1
|
Kuneš J, Zicha J. Research on Experimental Hypertension in Prague (1966-2009). Physiol Res 2024; 73:S49-S66. [PMID: 39016152 PMCID: PMC11412355 DOI: 10.33549/physiolres.935425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.
Collapse
Affiliation(s)
- J Kuneš
- Laboratory of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
2
|
Pravenec M, Kožich V, Krijt J, Sokolová J, Zídek V, Landa V, Mlejnek P, Šilhavý J, Šimáková M, Škop V, Trnovská J, Kazdová L, Kajiya T, Wang J, Kurtz TW. Genetic Variation in Renal Expression ofFolate Receptor 1(Folr1) Gene Predisposes Spontaneously Hypertensive Rats to Metabolic Syndrome. Hypertension 2016; 67:335-41. [DOI: 10.1161/hypertensionaha.115.06158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/18/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Michal Pravenec
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Viktor Kožich
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jakub Krijt
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jitka Sokolová
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Václav Zídek
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Vladimír Landa
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Petr Mlejnek
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jan Šilhavý
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Miroslava Šimáková
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Vojtěch Škop
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jaroslava Trnovská
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Ludmila Kazdová
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Takashi Kajiya
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jiaming Wang
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Theodore W. Kurtz
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| |
Collapse
|
3
|
Mascher M, Stein N. Genetic anchoring of whole-genome shotgun assemblies. Front Genet 2014; 5:208. [PMID: 25071835 PMCID: PMC4083584 DOI: 10.3389/fgene.2014.00208] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022] Open
Abstract
The recent advances in sequencing throughput and genome assembly algorithms have established whole-genome shotgun (WGS) assemblies as the cornerstone of the genomic infrastructure for many species. WGS assemblies can be constructed with comparative ease and give a comprehensive representation of the gene space even of large and complex genomes. One major obstacle in utilizing WGS assemblies for important research applications such as gene isolation or comparative genomics has been the lack of chromosomal positioning and contextualization of short sequence contigs. Assigning chromosomal locations to sequence contigs required the construction and integration of genome-wide physical maps and dense genetic linkage maps as well as synteny to model species. Recently, methods to rapidly construct ultra-dense linkage maps encompassing millions of genetic markers from WGS sequencing data of segregating populations have made possible the direct assignment of genetic positions to short sequence contigs. Here, we review recent developments in the integration of WGS assemblies and sequence-based linkage maps, discuss challenges for further improvement of the methodology and outline possible applications building on genetically anchored WGS assemblies.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Stadt Seeland Germany
| |
Collapse
|
4
|
Cirelli KM, Gorfu G, Hassan MA, Printz M, Crown D, Leppla SH, Grigg ME, Saeij JPJ, Moayeri M. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii. PLoS Pathog 2014; 10:e1003927. [PMID: 24626226 PMCID: PMC3953412 DOI: 10.1371/journal.ppat.1003927] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/21/2013] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1β/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages. Inflammasomes are multiprotein complexes that are a major component of the innate immune system. They contain “sensor” proteins that are responsible for detecting various microbial and environmental danger signals and function by activating caspase-1, an enzyme that mediates cleavage and release of the pro-inflammatory cytokines, IL-1β and IL-18. Toxoplasma gondii is a highly successful protozoan parasite capable of infecting a wide range of host species that have variable levels of resistance. Rat strains have been previously shown to vary in their susceptibility to this parasite. We report here that rat macrophages from different inbred strains also vary in sensitivity to Toxoplasma induced lysis. We find that NLRP1, an inflammasome sensor whose only known agonist is anthrax LT, is also activated by Toxoplasma infection. In rats there is a perfect correlation between NLRP1 sequence and macrophage sensitivity to Toxoplasma-induced rapid cell death, inhibition of parasite proliferation, and IL-1β/IL-18 processing. Nlrp1 genes from sensitive rat macrophages can confer sensitivity to this rapid cell death when expressed in Toxoplasma resistant rat macrophages. Our findings suggest Toxoplasma is a new activator of the NLRP1 inflammasome.
Collapse
Affiliation(s)
- Kimberly M. Cirelli
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Gezahegn Gorfu
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Musa A. Hassan
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Morton Printz
- Department of Pharmacology, University of California-San Diego, La Jolla, California, United States of America
| | - Devorah Crown
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Stephen H. Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- * E-mail: (MEG); (JPJS); (MM)
| | - Jeroen P. J. Saeij
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
- * E-mail: (MEG); (JPJS); (MM)
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- * E-mail: (MEG); (JPJS); (MM)
| |
Collapse
|
5
|
Moreno C, Lazar J, Jacob HJ, Kwitek AE. Comparative genomics for detecting human disease genes. ADVANCES IN GENETICS 2008; 60:655-97. [PMID: 18358336 DOI: 10.1016/s0065-2660(07)00423-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Originally, comparative genomics was geared toward defining the synteny of genes between species. As the human genome project accelerated, there was an increase in the number of tools and means to make comparisons culminating in having the genomic sequence for a large number of organisms spanning the evolutionary tree. With this level of resolution and a long history of comparative biology and comparative genetics, it is now possible to use comparative genomics to build or select better animal models and to facilitate gene discovery. Comparative genomics takes advantage of the functional genetic information from other organisms, (vertebrates and invertebrates), to apply it to the study of human physiology and disease. It allows for the identification of genes and regulatory regions, and for acquiring knowledge about gene function. In this chapter, the current state of comparative genomics and the available tools are discussed in the context of developing animal model systems that reflect the clinical picture.
Collapse
Affiliation(s)
- Carol Moreno
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Genetic studies of human and experimental hypertension provide a means to identify key pathways that predispose individuals to increased blood pressure and associated risk factors for cardiovascular and metabolic diseases. The pathways so identified can then serve as targets for therapeutic intervention. This article discusses genetic studies in animal models of hypertension in which specific genes have been identified that regulate blood pressure and biochemical features of the metabolic syndrome. Consistent with studies in humans with monogenic disorders of blood pressure regulation, studies in rat models have demonstrated that naturally occurring genetic variation in pathways regulating sodium chloride transport can contribute to inherited variation in blood pressure. Such studies have also indicated that naturally occurring variation in genes, such as Cd36, that regulate fatty acid metabolism and ectopic accumulation of fat and fat metabolites can influence both biochemical and hemodynamic features of the metabolic syndrome and mediate the antidiabetic effects of drugs that activate the peroxisome proliferator-activated receptor-gamma. Angiotensin II receptor blockers with the ability to selectively modulate activity of peroxisome proliferator-activated receptor-gamma and expression of genes in these fat metabolism pathways may represent useful prototypes for a new class of transcription modulating drugs aimed at treating patients with hypertension and the metabolic syndrome.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology and Center for Applied Genomics, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
7
|
Abstract
The need to translate genes to function has positioned the rat as an invaluable animal model for genomic research. The significant increase in genomic resources in recent years has had an immediate functional application in the rat. Many of the resources for translational research are already in place and are ready to be combined with the years of physiological knowledge accumulated in numerous rat models, which is the subject of this perspective. Based on the successes to date and the research projects under way to further enhance the infrastructure of the rat, we also project where research in the rat will be in the near future. The impact of the rat genome project has just started, but it is an exciting time with tremendous progress.
Collapse
Affiliation(s)
- Jozef Lazar
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
8
|
Pravenec M, Kren V. Genetic analysis of complex cardiovascular traits in the spontaneously hypertensive rat. Exp Physiol 2005; 90:273-6. [PMID: 15728137 DOI: 10.1113/expphysiol.2004.029322] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identification of the genetic determinants of common diseases is a major challenge for current biomedical research. Combining linkage analyses of essentially monogenic cis-regulated expression phenotypes with oligogenic intermediate physiological phenotypes represents a promising approach for identification of quantitative trait loci at the molecular level. In the present review, a genetic analysis of cardiovascular phenotypes studied at several levels of complexity in rat recombinant inbred strains is described.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | | |
Collapse
|
9
|
Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Müller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 2005; 37:243-53. [PMID: 15711544 DOI: 10.1038/ng1522] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 01/26/2005] [Indexed: 11/08/2022]
Abstract
Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.
Collapse
Affiliation(s)
- Norbert Hubner
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch 13125, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yezerski A, Stevens L, Ametrano J. A genetic linkage map for Tribolium confusum based on random amplified polymorphic DNAs and recombinant inbred lines. INSECT MOLECULAR BIOLOGY 2003; 12:517-526. [PMID: 12974957 DOI: 10.1046/j.1365-2583.2003.00438.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tribolium beetles provide an excellent and easily manipulated model system for the study of genetics. However, despite significant increases in the availability of molecular markers for the study of genetics in recent years, a significant genetic linkage map for these beetles remains undeveloped. We present the first molecular genetic linkage map for Tribolium confusum using random amplified polymorphic DNA markers. The linkage map contains 137 loci mapped on to eight linkage groups totaling 968.5 cM.
Collapse
Affiliation(s)
- A Yezerski
- King's College, Biology Department, 133 North River Street, Wilkes-Barre, PA 18711, USA.
| | | | | |
Collapse
|
11
|
Conti LH, Printz MP. Rat strain-dependent effects of repeated stress on the acoustic startle response. Behav Brain Res 2003; 144:11-8. [PMID: 12946590 DOI: 10.1016/s0166-4328(03)00061-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amplitude and habituation of the acoustic startle response were assessed in four recombinant inbred (RI) rat strains. One group from each strain underwent repeated restraint stress, the last session of which was 24h before startle testing while, a second group from each strain was not stressed prior to testing. Additionally, prepulse inhibition of the acoustic startle response, and anxiety behavior in the elevated plus-maze were assessed in separate, non-stressed groups of each strain. In the non-stressed condition, these RI strains differed significantly from each other on all behaviors measured. In the two RI strains that showed the greatest habituation of the startle response, repeated stress resulted in significantly lower acoustic startle amplitude than that seen in non-stressed controls of those strains. In the strains showing low levels of habituation, repeated stressed increased the level. Neither genotype-dependent levels of startle amplitude, prepulse inhibition of the startle response, nor anxiety in the plus-maze were closely related to the effect of stress on either startle amplitude or habituation. The results suggest that genotype-dependent habituation of the startle response may be important in determining whether stress will alter startle amplitude.
Collapse
Affiliation(s)
- Lisa H Conti
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
12
|
Printz MP, Jirout M, Jaworski R, Alemayehu A, Kren V. Genetic Models in Applied Physiology. HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J Appl Physiol (1985) 2003; 94:2510-22. [PMID: 12736193 DOI: 10.1152/japplphysiol.00064.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review deals with the largest set of rat recombinant inbred (RI) strains and summarizes past and recent accomplishments with this platform for genetic mapping and analyses of divergent and complex traits. This strain, derived by crossing the spontaneously hypertensive rat, SHR/Ola, with a Brown Norway congenic, BN-Lx, carrying polydactyly-luxate syndrome, is referred to as HXB/BXH. The RI strain set has been used for linkage and association studies to identify quantitative trait loci for numerous cardiovascular phenotypes, including arterial pressure, stress-elicited heart rate, and pressor response, and metabolic traits, including insulin resistance, dyslipidemia and glucose handling, and left ventricular hypertrophy. The strain's utility has been enhanced with development of a new framework marker-based map and strain distribution patterns of polymorphic markers. Quantitative trait loci for behavioral traits mapped include loci for startle motor response and habituation, anxiety and locomotion traits associated with elevated plus maze, and conditioned taste aversion. The polydactyly-luxate syndrome Lx mutation has allowed the study of alleles important to limb development and malformation phenotypes as well as teratogens. The RI strains have guided development of numerous congenic strains to test locus assignments and to study the effect of genetic background. Although these strains were originally developed to aid in studies of rat genetic hypertension and morphogenetic abnormalities, this rodent platform has been shown to be equally powerful for a wide spectrum of traits and endophenotypes. These strains provide a ready and available vehicle for many physiological and pharmacological studies.
Collapse
Affiliation(s)
- Morton P Printz
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636, USA.
| | | | | | | | | |
Collapse
|
13
|
Ways JA, Cicila GT, Garrett MR, Koch LG. A genome scan for Loci associated with aerobic running capacity in rats. Genomics 2002; 80:13-20. [PMID: 12079278 DOI: 10.1006/geno.2002.6797] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aerobic capacity is a complex trait that defines the efficiency to use atmospheric oxygen as an electron acceptor in energy transfer. Copenhagen (COP) and DA inbred rat strains show a wide difference in a test for aerobic treadmill running and serve as contrasting genetic models for aerobic capacity. A genome scan was carried out on an F(2)(COP x DA) segregating population (n=224) to detect quantitative trait loci (QTLs) associated with aerobic running capacity. Linkage analysis revealed a significant QTL on chromosome 16 (lod score, 4.0). A suggestive linkage was found near the p-terminus of chromosome 3 (lod score, 2.2) with evidence of an interaction with another QTL on chromosome 16 (lod score, 2.9). All three QTLs showed a dominant mode of inheritance in which the presence of at least one DA allele was associated with a greater distance run. These results represent the first aerobic capacity QTLs identified in genetic models.
Collapse
Affiliation(s)
- Justin A Ways
- Functional Genomics Laboratory, Department of Physiology and Molecular Medicine, Medical College of Ohio, Toledo, Ohio, 43614-5804, USA
| | | | | | | |
Collapse
|
14
|
Dumas P, Kren V, Krenová D, Pravenec M, Hamet P, Tremblay J. Identification and chromosomal localization of ecogenetic components of electrolyte excretion. J Hypertens 2002; 20:209-17. [PMID: 11821705 DOI: 10.1097/00004872-200202000-00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine to what extent urinary excretion of blood pressure-modulating electrolytes is genetically determined, and to identify their chromosomal localization. DESIGN AND METHODS Twenty-six rat recombinant inbred strains (RIS) originating from reciprocal crosses of normotensive Brown Norway (BN.Lx) and spontaneously hypertensive rats (SHR) were used. A pilot experiment on a subset of strains determined that fasting decreases the impact of environmental noise and increases that of heritability. Twenty-four-hour urinary collections were obtained from fasting rats aged 6-12 weeks (3-8 rats per strain). Sodium (Na), potassium (K) and calcium (Ca) excretions were measured, and the Na/K ratio calculated. These phenotypes served as quantitative traits for the search of quantitative trait loci (QTLs) by scanning the RIS genome that was mapped with 475 polymorphic markers. RESULTS Constant Na intake resulted in a low heritability for Na excretion, reflecting the environmental impact (intake = excretion), whereas fasting revealed a gradient among RIS indicative of the genetic component of the traits. In the fasting state, a locus on chromosome 14 was found to be significantly associated with K excretion (Alb, P = 0.00002, r = -0.69, logarithm of the odds score (LOD) 3.9), whereas another locus on chromosome 10 (D10Cebrp97s5, P = 0.0003, r = -0.69, LOD 3.0) and one on chromosome 6 (D6Cebrp97s14, P = 0.0007, r = -0.65, LOD 1.9) were more significantly associated with Na excretion and the Na/K ratio respectively. The observed correlations were all negative for Na, K and Na/K, indicating a higher excretion of Na and K and a greater Na/K ratio in rats bearing BN.Lx alleles at these loci, i.e. salt retention in fasting SHR. These three loci accounted for 47-55% of variance of their associated trait, suggesting that they are the main genetic determinants for these phenotypes in basal fasting conditions. Rats bearing the Y chromosome of SHR origin had significantly higher K excretion that, in turn, led to a significantly lower Na/K ratio. Finally, a locus on chromosome 7 was linked to Ca excretion, explaining 46% of the trait variance (D7Mit10, LOD score 3.0). CONCLUSION RIS enabled us to determine QTLs for environmentally modulated traits such as Na, K and Ca excretions. We demonstrated that whereas urinary electrolytes are determined mainly by intake (environment) in a steady state, their excretion in an adaptive state (fasting) is predominantly genetically determined by distinct QTL on autosomes as well as the Y chromosome. Furthermore, the loci responsible for Na and K excretions act independently of the locus governing the relative excretion of Na/K. Thus, the salt-retaining aspects of some hypertensives may be, in large part, determined by genes responsible for renal excretion, the impact of which is predominant over the environment under acute challenge.
Collapse
Affiliation(s)
- Pierre Dumas
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Göran Levan
- Department of Cell and Molecular Biology-Genetics at Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
16
|
Bihoreau MT, Sebag-Montefiore L, Godfrey RF, Wallis RH, Brown JH, Danoy PA, Collins SC, Rouard M, Kaisaki PJ, Lathrop M, Gauguier D. A high-resolution consensus linkage map of the rat, integrating radiation hybrid and genetic maps. Genomics 2001; 75:57-69. [PMID: 11472068 DOI: 10.1006/geno.2001.6583] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a high-resolution consensus genetic map of the rat in a single large intercross, which integrates 747 framework markers and 687 positions of our whole-genome radiation hybrid (RH) map of the rat. We selected 136 new gene markers from the GenBank database and assigned them either genetically or physically to rat chromosomes to evaluate the accuracy of the integrated linkage-RH maps in the localization of new markers and to enrich existing comparative mapping data. These markers and 631 D-Got- markers, which are physically mapped but still uncharacterized for evidence of polymorphism, were tested for allele variations in a panel of 16 rat strains commonly used in genetic studies. The consensus linkage map constructed in the GK x BN cross now comprises 1620 markers of various origins, defining 840 resolved genetic positions with an average spacing of 2.2 cM between adjacent loci, and includes 407 gene markers. This whole-genome genetic map will contribute to the advancement of genetic studies in the rat by incorporating gene/EST maps, physical mapping information, and sequence data generated in rat and other mammalian species into genetic intervals harboring disease susceptibility loci identified in rat models of human genetic disorders.
Collapse
Affiliation(s)
- M T Bihoreau
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pravenec M, Zídek V, Musilová A, Vorlícek J, Kren V, St Lezin E, Kurtz TW. Genetic isolation of a blood pressure quantitative trait locus on chromosome 2 in the spontaneously hypertensive rat. J Hypertens 2001; 19:1061-4. [PMID: 11403354 DOI: 10.1097/00004872-200106000-00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Total genome scans of genetically segregating populations derived from the spontaneously hypertensive rat (SHR) and other rat models of hypertension have suggested the presence of quantitative trait loci (QTL) regulating blood pressure and cardiac mass on multiple chromosomes, including chromosome 2. The objective of the current study was to directly test for the presence of a blood pressure QTL on rat chromosome 2. DESIGN A new congenic strain was derived by replacing a segment of chromosome 2 in the SHR between D2Rat171 and D2Arb24 with the corresponding chromosome segment from the normotensive Brown Norway rat. Arterial pressures were directly monitored in conscious rats by radiotelemetry. RESULTS We found that the SHR congenic strain (SHR-2) carrying a segment of chromosome 2 from the Brown Norway rat had significantly lower systolic and diastolic blood pressures than the SHR progenitor strain. The attenuation of hypertension in the SHR-2 congenic strain versus the SHR progenitor strain was accompanied by significant amelioration of cardiac hypertrophy. CONCLUSIONS These findings demonstrate that gene(s) with major effects on blood pressure exist in the differential segment of chromosome 2 trapped within the new SHR.BN congenic strain.
Collapse
Affiliation(s)
- M Pravenec
- Institute of Physiology and Center for Integrated Genomics, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cai L, Lindpaintner K, Browne J, Gruetzner F, Haaf T, James MR, Bihoreau M. An anchored YAC-STS framework for the rat genome. CYTOGENETICS AND CELL GENETICS 2000; 89:168-70. [PMID: 10965116 DOI: 10.1159/000015606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report here the first YAC-STS framework for the rat genome. A total of 417 anchor microsatellite markers were used to screen a 10-fold redundant YAC library. One or more unambiguous YACs were identified for 372 markers. Assuming the genetic length of the rat genome to be 2,000 cM (Bihoreau et al. 1997b), the YAC-STS framework will provide, on average, one informative YAC clone every 5.4 cM. A total of 111 anchor markers used in this study were derived from known gene regions. We also demonstrated one of the important and immediate uses of this YAC-STS framework, which is to establish a correlation between the genetic and cytogenetic maps in the rat through FISH analysis.
Collapse
Affiliation(s)
- L Cai
- Cardiovascular Division, Brigham and Women's Hospital, Department of Cardiology, Children's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kato N, Hyne G, Rapp JP, Lathrop GM. Practicable approaches to targeted comparative mapping of rat chromosome regions: linkage mapping of five genes on rat chromosome 13. CYTOGENETICS AND CELL GENETICS 2000; 81:42-5. [PMID: 9691173 DOI: 10.1159/000015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We demonstrate feasible approaches to comparative mapping between the region near the renin locus on rat chromosome 13 and human chromosome 1q by assigning five additional genes as anchor loci. Base-substitution polymorphisms were sought in the 3'- and/or 5'-untranslated regions for subsequent development of PCR-amplified markers, which, in turn, could be used for either restriction fragment analysis or allele-specific PCR.
Collapse
Affiliation(s)
- N Kato
- The Wellcome Trust Centre for Human Genetics, Oxford University, Oxford (UK).
| | | | | | | |
Collapse
|
20
|
Dumas P, Sun Y, Corbeil G, Tremblay S, Pausova Z, Kren V, Krenova D, Pravenec M, Hamet P, Tremblay J. Mapping of quantitative trait loci (QTL) of differential stress gene expression in rat recombinant inbred strains. J Hypertens 2000; 18:545-51. [PMID: 10826556 DOI: 10.1097/00004872-200018050-00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Stress has been shown to be a major environmental contributor to cardiovascular diseases through its effects on blood pressure variability and cardiac function. The cellular stress response is characterized by the expression of specific heat stress genes (hsps), under the transcriptional control of heat shock transcription factors (HSTFs). The levels of hsp mRNA depend on the severity of the stress, with hstf1 acting as a stress sensor. The aim of this work was to evaluate the genetic contribution of the variability in hsp expression, and to identify its putative quantitative trait loci (QTL). METHODS Twenty recombinant inbred rat strains (RIS) were studied. The animals underwent a standardized, identical 1 h immobilization stress in restraint cages, followed by 1 h of rest before sacrifice. Total RNA was extracted from the heart kidneys and adrenals, and the mRNA levels of hsp27, hsp70, hsp84, hsp86 and hsp105 were measured. The strain distribution pattern (SDP) of hsp expression was correlated with that of 475 polymorphic markers distributed throughout the RIS genome. A polymorphism of rat hstf1 in RIS was used for its mapping in RIS. RESULTS Despite an identical stress being applied to all strains, hsp expression showed up to a 1 2-fold gradient with little intra-strain variability, indicative of a strong genetic contribution to the trait Heritability ranged from 50 to 77% for most hsp genes in the three target organs. The continuous SDP of stress gene expression indicated the polygenic nature of the trait A common locus on chromosome 7 (at D7Cebrp187s3 marker) was consistently associated with all hsp expression in most of the organs [with a likelihood of odds (LOD) score of 3.0 for hsp27 expression]. We have mapped rat hstf1 on chromosome 7 at the same locus. Finally, the D4Mit19 marker was significantly associated with hsp84 expression in the heart (LOD score of 3.1). CONCLUSION Two loci were linked with the differential expression of HSPs in response to immobilization stress in target organs of RIS. The chromosome 7 locus unveiled for all HSPs could explain up to 42% of the observed inter-strain variability of hsp levels in response to stress. We propose hstf1 as a positional candidate at this locus.
Collapse
MESH Headings
- Adrenal Glands/metabolism
- Animals
- Base Sequence
- Chromosome Mapping
- Crosses, Genetic
- DNA Primers/genetics
- Gene Expression
- Heat-Shock Proteins/genetics
- Kidney/metabolism
- Male
- Myocardium/metabolism
- Polymorphism, Genetic
- Quantitative Trait, Heritable
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred BN
- Rats, Inbred SHR
- Recombination, Genetic
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- P Dumas
- CHUM Research Centre, Universitê de Montrêal, Quêbec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kitada K, Voigt B, Kondo Y, Serikawa T. An integrated rat genome map based on genetic and cytogenetic data. Exp Anim 2000; 49:119-26. [PMID: 10889950 DOI: 10.1538/expanim.49.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this study we combined three major rat genome maps, by adding 66 markers to the Kyoto Laboratory Animal Science map (KLAS map), and constructed an integrated map. The resultant integrated map consists of 5,682 redundant markers, spanning a genetic length of 2,028 cM. Eighty genetic markers were anchored to the cytogenetic map, fixing all the genetic maps in the physically correct orientation. This map encapsulates the progress in rat mapping studies in past years and offers useful information for QTL analysis. The map figures are available at http:/(/)www.anim.med.kyoto-u.ac.jp/.
Collapse
Affiliation(s)
- K Kitada
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
22
|
Kaisaki PJ, Rouard M, Danoy PA, Wallis RH, Collins SC, Rice M, Levy ER, Lathrop M, Bihoreau MT, Gauguier D. Detailed comparative gene map of rat chromosome 1 with mouse and human genomes and physical mapping of an evolutionary chromosomal breakpoint. Genomics 2000; 64:32-43. [PMID: 10708516 DOI: 10.1006/geno.1999.6107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the localization of 92 new gene-based markers assigned to rat chromosome 1 by linkage or radiation hybrid mapping. The markers were chosen to enrich gene mapping data in a region of the rat chromosome known to contain several of the principal quantitative trait loci in rodent models of human multifactorial disease. The composite map reported here provides map information on a total of 139 known genes, including 80 that have been localized in mouse and 109 that have been localized in human, and integrates the gene-based markers with anonymous microsatellites. The evolutionary breakpoints identifying 16 segments that are homologous regions in the human genome are defined. These data will facilitate genetic and comparative mapping studies and identification of novel candidate genes for the quantitative trait loci that have been localized to the region.
Collapse
Affiliation(s)
- P J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dumas P, Pausová Z, Kren V, Krenová D, Pravenec M, Dumont M, Ely D, Turner M, Sun Y, Tremblay J, Hamet P. Contribution of autosomal loci and the Y chromosome to the stress response in rats. Hypertension 2000; 35:568-73. [PMID: 10679499 DOI: 10.1161/01.hyp.35.2.568] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stress is a critical contributor to cardiovascular diseases through its impact on blood pressure variability and cardiac function. Familial clustering of reactivity to stress has been demonstrated in human subjects, and some rodent models of hypertension are hyperresponsive to stress. Therefore, the present study was designed to uncover the genetic determinants of the stress response. We performed a total genome linkage search to identify the loci of the body temperature response to immobilization stress in a set of recombinant inbred strains (RIS) originating from reciprocal crosses of spontaneously hypertensive rats (SHR) with a normotensive Brown Norway Lx strain. Two quantitative trait loci (QTLs) were revealed on chromosomes (Chrs) 10 and 12 (logarithm of odds scores, 2.2 and 1. 3, respectively). The effects of these QTLs were enhanced by a high sodium diet (logarithm of odds scores, 4.0 and 3.3 for Chrs 10 and 12, respectively), which is suggestive of a salt-sensitive component for the phenotype. Congenics for Chr 10 confirmed both the QTL and the salt effect in RIS. Negatively associated loci were also identified on Chrs 8 and 11. Interaction between the loci of Chrs 10 and 12 was demonstrated, with the rat strains bearing SHR alleles at both loci having the highest thermal response to stress. Furthermore, the Y Chr of SHR origin enhanced the response to immobilization stress, as demonstrated in 2 independent models, RIS and Y Chr consomics. However, its full effect requires autosomes of the SHR strain. These findings provide the first evidence for the genetic determination of reactivity to stress with interactions between autosomal loci and between the Y and autosomal Chrs that contribute to the explanation of the 46% of variance in the stress response.
Collapse
Affiliation(s)
- P Dumas
- Centre de Recherche du CHUM, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dracheva SV, Remmers EF, Chen S, Chang L, Gulko PS, Kawahito Y, Longman RE, Wang J, Du Y, Shepard J, Ge L, Joe B, Kotake S, Salstrom JL, Furuya T, Hoffman J, Cannon GW, Griffiths MM, Wilder RL. An integrated genetic linkage map with 1,137 markers constructed from five F2 crosses of autoimmune disease-prone and -resistant inbred rat strains. Genomics 2000; 63:202-26. [PMID: 10673333 DOI: 10.1006/geno.1999.6074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat (Rattus norvegicus) is an important experimental model for many human diseases including arthritis, diabetes, and other autoimmune and chronic inflammatory diseases. The rat genetic linkage map, however, is less well developed than those of mouse and human. Integrated rat genetic linkage maps have been previously reported by Pravenec et al. (1996, Mamm. Genome 7: 117-127) (500 markers mapped in one cross), Bihoreau et al. (1997, Genome Res. 7: 434-440) (767 markers mapped in three crosses), Wei et al. (1998, Mamm. Genome 9: 1002-1007) (562 markers mapped in two crosses), Brown et al. (1998, Mamm. Genome 9: 521-530) (678 markers mapped in four crosses), and Nordquist et al. (1999, Rat Genome 5: 15-20) (330 markers mapped in two crosses). The densest linkage map combined with a radiation hybrid map, reported by Steen et al. (1999, Genome Res. 9: AP1-AP8), includes 4736 markers mapped in two crosses. Here, we present an integrated linkage map with 1137 markers. We have constructed this map by genotyping F2 progeny of five crosses: F344/NHsd x LEW/NHsd (673 markers), DA/Bkl x F344/NHsd (531 markers), BN/SsN x LEW/N (714 markers), DA/Bkl x BN/SsNHsd (194 markers), and DA/Bkl x ACI/SegHsd (245 markers). These inbred rat strains vary in susceptibility/resistance to multiple autoimmune diseases and are used extensively for many types of investigation. The integrated map includes 360 loci mapped in three or more crosses. The map contains 196 new SSLP markers developed by our group, as well as many SSLP markers developed by other groups. Two hundred forty genes are incorporated in the map. This integrated map should allow comparison of rat genetic maps from different groups and thereby facilitate genetic studies of rat autoimmune and related disease models.
Collapse
Affiliation(s)
- S V Dracheva
- The Inflammatory Joint Diseases Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Blood pressure is a quantitative trait that has a strong genetic component in humans and rats. Several selectively bred strains of rats with divergent blood pressures serve as an animal model for genetic dissection of the causes of inherited hypertension. The goal is to identify the genetic loci controlling blood pressure, i.e., the so-called quantitative trait loci (QTL). The theoretical basis for such genetic dissection and recent progress in understanding genetic hypertension are reviewed. The usual paradigm is to produce segregating populations derived from a hypertensive and normotensive strain and to seek linkage of blood pressure to genetic markers using recently developed statistical techniques for QTL analysis. This has yielded candidate QTL regions on almost every rat chromosome, and also some interactions between QTL have been defined. These statistically defined QTL regions are much too large to practice positional cloning to identify the genes involved. Most investigators are, therefore, fine mapping the QTL using congenic strains to substitute small segments of chromosome from one strain into another. Although impressive progress has been made, this process is slow due to the extensive breeding that is required. At this point, no blood pressure QTL have met stringent criteria for identification, but this should be an attainable goal given the recently developed genomic resources for the rat. Similar experiments are ongoing to look for genes that influence cardiac hypertrophy, stroke, and renal failure and that are independent of the genes for hypertension.
Collapse
Affiliation(s)
- J P Rapp
- Department of Physiology, Medical College of Ohio, Toledo, Ohio, USA.
| |
Collapse
|
26
|
St Lezin E, Liu W, Wang JM, Yang Y, Qi N, Kren V, Zidek V, Kurtz TW, Pravenec M. Genetic analysis of rat chromosome 1 and the Sa gene in spontaneous hypertension. Hypertension 2000; 35:225-30. [PMID: 10642302 DOI: 10.1161/01.hyp.35.1.225] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Linkage studies in segregating populations derived from the spontaneously hypertensive rat (SHR) indicate that a blood pressure quantitative trait locus exists on rat chromosome 1 in the vicinity of the Sa gene. On the basis of these findings and the observation of increased renal expression of the Sa gene in SHR versus normotensive rats, the Sa gene has been proposed as a candidate gene for spontaneous hypertension. In SHR congenic strains, we and others have found that replacement of a segment of SHR chromosome 1 that contains the Sa gene with the corresponding chromosome segment from a normotensive Brown Norway (BN) rat or Wistar-Kyoto rat can reduce blood pressure. To test whether the Sa gene is necessary for the effect of this region of chromosome 1 on blood pressure, we studied a new SHR congenic subline that harbors a smaller segment of BN chromosome 1 that does not include the Sa gene. Transfer of this subregion of chromosome 1 from the BN rat onto the SHR background was associated with significant reductions in blood pressure comparable to those previously observed on transfer of a larger region of chromosome 1 that included the Sa gene. Thus, in the SHR-BN model of hypertension, the results of these mapping studies (1) demonstrate that molecular variation in the Sa gene is not required for the effect of this region of chromosome 1 on blood pressure and (2) should direct attention toward other candidate genes within the differential chromosome segment of the new congenic subline.
Collapse
Affiliation(s)
- E St Lezin
- Department of Laboratory Medicine, University of California, San Francisco 94143-1613, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
van Lith H, den Bieman M, Levan G, Matsumoto K, Szpirer C, van Zupthen L. Report on rat chromosome 16. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0939-8600(99)80017-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
|
30
|
Kren V, Pravenec M, Moisan MP, Krenova D, Szpirer C, Lezin ES. Report on rat chromosome 8. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0939-8600(99)80009-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Pravenec M, Kren V, Hedrich HJ, Szpirer C, Levan G, Stahl F, St. Lezin E. Report on rat chromosome 1. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0939-8600(99)80002-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Giraudeau F, Petit E, Avet-Loiseau H, Hauck Y, Vergnaud G, Amarger V. Finding New Human Minisatellite Sequences in the Vicinity of Long CA-Rich Sequences. Genome Res 1999. [DOI: 10.1101/gr.9.7.647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microsatellites and minisatellites are two classes of tandem repeat sequences differing in their size, mutation processes, and chromosomal distribution. The boundary between the two classes is not defined. We have developed a convenient, hybridization-based human library screening procedure able to detect long CA-rich sequences. Analysis of cosmid clones derived from a chromosome 1 library show that cross-hybridizing sequences tested are imperfect CA-rich sequences, some of them showing a minisatellite organization. All but one of the 13 positive chromosome 1 clones studied are localized in chromosomal bands to which minisatellites have previously been assigned, such as the 1pter cluster. To test the applicability of the procedure to minisatellite detection on a larger scale, we then used a large-insert whole-genome PAC library. Altogether, 22 new minisatellites have been identified in positive PAC and cosmid clones and 20 of them are telomeric. Among the 42 positive PAC clones localized within the human genome by FISH and/or linkage analysis, 25 (60%) are assigned to a terminal band of the karyotype, 4 (9%) are juxtacentromeric, and 13 (31%) are interstitial. The localization of at least two of the interstitial PAC clones corresponds to previously characterized minisatellite-containing regions and/or ancestrally telomeric bands, in agreement with this minisatellite-like distribution. The data obtained are in close agreement with the parallel investigation of human genome sequence data and suggest that long human (CA)s are imperfect CA repeats belonging to the minisatellite class of sequences. This approach provides a new tool to efficiently target genomic clones originating from subtelomeric domains, from which minisatellite sequences can readily be obtained.[The sequence data described in this paper have been submitted to the EMBL data library under accession nos.AJ000377–AJ000383.]
Collapse
|
33
|
Pravenec M, Zidek V, Simakova M, Kren V, Krenova D, Horky K, Jachymova M, Mikova B, Kazdova L, Aitman TJ, Churchill PC, Webb RC, Hingarh NH, Yang Y, Wang JM, Lezin EM, Kurtz TW. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J Clin Invest 1999; 103:1651-7. [PMID: 10377171 PMCID: PMC408390 DOI: 10.1172/jci6691] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Disorders of carbohydrate and lipid metabolism have been reported to cluster in patients with essential hypertension and in spontaneously hypertensive rats (SHRs). A deletion in the Cd36 gene on chromosome 4 has recently been implicated in defective carbohydrate and lipid metabolism in isolated adipocytes from SHRs. However, the role of Cd36 and chromosome 4 in the control of blood pressure and systemic cardiovascular risk factors in SHRs is unknown. In the SHR. BN-Il6/Npy congenic strain, we have found that transfer of a segment of chromosome 4 (including Cd36) from the Brown Norway (BN) rat onto the SHR background induces reductions in blood pressure and ameliorates dietary-induced glucose intolerance, hyperinsulinemia, and hypertriglyceridemia. These results demonstrate that a single chromosome region can influence a broad spectrum of cardiovascular risk factors involved in the hypertension metabolic syndrome. However, analysis of Cd36 genotypes in the SHR and stroke-prone SHR strains indicates that the deletion variant of Cd36 was not critical to the initial selection for hypertension in the SHR model. Thus, the ability of chromosome 4 to influence multiple cardiovascular risk factors, including hypertension, may depend on linkage of Cd36 to other genes trapped within the differential segment of the SHR. BN-Il6/Npy strain.
Collapse
Affiliation(s)
- M Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lu LM, Shisa H, Tanuma J, Hiai H. Propylnitrosourea-induced T-lymphomas in LEXF RI strains of rats: genetic analysis. Br J Cancer 1999; 80:855-61. [PMID: 10360666 PMCID: PMC2362294 DOI: 10.1038/sj.bjc.6690432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oral administration of propylnitrosourea (PNU) in drinking water induces high incidence of lympho-haemopoietic malignancies in rats. Previously we reported that F344 strain rats were highly susceptible to T-lymphomas, and LE/Stm rats, to erythro- or myeloid leukaemias. For analysis of the genetic factors determining types of diseases, we have established LEXF recombinant inbred strains of rats comprising 23 substrains, each derived from intercross between F344 and LE/Stm rats. Rats of 23 LEXF substrains were given PNU, and the development of tumours was observed. The overall incidence of haemopoietic tumours ranged from 100% to 66.7%, and the fractions of T-lymphomas, from 100% to 4%, showing a continuous spectrum. Based on the genetic profile published as a strain distribution pattern table for the LEXF, we screened the potential quantitative trait loci involved in determination of the types of disease and length of the latency period. Statistical calculation was performed using the Map Manager QT software developed by Manly. Four loci, on chromosome 4, 7, 10 and 18, were suggested to associate with the T-lymphoma susceptibility and three loci, on chromosome 1, 5 and 16, with the length of the latency period. These putative loci were further examined in backcross (F344 x LE)F1 x LE. Among seven loci suggested by the recombinant inbred study, three loci, on chromosome 5, 7 and 10, were significantly associated with T-lymphomas and another locus on chromosome 1, just weakly. These observations indicate that PNU-induced lymphomagenesis is a multifactorial genetic process involving a number of loci linked with susceptibility and resistance.
Collapse
Affiliation(s)
- L M Lu
- Department of Pathology and Biology of Disease, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
35
|
Kunieda T, Kobayashi E, Tachibana M, Ikadai H. A genetic linkage map of rat chromosome 9 with a new locus for variant activity of liver aldehyde oxidase. Exp Anim 1999; 48:43-5. [PMID: 10067205 DOI: 10.1538/expanim.48.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A genetic linkage map of rat chromosome 9 consisting of five loci including a new biochemical marker representing a genetic variation of the activity of the liver aldehyde oxidase, (Aox) was constructed. Linkage analysis of the five loci among 92 backcross progeny of (WKS/Iar x IS/Iar)F1 x WKS/Iar revealed significant linkages between these loci. Minimizing crossover frequency resulted in the best gene order: Aox-D9Mit4-Gls-Cryg-Tp53l1. The homologues of the Cryg, Gls, and Aox genes have been mapped on mouse chromosome 1 and human chromosome 2q. The present findings provide further evidence for the conservation of synteny among these regions of rat, mouse, and human chromosomes.
Collapse
Affiliation(s)
- T Kunieda
- Imamichi Institute for Animal Reproduction, Ibaraki, Japan
| | | | | | | |
Collapse
|
36
|
St Lezin E, Zhang L, Yang Y, Wang JM, Wang N, Qi N, Steadman JS, Liu W, Kren V, Zidek V, Krenova D, Churchill PC, Churchill MC, Pravenec M. Effect of chromosome 19 transfer on blood pressure in the spontaneously hypertensive rat. Hypertension 1999; 33:256-60. [PMID: 9931113 DOI: 10.1161/01.hyp.33.1.256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Linkage studies in the spontaneously hypertensive rat (SHR) have suggested that a gene or genes regulating blood pressure may exist on rat chromosome 19 in the vicinity of the angiotensinogen gene. To test this hypothesis, we measured blood pressure in SHR progenitor and congenic strains that are genetically identical except for a segment of chromosome 19 containing the angiotensinogen gene transferred from the normotensive Brown Norway (BN) strain. Transfer of this segment of chromosome 19 from the BN strain onto the genetic background of the SHR induced significant decreases in systolic and diastolic blood pressures in the recipient SHR chromosome 19 congenic strain. To test for differences in angiotensinogen gene expression between the congenic and progenitor strains, we measured angiotensinogen mRNA levels in a variety of tissues, including aorta, brain, kidney, and liver. We found no differences between the progenitor and congenic strains in the angiotensinogen coding sequence or in angiotensinogen expression that would account for the blood pressure differences between the strains. In addition, no significant differences in plasma levels of angiotensinogen or plasma renin activity were detected between the 2 strains. Thus, transfer of a segment of chromosome 19 containing angiotensinogen from the BN rat into the SHR induces a decrease in blood pressure without inducing any major changes in plasma angiotensinogen levels or plasma renin activity. These results indicate that the differential chromosome segment trapped in the SHR chromosome 19 congenic strain contains a quantitative trait locus that influences blood pressure in the SHR but that this blood pressure effect is not explained by differences in plasma angiotensinogen levels or angiotensinogen expression.
Collapse
Affiliation(s)
- E St Lezin
- Department of Laboratory Medicine, University of California, San Francisco 94143-1613, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St Lezin E, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999; 21:76-83. [PMID: 9916795 DOI: 10.1038/5013] [Citation(s) in RCA: 574] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human insulin-resistance syndromes, type 2 diabetes, obesity, combined hyperlipidaemia and essential hypertension, are complex disorders whose genetic basis is unknown. The spontaneously hypertensive rat (SHR) is insulin resistant and a model of these human syndromes. Quantitative trait loci (QTLs) for SHR defects in glucose and fatty acid metabolism, hypertriglyceridaemia and hypertension map to a single locus on rat chromosome 4. Here we combine use of cDNA microarrays, congenic mapping and radiation hybrid (RH) mapping to identify a defective SHR gene, Cd36 (also known as Fat, as it encodes fatty acid translocase), at the peak of linkage to these QTLs. SHR Cd36 cDNA contains multiple sequence variants, caused by unequal genomic recombination of a duplicated ancestral gene. The encoded protein product is undetectable in SHR adipocyte plasma membrane. Transgenic mice overexpressing Cd36 have reduced blood lipids. We conclude that Cd36 deficiency underlies insulin resistance, defective fatty acid metabolism and hypertriglyceridaemia in SHR and may be important in the pathogenesis of human insulin-resistance syndromes.
Collapse
Affiliation(s)
- T J Aitman
- MRC Clinical Sciences Centre, and Division of National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dominiczak AF, Clark JS, Jeffs B, Anderson NH, Negrin CD, Lee WK, Brosnan MJ. Genetics of experimental hypertension. J Hypertens 1998; 16:1859-69. [PMID: 9886870 DOI: 10.1097/00004872-199816121-00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental models of genetic hypertension are used to develop paradigms to study human essential hypertension while removing some of the complexity inherent in the study of human subjects. Since 1991 several quantitative trait loci responsible for blood pressure regulation have been identified in various rat crosses. More recently, a series of interesting quantitative trait loci influencing cardiac hypertrophy, stroke, metabolic syndrome and renal damage has also been described. It is recognized that the identification of large chromosomal regions containing a quantitative trait locus is only a first step towards gene identification. The next step is the production of congenic strains and substrains to confirm the existence of the quantitative trait locus and to narrow down the chromosomal region of interest. Several congenic strains have already been produced, with further refinement of the methodology currently in progress. The ultimate goal is to achieve positional cloning of the causal gene, a task which has so far been elusive. There are several areas of cross-fertilization between experimental and human genetics of hypertension, with a successful transfer of two loci directly from rats to humans and with new pharmacogenetic approaches which may be utilized in both experimental and clinical settings.
Collapse
Affiliation(s)
- A F Dominiczak
- Department of Medicine and Therapeutics, University of Glasgow, Western Infirmary, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Amarger V, Gauguier D, Yerle M, Apiou F, Pinton P, Giraudeau F, Monfouilloux S, Lathrop M, Dutrillaux B, Buard J, Vergnaud G. Analysis of distribution in the human, pig, and rat genomes points toward a general subtelomeric origin of minisatellite structures. Genomics 1998; 52:62-71. [PMID: 9740672 DOI: 10.1006/geno.1998.5365] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed approaches for the cloning of minisatellites from total genomic libraries and applied these approaches to the human, rat, and pig genomes. The chromosomal distribution of minisatellites in the three genomes is strikingly different, with clustering at chromosome ends in human, a seemingly almost even distribution in rat, and an intermediate situation in pig. A closer analysis, however, reveals that interstitial sites in pig and rat often correspond to terminal cytogenetic bands in human. This observation suggests that minisatellites are created toward chromosome ends and their internalization represents secondary events resulting from rearrangements involving chromosome ends.
Collapse
Affiliation(s)
- V Amarger
- Laboratoire de Recherche en Génétique des Espèces, Institut de Biologie des Hôpitaux de Nantes, 9, Quai Moncousu, Nantes Cedex, 44035, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Woon PY, Osoegawa K, Kaisaki PJ, Zhao B, Catanese JJ, Gauguier D, Cox R, Levy ER, Lathrop GM, Monaco AP, de Jong PJ. Construction and characterization of a 10-fold genome equivalent rat P1-derived artificial chromosome library. Genomics 1998; 50:306-16. [PMID: 9676425 DOI: 10.1006/geno.1998.5319] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rat PAC library was constructed in the vector pPAC4 from genomic DNA isolated from female Brown Norway rats. This library consists of 215,409 clones arrayed in 614,384-well microtiter plates. An average insert size of 143 kb was estimated from 217 randomly isolated clones, thus representing approximately 10-fold genome coverage. This coverage provides a very high probability that the library contains a unique sequence in genome screening. Tests on randomly selected clones demonstrated that they are very stable, with only 4 of 130 clones showing restriction digest fragment alterations after 80 generations of serial growth. FISH analysis using 70 randomly chosen PACs revealed no significant chimeric clones. About 7% of the clones analyzed contained repetitive sequences related to centromeric regions that hybridized to some but not all centromeres. DNA plate pools and superpools were made, and high-density filters each containing an array of 8 plates in duplicate were prepared. Library screening on these superpools and appropriate filters with 10 single-locus rat markers revealed an average of 8 positive clones, in agreement with the estimated high genomic coverage of this library and representation of the rat genome. This library provides a new resource for rat genome analysis, in particular the identification of genes involved in models of multifactorial disease. The library and high-density filters are currently available to the scientific community.
Collapse
Affiliation(s)
- P Y Woon
- Wellcome Trust Centre For Human Genetics, University of Oxford, Headington, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bottger A, Lankhorst E, van Lith HA, van Zutphen LF, Zídek V, Musilová A, Simáková M, Poledne R, Bílá V, Køen V, Pravenec M. A genetic and correlation analysis of liver cholesterol concentration in rat recombinant inbred strains fed a high cholesterol diet. Biochem Biophys Res Commun 1998; 246:272-5. [PMID: 9600105 DOI: 10.1006/bbrc.1998.8596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver cholesterol concentration in rats fed a high cholesterol diet, is under genetic control which is supported by significant differences observed among inbred strains. For instance, the Brown Norway (BN-Lx/Cub) rat developed a twofold higher liver cholesterol concentration than the spontaneously hypertensive rat (SHR/Ola). In the current study, we used 30 recombinant inbred (RI) strains, derived from BN-Lx and SHR progenitors, to locate quantitative trait loci (QTL) that are responsible for differences in liver cholesterol concentrations between the BN-Lx and SHR strains. The heritability of liver cholesterol was estimated to be 0.55 and a significant association was detected between concentration of liver cholesterol and the D10Cebrp1016s2 marker on chromosome 10 (lod score = 3.3); this putative QTL was responsible for nearly 64% of additive genetic variability and thus represents a major genetic determinant of liver cholesterol concentration. Liver cholesterol concentrations significantly correlated with intermediate density lipoprotein (IDL) cholesterol levels.
Collapse
Affiliation(s)
- A Bottger
- Department of Laboratory Animal Science, Veterinary Faculty, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Hypertension can be classified as either Mendelian hypertension or essential hypertension, on the basis of the mode of inheritance. The Mendelian forms of hypertension develop as a result of a single gene defect, and as such are inherited in a simple Mendelian manner. In contrast, essential hypertension occurs as a consequence of a complex interplay of a number of genetic alterations and environmental factors, and therefore does not follow a clear pattern of inheritance, but exhibits familial aggregation of cases. In this review, we discuss recent advances in understanding the pathogenesis of both types of hypertension. We review the causal gene defects identified in several monogenic forms of hypertension, and we discuss their possible relevance to the development of essential hypertension. We describe the current approaches to identifying the genetic determinants of human essential hypertension and rat genetic models of hypertension, and summarise the results obtained to date using these methods. Finally, we discuss the significance of environmental factors, such as stress and diet, in the pathogenesis of hypertension, and we describe their interactions with specific hypertension susceptibility genes.
Collapse
Affiliation(s)
- P Hamet
- Centre de Recherche du C.H.U.M., Pavillon Hôtel-Dieu, Université de Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
43
|
Cui Z, Yokoi N, Kuramoto T, Kitada K, Serikawa T. Extension of conserved regions in the rat and mouse genomes by chromosomal assignments of 29 rat genes. Exp Anim 1998; 47:83-8. [PMID: 9606417 DOI: 10.1538/expanim.47.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We recently constructed a comparative genetic map of the rat, mouse and human genomes based on information obtained from several databases. In this study, we performed chromosomal assignments of 29 rat genes with somatic cell hybrid clones, in order to clarify and extend the conserved regions in the rat and mouse genomes. As a result, the conserved regions were extended by 89 cM. Together with our previous report, the length of the conserved regions in the rat and mouse spans 847 cM on the mouse linkage map, indicating that 53% of the mouse genome is covered by homologous regions in the rat. In addition, four conserved regions were newly revealed. The method described in this study appears to be simple and efficient for constructing a whole genome comparative map of the rat and mouse.
Collapse
Affiliation(s)
- Z Cui
- Institute of Laboratory Animals, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
44
|
Andoh Y, Kuramoto T, Yokoi N, Maihara T, Kitada K, Serikawa T. Correlation between genetic and cytogenetic maps of the rat. Mamm Genome 1998; 9:287-93. [PMID: 9530624 DOI: 10.1007/s003359900750] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To correlate rat genetic linkage maps with cytogenetic maps, we localized 25 new cosmid-derived simple sequence length polymorphism (SSLP) markers and 14 existing genetic markers on cytogenetic bands of chromosomes, using fluorescence in situ hybridization (FISH). Next, a total of 58 anchor loci, consisting of the 39 new and 19 previously reported ones, were integrated into the genetic linkage maps. Since most of the new anchor loci were developed to be localized near the terminals of the genetic or cytogenetic maps for each chromosome, the orientation and coverage of the whole genetic linkage maps were determined or confirmed with respect to the cytogenetic maps. Thus, we provide here a new base for rat genetic maps.
Collapse
Affiliation(s)
- Y Andoh
- Institute of Laboratory Animals, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Sverdlov VE, Dukhanina OI, Choi C, Bihoreau MT, Dene H, Rapp JP. Chromosomal assignment of nineteen rat microsatellite markers to various chromosomes by linkage analysis. Mamm Genome 1998; 9:243-5. [PMID: 9501311 DOI: 10.1007/s003359900734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- V E Sverdlov
- Department of Physiology and Molecular Medicine, Medical College of Ohio, Toledo 43699, USA
| | | | | | | | | | | |
Collapse
|
46
|
Serikawa T, Cui Z, Yokoi N, Kuramoto T, Kondo Y, Kitada K, Guénet JL. A comparative genetic map of rat, mouse and human genomes. Exp Anim 1998; 47:1-9. [PMID: 9498107 DOI: 10.1538/expanim.47.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The increasing availability of molecular markers and the development of highly efficient gene mapping strategies for the mouse, rat and human genomes have generated vast quantities of information allowing for the progressive refinement of comparative maps. In this publication we report on an updated version of our rat/mouse/human comparative genetic map, based on the mouse map. Databases for mouse, rat and human gene mapping were used for the collection of homologs mapped in the species. The comparative map was constructed with a total of 1,235 mouse loci having known homologs in the rat and/or human: 16 having homologs only in the rat, 884 having only in the human and 335 both in the rat and human. The combined length of the segments conserved between the rat and mouse spans 758 cM on the mouse map. This indicates that about 47% of the mouse genome is now covered by known rat homologous regions. Five novel regions homologous for the rat and mouse were identified. This comparative genetic map should be useful for researchers working on genetic studies in the rat, mouse and human.
Collapse
Affiliation(s)
- T Serikawa
- Institute of Laboratory Animals, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
St Lezin E, Liu W, Wang N, Wang JM, Kren V, Zidek V, Zdobinska M, Krenova D, Bottger A, van Zutphen BF, Pravenec M. Effect of renin gene transfer on blood pressure in the spontaneously hypertensive rat. Hypertension 1998; 31:373-7. [PMID: 9453331 DOI: 10.1161/01.hyp.31.1.373] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate whether molecular variation in the renin gene contributes to the greater blood pressure of spontaneously hypertensive rats (SHR) versus normotensive Brown Norway (BN) rats, we measured blood pressure in an SHR progenitor strain and an SHR congenic strain that are genetically identical except at the renin gene and an associated segment of chromosome 13 transferred from the BN strain. Backcross breeding and molecular selection at the renin locus were used to create the SHR congenic strain (designated SHR.BN-Ren) that carries the renin gene transferred from the normotensive BN strain. We found that transfer of the renin gene from the BN strain onto the genetic background of the SHR did not decrease blood pressure in rats fed either a normal or high-salt diet. In fact, the systolic blood pressures of the SHR congenic rats tended to be slightly greater than the systolic blood pressures of the SHR progenitor rats. However, the congenic strain exhibited lower serum high-density lipoprotein cholesterol, and greater levels of total cholesterol, very-low-density lipoprotein, and intermediate-density lipoprotein cholesterol during administration of a high-fat, high-cholesterol diet. These findings demonstrate that (1) under the environmental circumstances of the current study, the greater blood pressure of SHR versus BN rats cannot be explained by strain differences in the renin gene and (2) a quantitative trait locus affecting lipid metabolism exists on chromosome 13 within the transferred chromosome segment. The SHR.BN-Ren congenic strain may provide a useful new animal model for studying the interaction between high blood pressure and dyslipidemia in cardiovascular disease.
Collapse
Affiliation(s)
- E St Lezin
- Department of Laboratory Medicine, University of California, San Francisco 94120, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tall A, Welch C, Applebaum-Bowden D, Wassef M. Interaction of diet and genes in atherogenesis. Report of an NHLBI working group. Arterioscler Thromb Vasc Biol 1997; 17:3326-31. [PMID: 9409329 DOI: 10.1161/01.atv.17.11.3326] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent advances in genetics and information emerging from the Human Genome Project make it feasible to examine the importance of dietary-genetic interactions in the development of atherosclerosis. In the opinion of the Working Group, three approaches are necessary to examine this concern. The first approach utilizes animal models to map and identify candidate genes involved in dietary responsiveness and atherogenesis. The second approach involves the evaluation of these genes in specific physiological processes involved in dietary responsiveness and atherogenesis. Finally, the third approach is to extend the studies performed in animal models to human populations using linkage or association studies.
Collapse
Affiliation(s)
- A Tall
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
49
|
St Lezin E, Liu W, Wang JM, Wang N, Kren V, Krenova D, Musilova A, Zdobinska M, Zidek V, Lau D, Pravenec M. Genetic isolation of a chromosome 1 region affecting blood pressure in the spontaneously hypertensive rat. Hypertension 1997; 30:854-9. [PMID: 9336384 DOI: 10.1161/01.hyp.30.4.854] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent linkage studies in the spontaneously hypertensive rat (SHR) suggest that a blood pressure regulatory gene or genes may be located on rat chromosome 1q. To investigate this possibility, we replaced a region of chromosome 1 in the SHR (defined by the markers D1Mit3 and Igf2) with the corresponding chromosome segment from the normotensive Brown-Norway (BN) strain. In male SHR congenic rats carrying the transferred BN chromosome segment, 24-hour average systolic and diastolic blood pressures were significantly lower than in male progenitor SHR. Polymerase chain reaction genotyping using 60 polymorphic microsatellite markers dispersed throughout the genome confirmed the congenic status of the new strain designated SHR.BN-D1Mit3/Igf2. These findings provide direct evidence that a blood pressure regulatory gene exists on the differential segment of chromosome 1 that is sufficient to decrease blood pressure in the SHR. The SHR.BN-D1Mit3/Igf2 congenic strain represents an important new model for fine mapping and characterization of genes on chromosome 1 involved in the pathogenesis of spontaneous hypertension.
Collapse
Affiliation(s)
- E St Lezin
- Department of Laboratory Medicine, University of California, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Szpirer C, Szpirer J, Tissir F, Stephanova E, Vanvooren P, Kurtz TW, Iwai N, Inagami T, Pravenec M, Kren V, Klinga-Levan K, Levan G. Rat chromosome 1: regional localization of seven genes (Slc9a3, Srd5a1, Esr, Tcp1, Grik5, Tnnt3, Jak2) and anchoring of the genetic linkage map to the cytogenetic map. Mamm Genome 1997; 8:657-60. [PMID: 9271667 DOI: 10.1007/s003359900532] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Seven genes were regionally localized on rat Chromosome (Chr) 1, from 1p11 to 1q42, and two of these genes were also included in a linkage map. This mapping work integrates the genetic linkage map and the cytogenetic map, and allows us to orient the linkage map with respect to the centromere, and to deduce the approximate position of the centromere in the linkage map. These mapping data also indicate that the Slc9a3 gene, encoding the Na+/H+ exchanger 3, is an unlikely candidate for the blood pressure loci assigned to rat Chr 1. These new localizations expand comparative mapping between rat Chr 1 and mouse or human chromosomes.
Collapse
Affiliation(s)
- C Szpirer
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Rue des Chevaux, 67, B-1640 Rhode-Saint-Genèse, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|