
Collapse
Affiliation(s)
- Xue Ding
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Tamara Jimenez‐Gongora
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Bjӧrn Krenz
- Leibniz Institute DSMZ38124BraunschweigGermany
| | - Rosa Lozano‐Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai201602China
| |
Collapse
|
17
|
Lee JS, Wilson ME, Richardson RA, Haswell ES. Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL1, MSL2, and MSL3 reveal a role for inter-organellar communication in plant development. PLANT DIRECT 2019; 3:e00124. [PMID: 31245767 PMCID: PMC6508831 DOI: 10.1002/pld3.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 05/31/2023]
Abstract
Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between three Mechanosensitive channel of Small conductance-Like (MSL) proteins from Arabidopsis thaliana. MSL proteins are Arabidopsis homologs of the bacterial Mechanosensitive channel of Small conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock. MSL1 localizes to the inner mitochondrial membrane, while MSL2 and MSL3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion in MSL1, both in wild type and in msl2 msl3 mutant backgrounds. msl1 single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling in msl2 msl3 double mutants was exacerbated in the msl1 msl2 msl3 triple mutant. However, the introduction of the msl1 lesion into the msl2 msl3 mutant background suppressed other msl2 msl3 mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version of MSL1. In yeast-based interaction studies, MSL1 interacted with itself, but not with MSL2 or MSL3. These results establish that the abnormalities observed in msl2 msl3 double mutants is partially dependent on the presence of functional MSL1 and suggest a possible role for communication between plastid and mitochondria in seedling development.
Collapse
Affiliation(s)
- Josephine S. Lee
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
- Present address:
Broad InstituteCambridgeMassachusetts
| | - Margaret E. Wilson
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
- Present address:
Donald Danforth Plant Science CenterSaint LouisMissouri
| | - Ryan A. Richardson
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
| | - Elizabeth S. Haswell
- NSF Center for Engineering MechanoBiologyDepartment of BiologyWashington University in Saint LouisSaint LouisMissouri
| |
Collapse
|
18
|
Liu L, Li J. Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:749. [PMID: 31249578 PMCID: PMC6582665 DOI: 10.3389/fpls.2019.00749] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
To adapt to constantly changing environmental conditions, plants have evolved sophisticated tolerance mechanisms to integrate various stress signals and to coordinate plant growth and development. It is well known that inter-organellar communications play important roles in maintaining cellular homeostasis in response to environmental stresses. The endoplasmic reticulum (ER), extending throughout the cytoplasm of eukaryotic cells, is a central organelle involved in lipid metabolism, Ca2+ homeostasis, and synthesis and folding of secretory and transmembrane proteins crucial to perceive and transduce environmental signals. The ER communicates with the nucleus via the highly conserved unfolded protein response pathway to mitigate ER stress. Importantly, recent studies have revealed that the dynamic ER network physically interacts with other intracellular organelles and endomembrane compartments, such as the Golgi complex, mitochondria, chloroplast, peroxisome, vacuole, and the plasma membrane, through multiple membrane contact sites between closely apposed organelles. In this review, we will discuss the signaling and metabolite exchanges between the ER and other organelles during abiotic stress responses in plants as well as the ER-organelle membrane contact sites and their associated tethering complexes.
Collapse
Affiliation(s)
- Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
19
|
Sun Q, Li YY, Wang Y, Zhao HH, Zhao TY, Zhang ZY, Li DW, Yu JL, Wang XB, Zhang YL, Han CG. Brassica yellows virus P0 protein impairs the antiviral activity of NbRAF2 in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3127-3139. [PMID: 29659986 PMCID: PMC5972614 DOI: 10.1093/jxb/ery131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/24/2018] [Indexed: 05/29/2023]
Abstract
In interactions between poleroviruses and their hosts, few cellular proteins have been identified that directly interact with the multifunctional virus P0 protein. To help explore the functions of P0, we identified a Brassica yellows virus genotype A (BrYV-A) P0BrA-interacting protein from Nicotiana benthamiana, Rubisco assembly factor 2 (NbRAF2), which localizes in the nucleus, cell periphery, chloroplasts, and stromules. We found that its C-terminal domain (amino acids 183-211) is required for self-interaction. A split ubiquitin membrane-bound yeast two-hybrid system and co-immunoprecipitation assays showed that NbRAF2 interacted with P0BrA, and co-localized in the nucleus and at the cell periphery. Interestingly, the nuclear pool of NbRAF2 decreased in the presence of P0BrA and during BrYV-A infection, and the P0BrA-mediated reduction of nuclear NbRAF2 required dual localization of NbRAF2 in the chloroplasts and nucleus. Tobacco rattle virus-based virus-induced gene silencing of NbRAF2 promoted BrYV-A infection in N. benthamiana, and the overexpression of nuclear NbRAF2 inhibited BrYV-A accumulation. Potato leafroll virus P0PL also interacted with NbRAF2 and decreased its nuclear accumulation, indicating that NbRAF2 may be a common target of poleroviruses. These results suggest that nuclear NbRAF2 possesses antiviral activity against BrYV-A infection, and that BrYV-A P0BrA interacts with NbRAF2 and alters its localization pattern to facilitate virus infection.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Yuan-Yuan Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Ying Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Hang-Hai Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Tian-Yu Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Zong-Ying Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Da-Wei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Jia-Lin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Yong-Liang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
20
|
Fujiwara MT, Yasuzawa M, Kojo KH, Niwa Y, Abe T, Yoshida S, Nakano T, Itoh RD. The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis. PLoS One 2018; 13:e0192380. [PMID: 29466386 PMCID: PMC5821325 DOI: 10.1371/journal.pone.0192380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/20/2018] [Indexed: 01/09/2023] Open
Abstract
Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division of epidermal plastids, and indicate that dysfunctions in ARC5 and ARC6 differentially affect plastid replication among mesophyll cells, PCs, and GCs within a single leaf.
Collapse
Affiliation(s)
- Makoto T. Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Mana Yasuzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Kei H. Kojo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | - Tomoko Abe
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Shigeo Yoshida
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Takeshi Nakano
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
- CREST, JST (Japan Science and Technology Agency), Kawaguchi, Saitama, Japan
| | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
21
|
Park E, Nedo A, Caplan JL, Dinesh-Kumar SP. Plant-microbe interactions: organelles and the cytoskeleton in action. THE NEW PHYTOLOGIST 2018; 217:1012-1028. [PMID: 29250789 DOI: 10.1111/nph.14959] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/10/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 1012 I. Introduction 1012 II. The endomembrane system in plant-microbe interactions 1013 III. The cytoskeleton in plant-microbe interactions 1017 IV. Organelles in plant-microbe interactions 1019 V. Inter-organellar communication in plant-microbe interactions 1022 VI. Conclusions and prospects 1023 Acknowledgements 1024 References 1024 SUMMARY: Plants have evolved a multilayered immune system with well-orchestrated defense strategies against pathogen attack. Multiple immune signaling pathways, coordinated by several subcellular compartments and interactions between these compartments, play important roles in a successful immune response. Pathogens use various strategies to either directly attack the plant's immune system or to indirectly manipulate the physiological status of the plant to inhibit an immune response. Microscopy-based approaches have allowed the direct visualization of membrane trafficking events, cytoskeleton reorganization, subcellular dynamics and inter-organellar communication during the immune response. Here, we discuss the contributions of organelles and the cytoskeleton to the plant's defense response against microbial pathogens, as well as the mechanisms used by pathogens to target these compartments to overcome the plant's defense barrier.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Alexander Nedo
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Jeffrey L Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
22
|
Barton KA, Wozny MR, Mathur N, Jaipargas EA, Mathur J. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells. J Cell Sci 2018; 131:jcs.202275. [PMID: 28320821 DOI: 10.1242/jcs.202275] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/16/2017] [Indexed: 01/11/2023] Open
Abstract
Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 (gl2) and immutans (im), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment.
Collapse
Affiliation(s)
- Kiah A Barton
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| | - Michael R Wozny
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| | - Neeta Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| | - Erica-Ashley Jaipargas
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
23
|
Kumar AS, Park E, Nedo A, Alqarni A, Ren L, Hoban K, Modla S, McDonald JH, Kambhamettu C, Dinesh-Kumar SP, Caplan JL. Stromule extension along microtubules coordinated with actin-mediated anchoring guides perinuclear chloroplast movement during innate immunity. eLife 2018; 7:e23625. [PMID: 29338837 PMCID: PMC5815851 DOI: 10.7554/elife.23625] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Dynamic tubular extensions from chloroplasts called stromules have recently been shown to connect with nuclei and function during innate immunity. We demonstrate that stromules extend along microtubules (MTs) and MT organization directly affects stromule dynamics since stabilization of MTs chemically or genetically increases stromule numbers and length. Although actin filaments (AFs) are not required for stromule extension, they provide anchor points for stromules. Interestingly, there is a strong correlation between the direction of stromules from chloroplasts and the direction of chloroplast movement. Stromule-directed chloroplast movement was observed in steady-state conditions without immune induction, suggesting it is a general function of stromules in epidermal cells. Our results show that MTs and AFs may facilitate perinuclear clustering of chloroplasts during an innate immune response. We propose a model in which stromules extend along MTs and connect to AF anchor points surrounding nuclei, facilitating stromule-directed movement of chloroplasts to nuclei during innate immunity.
Collapse
Affiliation(s)
| | - Eunsook Park
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisUnited States
- The Genome Center, College of Biological SciencesUniversity of California, DavisDavisUnited States
| | - Alexander Nedo
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Ali Alqarni
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| | - Li Ren
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| | - Kyle Hoban
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Shannon Modla
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
| | - John H McDonald
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Chandra Kambhamettu
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
- Department of Computer and Information Sciences, College of EngineeringUniversity of DelawareNewarkUnited States
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisUnited States
- The Genome Center, College of Biological SciencesUniversity of California, DavisDavisUnited States
| | - Jeffrey Lewis Caplan
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| |
Collapse
|
24
|
Barczak-Brzyżek A, Kiełkiewicz M, Górecka M, Kot K, Karpińska B, Filipecki M. Abscisic Acid Insensitive 4 transcription factor is an important player in the response of Arabidopsis thaliana to two-spotted spider mite (Tetranychus urticae) feeding. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:317-326. [PMID: 29210003 PMCID: PMC5727149 DOI: 10.1007/s10493-017-0203-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/24/2017] [Indexed: 05/04/2023]
Abstract
Plants growing in constantly changeable environmental conditions are compelled to evolve regulatory mechanisms to cope with biotic and abiotic stresses. Effective defence to invaders is largely connected with phytohormone regulation, resulting in the production of numerous defensive proteins and specialized metabolites. In our work, we elucidated the role of the Abscisic Acid Insensitive 4 (ABI4) transcription factor in the plant response to the two-spotted spider mite (TSSM). This polyphagous mite is one of the most destructive herbivores, which sucks mesophyll cells of numerous crop and wild plants. Compared to the wild-type (Col-0) Arabidopsis thaliana plants, the abi4 mutant demonstrated increased susceptibility to TSSM, reflected as enhanced female fecundity and greater frequency of mite leaf damage after trypan blue staining. Because ABI4 is regarded as an important player in the plastid-to-nucleus retrograde signalling process, we investigated the plastid envelope membrane dynamics using stroma-associated fluorescent marker. Our results indicated a clear increase in the number of stroma-filled tubular structures deriving from the plastid membrane (stromules) in the close proximity of the site of mite leaf damage, highlighting the importance of chloroplast-derived signals in the response to TSSM feeding activity.
Collapse
Affiliation(s)
| | | | | | - Karol Kot
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Barbara Karpińska
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
25
|
Pérez-Sancho J, Tilsner J, Samuels AL, Botella MA, Bayer EM, Rosado A. Stitching Organelles: Organization and Function of Specialized Membrane Contact Sites in Plants. Trends Cell Biol 2016; 26:705-717. [PMID: 27318776 DOI: 10.1016/j.tcb.2016.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023]
Abstract
The coordination of multiple metabolic activities in plants relies on an interorganelle communication network established through membrane contact sites (MCS). The MCS are maintained in transient or durable configurations by tethering structures which keep the two membranes in close proximity, and create chemical microdomains that allow localized and targeted exchange of small molecules and possibly proteins. The past few years have witnessed a dramatic increase in our understanding of the structural and molecular organization of plant interorganelle MCS, and their crucial roles in plant specialized functions including stress responses, cell to cell communication, and lipid transport. In this review we summarize recent advances in understanding the molecular components, structural organization, and functions of different plant-specific MCS architectures.
Collapse
Affiliation(s)
- Jessica Pérez-Sancho
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Malaga, Spain; Department of Botany, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - A Lacey Samuels
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Miguel A Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Malaga, Spain
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis (LBM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5200, University of Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon CEDEX, France
| | - Abel Rosado
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
26
|
Serrano I, Audran C, Rivas S. Chloroplasts at work during plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3845-54. [PMID: 26994477 DOI: 10.1093/jxb/erw088] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The major role played by chloroplasts during light harvesting, energy production, redox homeostasis, and retrograde signalling processes has been extensively characterized. Beyond the obvious link between chloroplast functions in primary metabolism and as providers of photosynthesis-derived carbon sources and energy, a growing body of evidence supports a central role for chloroplasts as integrators of environmental signals and, more particularly, as key defence organelles. Here, we review the importance of these organelles as primary sites for the biosynthesis and transmission of pro-defence signals during plant immune responses. In addition, we highlight interorganellar communication as a crucial process for amplification of the immune response. Finally, molecular strategies used by microbes to manipulate, directly or indirectly, the production/function of defence-related signalling molecules and subvert chloroplast-based defences are also discussed.
Collapse
Affiliation(s)
- Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
27
|
Ho J, Theg SM. The Formation of Stromules In Vitro from Chloroplasts Isolated from Nicotiana benthamiana. PLoS One 2016; 11:e0146489. [PMID: 26840974 PMCID: PMC4739594 DOI: 10.1371/journal.pone.0146489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022] Open
Abstract
Stromules are stroma-containing tubules that have been observed to emanate from the main plastidic body in vivo. These structures have been shown to require cytoskeletal components for movement. Though numerous studies have shown a close association with the endoplasmic reticulum, nucleus, mitochondria, and other plastids, the mechanism of formation and their overall function remain unknown. A limiting factor in studying these structures has been the lack of a reconstituted system for in vitro stromule formation. In this study, stromule formation was induced in vitro by adding a plant extract fraction that is greater than 100 kDa to a population of isolated chloroplasts. Kinetic measurements show that stromule formation occurs within ~10 seconds after the addition of the plant extract fraction. Heat inactivation and apyrase treatment reveal that the stromule stimulating compound found in the extract fraction is a protein or protein complex 100 kDa or greater. The formation of the stromules in vitro with isolated chloroplasts and a concentrated fraction of cell extract opens an avenue for the biochemical dissection of this process that has heretofore been studied only in vivo.
Collapse
Affiliation(s)
- Jonathan Ho
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Steven M. Theg
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
28
|
GRIFFITHS N, JAIPARGAS EA, WOZNY M, BARTON K, MATHUR N, DELFOSSE K, MATHUR J. Photo-convertible fluorescent proteins as tools for fresh insights on subcellular interactions in plants. J Microsc 2016; 263:148-57. [DOI: 10.1111/jmi.12383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022]
Affiliation(s)
- N. GRIFFITHS
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - E.-A. JAIPARGAS
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - M.R. WOZNY
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - K.A. BARTON
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - N. MATHUR
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - K. DELFOSSE
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - J. MATHUR
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| |
Collapse
|
29
|
Buchner O, Moser T, Karadar M, Roach T, Kranner I, Holzinger A. Formation of chloroplast protrusions and catalase activity in alpine Ranunculus glacialis under elevated temperature and different CO2/O2 ratios. PROTOPLASMA 2015; 252:1613-9. [PMID: 25701381 PMCID: PMC4628086 DOI: 10.1007/s00709-015-0778-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 05/23/2023]
Abstract
Chloroplast protrusions (CPs) have frequently been observed in plants, but their significance to plant metabolism remains largely unknown. We investigated in the alpine plant Ranunculus glacialis L. treated under various CO2 concentrations if CP formation is related to photorespiration, specifically focusing on hydrogen peroxide (H2O2) metabolism. Immediately after exposure to different CO2 concentrations, the formation of CPs in leaf mesophyll cells was assessed and correlated to catalase (CAT) and ascorbate peroxidase (APX) activities. Under natural irradiation, the relative proportion of chloroplasts with protrusions (rCP) was highest (58.7 %) after exposure to low CO2 (38 ppm) and was lowest (3.0 %) at high CO2 (10,000 ppm). The same relationship was found for CAT activity, which decreased from 34.7 nkat mg(-1) DW under low CO2 to 18.4 nkat mg(-1) DW under high CO2, while APX activity did not change significantly. When exposed to natural CO2 concentration (380 ppm) in darkness, CP formation was significantly lower (18.2 %) compared to natural solar irradiation (41.3 %). In summary, CP formation and CAT activity are significantly increased under conditions that favour photorespiration, while in darkness or at high CO2 concentration under light, CP formation is significantly lower, providing evidence for an association between CPs and photorespiration.
Collapse
Affiliation(s)
- Othmar Buchner
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria.
| | - Tim Moser
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Matthias Karadar
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Thomas Roach
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Ilse Kranner
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| |
Collapse
|
30
|
Hanson MR. Reactive oxygen species signal chloroplasts to extend themselves. Proc Natl Acad Sci U S A 2015; 112:9799-800. [PMID: 26204917 PMCID: PMC4538680 DOI: 10.1073/pnas.1512645112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
31
|
Szymańska R, Nowicka B, Gabruk M, Glińska S, Michlewska S, Dłużewska J, Sawicka A, Kruk J, Laitinen R. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions. PHYSIOLOGIA PLANTARUM 2015; 154:194-209. [PMID: 25214438 DOI: 10.1111/ppl.12278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik-5 (Lov-5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high-light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non-photochemical quenching than Lov-5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)-pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions.
Collapse
Affiliation(s)
- Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, 30-059, Poland
| | - Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Michał Gabruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Sława Glińska
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-237, Poland
| | - Sylwia Michlewska
- Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-237, Poland
| | - Jolanta Dłużewska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Anna Sawicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Roosa Laitinen
- Max-Planck-Institute of Molecular Plant Physiology, Molecular Mechanisms of Adaptation, Potsdam-Golm, 14476, Germany
| |
Collapse
|
32
|
Borucki W, Bederska M, Sujkowska-Rybkowska M. Visualisation of plastid outgrowths in potato (Solanum tuberosum L.) tubers by carboxyfluorescein diacetate staining. PLANT CELL REPORTS 2015; 34:853-860. [PMID: 25627254 PMCID: PMC4405334 DOI: 10.1007/s00299-015-1748-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/12/2015] [Accepted: 01/17/2015] [Indexed: 05/29/2023]
Abstract
We describe two types of plastid outgrowths visualised in potato tubers after carboxyfluorescein diacetate staining. Probable esterase activity of the outgrowths has been demonstrated for the first time ever. Plastid outgrowths were observed in the phelloderm and storage parenchyma cells of red potato (S. tuberosum L. cv. Rosalinde) tubers after administration of carboxyfluorescein diacetate stain. Endogenous esterases cleaved off acetic groups to release membrane-unpermeable green fluorescing carboxyfluorescein which accumulated differentially in particular cell compartments. The intensive green fluorescence of carboxyfluorescein exhibited highly branched stromules (stroma-filled plastid tubular projections of the plastid envelope) and allowed distinguishing them within cytoplasmic strands of the phelloderm cells. Stromules (1) were directed towards the nucleus or (2) penetrated the whole cells through the cytoplasmic bands of highly vacuolated phelloderm cells. Those directed towards the nucleus were flattened and adhered to the nuclear envelope. Stromule-like interconnections between two parts of the same plastids (isthmuses) were also observed. We also documented the formation of another type of the stroma-filled plastid outgrowths, referred to here as protrusions, which differed from previously defined stromules in both morphology and esterase activity. Unlike stromules, the protrusions were found to be associated with developmental processes leading to starch accumulation in the storage parenchyma cells. These results strongly suggest that stromules and protrusions exhibit esterase activity. This has been demonstrated for the first time. Morphological and biochemical features as well as possible functions of stromules and protrusions are discussed below.
Collapse
Affiliation(s)
- Wojciech Borucki
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland,
| | | | | |
Collapse
|
33
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
34
|
Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. FRONTIERS IN PLANT SCIENCE 2015; 6:781. [PMID: 26500659 PMCID: PMC4593955 DOI: 10.3389/fpls.2015.00781] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid unintended consequences on plant growth and development.
Collapse
Affiliation(s)
| | - Tessa M. Burch-Smith
- *Correspondence: Tessa M. Burch-Smith, Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, 1414 Cumberland Avenue, M407 Walters Life Science, Knoxville, TN 37932, USA,
| |
Collapse
|
35
|
Schattat MH, Barton KA, Mathur J. The myth of interconnected plastids and related phenomena. PROTOPLASMA 2015; 252:359-71. [PMID: 24965372 DOI: 10.1007/s00709-014-0666-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/12/2014] [Indexed: 05/08/2023]
Abstract
Studies spread over nearly two and a half centuries have identified the primary plastid in autotrophic algae and plants as a pleomorphic, multifunctional organelle comprising of a double-membrane envelope enclosing an organization of internal membranes submerged in a watery stroma. All plastid units have been observed extending and retracting thin stroma-filled tubules named stromules sporadically. Observations on living plant cells often convey the impression that stromules connect two or more independent plastids with each other. When photo-bleaching techniques were used to suggest that macromolecules such as the green fluorescent protein could flow between already interconnected plastids, for many people this impression changed to conviction. However, it was noticed only recently that the concept of protein flow between plastids rests solely on the words "interconnected plastids" for which details have never been provided. We have critically reviewed botanical literature dating back to the 1880s for understanding this term and the phenomena that have become associated with it. We find that while meticulously detailed ontogenic studies spanning nearly 150 years have established the plastid as a singular unit organelle, there is no experimental support for the idea that interconnected plastids exist under normal conditions of growth and development. In this review, while we consider several possibilities that might allow a single elongated plastid to be misinterpreted as two or more interconnected plastids, our final conclusion is that the concept of direct protein flow between plastids is based on an unfounded assumption.
Collapse
Affiliation(s)
- Martin H Schattat
- Martin-Luther-Universität Halle-Wittenberg Pflanzenphysiologie, Weinbergweg 10, 06120, Halle (Saale), Germany,
| | | | | |
Collapse
|
36
|
Erickson JL, Ziegler J, Guevara D, Abel S, Klösgen RB, Mathur J, Rothstein SJ, Schattat MH. Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays. BMC PLANT BIOLOGY 2014; 14:127. [PMID: 24886417 PMCID: PMC4062310 DOI: 10.1186/1471-2229-14-127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/24/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain 'normal' sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or 'stroma-filled-tubules' emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes. RESULTS Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation. CONCLUSION Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as 'normal' as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy.
Collapse
Affiliation(s)
- Jessica L Erickson
- Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany
| | - Jörg Ziegler
- Abteilung Molekulare Signalverarbeitung, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle/Saale 06120, Germany
| | - David Guevara
- Present Address: Pioneer Hi-Bred, 12111 Mississauga Rd, Georgetown, ON L7G 4S7, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada
| | - Steffen Abel
- Abteilung Molekulare Signalverarbeitung, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle/Saale 06120, Germany
| | - Ralf B Klösgen
- Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada
| | - Martin H Schattat
- Abteilung Pflanzen Physiologie, Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, Halle/Saale 06120, Germany
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada
| |
Collapse
|
37
|
Hanson MR, Sattarzadeh A. Fluorescent labeling and confocal microscopic imaging of chloroplasts and non-green plastids. Methods Mol Biol 2014; 1132:125-43. [PMID: 24599850 DOI: 10.1007/978-1-62703-995-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
While chlorophyll has served as an excellent label for plastids in green tissue, the development of fluorescent proteins has allowed their ready visualization in all tissues of the plants, revealing new features of their morphology and motility. Gene regulatory sequences in plastid transgenes can be optimized through the use of fluorescent protein reporters. Fluorescent labeling of plastids simultaneously with other subcellular locations reveals dynamic interactions and mutant phenotypes. Transient expression of fluorescent protein fusions is particularly valuable to determine whether or not a protein of unknown function is targeted to the plastid. Particle bombardment and agroinfiltration methods described here are convenient for imaging fluorescent proteins in plant organelles. With proper selection of fluorophores for labeling the components of the plant cell, confocal microscopy can produce extremely informative images at high resolution at depths not feasible by standard epifluorescence microscopy.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
38
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
39
|
Szechyńska-Hebda M, Karpiński S. Light intensity-dependent retrograde signalling in higher plants. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1501-16. [PMID: 23850030 DOI: 10.1016/j.jplph.2013.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 05/23/2023]
Abstract
Plants are able to acclimate to highly fluctuating light environment and evolved a short- and long-term light acclimatory responses, that are dependent on chloroplasts retrograde signalling. In this review we summarise recent evidences suggesting that the chloroplasts act as key sensors of light intensity changes in a wide range (low, high and excess light conditions) as well as sensors of darkness. They also participate in transduction and synchronisation of systemic retrograde signalling in response to differential light exposure of distinct leaves. Regulation of intra- and inter-cellular chloroplast retrograde signalling is dependent on the developmental and functional stage of the plastids. Therefore, it is discussed in following subsections: firstly, chloroplast biogenic control of nuclear genes, for example, signals related to photosystems and pigment biogenesis during early plastid development; secondly, signals in the mature chloroplast induced by changes in photosynthetic electron transport, reactive oxygen species, hormones and metabolite biosynthesis; thirdly, chloroplast signalling during leaf senescence. Moreover, with a help of meta-analysis of multiple microarray experiments, we showed that the expression of the same set of genes is regulated specifically in particular types of signals and types of light conditions. Furthermore, we also highlight the alternative scenarios of the chloroplast retrograde signals transduction and coordination linked to the role of photo-electrochemical signalling.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland; Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warszawa, Poland
| | | |
Collapse
|
40
|
Wang Y, Yu B, Zhao J, Guo J, Li Y, Han S, Huang L, Du Y, Hong Y, Tang D, Liu Y. Autophagy contributes to leaf starch degradation. THE PLANT CELL 2013; 25:1383-99. [PMID: 23564204 PMCID: PMC3663275 DOI: 10.1105/tpc.112.108993] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 05/18/2023]
Abstract
Transitory starch, a major photosynthetic product in the leaves of land plants, accumulates in chloroplasts during the day and is hydrolyzed to maltose and Glc at night to support respiration and metabolism. Previous studies in Arabidopsis thaliana indicated that the degradation of transitory starch only occurs in the chloroplasts. Here, we report that autophagy, a nonplastidial process, participates in leaf starch degradation. Excessive starch accumulation was observed in Nicotiana benthamiana seedlings treated with an autophagy inhibitor and in autophagy-related (ATG) gene-silenced N. benthamiana and in Arabidopsis atg mutants. Autophagic activity in the leaves responded to the dynamic starch contents during the night. Microscopy showed that a type of small starch granule-like structure (SSGL) was localized outside the chloroplast and was sequestered by autophagic bodies. Moreover, an increased number of SSGLs was observed during starch depletion, and disruption of autophagy reduced the number of vacuole-localized SSGLs. These data suggest that autophagy contributes to transitory starch degradation by sequestering SSGLs to the vacuole for their subsequent breakdown.
Collapse
Affiliation(s)
- Yan Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingjie Yu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinping Zhao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangbo Guo
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Shaojie Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Huang
- Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Yumei Du
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
|
42
|
Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov EI, Torrance L. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. FRONTIERS IN PLANT SCIENCE 2012; 3:290. [PMID: 23269927 PMCID: PMC3529358 DOI: 10.3389/fpls.2012.00290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/05/2012] [Indexed: 05/27/2023]
Abstract
The potato mop-top virus (PMTV) triple gene block 2 (TGB2) movement proteins fused to monomeric red fluorescent protein (mRFP-TGB2) was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localizations and interactions of mRFP-TGB2 were investigated using confocal imaging [confocal laser-scanning microscope, (CLSM)] and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum (ER), mobile granules, small round structures (1-2 μm in diameter), and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labeled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein (CP), genomic RNA and fluorescently-labeled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localized to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts.
Collapse
Affiliation(s)
| | | | | | - Angelika Ziegler
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Institute for Epidemiology and Pathogen DiagnosticsQuedlinburg, Germany
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural SciencesUppsala, Sweden
| | | |
Collapse
|
43
|
Krause K, Oetke S, Krupinska K. Dual targeting and retrograde translocation: regulators of plant nuclear gene expression can be sequestered by plastids. Int J Mol Sci 2012; 13:11085-11101. [PMID: 23109840 PMCID: PMC3472732 DOI: 10.3390/ijms130911085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 11/16/2022] Open
Abstract
Changes in the developmental or metabolic state of plastids can trigger profound changes in the transcript profiles of nuclear genes. Many nuclear transcription factors were shown to be controlled by signals generated in the organelles. In addition to the many different compounds for which an involvement in retrograde signaling is discussed, accumulating evidence suggests a role for proteins in plastid-to-nucleus communication. These proteins might be sequestered in the plastids before they act as transcriptional regulators in the nucleus. Indeed, several proteins exhibiting a dual localization in the plastids and the nucleus are promising candidates for such a direct signal transduction involving regulatory protein storage in the plastids. Among such proteins, the nuclear transcription factor WHIRLY1 stands out as being the only protein for which an export from plastids and translocation to the nucleus has been experimentally demonstrated. Other proteins, however, strongly support the notion that this pathway might be more common than currently believed.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø 9037, Norway; E-Mail:
| | - Svenja Oetke
- Institute of Botany, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany; E-Mail:
| | - Karin Krupinska
- Institute of Botany, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-431-880-4240; Fax: +49-431-880-4238
| |
Collapse
|
44
|
Schattat MH, Klösgen RB, Mathur J. New insights on stromules: stroma filled tubules extended by independent plastids. PLANT SIGNALING & BEHAVIOR 2012; 7:1132-7. [PMID: 22899053 PMCID: PMC3489645 DOI: 10.4161/psb.21342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recognition of stromules as sporadically extended stroma filled tubules from all kinds of plastids constitutes one of the major insights that resulted from the direct application of green fluorescent protein aided imaging of living plant cells. Observations of dynamic green fluorescent stromules strongly suggested that plastids frequently interact with each other while photo-bleaching of interconnected plastids indicated that proteins can move within the stroma filled tubules. These observations readily fit into the prevailing concept of the endosymbiogenic origins of plastids and provided stromules the status of conduits for inter-plastid communication and macromolecule transfer. However, experimental evidence obtained recently through the use of photoconvertible protein labeled stromules strongly supports plastid independence rather than their interconnectivity. Additional information on stress conditions inducing stromules and observations on their alignment with other organelles suggests that the major role of stromules is to increase the interactive surface of a plastid with the rest of the cytoplasm.
Collapse
Affiliation(s)
- Martin H. Schattat
- Laboratory of Plant Development and Interactions; Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
- Institut für Biologie-Pflanzenphysiologie; Martin-Luther-Universität; Halle Wittenberg; Halle/Saale, Germany
- The Sainsbury Laboratory; Norwich Research Park; Norwich, UK
| | - Ralf Bernd Klösgen
- Institut für Biologie-Pflanzenphysiologie; Martin-Luther-Universität; Halle Wittenberg; Halle/Saale, Germany
| | - Jaideep Mathur
- Laboratory of Plant Development and Interactions; Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| |
Collapse
|
45
|
Wang D, Lloyd AH, Timmis JN. Nuclear genome diversity in somatic cells is accelerated by environmental stress. PLANT SIGNALING & BEHAVIOR 2012; 7:595-7. [PMID: 22516813 PMCID: PMC3419027 DOI: 10.4161/psb.19871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
DNA transfer to the nucleus from prokaryotic ancestors of the cytoplasmic organelles (mitochondria and plastids) has occurred during endosymbiotic evolution in eukaryotes. In most eukaryotes, organelle DNA transfer to nucleus is a continuing process. The frequency of DNA transposition from plastid (chloroplast) to nucleus has been measured in tobacco plants (Nicotiana tabacum) experimentally. We have monitored the effects of environmental stress on the rate of DNA transfer from plastid to nucleus by exploiting nucleus-specific reporter genes in two transplastomic tobacco lines. DNA migration from plastids to the nucleus is markedly increased by mild heat stress. In addition, insertions of mitochondrial DNA into induced double-strand breaks are observed after heat treatment. These results show that movement of organelle DNA to the nucleus is remarkably increased by heat stress.
Collapse
Affiliation(s)
- Dong Wang
- Discipline of Genetics; School of Molecular and Biomedical Science; The University of Adelaide; South Australia, Australia
| | | | - Jeremy N. Timmis
- Discipline of Genetics; School of Molecular and Biomedical Science; The University of Adelaide; South Australia, Australia
| |
Collapse
|
46
|
Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. PLANT, CELL & ENVIRONMENT 2012; 35:259-70. [PMID: 21486305 DOI: 10.1111/j.1365-3040.2011.02336.x] [Citation(s) in RCA: 851] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The redox state of the chloroplast and mitochondria, the two main powerhouses of photosynthesizing eukaryotes, is maintained by a delicate balance between energy production and consumption, and affected by the need to avoid increased production of reactive oxygen species (ROS). These demands are especially critical during exposure to extreme environmental conditions, such as high light (HL) intensity, heat, drought or a combination of different environmental stresses. Under these conditions, ROS and redox cues, generated in the chloroplast and mitochondria, are essential for maintaining normal energy and metabolic fluxes, optimizing different cell functions, activating acclimation responses through retrograde signalling, and controlling whole-plant systemic signalling pathways. Regulation of the multiple redox and ROS signals in plants requires a high degree of coordination and balance between signalling and metabolic pathways in different cellular compartments. In this review, we provide an update on ROS and redox signalling in the context of abiotic stress responses, while addressing their role in retrograde regulation, systemic acquired acclimation and cellular coordination in plants.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | |
Collapse
|
47
|
Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, Natesan SKA, Newell CA. Plastid stromules are induced by stress treatments acting through abscisic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:387-98. [PMID: 21951173 DOI: 10.1111/j.1365-313x.2011.04800.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stromules are highly dynamic stroma-filled tubules that extend from the surface of all plastid types in all multi-cellular plants examined to date. The stromule frequency (percentage of plastids with stromules) has generally been regarded as characteristic of the cell and tissue type. However, the present study shows that various stress treatments, including drought and salt stress, are able to induce stromule formation in the epidermal cells of tobacco hypocotyls and the root hairs of wheat seedlings. Application of abscisic acid (ABA) to tobacco and wheat seedlings induced stromule formation very effectively, and application of abamine, a specific inhibitor of ABA synthesis, prevented stromule induction by mannitol. Stromule induction by ABA was dependent on cytosolic protein synthesis, but not plastid protein synthesis. Stromules were more abundant in dark-grown seedlings than in light-grown seedlings, and the stromule frequency was increased by transfer of light-grown seedlings to the dark and decreased by illumination of dark-grown seedlings. Stromule formation was sensitive to red and far-red light, but not to blue light. Stromules were induced by treatment with ACC (1-aminocyclopropane-1-carboxylic acid), the first committed ethylene precursor, and by treatment with methyl jasmonate, but disappeared upon treatment of seedlings with salicylate. These observations indicate that abiotic, and most probably biotic, stresses are able to induce the formation of stromules in tobacco and wheat seedlings.
Collapse
Affiliation(s)
- John C Gray
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Thabet I, Guirimand G, Guihur A, Lanoue A, Courdavault V, Papon N, Bouzid S, Giglioli-Guivarc'h N, Simkin AJ, Clastre M. Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Mol Biol Rep 2011; 39:3235-43. [PMID: 21706164 DOI: 10.1007/s11033-011-1091-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/14/2011] [Indexed: 11/25/2022]
Abstract
The enzyme geranylgeranyl diphosphate synthase (GGPS: EC 2.5.1.1, EC 2.5.1.10, EC 2.5.1.29) catalyses the formation of geranylgeranyl diphosphate (GGPP) from isopentenyl diphosphate and dimethylallyl diphosphate via three successive condensation reactions. A full-length nucleotide sequence of GGPS (named CrGGPS) was cloned from the medicinal plant Catharanthus roseus. The deduced polypeptide has 383 amino acids with a calculated mass of 41.6 kDa and possesses prenyltransferase signatures characteristic of plant type II GGPS. The enzyme was characterized by functional complementation in carotenoid accumulating strains of Escherichia coli. When cultures of Catharanthus cell lines were treated with methyljasmonate, no specific increase in transcript levels were observed. In plants, GGPS are encoded by a small multigene family and the isoforms have been shown to be localized in three different subcellular compartments: chloroplast, endoplasmic reticulum and mitochondria. We investigated the subcellular distribution of CrGGPS through transient transformations of C. roseus cells with a yellow fluorescent protein-fused construct. Our results clearly indicate that CrGGPS is located to plastids within stroma and stromules.
Collapse
Affiliation(s)
- Insaf Thabet
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais, 31 avenue Monge, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shaw DJ, Gray JC. Visualisation of stromules in transgenic wheat expressing a plastid-targeted yellow fluorescent protein. PLANTA 2011; 233:961-70. [PMID: 21274561 DOI: 10.1007/s00425-011-1351-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/05/2011] [Indexed: 05/24/2023]
Abstract
Stromules are stroma-filled tubules that extend from the plastids in all multicellular plants examined to date. To facilitate the visualisation of stromules on different plastid types in various tissues of bread wheat (Triticum aestivum L.), a chimeric gene construct encoding enhanced yellow fluorescent protein (EYFP) targeted to plastids with the transit peptide of wheat granule-bound starch synthase I was introduced by Agrobacterium-mediated transformation. The gene construct was under the control of the rice Actin1 promoter, and EYFP fluorescence was detected in plastids in all cell types throughout the transgenic plants. Stromules were observed on all plastid types, although the stromule length and abundance varied markedly in different tissues. The longest stromules (up to 40 μm) were observed in epidermal cells of leaves, whereas only short beak-like stromules were observed on chloroplasts in mesophyll cells. Epidermal cells in leaves and roots contained the highest proportion of plastids with stromules, and stromules were also abundant on amyloplasts in the endosperm tissue of developing seeds. The general features of stromule morphology and distribution were similar to those shown previously for tobacco (Nicotiana tabacum L.) and arabidopsis (Arabidopsis thaliana (L.) Heynh.).
Collapse
Affiliation(s)
- Daniel J Shaw
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | |
Collapse
|
50
|
Hanson MR, Sattarzadeh A. Stromules: recent insights into a long neglected feature of plastid morphology and function. PLANT PHYSIOLOGY 2011; 155:1486-92. [PMID: 21330493 PMCID: PMC3091082 DOI: 10.1104/pp.110.170852] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 05/20/2023]
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|