1
|
Rarinca V, Hritcu LD, Burducea M, Plavan G, Lefter R, Burlui V, Romila L, Ciobică A, Todirascu-Ciornea E, Barbacariu CA. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Curr Issues Mol Biol 2024; 46:14168-14189. [PMID: 39727976 DOI: 10.3390/cimb46120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Although pesticides have been a constant concern for decades, in the last ten years, public discussions and scientific research have emphasized their impact on human health and the environment, drawing increased attention to the problems associated with their use. The association of environmental stressors such as pesticides with a sugar-rich diet can contribute to the growing global metabolic disease epidemic through overlapping mechanisms of insulin resistance, inflammation, and metabolic dysregulation. The main aim of this study was to evaluate the behavioral effects of the exposure of Silver crucian carp (Carassius auratus gibelio) to a commercial insecticide formulation containing fipronil, pyriproxyfen, and other additives, as well as sucrose and their mixtures. The behavioral responses in the T-test showed significant abnormalities in the exploratory activity evocative of memory deficits and an increased degree of anxiety in the groups of fish treated with the insecticide formulation and the mixture of the insecticide with sucrose. Aggression, quantified in the mirror-biting test, as biting and the frequency of approaches to the mirror contact zone, was significantly decreased only in the insecticide and sucrose group. All three groups showed behavioral changes reflective of toxicity, but only the combination of the two stress factors, environmental (insecticide) and metabolic (sucrose intake), resulted in pronounced memory alterations.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, 20A, 700505 Iasi, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Luminita Diana Hritcu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Alin Ciobică
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| |
Collapse
|
2
|
Kaabeche M, Charreton M, Kadala A, Mutterer J, Charnet P, Collet C. Cardiotoxicity of the diamide insecticide chlorantraniliprole in the intact heart and in isolated cardiomyocytes from the honey bee. Sci Rep 2024; 14:14938. [PMID: 38942905 PMCID: PMC11213956 DOI: 10.1038/s41598-024-65007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024] Open
Abstract
In honey bees, circulation of blood (hemolymph) is driven by the peristaltic contraction of the heart vessel located in the dorsal part of the abdomen. Chlorantraniliprole (CHL) is an insecticide of the anthranilic diamide class which main mode of action is to alter the function of intracellular Ca2+ release channels (known as RyRs, for ryanodine receptors). In the honey bee, it was recently found to be more toxic when applied on the dorsal part of the abdomen, suggesting a direct cardiotoxicity. In the present study, a short-term exposure of semi-isolated bee hearts to CHL (0.1-10 µM) induces alterations of cardiac contraction. These alterations range from a slow-down of systole and diastole kinetics, to bradycardia and cardiac arrest. The bees heart wall is made of a single layer of semi-circular cardiomyocytes arranged concentrically all along the long axis of tube lumen. Since the heart tube is suspended to the cuticle through long tubular muscles fibers (so-called alary muscle cells), the CHL effects in ex-vivo heart preparations could result from the modulation of RyRs present in these skeletal muscle fibers as well as cardiomyocytes RyRs themselves. In order to specifically assess effects of CHL on cardiomyocytes, for the first time, intact heart cells were enzymatically dissociated from bees. Exposure of cardiomyocytes to CHL induces an increase in cytoplasmic calcium, cell contraction at the highest concentrations and depletion of intracellular stores. Electrophysiological properties of isolated cardiomyocytes were described, with a focus on voltage-gated Ca2+ channels responsible for the cardiac action potentials depolarization phase. Two types of Ca2+ currents were measured under voltage-clamp. Exposure to CHL was accompanied by a decrease in voltage-activated Ca2+ currents densities. Altogether, these results show that chlorantraniliprole can cause cardiac defects in honey bees.
Collapse
Affiliation(s)
- Mahira Kaabeche
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, UR406 Abeilles et Environnement, Avignon, France
| | - Mercedes Charreton
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, UR406 Abeilles et Environnement, Avignon, France
| | - Aklesso Kadala
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, UR406 Abeilles et Environnement, Avignon, France
| | - Jérôme Mutterer
- CNRS, UPR 2357, Institut de biologie moleculaire des plantes, 67084, Strasbourg, France
| | - Pierre Charnet
- CNRS, UMR 5247, Institut des Biomolécules Max Mousseron, Université Montpellier, Montpellier, France
| | - Claude Collet
- Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, UR406 Abeilles et Environnement, Avignon, France.
| |
Collapse
|
3
|
García LM, Caicedo-Garzón V, Riveros AJ. Oral administration of phytochemicals protects honey bees against cognitive and motor impairments induced by the insecticide fipronil. PLoS One 2024; 19:e0300899. [PMID: 38527045 PMCID: PMC10962823 DOI: 10.1371/journal.pone.0300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Pollution produced by exposure to pesticides is a major concern for food security because the negative impacts on pollinators. Fipronil, an insecticide broadly used around the globe has been associated with the ongoing decline of bees. With a characteristic neuroactive toxicodynamic, fipronil leads to cognitive and motor impairments at sublethal dosages. Despite of regional bans, multilevel strategies are necessary for the protection of pollinators. Recent evidence suggests that specific nutrients in the diets of bees may induce protection against insecticides. Here, we evaluated whether the administration of three phytochemicals, namely rutin, kaempferol and p-coumaric acid provide protection to the Africanized honey bee Apis mellifera against oral administration of realistic dosages of fipronil. We tested the potential impairment produced by fipronil and the protection induced by the phytochemicals in learning, 24h memory, sucrose sensitivity and motor control. We found that the administration of fipronil induced a concentration-dependent impairment in learning and motor control, but not 24h memory or sucrose sensitivity across a 24h window. We also found that the administration of rutin, p-coumaric acid, kaempferol and the mixture was innocuous and generally offered protection against the impairments induced by fipronil. Overall, our results indicate that bees can be prophylactically protected against insecticides via nutrition, providing an alternative to the ongoing conflict between the use of insecticides and the decline of pollinators. As the studied phytochemicals are broadly present in nectar and pollen, our results suggest that the nutritional composition, and not only its production, should be considered when implementing strategies of conservation via gardens and co-cropping.
Collapse
Affiliation(s)
- Lina M. García
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Valentina Caicedo-Garzón
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Andre J. Riveros
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Department of Neuroscience, College of Science, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
4
|
Qian K, Jiang C, Guan D, Zhuang A, Meng X, Wang J. Characterization of Glutamate-Gated Chloride Channel in Tribolium castaneum. INSECTS 2023; 14:580. [PMID: 37504587 PMCID: PMC10380907 DOI: 10.3390/insects14070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
The glutamate-gated chloride channels (GluCls) play essential roles in signal transduction by regulating fast inhibitory synaptic transmission in the nervous system of invertebrates. While there is only one GluCl subunit in the insect, the diversity of insect GluCls is broadened by alternative splicing. In the present study, three TcGluCl variant genes were cloned from the red flour beetle Tribolium castaneum. Analysis of the characteristics of TcGluCls including sequence features, genomic structures, and alternative splicing revealed that TcGluCls had the typical structural features of GluCls and showed high homologies with the GluCls from other insect orders. The TcGluCl-encoding gene consists of nine exons and three variants (TcGluCl-3a, TcGluCl-3b, and TcGluCl-3c) were generated by the alternative splicing of exon 3, which was a highly conserved alternative splicing site in insect GluCls. Homology modeling of TcGluCl-3a showed that the exon 3 coding protein located at the N-terminal extracellular domain, and there were no steric clashes encountered between the exon 3 coding region and ivermectin/glutamate binding pocket, which indicated that the alternative splicing of exon 3 might have no impact on the binding of GluCls to glutamate and insecticide. In addition to the head tissue, TcGluCl-3a and TcGluCl-3c also had high expressions in the ovary and testis of T. castaneum, whereas TcGluCl-3b showed high expression in the midgut, suggesting the diverse physiological functions of TcGluCl variants in T. castaneum. The total TcGluCl and three variants showed the highest expression levels in the early stage larvae. The expressions of TcGluCl, TcGluCl-3b, and TcGluCl-3c were significantly increased from the late-stage larvae to the early stage pupae and indicated that the TcGluCl might be involved in the growth and development of T. castaneum. These results are helpful to further understand the molecular characteristics of insect GluCls and provide foundations for studying the specific function of the GluCl variant.
Collapse
Affiliation(s)
- Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengyun Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Anxiang Zhuang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xiangkun Meng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Patel M, Kulkarni N, Lei HH, Lai K, Nematova O, Wei K, Lei H. Experimental and theoretical probe on mechano- and chemosensory integration in the insect antennal lobe. Front Physiol 2022; 13:1004124. [PMID: 36406994 PMCID: PMC9667105 DOI: 10.3389/fphys.2022.1004124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, olfactory signals are delivered to detectors—for example, insect antennae—by means of turbulent air, which exerts concurrent chemical and mechanical stimulation on the detectors. The antennal lobe, which is traditionally viewed as a chemosensory module, sits downstream of antennal inputs. We review experimental evidence showing that, in addition to being a chemosensory structure, antennal lobe neurons also respond to mechanosensory input in the form of wind speed. Benchmarked with empirical data, we constructed a dynamical model to simulate bimodal integration in the antennal lobe, with model dynamics yielding insights such as a positive correlation between the strength of mechanical input and the capacity to follow high frequency odor pulses, an important task in tracking odor sources. Furthermore, we combine experimental and theoretical results to develop a conceptual framework for viewing the functional significance of sensory integration within the antennal lobe. We formulate the testable hypothesis that the antennal lobe alternates between two distinct dynamical regimes, one which benefits odor plume tracking and one which promotes odor discrimination. We postulate that the strength of mechanical input, which correlates with behavioral contexts such being mid-flight versus hovering near a flower, triggers the transition from one regime to the other.
Collapse
Affiliation(s)
- Mainak Patel
- Department of Mathematics, William and Mary College, Williamsburg, VA, United States
| | - Nisha Kulkarni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Harry H. Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kaitlyn Lai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Omina Nematova
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Katherine Wei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- *Correspondence: Hong Lei,
| |
Collapse
|
6
|
Démares F, Gibert L, Creusot P, Lapeyre B, Proffit M. Acute ozone exposure impairs detection of floral odor, learning, and memory of honey bees, through olfactory generalization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154342. [PMID: 35257776 DOI: 10.1016/j.scitotenv.2022.154342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Air pollution stemming from human activities affects the environment in which plant and animal species live and interact. Similar to primary air pollutants which are emitted, secondary air pollutants, such as tropospheric ozone (O3) formed from nitrogen oxides, are also harmful to human health and plant physiology. Yet, few reports studied the effects of O3 on pollinators' physiology, despite that this pollutant, with its high oxidative potential, likely affects pollinators behaviors, especially the perception of signals they rely on to navigate their environment. Volatile Organic Compounds (VOCs) released by plants are used as signals by different animals. For pollination services, VOCs attract different insects to the flowers and strengthen these interactions. Here, we used the honey bee Apis mellifera as a model to characterize the effects of acute exposure to different realistic mixing ratios of O3 (80-, 120-, and 200-ppb) on two crucial aspects: first, how exposed honey bees detect VOCs; and second, how O3 affects these pollinators' learning and memory processes. With electroantennogram (EAG) recordings, we showed that increasing O3 mixing ratios had a biphasic effect: an initial 25% decrease of the antennal activity when bees were tested directly after exposure (O3 direct effect), followed by a 25% increase in activity and response when bees were allowed a two-hour rest after exposure (O3 delayed effect). In parallel, during olfactory conditioning, increasing O3 mixing ratios in both exposure protocols scarcely affected olfactory learning, followed by a decrease in recall of learned odors and an increase of response to new odors, leading to a higher generalization rate (i.e., discrimination impairment). These results suggest a link between O3-related oxidative stress and olfactory coding disturbance in the honey bee brain. If ozone affects the pollinators' olfaction, foraging behaviors may be modified, in addition with a possible long-term harmful effect on pollination services.
Collapse
Affiliation(s)
- Fabien Démares
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France.
| | - Laëtitia Gibert
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Pierre Creusot
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Benoit Lapeyre
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Magali Proffit
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| |
Collapse
|
7
|
Taillebois E, Thany SH. The use of insecticide mixtures containing neonicotinoids as a strategy to limit insect pests: Efficiency and mode of action. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105126. [PMID: 35715064 DOI: 10.1016/j.pestbp.2022.105126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Synthetic insecticides continue to be the main strategy for managing insect pests, which are a major concern for both crop protection and public health. As nicotinic acetylcholine receptors play a central role in insect neurotransmission, they are the molecular target of neurotoxic insecticides such as neonicotinoids. These insecticides are used worldwide and have shown high efficiency in culture protection. However, the emergence of insect resistance mechanisms, and negative side-effects on non-target species have highlighted the need for a new control strategy. In this context, the use of insecticide mixtures with synergistic effects have been used in order to decrease the insecticide dose, and thus delay the selection of resistance-strains, and limit their negative impact. In this review, we summarize the available data concerning the mode of action of neonicotinoid mixtures, as well as their toxicity to various insect pests and non-target species. We found that insecticide mixtures containing neonicotinoids may be an effective strategy for limiting insect pests, and in particular resistant strains, although they could also negatively impact non-target species such as pollinating insects.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, UPRES EA 1207-USC INRAE 1328, 1 rue de Chartres, BP 6759, 45067 Orléans, France.
| |
Collapse
|
8
|
Paten AM, Colin T, Coppin CW, Court LN, Barron AB, Oakeshott JG, Morgan MJ. Non-additive gene interactions underpin molecular and phenotypic responses in honey bee larvae exposed to imidacloprid and thymol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152614. [PMID: 34963587 DOI: 10.1016/j.scitotenv.2021.152614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Understanding the cumulative risk of chemical mixtures at environmentally realistic concentrations is a key challenge in honey bee ecotoxicology. Ecotoxicogenomics, including transcriptomics, measures responses in individual organisms at the molecular level which can provide insights into the mechanisms underlying phenotypic responses induced by one or more stressors and link impacts on individuals to populations. Here, fifth instar honey bee larvae were sampled from a previously reported field experiment exploring the phenotypic impacts of environmentally realistic chronic exposures of the pesticide imidacloprid (5 μg.kg-1 for six weeks) and the acaricide thymol (250 g.kg-1 applied via Apiguard gel in-hive for four weeks), both separately and in combination. RNA-seq was used to discover individual and interactive chemical effects on larval gene expression and to uncover molecular mechanisms linked to reported adult and colony phenotypes. The separate and combined treatments had distinct gene expression profiles which represented differentially affected signaling and metabolic pathways. The molecular signature of the mixture was characterised by additive interactions in canonical stress responses associated with oxidative stress and detoxification, and non-additive interactions in secondary responses including developmental, neurological, and immune pathways. Novel emergent impacts on eye development genes correlated with long-term defects in visual learning performance as adults. This is consistent with these chemicals working through independent modes of action that combine to impact common downstream pathways, and highlights the importance of establishing mechanistic links between molecular and phenotypic responses when predicting effects of chemical mixtures on ecologically relevant population outcomes.
Collapse
Affiliation(s)
- Amy M Paten
- Land and Water, CSIRO, Black Mountain, Canberra, ACT 2601, Australia.
| | - Théotime Colin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Chris W Coppin
- Land and Water, CSIRO, Black Mountain, Canberra, ACT 2601, Australia.
| | - Leon N Court
- Land and Water, CSIRO, Black Mountain, Canberra, ACT 2601, Australia.
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | - John G Oakeshott
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia; Applied Biosciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Matthew J Morgan
- Land and Water, CSIRO, Black Mountain, Canberra, ACT 2601, Australia.
| |
Collapse
|
9
|
Feng W, Huang J, Zhang Z, Nie H, Lin Y, Li Z, Su S. Understanding of Waggle Dance in the Honey Bee (Apis mellifera) from the Perspective of Long Non-Coding RNA. INSECTS 2022; 13:insects13020111. [PMID: 35206685 PMCID: PMC8878125 DOI: 10.3390/insects13020111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/03/2023]
Abstract
The ethological study of dance behaviour has yielded some findings since Karl Von Frisch discovered and interpreted the ‘dance language’ in the honey bee. However, the function and role of long non-coding RNAs on dance behaviour are hardly known until now. In this study, the differential expression patterns of lncRNAs in the brains of waggling dancers and non-dancing bees were analysed by RNA sequencing. Furthermore, lncRNA-mRNA association analysis was constructed to decipher the waggle dance. The results of RNA sequencing indicated that a total of 2877 lncRNAs and 9647 mRNAs were detected from honey bee brains. Further comparison analysis displayed that two lncRNAs, MSTRG.6803.3 and XR_003305156.1, may be involved in the waggle dance. The lncRNA-mRNA association analysis showed that target genes of differentially expressed lncRNAs in the brains between waggling dancers and non-dancing bees were mainly annotated in biological processes related to metabolic process, signalling and response to stimulus and in molecular function associated with signal transducer activity, molecular transducer activity and binding. Nitrogen metabolism was likely implicated in the modulation of the waggle dance. Our findings contribute to further understanding the occurrence and development of waggle dance.
Collapse
Affiliation(s)
- Wangjiang Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.F.); (J.H.); (H.N.); (Y.L.)
| | - Jingnan Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.F.); (J.H.); (H.N.); (Y.L.)
| | - Zhaonan Zhang
- Laboratory of Evolution and Diversity Biology (EDB), UMR5174, University Toulouse III Paul Sabatier, CNRS, 31062 Toulouse, France;
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.F.); (J.H.); (H.N.); (Y.L.)
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.F.); (J.H.); (H.N.); (Y.L.)
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.F.); (J.H.); (H.N.); (Y.L.)
- Correspondence: (Z.L.); (S.S.); Tel.: +86-150-0591-7215 (Z.L.); +86-136-6500-5782 (S.S.)
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.F.); (J.H.); (H.N.); (Y.L.)
- Correspondence: (Z.L.); (S.S.); Tel.: +86-150-0591-7215 (Z.L.); +86-136-6500-5782 (S.S.)
| |
Collapse
|
10
|
Chen P, Lu YH, Lin YH, Wu CP, Tang CK, Wei SC, Wu YL. Deformed wing virus infection affects the neurological function of Apis mellifera by altering extracellular adenosine signaling. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103674. [PMID: 34737063 DOI: 10.1016/j.ibmb.2021.103674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Deformed wing virus (DWV) infection is believed to be closely associated with colony losses of honeybee (Apis mellifera) due to reduced learning and memory of infected bees. The adenosine (Ado) pathway is important for maintaining immunity and memory function in animals, and it enhances antivirus responses by regulating carbohydrate metabolism in insects. Nevertheless, its effect on the memory of invertebrates is not yet clear. This study investigated how the Ado pathway regulates energy metabolism and memory in honeybees following DWV infection. Decreased Ado receptor (Ado-R) expression in the brain of infected bees resulted in a carbohydrate imbalance as well as impairments of glutamate-glutamine (Glu-Gln) cycle and long-term memory. Dietary supplementation with Ado not only increased the brain energy metabolism but also rescued long-term memory loss by upregulating the expression of memory-related genes. The present study demonstrated the regulation of the Ado pathway upon DWV infection and provides insights into the mechanisms underlying energy regulation and the neurological function of honeybees.
Collapse
Affiliation(s)
- Ping Chen
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Carol-P Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Sung-Chan Wei
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
11
|
Olfactory encoding within the insect antennal lobe: The emergence and role of higher order temporal correlations in the dynamics of antennal lobe spiking activity. J Theor Biol 2021; 522:110700. [PMID: 33819477 DOI: 10.1016/j.jtbi.2021.110700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
In this review, we focus on the antennal lobe (AL) of three insect species - the fruit fly, sphinx moth, and locust. We first review the experimentally elucidated anatomy and physiology of the early olfactory system of each species; empirical studies of AL activity, however, often focus on assessing firing rates (averaged over time scales of about 100 ms), and hence the AL odor code is often analyzed in terms of a temporally evolving vector of firing rates. However, such a perspective necessarily misses the possibility of higher order temporal correlations in spiking activity within a single cell and across multiple cells over shorter time scales (of about 10 ms). Hence, we then review our prior theoretical work, where we constructed biophysically detailed, species-specific AL models within the fly, moth, and locust, finding that in each case higher order temporal correlations in spiking naturally emerge from model dynamics (i.e., without a prioriincorporation of elements designed to produce correlated activity). We therefore use our theoretical work to argue the perspective that temporal correlations in spiking over short time scales, which have received little experimental attention to-date, may provide valuable coding dimensions (complementing the coding dimensions provided by the vector of firing rates) that nature has exploited in the encoding of odors within the AL. We further argue that, if the AL does indeed utilize temporally correlated activity to represent odor information, such an odor code could be naturally and easily deciphered within the Mushroom Body.
Collapse
|
12
|
Network mechanism for insect olfaction. Cogn Neurodyn 2021; 15:103-129. [PMID: 33786083 DOI: 10.1007/s11571-020-09640-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 10/22/2022] Open
Abstract
Early olfactory pathway responses to the presentation of an odor exhibit remarkably similar dynamical behavior across phyla from insects to mammals, and frequently involve transitions among quiescence, collective network oscillations, and asynchronous firing. We hypothesize that the time scales of fast excitation and fast and slow inhibition present in these networks may be the essential element underlying this similar behavior, and design an idealized, conductance-based integrate-and-fire model to verify this hypothesis via numerical simulations. To better understand the mathematical structure underlying the common dynamical behavior across species, we derive a firing-rate model and use it to extract a slow passage through a saddle-node-on-an-invariant-circle bifurcation structure. We expect this bifurcation structure to provide new insights into the understanding of the dynamical behavior of neuronal assemblies and that a similar structure can be found in other sensory systems.
Collapse
|
13
|
Rutkoski CF, Macagnan N, Folador A, Skovronski VJ, do Amaral AMB, Leitemperger JW, Costa MD, Hartmann PA, Müller C, Loro VL, Hartmann MT. Cypermethrin- and fipronil-based insecticides cause biochemical changes in Physalaemus gracilis tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4377-4387. [PMID: 32940837 DOI: 10.1007/s11356-020-10798-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Insecticides used for agricultural pest control, as cypermethrin-based insecticide (CBI) and fipronil-based insecticide (FBI), are constant threats to non-target aquatic organisms. This study aimed to investigate the effect of different concentrations of cypermethrin and fipronil on neurotoxicity and oxidative stress in Physalaemus gracilis. Physalaemus gracilis tadpoles were exposed to five insecticide concentrations and a control treatment, with six replicates. During the experimental period, the tadpole mortality rate was evaluated and after 168 h, the neurotoxic enzyme activity and metabolite quantification related to the antioxidant system were measured. Tadpoles reduced acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities when exposed to 20 μg L-1 CBI and at all FBI concentrations, respectively. Glutathione S-transferase (GST) and superoxide dismutase (SOD) activities showed an increase from concentrations of 6 μg L-1 and 20 μg L-1 of CBI, respectively. After exposure of P. gracilis tadpoles to FBI, inhibitions of AChE and BChE were observed at the highest concentrations evaluated (500 and 1500 μg L-1). SOD activity decreased from 50 μg L-1 of FBI; however, catalase (CAT) and GST activities and carbonyl protein levels increased, regardless of the evaluated dose. We observed that both insecticides promoted oxidative stress and neurotoxic effects in P. gracilis tadpoles. These results suggest that biochemical biomarkers can be used for monitoring toxicity insecticides for the purpose of preservation of P. gracilis.
Collapse
Affiliation(s)
- Camila F Rutkoski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, no 200, Erechim, RS, 99.700-000, Brazil.
| | - Natani Macagnan
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, no 200, Erechim, RS, 99.700-000, Brazil
| | - Alexandre Folador
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, no 200, Erechim, RS, 99.700-000, Brazil
| | - Vrandrieli J Skovronski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, no 200, Erechim, RS, 99.700-000, Brazil
| | - Aline M B do Amaral
- Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Camobi Campus, Av Roraima, no 1423, Camobi, RS, 97.105-340, Brazil
| | - Jossiele Wesz Leitemperger
- Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Camobi Campus, Av Roraima, no 1423, Camobi, RS, 97.105-340, Brazil
| | - Maiara Dorneles Costa
- Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Camobi Campus, Av Roraima, no 1423, Camobi, RS, 97.105-340, Brazil
| | - Paulo A Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, no 200, Erechim, RS, 99.700-000, Brazil
| | - Caroline Müller
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, no 200, Erechim, RS, 99.700-000, Brazil
| | - Vania L Loro
- Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Camobi Campus, Av Roraima, no 1423, Camobi, RS, 97.105-340, Brazil
| | - Marilia T Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135 - Km 72, no 200, Erechim, RS, 99.700-000, Brazil
| |
Collapse
|
14
|
Cofactor-enabled functional expression of fruit fly, honeybee, and bumblebee nicotinic receptors reveals picomolar neonicotinoid actions. Proc Natl Acad Sci U S A 2020; 117:16283-16291. [PMID: 32611810 PMCID: PMC7368294 DOI: 10.1073/pnas.2003667117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neonicotinoids acting on insect nicotinic acetylcholine receptors (nAChRs) are deployed for crop protection, but growing evidence for adverse effects on insect pollinators has led to restricted use of some neonicotinoids in the EU. It is therefore vital to understand the target site actions of neonicotinoids in pollinators, but to date the difficulties of heterologous expression of insect nAChRs have hampered progress. We have found that a thioredoxin (TMX3) enables robust functional expression of honeybee, bumblebee, and fruit fly nAChRs in Xenopus laevis oocytes. With this advance, we show that expressed bee nAChRs are more neonicotinoid-sensitive than those of fruit fly, and clothianidin can modulate both honeybee and bumblebee nAChRs at a concentration below that commonly observed in agricultural fields. The difficulty of achieving robust functional expression of insect nicotinic acetylcholine receptors (nAChRs) has hampered our understanding of these important molecular targets of globally deployed neonicotinoid insecticides at a time when concerns have grown regarding the toxicity of this chemotype to insect pollinators. We show that thioredoxin-related transmembrane protein 3 (TMX3) is essential to enable robust expression in Xenopus laevis oocytes of honeybee (Apis mellifera) and bumblebee (Bombus terrestris) as well as fruit fly (Drosophila melanogaster) nAChR heteromers targeted by neonicotinoids and not hitherto robustly expressed. This has enabled the characterization of picomolar target site actions of neonicotinoids, findings important in understanding their toxicity.
Collapse
|
15
|
Robertson RM, Dawson-Scully KD, Andrew RD. Neural shutdown under stress: an evolutionary perspective on spreading depolarization. J Neurophysiol 2020; 123:885-895. [PMID: 32023142 PMCID: PMC7099469 DOI: 10.1152/jn.00724.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
Abstract
Neural function depends on maintaining cellular membrane potentials as the basis for electrical signaling. Yet, in mammals and insects, neuronal and glial membrane potentials can reversibly depolarize to zero, shutting down neural function by the process of spreading depolarization (SD) that collapses the ion gradients across membranes. SD is not evident in all metazoan taxa with centralized nervous systems. We consider the occurrence and similarities of SD in different animals and suggest that it is an emergent property of nervous systems that have evolved to control complex behaviors requiring energetically expensive, rapid information processing in a tightly regulated extracellular environment. Whether SD is beneficial or not in mammals remains an open question. However, in insects, it is associated with the response to harsh environments and may provide an energetic advantage that improves the chances of survival. The remarkable similarity of SD in diverse taxa supports a model systems approach to understanding the mechanistic underpinning of human neuropathology associated with migraine, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- R Meldrum Robertson
- Department of Biology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ken D Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - R David Andrew
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Mustard JA, Gott A, Scott J, Chavarria NL, Wright GA. Honeybees fail to discriminate floral scents in a complex learning task after consuming a neonicotinoid pesticide. J Exp Biol 2020; 223:jeb217174. [PMID: 32029463 PMCID: PMC7075050 DOI: 10.1242/jeb.217174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/23/2020] [Indexed: 01/02/2023]
Abstract
Neonicotinoids are pesticides used to protect crops but with known secondary influences at sublethal doses on bees. Honeybees use their sense of smell to identify the queen and nestmates, to signal danger and to distinguish flowers during foraging. Few behavioural studies to date have examined how neonicotinoid pesticides affect the ability of bees to distinguish odours. Here, we used a differential learning task to test how neonicotinoid exposure affects learning, memory and olfactory perception in foraging-age honeybees. Bees fed with thiamethoxam could not perform differential learning and could not distinguish odours during short- and long-term memory tests. Our data indicate that thiamethoxam directly impacts the cognitive processes involved in working memory required during differential olfactory learning. Using a combination of behavioural assays, we also identified that thiamethoxam has a direct impact on the olfactory perception of similar odours. Honeybees fed with other neonicotinoids (clothianidin, imidacloprid, dinotefuran) performed the differential learning task, but at a slower rate than the control. These bees could also distinguish the odours. Our data are the first to show that neonicotinoids have compound specific effects on the ability of bees to perform a complex olfactory learning task. Deficits in decision making caused by thiamethoxam exposure could mean that this is more harmful than other neonicotinoids, leading to inefficient foraging and a reduced ability to identify nestmates.
Collapse
Affiliation(s)
- Julie A Mustard
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Anne Gott
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jennifer Scott
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Nancy L Chavarria
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Geraldine A Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
17
|
Bubak AN, Watt MJ, Yaeger JDW, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression - is there a conserved role for 5-HT between vertebrates and invertebrates? ACTA ACUST UNITED AC 2020; 223:223/1/jeb132159. [PMID: 31896721 DOI: 10.1242/jeb.132159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa. We discuss recent findings using insect models, with an emphasis on the stalk-eyed fly, to demonstrate how particular 5-HT receptor subtypes mediate the intensity of aggression with respect to discrete stages of the interaction (initiation, escalation and termination), which mirrors the complex behavioral regulation currently recognized in vertebrates. Further similarities emerge when considering the contribution of neuropeptides, which interact with 5-HT to ultimately determine contest progression and outcome. Relative to knowledge in vertebrates, much less is known about the function of 5-HT receptors and neuropeptides in invertebrate aggression, particularly with respect to sex, species and context, prompting the need for further studies. Our Commentary highlights the need to consider multiple factors when determining potential taxonomic differences, and raises the possibility of more similarities than differences between vertebrates and invertebrates with regard to the modulatory effect of 5-HT on aggression.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - John G Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80217, USA
| |
Collapse
|
18
|
Mustard JA, Jones L, Wright GA. GABA signaling affects motor function in the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2020; 120:103989. [PMID: 31805284 DOI: 10.1016/j.jinsphys.2019.103989] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
GABA is the most common inhibitory neurotransmitter in both vertebrate and invertebrate nervous systems. In insects, inhibition plays important roles at the neuromuscular junction, in the regulation of central pattern generators, and in the modulation of information in higher brain processing centers. Additionally, increasing our understanding of the functions of GABA is important since GABAA receptors are the targets of several classes of pesticides. To investigate the role of GABA in motor function, honey bee foragers were injected with GABA or with agonists or antagonists specific for either GABAA or GABAB receptors. Compounds that activated either type of GABA receptor decreased activity levels. Bees injected with the GABAA receptor antagonist picrotoxin lost the ability to right themselves, whereas blockade of GABAB receptors led to increases in grooming. Injection with antagonists of either GABAA or GABAB receptors resulted in an increase in extended wing behavior, during which bees kept their wings out at right angles to their body rather than folded along their back. These data suggest that the GABA receptor types play distinct roles in behavior and that GABA may affect behavior at several different levels.
Collapse
Affiliation(s)
- Julie A Mustard
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Lisa Jones
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Geraldine A Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Zoology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
19
|
Grünewald B, Siefert P. Acetylcholine and Its Receptors in Honeybees: Involvement in Development and Impairments by Neonicotinoids. INSECTS 2019; 10:E420. [PMID: 31771114 PMCID: PMC6955729 DOI: 10.3390/insects10120420] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
Acetylcholine (ACh) is the major excitatory neurotransmitter in the insect central nervous system (CNS). However, besides the neuronal expression of ACh receptors (AChR), the existence of non-neuronal AChR in honeybees is plausible. The cholinergic system is a popular target of insecticides because the pharmacology of insect nicotinic acetylcholine receptors (nAChRs) differs substantially from their vertebrate counterparts. Neonicotinoids are agonists of the nAChR and are largely used in crop protection. In contrast to their relatively high safety for humans and livestock, neonicotinoids pose a threat to pollinating insects such as bees. In addition to its effects on behavior, it becomes increasingly evident that neonicotinoids affect developmental processes in bees that appear to be independent of neuronal AChRs. Brood food (royal jelly, worker jelly, or drone jelly) produced in the hypopharyngeal glands of nurse bees contains millimolar concentrations of ACh, which is required for proper larval development. Neonicotinoids reduce the secreted ACh-content in brood food, reduce hypopharyngeal gland size, and lead to developmental impairments within the colony. We assume that potential hazards of neonicotinoids on pollinating bees occur neuronally causing behavioral impairments on adult individuals, and non-neuronally causing developmental disturbances as well as destroying gland functioning.
Collapse
Affiliation(s)
- Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft, FB Biowissenschaften, Goethe-Universität Frankfurt am Main, Karl-von-Frisch-Weg 2, D-61440 Oberursel, Germany;
| | | |
Collapse
|
20
|
Tison L, Rößner A, Gerschewski S, Menzel R. The neonicotinoid clothianidin impairs memory processing in honey bees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:139-145. [PMID: 31082577 DOI: 10.1016/j.ecoenv.2019.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Neonicotinoids act as agonists on the nicotinic Acetylcholine receptor (nAChR) in insect brains, an essential molecular component of central brain structures involved in learning and memory formation. Sublethal doses might, therefore, impair neural processes necessary for adaptive experience dependent behaviour and thus reduce the fitness of pollinating insects on the individual and community level. First, the question was addressed whether clothianidin has an aversive taste for honey bees and concluded with both a laboratory and a semi-field experiment that bees are unable to distinguish between control and contaminated sucrose solutions. In the laboratory, proboscis extension response conditioning was performed with forager bees exposed to different concentrations of clothianidin (0.1, 0.3 and 0.8 ng/bee) before learning, after learning during memory consolidation, and just before memory retention. These tests at different timings allowed uncovering an impairment of the consolidation and retrieval of memory due to the exposure to clothianidin. It was concluded that an acute exposure to clothianidin has an adverse effect on memory processing in honey bees.
Collapse
Affiliation(s)
- Léa Tison
- Institute of Biology-Neurobiology, Free University Berlin, Königin-Luise-Str. 28/30, 14195, Berlin, Germany.
| | - Alexander Rößner
- Institute of Biology-Neurobiology, Free University Berlin, Königin-Luise-Str. 28/30, 14195, Berlin, Germany
| | - Susan Gerschewski
- Institute of Biology-Neurobiology, Free University Berlin, Königin-Luise-Str. 28/30, 14195, Berlin, Germany
| | - Randolf Menzel
- Institute of Biology-Neurobiology, Free University Berlin, Königin-Luise-Str. 28/30, 14195, Berlin, Germany
| |
Collapse
|
21
|
Molina-Obando S, Vargas-Fique JF, Henning M, Gür B, Schladt TM, Akhtar J, Berger TK, Silies M. ON selectivity in the Drosophila visual system is a multisynaptic process involving both glutamatergic and GABAergic inhibition. eLife 2019; 8:e49373. [PMID: 31535971 PMCID: PMC6845231 DOI: 10.7554/elife.49373] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/18/2019] [Indexed: 01/06/2023] Open
Abstract
Sensory systems sequentially extract increasingly complex features. ON and OFF pathways, for example, encode increases or decreases of a stimulus from a common input. This ON/OFF pathway split is thought to occur at individual synaptic connections through a sign-inverting synapse in one of the pathways. Here, we show that ON selectivity is a multisynaptic process in the Drosophila visual system. A pharmacogenetics approach demonstrates that both glutamatergic inhibition through GluClα and GABAergic inhibition through Rdl mediate ON responses. Although neurons postsynaptic to the glutamatergic ON pathway input L1 lose all responses in GluClα mutants, they are resistant to a cell-type-specific loss of GluClα. This shows that ON selectivity is distributed across multiple synapses, and raises the possibility that cell-type-specific manipulations might reveal similar strategies in other sensory systems. Thus, sensory coding is more distributed than predicted by simple circuit motifs, allowing for robust neural processing.
Collapse
Affiliation(s)
- Sebastian Molina-Obando
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - Juan Felipe Vargas-Fique
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - Miriam Henning
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
| | - Burak Gür
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
- International Max Planck Research School and Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB) at the University of GöttingenGöttingenGermany
| | - T Moritz Schladt
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (caesar)BonnGermany
| | - Junaid Akhtar
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (caesar)BonnGermany
- Institute of Physiology and PathophysiologyPhilipps-Universität MarburgMarburgGermany
| | - Marion Silies
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg-Universität MainzMainzGermany
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-SocietyGöttingenGermany
| |
Collapse
|
22
|
Ramesh D, Brockmann A. Mass Spectrometric Quantification of Arousal Associated Neurochemical Changes in Single Honey Bee Brains and Brain Regions. ACS Chem Neurosci 2019; 10:1950-1959. [PMID: 30346719 DOI: 10.1021/acschemneuro.8b00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Honey bee foragers show a strong diurnal rhythm of foraging activity, and such behavioral changes are likely under the control of specific neuromodulators. To identify and quantify neuromodulators involved in regulating rest and arousal in honey bees, we established a mass spectrometric method for quantifying 14 different neurochemicals and precursor molecules. We measured forager type and brain region specific differences in amine levels from individual honey bee brains and brain regions. The observed differences in amine levels between resting and aroused foragers resemble findings in other species indicating a conserved molecular mechanism by glutamate and GABA in regulating arousal. Subesophageal ganglion specific changes in the histaminergic system and global increases in aspartate during arousal suggest a possible role of histamine and aspartate in feeding and arousal, respectively. More aminergic systems were significantly affected due to arousal in nectar foragers than in pollen foragers, implying that forager phenotypes differ not only in their food preference but also in their neuromodulatory signaling systems (brain states). Finally, we found that neurotransmitter precursors were better at distinguishing brain states in the central brain, while their end products correlated with arousal associated changes in sensory regions like the optic and antennal lobes.
Collapse
Affiliation(s)
- Divya Ramesh
- National Centre for Biological Sciences, Bangalore 560065 Karnataka, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Bangalore 560065 Karnataka, India
| |
Collapse
|
23
|
Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci 2018; 19:69. [PMID: 30400853 PMCID: PMC6219247 DOI: 10.1186/s12868-018-0469-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND FoxP transcription factors play crucial roles for the development and function of vertebrate brains. In humans the neurally expressed FOXPs, FOXP1, FOXP2, and FOXP4 are implicated in cognition, including language. Neural FoxP expression is specific to particular brain regions but FoxP1, FoxP2 and FoxP4 are not limited to a particular neuron or neurotransmitter type. Motor- or sensory activity can regulate FoxP2 expression, e.g. in the striatal nucleus Area X of songbirds and in the auditory thalamus of mice. The DNA-binding domain of FoxP proteins is highly conserved within metazoa, raising the possibility that cellular functions were preserved across deep evolutionary time. We have previously shown in bee brains that FoxP is expressed in eleven specific neuron populations, seven tightly packed clusters and four loosely arranged groups. RESULTS The present study examined the co-expression of honeybee FoxP (AmFoxP) with markers for glutamatergic, GABAergic, cholinergic and monoaminergic transmission. We found that AmFoxP could co-occur with any one of those markers. Interestingly, AmFoxP clusters and AmFoxP groups differed with respect to homogeneity of marker co-expression; within a cluster, all neurons co-expressed the same neurotransmitter marker, within a group co-expression varied. We also assessed qualitatively whether age or housing conditions providing different sensory and motor experiences affected the AmFoxP neuron populations, but found no differences. CONCLUSIONS Based on the neurotransmitter homogeneity we conclude that AmFoxP neurons within the clusters might have a common projection and function whereas the AmFoxP groups are more diverse and could be further sub-divided. The obtained information about the neurotransmitters co-expressed in the AmFoxP neuron populations facilitated the search of similar neurons described in the literature. These comparisons revealed e.g. a possible function of AmFoxP neurons in the central complex. Our findings provide opportunities to focus future functional studies on invertebrate FoxP expressing neurons. In a broader context, our data will contribute to the ongoing efforts to discern in which cases relationships between molecular and phenotypic signatures are linked evolutionary.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Julia Agoro
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Janis Mardink
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Gérard Leboulle
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
24
|
de Morais CR, Travençolo BAN, Carvalho SM, Beletti ME, Vieira Santos VS, Campos CF, de Campos Júnior EO, Pereira BB, Carvalho Naves MP, de Rezende AAA, Spanó MA, Vieira CU, Bonetti AM. Ecotoxicological effects of the insecticide fipronil in Brazilian native stingless bees Melipona scutellaris (Apidae: Meliponini). CHEMOSPHERE 2018; 206:632-642. [PMID: 29778941 DOI: 10.1016/j.chemosphere.2018.04.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Melipona scutellaris Latreille, 1811 (Hymenoptera, Apidae) is a pollinator of various native and cultivated plants. Because of the expansion of agriculture and the need to ensure pest control, the use of insecticides such as fipronil (FP) has increased. This study aimed to evaluate the effects of sublethal doses of FP insecticide on M. scutellaris at different time intervals (6, 12, and 24 h) after exposure, via individually analyzed behavioral biomarkers (locomotor activity, behavioral change) as well as the effect of FP on different brain structures of bees (mushroom bodies, antennal cells, and optic cells), using sub-individual cell biomarkers (heterochromatin dispersion, total nuclear and heterochromatic volume). Forager bees were collected when they were returning to the nest and were exposed to three different concentrations of FP (0.40, 0.040, and 0.0040 ng a.i/bee) by topical application. The results revealed a reduction in the mean velocity, lethargy, motor difficulty, paralysis, and hyperexcitation in all groups of bees treated with FP. A modification of the heterochromatic dispersion pattern and changes in the total volume of the nucleus and heterochromatin were also observed in the mushroom bodies (6, 12, and 24 h of exposure) and antennal lobes (6 and 12 h) of bees exposed to 0.0040 ng a.i/bee (LD50/100). FP is toxic to M. scutellaris and impairs the essential functions required for the foraging activity.
Collapse
Affiliation(s)
- Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Bruno Augusto Nassif Travençolo
- Faculty of Computer Science, Federal University of Uberlândia, Campus Santa Mônica, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Stephan Malfitano Carvalho
- Departament of Entomology, Federal University of Lavras, PO Box 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Marcelo Emílio Beletti
- Institute of Biomedical Sciences, Federal University of Uberlândia, Campos Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Vanessa Santana Vieira Santos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Carlos Fernando Campos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | | | - Boscolli Barbosa Pereira
- Institute of Geography, Federal University of Uberlândia, Campus Santa Mônica, 38400-902, Uberlândia, Minas Gerais, Brazil.
| | - Maria Paula Carvalho Naves
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | | | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Carlos Ueira Vieira
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
25
|
Spong KE, Andrew RD, Robertson RM. Mechanisms of spreading depolarization in vertebrate and insect central nervous systems. J Neurophysiol 2016; 116:1117-27. [PMID: 27334953 PMCID: PMC5013167 DOI: 10.1152/jn.00352.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022] Open
Abstract
Spreading depolarization (SD) is generated in the central nervous systems of both vertebrates and invertebrates. SD manifests as a propagating wave of electrical depression caused by a massive redistribution of ions. Mammalian SD underlies a continuum of human pathologies from migraine to stroke damage, whereas insect SD is associated with environmental stress-induced neural shutdown. The general cellular mechanisms underlying SD seem to be evolutionarily conserved throughout the animal kingdom. In particular, SD in the central nervous system of Locusta migratoria and Drosophila melanogaster has all the hallmarks of mammalian SD. Locust SD is easily induced and monitored within the metathoracic ganglion (MTG) and can be modulated both pharmacologically and by preconditioning treatments. The finding that the fly brain supports repetitive waves of SD is relatively recent but noteworthy, since it provides a genetically tractable model system. Due to the human suffering caused by SD manifestations, elucidating control mechanisms that could ultimately attenuate brain susceptibility is essential. Here we review mechanisms of SD focusing on the similarities between mammalian and insect systems. Additionally we discuss advantages of using invertebrate model systems and propose insect SD as a valuable model for providing new insights to mammalian SD.
Collapse
Affiliation(s)
- Kristin E Spong
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - R David Andrew
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
26
|
Démares FJ, Crous KL, Pirk CWW, Nicolson SW, Human H. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide. PLoS One 2016; 11:e0156584. [PMID: 27272274 PMCID: PMC4896446 DOI: 10.1371/journal.pone.0156584] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022] Open
Abstract
Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.
Collapse
Affiliation(s)
- Fabien J. Démares
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Kendall L. Crous
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Christian W. W. Pirk
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Susan W. Nicolson
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Hannelie Human
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| |
Collapse
|
27
|
Lei H, Yu Y, Zhu S, Rangan AV. Intrinsic and Network Mechanisms Constrain Neural Synchrony in the Moth Antennal Lobe. Front Physiol 2016; 7:80. [PMID: 27014082 PMCID: PMC4781831 DOI: 10.3389/fphys.2016.00080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/18/2016] [Indexed: 11/30/2022] Open
Abstract
Projection-neurons (PNs) within the antennal lobe (AL) of the hawkmoth respond vigorously to odor stimulation, with each vigorous response followed by a ~1 s period of suppression—dubbed the “afterhyperpolarization-phase,” or AHP-phase. Prior evidence indicates that this AHP-phase is important for the processing of odors, but the mechanisms underlying this phase and its function remain unknown. We investigate this issue. Beginning with several physiological experiments, we find that pharmacological manipulation of the AL yields surprising results. Specifically, (a) the application of picrotoxin (PTX) lengthens the AHP-phase and reduces PN activity, whereas (b) the application of Bicuculline-methiodide (BIC) reduces the AHP-phase and increases PN activity. These results are curious, as both PTX and BIC are inhibitory-receptor antagonists. To resolve this conundrum, we speculate that perhaps (a) PTX reduces PN activity through a disinhibitory circuit involving a heterogeneous population of local-neurons, and (b) BIC acts to hamper certain intrinsic currents within the PNs that contribute to the AHP-phase. To probe these hypotheses further we build a computational model of the AL and benchmark our model against our experimental observations. We find that, for parameters which satisfy these benchmarks, our model exhibits a particular kind of synchronous activity: namely, “multiple-firing-events” (MFEs). These MFEs are causally-linked sequences of spikes which emerge stochastically, and turn out to have important dynamical consequences for all the experimentally observed phenomena we used as benchmarks. Taking a step back, we extract a few predictions from our computational model pertaining to the real AL: Some predictions deal with the MFEs we expect to see in the real AL, whereas other predictions involve the runaway synchronization that we expect when BIC-application hampers the AHP-phase. By examining the literature we see support for the former, and we perform some additional experiments to confirm the latter. The confirmation of these predictions validates, at least partially, our initial speculation above. We conclude that the AL is poised in a state of high-gain; ready to respond vigorously to even faint stimuli. After each response the AHP-phase functions to prevent runaway synchronization and to “reset” the AL for another odor-specific response.
Collapse
Affiliation(s)
- Hong Lei
- Department of Neuroscience, The University of Arizona Tucson, AZ, USA
| | - Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine Beijing, China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine Beijing, China
| | - Aaditya V Rangan
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University New York, NY, USA
| |
Collapse
|
28
|
A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera. PLoS One 2015; 10:e0144879. [PMID: 26659095 PMCID: PMC4682844 DOI: 10.1371/journal.pone.0144879] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022] Open
Abstract
The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies.
Collapse
|
29
|
Boitard C, Devaud JM, Isabel G, Giurfa M. GABAergic feedback signaling into the calyces of the mushroom bodies enables olfactory reversal learning in honey bees. Front Behav Neurosci 2015; 9:198. [PMID: 26283938 PMCID: PMC4518197 DOI: 10.3389/fnbeh.2015.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/13/2015] [Indexed: 11/26/2022] Open
Abstract
In reversal learning, subjects first learn to respond to a reinforced stimulus A and not to a non-reinforced stimulus B (A+ vs. B−) and then have to learn the opposite when stimulus contingencies are reversed (A− vs. B+). This change in stimulus valence generates a transitory ambiguity at the level of stimulus outcome that needs to be overcome to solve the second discrimination. Honey bees (Apis mellifera) efficiently master reversal learning in the olfactory domain. The mushroom bodies (MBs), higher-order structures of the insect brain, are required to solve this task. Here we aimed at uncovering the neural circuits facilitating reversal learning in honey bees. We trained bees using the olfactory conditioning of the proboscis extension reflex (PER) coupled with localized pharmacological inhibition of Gamma-AminoButyric Acid (GABA)ergic signaling in the MBs. We show that inhibition of ionotropic but not metabotropic GABAergic signaling into the MB calyces impairs reversal learning, but leaves intact the capacity to perform two consecutive elemental olfactory discriminations with ambiguity of stimulus valence. On the contrary, inhibition of ionotropic GABAergic signaling into the MB lobes had no effect on reversal learning. Our results are thus consistent with a specific requirement of the feedback neurons (FNs) providing ionotropic GABAergic signaling from the MB lobes to the calyces for counteracting ambiguity of stimulus valence in reversal learning.
Collapse
Affiliation(s)
- Constance Boitard
- Research Center on Animal Cognition (UMR 5169), Centre National de la Recherche Scientifique (CNRS) Toulouse, France ; Research Center on Animal Cognition (UMR 5169), Université Paul Sabatier Toulouse, France
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (UMR 5169), Centre National de la Recherche Scientifique (CNRS) Toulouse, France ; Research Center on Animal Cognition (UMR 5169), Université Paul Sabatier Toulouse, France
| | - Guillaume Isabel
- Research Center on Animal Cognition (UMR 5169), Centre National de la Recherche Scientifique (CNRS) Toulouse, France ; Research Center on Animal Cognition (UMR 5169), Université Paul Sabatier Toulouse, France
| | - Martin Giurfa
- Research Center on Animal Cognition (UMR 5169), Centre National de la Recherche Scientifique (CNRS) Toulouse, France ; Research Center on Animal Cognition (UMR 5169), Université Paul Sabatier Toulouse, France
| |
Collapse
|
30
|
Fusca D, Schachtner J, Kloppenburg P. Colocalization of allatotropin and tachykinin-related peptides with classical transmitters in physiologically distinct subtypes of olfactory local interneurons in the cockroach (Periplaneta americana). J Comp Neurol 2015; 523:1569-86. [PMID: 25678036 DOI: 10.1002/cne.23757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 11/06/2022]
Abstract
In the insect antennal lobe different types of local interneurons mediate complex excitatory and inhibitory interactions between the glomerular pathways to structure the spatiotemporal representation of odors. Mass spectrometric and immunohistochemical studies have shown that in local interneurons classical neurotransmitters are likely to colocalize with a variety of substances that can potentially act as cotransmitters or neuromodulators. In the antennal lobe of the cockroach Periplaneta americana, gamma-aminobutyric acid (GABA) has been identified as the potential inhibitory transmitter of spiking type I local interneurons, whereas acetylcholine is most likely the excitatory transmitter of nonspiking type IIa1 local interneurons. This study used whole-cell patch clamp recordings combined with single-cell labeling and immunohistochemistry to test if the GABAergic type I local interneurons and the cholinergic type IIa1 local interneurons express allatotropin and tachykinin-related neuropeptides (TKRPs). These are two of the most abundant types of peptides in the insect antennal lobe. GABA-like and choline acetyltransferase (ChAT)-like immunoreactivity were used as markers for GABAergic and cholinergic neurons, respectively. About 50% of the GABA-like immunoreactive (-lir) spiking type I local interneurons were allatotropin-lir, and ∼ 40% of these neurons were TKRP-lir. About 20% of nonspiking ChAT-lir type IIa1 local interneurons were TKRP-lir. Our results suggest that in subpopulations of GABAergic and cholinergic local interneurons, allatotropin and TKRPs might act as cotransmitters or neuromodulators. To unequivocally assign neurotransmitters, cotransmitters, and neuromodulators to identified classes of antennal lobe neurons is an important step to deepen our understanding of information processing in the insect olfactory system.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Abstract
Insecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed.
Collapse
Affiliation(s)
- Reed M Johnson
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691;
| |
Collapse
|
32
|
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5-34. [PMID: 25233913 PMCID: PMC4284386 DOI: 10.1007/s11356-014-3470-y] [Citation(s) in RCA: 1031] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/15/2014] [Indexed: 04/15/2023]
Abstract
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Collapse
Affiliation(s)
- N Simon-Delso
- Environmental Sciences, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Roat TC, dos Santos-Pinto JRA, Dos Santos LD, Santos KS, Malaspina O, Palma MS. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1659-1670. [PMID: 25139030 DOI: 10.1007/s10646-014-1305-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Fipronil is a phenylpyrazole insecticide that is widely used in Brazilian agriculture for pest control. Although honeybees are not targets of fipronil, studies indicate that this pesticide can be harmful to honeybees. To assess the effects of fipronil in the brain of Africanized Apis mellifera workers, this study focused on the toxico-proteome profiling of the brain of newly emerged and aged honeybee workers that were exposed to a sub-lethal dose (10 pg fipronil per day. i.e. (1)/100 of LD50/bee/day during 5 days) of the insecticide. Proteomic analysis identified 25 proteins that were differentially up-regulated or down-regulated when the fipronil-exposed and non-exposed groups were compared. These proteins are potentially related to pathogen susceptibility, neuronal chemical stress, neuronal protein misfolding, and occurrence of apoptosis, ischemia, visual impairment, damaged synapse formation, brain degeneration, memory and learning impairment. The exposure of honeybees to a very low dose of fipronil, even for a short period of time (5 days), was sufficient to cause a series of important neuroproteomic changes in the brains of honeybees.
Collapse
Affiliation(s)
- T C Roat
- Institute of Biosciences of Rio Claro, Department of Biology, Center of the Study of Social Insects, University of São Paulo State (UNESP), Avenida 24-A, N.1515-Bela Vista, Rio Claro, SP, Brazil,
| | | | | | | | | | | |
Collapse
|
34
|
Démares F, Drouard F, Massou I, Crattelet C, Lœuillet A, Bettiol C, Raymond V, Armengaud C. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera. Pharmacol Biochem Behav 2014; 124:137-44. [PMID: 24911646 DOI: 10.1016/j.pbb.2014.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 11/16/2022]
Abstract
Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species.
Collapse
Affiliation(s)
- Fabien Démares
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | - Florian Drouard
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Isabelle Massou
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Cindy Crattelet
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Aurore Lœuillet
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Célia Bettiol
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Valérie Raymond
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES-EA2647 USC INRA 1330 SFR 4207 QUASAV, LUNAM Université d'Angers, 2 blvd Lavoisier, F-49045 Angers Cedex 01, France
| | - Catherine Armengaud
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| |
Collapse
|
35
|
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J Neurosci 2014; 34:2254-63. [PMID: 24501364 DOI: 10.1523/jneurosci.3938-13.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Visual systems extract directional motion information from spatiotemporal luminance changes on the retina. An algorithmic model, the Reichardt detector, accounts for this by multiplying adjacent inputs after asymmetric temporal filtering. The outputs of two mirror-symmetrical units tuned to opposite directions are thought to be subtracted on the dendrites of wide-field motion-sensitive lobula plate tangential cells by antagonistic transmitter systems. In Drosophila, small-field T4/T5 cells carry visual motion information to the tangential cells that are depolarized during preferred and hyperpolarized during null direction motion. While preferred direction input is likely provided by excitation from T4/T5 terminals, the origin of null direction inhibition is unclear. Probing the connectivity between T4/T5 and tangential cells in Drosophila using a combination of optogenetics, electrophysiology, and pharmacology, we found a direct excitatory as well as an indirect inhibitory component. This suggests that the null direction response is caused by feedforward inhibition via yet unidentified neurons.
Collapse
|
36
|
Fischer J, Müller T, Spatz AK, Greggers U, Grünewald B, Menzel R. Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One 2014; 9:e91364. [PMID: 24646521 PMCID: PMC3960126 DOI: 10.1371/journal.pone.0091364] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/08/2014] [Indexed: 11/24/2022] Open
Abstract
Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory) was less compromised than the second phase that leads the animal back to the hive (homing flight). The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection.
Collapse
Affiliation(s)
- Johannes Fischer
- Institut für Bienenkunde Oberursel, Polytechnische Gesellschaft Frankfurt am Main, Fachbereich Biowissenschaften, Goethe-Universität, Frankfurt am Main, Germany
| | - Teresa Müller
- Institut für Bienenkunde Oberursel, Polytechnische Gesellschaft Frankfurt am Main, Fachbereich Biowissenschaften, Goethe-Universität, Frankfurt am Main, Germany
| | | | - Uwe Greggers
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde Oberursel, Polytechnische Gesellschaft Frankfurt am Main, Fachbereich Biowissenschaften, Goethe-Universität, Frankfurt am Main, Germany
| | - Randolf Menzel
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
37
|
Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:183-95. [DOI: 10.1007/s00359-013-0877-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/29/2022]
|
38
|
Kita T, Ozoe F, Azuma M, Ozoe Y. Differential distribution of glutamate- and GABA-gated chloride channels in the housefly Musca domestica. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:887-893. [PMID: 23806605 DOI: 10.1016/j.jinsphys.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
l-Glutamic acid (glutamate) mediates fast inhibitory neurotransmission by affecting glutamate-gated chloride channels (GluCls) in invertebrates. The molecular function and pharmacological properties of GluCls have been well studied, but not much is known about their physiological role and localization in the insect body. The distribution of GluCls in the housefly (Musca domestica L.) was thus compared with the distribution of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls). Quantitative PCR and ligand-binding experiments indicate that the GluCl and GABACl transcripts and proteins are predominantly expressed in the adult head. Intense GluCl immunostaining was detected in the lamina, leg motor neurons, and legs of adult houseflies. The GABACl (Rdl) immunostaining was more widely distributed, and was found in the medulla, lobula, lobula plate, mushroom body, antennal lobe, and ellipsoid body. The present findings suggest that GluCls have physiological roles in different tissues than GABACls.
Collapse
Affiliation(s)
- Tomo Kita
- Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | | | | | | |
Collapse
|
39
|
Wilson DE, Velarde RA, Fahrbach SE, Mommaerts V, Smagghe G. Use of primary cultures of Kenyon cells from bumblebee brains to assess pesticide side effects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:43-56. [PMID: 23922293 DOI: 10.1002/arch.21112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bumblebees are important pollinators in natural and agricultural ecosystems. The latter results in the frequent exposure of bumblebees to pesticides. We report here on a new bioassay that uses primary cultures of neurons derived from adult bumblebee workers to evaluate possible side-effects of the neonicotinoid pesticide imidacloprid. Mushroom bodies (MBs) from the brains of bumblebee workers were dissected and dissociated to produce cultures of Kenyon cells (KCs). Cultured KCs typically extend branched, dendrite-like processes called neurites, with substantial growth evident 24-48 h after culture initiation. Exposure of cultured KCs obtained from newly eclosed adult workers to 2.5 parts per billion (ppb) imidacloprid, an environmentally relevant concentration of pesticide, did not have a detectable effect on neurite outgrowth. By contrast, in cultures prepared from newly eclosed adult bumblebees, inhibitory effects of imidacloprid were evident when the medium contained 25 ppb imidacloprid, and no growth was observed at 2,500 ppb. The KCs of older workers (13-day-old nurses and foragers) appeared to be more sensitive to imidacloprid than newly eclosed adults, as strong effects on KCs obtained from older nurses and foragers were also evident at 2.5 ppb imidacloprid. In conclusion, primary cultures using KCs of bumblebee worker brains offer a tool to assess sublethal effects of neurotoxic pesticides in vitro. Such studies also have the potential to contribute to the understanding of mechanisms of plasticity in the adult bumblebee brain.
Collapse
Affiliation(s)
- Daniel E Wilson
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
40
|
Mathé-Allainmat M, Swale D, Leray X, Benzidane Y, Lebreton J, Bloomquist JR, Thany SH. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations. INVERTEBRATE NEUROSCIENCE 2013; 13:167-77. [DOI: 10.1007/s10158-013-0160-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/08/2013] [Indexed: 12/21/2022]
|
41
|
Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc Natl Acad Sci U S A 2013; 110:10294-9. [PMID: 23729809 DOI: 10.1073/pnas.1220560110] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamatergic neurons are abundant in the Drosophila central nervous system, but their physiological effects are largely unknown. In this study, we investigated the effects of glutamate in the Drosophila antennal lobe, the first relay in the olfactory system and a model circuit for understanding olfactory processing. In the antennal lobe, one-third of local neurons are glutamatergic. Using in vivo whole-cell patch clamp recordings, we found that many glutamatergic local neurons are broadly tuned to odors. Iontophoresed glutamate hyperpolarizes all major cell types in the antennal lobe, and this effect is blocked by picrotoxin or by transgenic RNAi-mediated knockdown of the GluClα gene, which encodes a glutamate-gated chloride channel. Moreover, antennal lobe neurons are inhibited by selective activation of glutamatergic local neurons using a nonnative genetically encoded cation channel. Finally, transgenic knockdown of GluClα in principal neurons disinhibits the odor responses of these neurons. Thus, glutamate acts as an inhibitory neurotransmitter in the antennal lobe, broadly similar to the role of GABA in this circuit. However, because glutamate release is concentrated between glomeruli, whereas GABA release is concentrated within glomeruli, these neurotransmitters may act on different spatial and temporal scales. Thus, the existence of two parallel inhibitory transmitter systems may increase the range and flexibility of synaptic inhibition.
Collapse
|
42
|
Patel MJ, Rangan AV, Cai D. Coding of odors by temporal binding within a model network of the locust antennal lobe. Front Comput Neurosci 2013; 7:50. [PMID: 23630495 PMCID: PMC3635028 DOI: 10.3389/fncom.2013.00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/09/2013] [Indexed: 11/13/2022] Open
Abstract
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin-Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements.
Collapse
Affiliation(s)
- Mainak J Patel
- Department of Mathematics, Duke University Durham, NC, USA
| | | | | |
Collapse
|
43
|
Rössler W, Brill MF. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:981-96. [PMID: 23609840 PMCID: PMC3824823 DOI: 10.1007/s00359-013-0821-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Abstract
Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to “what-” and “where” subsystems in visual pathways, this suggests two parallel olfactory subsystems providing “what-” (quality) and “when” (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.
Collapse
Affiliation(s)
- Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | |
Collapse
|
44
|
Ferreira RAC, Silva Zacarin ECM, Malaspina O, Bueno OC, Tomotake MEM, Pereira AM. Cellular responses in the Malpighian tubules of Scaptotrigona postica (Latreille, 1807) exposed to low doses of fipronil and boric acid. Micron 2013; 46:57-65. [DOI: 10.1016/j.micron.2012.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 12/13/2012] [Accepted: 12/27/2012] [Indexed: 11/25/2022]
|
45
|
|
46
|
Farooqui T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochem Int 2013; 62:122-36. [DOI: 10.1016/j.neuint.2012.09.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 12/13/2022]
|
47
|
Démares F, Raymond V, Armengaud C. Expression and localization of glutamate-gated chloride channel variants in honeybee brain (Apis mellifera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:115-124. [PMID: 23085357 DOI: 10.1016/j.ibmb.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/07/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
Due to its specificity to invertebrate species, glutamate-gated chloride channels (GluCls) are the target sites of antiparasitic agents and insecticides, e.g. ivermectin and fipronil, respectively. In nematodes and insects, the GluCls diversity is broadened by alternative splicing. GluCl subunits have been characterized according to their sensitivity to drugs, and to their anatomical localization. In the honeybee, the GluCl gene can encode different alpha subunits due to alternative splicing of exon 3. We examined mRNA expression in brain parts and we confirmed the existence of two GluCl variants with RT-PCR, Amel_GluCl A and Amel_GluCl B. Surprisingly, a mixed isoform not yet described in insect was obtained, we called it Amel_GluCl C. We determined precise immunolocalization of peptide sequence corresponding to Amel_GluCl A and Amel_GluCl B in the honeybee brain. Amel_GluCl A is mainly located in neuropils, whereas Amel_GluCl B is mostly expressed in cell bodies. Both proteins can also be co-localized. According to their anatomical localization, different GluCl variants might be involved in olfactory and visual modalities and in learning and memory.
Collapse
Affiliation(s)
- Fabien Démares
- Université de Toulouse, UPS, Centre de Recherche sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | | | | |
Collapse
|
48
|
Boumghar K, Couret-Fauvel T, Garcia M, Armengaud C. Evidence for a role of GABA- and glutamate-gated chloride channels in olfactory memory. Pharmacol Biochem Behav 2012; 103:69-75. [DOI: 10.1016/j.pbb.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 07/26/2012] [Accepted: 08/04/2012] [Indexed: 01/11/2023]
|
49
|
Lourenço CT, Carvalho SM, Malaspina O, Nocelli RCF. Oral toxicity of fipronil insecticide against the stingless bee Melipona scutellaris (Latreille, 1811). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:921-4. [PMID: 22886451 DOI: 10.1007/s00128-012-0773-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/02/2012] [Indexed: 05/26/2023]
Abstract
For a better evaluation of the model using Apis mellifera in toxicology studies with insecticides, the oral acute toxicity of the insecticide fipronil against the stingless bee Melipona scutellaris was determined. The results showed that fipronil was highly toxic to M. scutellaris, with a calculated LC(50) (48 h) value of 0.011 ng a.i./μL of sucrose solution and an estimated oral LD(50) (48 h) of 0.6 ng a.i./bee. Our results showed that M. scutellaris bee is more sensitive to fipronil than the model specie A. mellifera.
Collapse
Affiliation(s)
- Clara Tavares Lourenço
- Centro de Ciências Agrárias (CCA), Universidade Federal de São Carlos (UFSCar), Rod. Anhanguera, Km 174, Araras, SP 13600-970, Brazil.
| | | | | | | |
Collapse
|
50
|
Eiri DM, Nieh JC. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. ACTA ACUST UNITED AC 2012; 215:2022-9. [PMID: 22623190 DOI: 10.1242/jeb.068718] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A nicotinic acetylcholine receptor agonist, imidacloprid, impairs memory formation in honey bees and has general effects on foraging. However, little is known about how this agonist affects two specific aspects of foraging: sucrose responsiveness (SR) and waggle dancing (which recruits nestmates). Using lab and field experiments, we tested the effect of sublethal doses of imidacloprid on (1) bee SR with the proboscis extension response assay, and (2) free-flying foragers visiting and dancing for a sucrose feeder. Bees that ingested imidacloprid (0.21 or 2.16 ng bee(-1)) had higher sucrose response thresholds 1 h after treatment. Foragers that ingested imidacloprid also produced significantly fewer waggle dance circuits (10.5- and 4.5-fold fewer for 50% and 30% sucrose solutions, respectively) 24 h after treatment as compared with controls. However, there was no significant effect of imidacloprid on the sucrose concentrations that foragers collected at a feeder 24 h after treatment. Thus, imidacloprid temporarily increased the minimum sucrose concentration that foragers would accept (short time scale, 1 h after treatment) and reduced waggle dancing (longer time scale, 24 h after treatment). The effect of time suggests different neurological effects of imidacloprid resulting from the parent compound and its metabolites. Waggle dancing can significantly increase colony food intake, and thus a sublethal dose (0.21 ng bee(-1), 24 p.p.b.) of this commonly used pesticide may impair colony fitness.
Collapse
Affiliation(s)
- Daren M Eiri
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California, San Diego, Mail code 0116, 9500 Gilman Drive, La Jolla, CA 92093-0166, USA.
| | | |
Collapse
|