1
|
Kordaczuk J, Sułek M, Mak P, Frączek A, Wojda I. Chemosensory protein 16 has an immune function and participates in host-pathogen interaction in Galleria mellonella infected with Pseudomonas entomophila. Virulence 2025; 16:2471367. [PMID: 40019037 PMCID: PMC11875508 DOI: 10.1080/21505594.2025.2471367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/18/2024] [Accepted: 02/09/2025] [Indexed: 03/01/2025] Open
Abstract
Chemosensory protein 16 was identified in the hemolymph of Galleria mellonella as a protein with an amount increasing after oral infection with 10^3 CFU of Pseudomonas entomophila, and decreasing after infection with a higher dose (10^5 CFU) of bacteria. The expression of the CSP16 gene occurred in the fat body and in the gut and correlated with changes in the protein level in the hemolymph. The CSP16 protein inhibited P. entomophila growth in the concentration range from 0.15 to 6 nM. Additionally, the CSP16 protein showed bactericidal activity against P. entomophila, Bacillus thuringiensis, and Escherichia coli in the range of 2-18 μM, but only in the presence of protease inhibitors, otherwise it was degraded by extracellular proteases secreted by P. entomophila. We demonstrated that the bactericidal activity of CSP16 was related to its ability to perforate bacterial cellular membranes in a dose-dependent manner. The antimicrobial properties of this protein were also confirmed with the use of Atomic Force Microscopy, which showed significant changes in the topology of different bacterial cell surfaces. Finally, when CSP16 was injected in vivo into G. mellonella larvae one hour after infection with P. entomophila, more survivors were observed at particular time-points. Taking into account its immune properties and putative ability to bind bacteria-derived compounds, the possible function of CSP16 in the host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- Jakub Kordaczuk
- Institute of Biological Sciences, Department of Immunobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Michał Sułek
- Institute of Biological Sciences, Department of Immunobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Paweł Mak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Analytical Biochemistry, Jagiellonian University, Kraków, Poland
| | - Alicja Frączek
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Analytical Biochemistry, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Iwona Wojda
- Institute of Biological Sciences, Department of Immunobiology, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
2
|
Xia G, Yang L, Li B, Wang Q, Huang L, Tian X, Zhang G. Genome-Wide Identification and Expression Profiling of Odorant-Binding Protein Genes in the Bean Flower Thrips Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae). INSECTS 2025; 16:212. [PMID: 40003841 PMCID: PMC11856683 DOI: 10.3390/insects16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Megalurothrips usitatus is an economically important vegetable pest. Because of the growing demand for reducing pesticide use on vegetables, new environmentally friendly strategies for controlling M. usitatus are urgently needed. Insect odorant-binding proteins are prospective targets for screening environmentally friendly odorant attractants for pest control. However, very little is known about OBP genes in M. usitatus. Here, we identified 14 OBPs in the M. usitatus genome using HMMER and BLAST. The chromosomal location showed that these OBPs were widely distributed across eight chromosomes. The analysis of the gene and protein structure characteristics of OBPs in M. usitatus revealed substantial diversity within the OBP gene family. The spatiotemporal expression profiles showed that ten out of 14 MusiOBPs displayed male biased expression, which were highly expressed in antennae, suggesting that they may play a crucial role in the recognition of host plant volatiles and thrips aggregation pheromones. Notably, only MusiOBP8 was significantly higher expressed in female adults, indicating a potential involvement in reproduction. Moreover, MusiOBP7 and MusiOBP13 were highly expressed in the pupae, indicating their possible role in immune responses. These results provide an important foundation for further exploration of the functions of the OBPs in M. usitatus.
Collapse
Affiliation(s)
- Gen Xia
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| | - Lang Yang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (L.Y.); (L.H.)
| | - Boliao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Qinli Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| | - Lifei Huang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (L.Y.); (L.H.)
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, China;
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| |
Collapse
|
3
|
Zhang W, Chen X, Tian J, Schal C, Mohamed A, Zang LS, Xia Y, Keyhani NO. An odorant-binding protein functions in fire ant social immunity interfacing with innate immunity. Open Biol 2025; 15:240254. [PMID: 39933575 PMCID: PMC11813584 DOI: 10.1098/rsob.240254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Social immunity-mediated sanitation behaviours occur in insects when microbially killed corpses are removed and/or dismembered by healthy nestmates. However, little is known concerning the chemical signals or receptor proteins that mediate these responses. Here, we identify cuticular components in the eusocial red important fire ant, Solenopsis invicta: behenic acid, which induces dismemberment behaviour, and oleic and cis,cis-9,12-linoleic acids, which inhibit dismemberment in a process mediated by S. invicta odorant-binding protein-15 (SiOBP15). Yeast two-hybrid screening and protein-protein interaction analyses identified the ant immunity-related proteins apolipophorin-III (SiApoLp-III) and fatty acid binding protein-5 (SiFABP5) as SiOBP15 interacting partners. SiOBP15 and SiFABP5 bound all three dismemberment-related compounds, whereas interactions between SiOBP15 and SiApoLp-III narrowed binding to behenic acid. RNAi-mediated gene expression knockdown of SiOBP15, SiApoLp-III or SiFABP5 revealed that behenic acid chemoreception determines dismemberment behaviour via SiApoLp-III/SiOBP15, whereas SiOBP15 or SiOBP15/SiFABP5 recognition of linoleic acid inhibits dismemberment behaviour. These data identify a host circuit linking olfactory proteins and proteins involved in innate immunity to control the degree of sanitation behaviour elicited in response to microbial infection. We identify specific chemical cues transduced by these proteins, providing a mechanism connecting olfaction-related processes to innate immunity, host-pathogen interactions and social immunity.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District550025, People’s Republic of China
- Department of Biological Sciences, University of Illinois, Chicago, IL60607, USA
- School of Life Science, Chongqing University, Chongqing401331, People’s Republic of China
| | - Xuanyu Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District550025, People’s Republic of China
| | - Jiaxin Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District550025, People’s Republic of China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Lian-Sheng Zang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District550025, People’s Republic of China
| | - Yuxian Xia
- School of Life Science, Chongqing University, Chongqing401331, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL60607, USA
| |
Collapse
|
4
|
Liu Y, Zhang S, Cao S, Jacquin-Joly E, Zhou Q, Liu Y, Wang G. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol 2024; 22:61. [PMID: 38475722 DOI: 10.1186/s12915-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, UPEC, UniversitéParis Cité, 78026, Versailles, IRD, France
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
5
|
Tian Z, Li R, Cheng S, Zhou T, Liu J. The Mythimna separata general odorant binding protein 2 (MsepGOBP2) is involved in the larval detection of the sex pheromone (Z)-11-hexadecenal. PEST MANAGEMENT SCIENCE 2023; 79:2005-2016. [PMID: 36680502 DOI: 10.1002/ps.7373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mythimna separata is a notorious pest causing crop damages at the larval stage. Gaining insight into larval olfaction mechanisms would provide knowledge for olfaction-based management of M. separata larvae. RESULTS In the present research, (Z)-11-hexadecenal (Z11-16: Ald), a major component of M. separata sex pheromone, was found to attract early-instar larvae of M. separata in a food context. Using a fluorescent binding assay, we found that M. separata general odorant binding protein 2 (MsepGOBP2) exhibited high binding affinity to Z11-16: Ald. Further, silencing of MsepGOBP2 resulted in a sharp reduction of the response to Z11-16: Ald, which could not be mitigated by increasing the concentration of Z11-16: Ald. Additionally, we employed molecular dynamics-based approaches to unravel the interaction details between MsepGOBP2 and Z11-16: Ald, specifically the binding of Z11-16: Ald to MsepGOBP2. CONCLUSION Z11-16: Ald is attractive to early-instar larvae of M. separata, and MsepGOBP2 is identified to be indispensable in the larval detection of Z11-16: Ald. These results could aid in the development of olfaction-based methods for controlling M. separata in the larval stage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shichang Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Zhang B, Yang RR, Jiang XC, Xu XX, Wang B, Wang GR. Genome-Wide Analysis of the Odorant Receptor Gene Family in Solenopsis invicta, Ooceraea biroi, and Monomorium pharaonis (Hymenoptera: Formicidae). Int J Mol Sci 2023; 24:ijms24076624. [PMID: 37047591 PMCID: PMC10095046 DOI: 10.3390/ijms24076624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Olfactory systems in eusocial insects play a vital role in the discrimination of various chemical cues. Odorant receptors (ORs) are critical for odorant detection, and this family has undergone extensive expansion in ants. In this study, we re-annotated the OR genes from the most destructive invasive ant species Solenopsis invicta and 2 other Formicidae species, Ooceraea biroi and Monomorium pharaonis, with the aim of systematically comparing and analyzing the evolution and the functions of the ORs in ant species, identifying 356, 298, and 306 potential functional ORs, respectively. The evolutionary analysis of these ORs showed that ants had undergone chromosomal rearrangements and that tandem duplication may be the main contributor to the expansion of the OR gene family in S. invicta. Our further analysis revealed that 9-exon ORs had biased chromosome localization patterns in all three ant species and that a 9-exon OR cluster (SinvOR4–8) in S. invicta was under strong positive selection (Ka/Ks = 1.32). Moreover, we identified 5 S. invicta OR genes, namely SinvOR89, SinvOR102, SinvOR352, SinvOR327, and SinvOR135, with high sequence similarity (>70%) to the orthologs in O. biroi and M. pharaonis. An RT-PCR analysis was used to verify the antennal expression levels of these ORs, which showed caste-specific expression. The subsequent analysis of the antennal expression profiles of the ORs of the S. invicta workers from the polygyne and monogyne social forms indicated that SinvOR35 and SinvOR252 were expressed at much higher levels in the monogyne workers than in the polygyne workers and that SinvOR21 was expressed at higher levels in polygyne workers. Our study has contributed to the identification and analysis of the OR gene family in ants and expanded the understanding of the evolution and functions of the ORs in Formicidae species.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Rong-Rong Yang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Chuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Xia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
7
|
Wang X, Liu H, Xie G, Wang W, Yang Y. Identification and expression analyses of the olfactory-related genes in different tissues' transcriptome of a predacious soldier beetle, Podabrus annulatus (Coleoptera, Cantharidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21997. [PMID: 36656761 DOI: 10.1002/arch.21997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
We sequenced and analyzed the transcriptomes from different tissues of the soldier beetle, Podabrus annulatus (Coleoptera: Cantharidae), and obtained 75.74 Gb clean reads which were assembled into 95,274 unigenes. Among these transcripts, 25,484 unigenes of highly quality were annotated. Based on annotation and tBLASTn results, we identified a total of 101 candidate olfactory-related genes for the first time, including 11 putative odorant-binding proteins (OBPs), 6 chemosensory proteins (CSP), 50 olfactory receptors (ORs), 25 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). BLASTX best-hit results indicated that these chemosensory genes were most identical to their respective orthologs from Photinus pyralis. Phylogenetic analyses also revealed that the ORs, GRs, and IRs of Podabrus annulatus are closely related to those of Photinus pyralis. The fragment per kilobase per million mapped fragments (FPKM) values showed that the PannOBP2, PannOBP3, and PannOBP10 were predominantly expressed in the antennae, PannOBP1 in the abdomen-thorax, while others were not identified to be tissue-specific. These olfactory-related differentially expressed genes (DEGs) demonstrated different roles in the olfactory system of Podabrus annulatus. This study establishes the groundwork for future research into the molecular mechanism of olfactory recognition in Podabrus annulatus.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guanglin Xie
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
8
|
Hong B, Zhai Y, Yang Y, Chang Q, Li G, Zhang F. Identification and sex-specific expression of chemosensory genes in the antennal transcriptomes of Pachyrhinus yasumatsui (Coleoptera: Curculionidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7135657. [PMID: 37083941 PMCID: PMC10120841 DOI: 10.1093/jisesa/iead023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Pachyrhinus yasumatsui Kono et Morimoto is a major pest of Chinese jujube, which is widespread in northern China and causes severe economic losses in the jujube industry. Chemosensory genes play crucial roles in insect behaviors. Currently, little is known about chemosensory genes in P. yasumatsui. In the present study, antennal transcriptomes of female and male adult P. yasumatsui were annotated. In total, 113 genes involved in chemosensory functions were identified, including 41 odorant receptors, 28 odorant-binding proteins, 16 ionotropic receptors, 15 chemosensory proteins, 9 gustatory receptors, and 4 sensory neuron membrane proteins. Subsequently, the phylogenetic analyses of these olfactory-related proteins in P. yasumatsui were conducted using multiple sequence alignment. Furthermore, sex-specific expression levels of 113 genes were analyzed based on fragments per kilobase of transcript per million mapped reads (FPKM). Then, the quantitative real-time PCR (RT-qPCR) was used to quantify gene expression profiles of 28 P. yasumatsui OBPs (PyasOBPs) and 15 CSPs (PyasCSPs). The results revealed that 20 PyasOBPs and 13 PyasCSPs exhibited significantly higher expression in the antennae than in the bodies, suggesting that they might have functions in olfaction. Moreover, some OBPs and CSPs (PyasOBP6, PyasOBP7, PyasOBP16, PyasOBP21, and PyasCSP4) exhibited female-biased expression, indicating that they might take part in several female-specific behaviors. This study will promote the understanding of olfactory mechanism in P. yasumatsui, and our findings lay the groundwork for developing environmentally friendly pest management measures.
Collapse
Affiliation(s)
- Bo Hong
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China
| | - Yingyan Zhai
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China
| | - Yiwei Yang
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China
| | - Qing Chang
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’an 710043, China
| | - Guangwei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China
| | | |
Collapse
|
9
|
Garm A, Svaerke JE, Pontieri D, Oakley TH. Expression of Opsins of the Box Jellyfish Tripedalia cystophora Reveals the First Photopigment in Cnidarian Ocelli and Supports the Presence of Photoisomerases. Front Neuroanat 2022; 16:916510. [PMID: 35991966 PMCID: PMC9389615 DOI: 10.3389/fnana.2022.916510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cubomedusae, or box jellyfish, have a complex visual system comprising 24 eyes of four types. Like other cnidarians, their photoreceptor cells are ciliary in morphology, and a range of different techniques together show that at least two of the eye types—the image-forming upper and lower lens eyes—express opsin as the photopigment. The photoreceptors of these two eye types express the same opsin (Tc LEO), which belongs to the cnidarian-specific clade cnidops. Interestingly, molecular work has found a high number of opsin genes in box jellyfish, especially in the Caribbean species Tripedalia cystophora, most of which are of unknown function. In the current study, we raised antibodies against three out of five opsins identified from transcriptomic data from T. cystophora and used them to map the expression patterns. These expression patterns suggest one opsin as the photopigment in the slit eyes and another as a putative photoisomerase found in photoreceptors of all four eyes types. The last antibody stained nerve-like cells in the tentacles, in connection with nematocytes, and the radial nerve, in connection with the gonads. This is the first time photopigment expression has been localized to the outer segments of the photoreceptors in a cnidarian ocellus (simple eye). The potential presence of a photoisomerase could be another interesting convergence between box jellyfish and vertebrate photoreceptors, but it awaits final experimental proof.
Collapse
Affiliation(s)
- Anders Garm
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Anders Garm
| | - Jens-Erik Svaerke
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Pontieri
- Marine Biological Section, University of Copenhagen, Copenhagen, Denmark
| | - Todd H. Oakley
- Department of Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
10
|
He Z, Yu Z, He X, Hao Y, Qiao L, Luo S, Zhang J, Chen B. Genome-wide identification and expression profiling of odorant receptor genes in the malaria vector Anopheles sinensis. Parasit Vectors 2022; 15:143. [PMID: 35461301 PMCID: PMC9034491 DOI: 10.1186/s13071-022-05259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background The olfactory system plays a crucial role in regulating insect behaviors. The detection of odorants is mainly mediated by various odorant receptors (ORs) that are expressed in the dendrites of olfactory neurons of chemosensilla. Anophelessinensis is a major malaria vector in Eastern Asia and its genome has recently been successfully sequenced and annotated. In this study, we present genome-wide identification and expression profiling of OR genes in different chemosensory tissues of An.sinensis. Methods The OR genes were identified using the available genome sequences of An.sinensis. A series of bioinformatics analyses were conducted to investigate the structure, genome distribution, selective pressure and phylogenetic relationships of OR genes, the conserved domains and specific functional sites in the OR amino acid sequences. The expression levels of OR genes were analyzed from transcriptomic data from An.sinensis antennae, proboscis and maxillary palps of both sexes. Results A total of 59 putative OR genes have been identified and characterized in An.sinensis. This number is significantly less than that in An.gambiae. Whether this difference is caused by the contraction or expansion of OR genes after divergence of the two species remains unknown. The RNA-seq analysis showed that AsORs have obvious tissue- and sex-specific expression patterns. Most AsORs are highly expressed in the antennae and the expression pattern and number of AsORs expressed in antennae are similar in males and females. However, the relative levels of AsOR transcripts are much higher in female antennae than in male antennae, which indicates that the odor sensitivity is likely to be increased in female mosquitoes. Based on the expression patterns and previous studies, we have speculated on the functions of some OR genes but this needs to be validated by further behavioral, molecular and electrophysiological studies. Further studies are necessary to compare the olfactory-driven behaviors and identify receptors that respond strongly to components of human odors that may act in the process of human recognition. Conclusions This is the first genome-wide analysis of the entire repertoire of OR genes in An.sinensis. Characterized features and profiled expression patterns of ORs suggest their involvement in the odorous reception of this species. Our findings provide a basis for further research on the functions of OR genes and additional genetic and behavioral targets for more sustainable management of An.sinensis in the future. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05259-x.
Collapse
Affiliation(s)
- Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Zhengrong Yu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Xingfei He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Youjin Hao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Shihui Luo
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jingjing Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
11
|
Identification of Olfactory Genes in Monochamus saltuarius and Effects of Bursaphelenchus xylophilus Infestation on Their Expression. FORESTS 2022. [DOI: 10.3390/f13020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused disastrous losses of pine forests in many countries, and the success of PWN depends strongly on interactions with its insect vectors. Monochamus saltuarius is a newly recorded vector in Northeast China. Feeding (i.e., immature) and egg-laying (i.e., mature) Monochamus spp. target different host plants, and olfactory cues play important roles regarding host choice. Whether infestation with PWN affects olfactory mechanisms in M. saltuarius related to feeding and oviposition is of interest as this may affect the spread of nematodes to new healthy hosts. However, little is known about molecular mechanisms of the olfactory system of M. saltuarius. We identified chemosensory-related genes in adult M. saltuarius and examined the influence of B. xylophilus on the respective expression patterns. Fifty-three odorant-binding proteins (OBPs), 15 chemosensory proteins, 15 olfactory receptors (ORs), 10 gustatory receptors, 22 ionotropic receptors (IRs), and two sensory neuron membrane proteins were identified, and sex bias among non-infested beetles was mainly found with respect to expression of OBPs. Interestingly, OBPs and ORs were markedly down-regulated in male M. saltuarius infested with B. xylophilus, which may reduce olfactory sensitivity of male M. saltuarius and affect the spreading of B. xylophilus to new hosts. Our results will help understand the interactions between B. xylophilus and M. saltuarius, which may lead to the identification of new control targets in the olfactory system of M. saltuarius.
Collapse
|
12
|
Tanaka K, Shimomura K, Hosoi A, Sato Y, Oikawa Y, Seino Y, Kuribara T, Yajima S, Tomizawa M. Antennal transcriptome analysis of chemosensory genes in the cowpea beetle, Callosobruchus maculatus (F.). PLoS One 2022; 17:e0262817. [PMID: 35045135 PMCID: PMC8769365 DOI: 10.1371/journal.pone.0262817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Olfaction, one of the most important sensory systems governing insect behavior, is a possible target for pest management. Therefore, in this study, we analyzed the antennal transcriptome of the cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae), which is a major pest of stored pulses and legumes. The de novo antennal RNA-seq assembly results identified 17 odorant, 2 gustatory, and 10 ionotropic receptors, 1 sensory neuron membrane protein, and 12 odorant-binding and 7 chemosensory proteins. Moreover, differential gene expression analysis of virgin male and female antennal samples followed by qRT-PCR revealed 1 upregulated and 4 downregulated odorant receptors in males. We also performed homology searches using the coding sequences built from previously proposed amino acid sequences derived from genomic data and identified additional chemosensory-related genes.
Collapse
Affiliation(s)
- Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kenji Shimomura
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Akito Hosoi
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yui Sato
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yukari Oikawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yuma Seino
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Takuto Kuribara
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Motohiro Tomizawa
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
13
|
Liu X, Tong N, Wu Z, Li Y, Ma M, Liu P, Lu M. Identification of Chemosensory Genes Based on the Antennal Transcriptomic Analysis of Plagiodera versicolora. INSECTS 2021; 13:insects13010036. [PMID: 35055879 PMCID: PMC8781154 DOI: 10.3390/insects13010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Insects can sense surrounding chemical signals by their accurate chemosensory systems. This system plays a vital role in the life history of insects. Several gene families participate in chemosensory processes, including odorant receptors (ORs), ionotropic receptors (IRs), gustatory receptors (GRs), chemosensory proteins (CSPs), odorant binding proteins (OBPs), and sensory neuron membrane proteins (SNMPs). Plagiodera versicolora (Coleoptera: Chrysomelidae), is a leaf-eating forest pest found in salicaceous trees worldwide. In this study, a transcriptome analysis of male and female adult antennae in P. versicolora individuals was conducted, which identified a total of 98 candidate chemosensory genes including 40 ORs, 7 IRs, 13 GRs, 10 CSPs, 24 OBPs, and 4 SNMPs. Subsequently, the tissue expression profiles of 15 P. versicolora OBPs (PverOBPs) and 39 ORs (PverORs) were conducted by quantitative real-time PCR. The data showed that almost all PverOBPs and PverORs were highly expressed in the male and female antennae. In addition, several OBPs and ORs (PverOBP10, PverOBP12, PverOBP18, PverOR24, and PverOR35) had higher expression levels in female antennae than those in the male antennae, indicating that these genes may be taking part in some female-specific behaviors, such as find mates, oviposition site, etc. This study deeply promotes further understanding of the chemosensory system and functional studies of the chemoreception genes in P. versicolora.
Collapse
|
14
|
Rasool KG, Mehmood K, Tufail M, Husain M, Alwaneen WS, Aldawood AS. Silencing of vitellogenin gene contributes to the promise of controlling red palm weevil, Rhynchophorus ferrugineus (Olivier). Sci Rep 2021; 11:21695. [PMID: 34737372 PMCID: PMC8568968 DOI: 10.1038/s41598-021-01159-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
Red palm weevil [Rhynchophorus ferrugineus (Olivier)], is native to South Asia and expanding its distribution range globally. Recent invasions of red palm weevil around the world, including Saudi Arabia, has become a global constraint for the production of palm species. Although, several control measures have been tested, none of them seemed successful against this invasive species. Therefore, we focused on silencing the reproduction control gene vitellogenin (Vg) based on RNA interference (RNAi) strategy for its possible application in the management of R. ferrugineus. The Vg is a major yolk protein precursor critical for oogenesis. To do this, fat body transcriptome of R. ferrugineus female adults was sequenced, which provided partial Vg gene transcript (FPKM 5731.60). A complete RfVg gene transcript of 5504 bp encoding 1787 amino acids was then sequenced using RCAE-PCR strategy and characterized. Phylogenetic analysis suggested that RfVg has closer ancestry to the coleopteran insects. The RfVg-based RNAi significantly suppressed the expressions of Vg gene. The 15, 20 and 25 days post-injection periods suppressed Vg expressions by 95, 96.6 and 99%, respectively. The suppressed Vg expressions resulted in the dramatic failure of Vg protein expression, which caused atrophied ovaries or no oogenesis and ultimately eggs were not hatched. These results suggest that knockdown of Vg gene involved in R. ferrugineus reproduction is a promising target for RNAi-based management of R. ferrugineus.
Collapse
Affiliation(s)
- Khawaja G Rasool
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Mehmood
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Institute of Plant Protection, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Muhammad Tufail
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Mureed Husain
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Waleed S Alwaneen
- National Center for Agricultural Technology (NCAT), King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulrahman S Aldawood
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
Zhan H, Dewer Y, Zhang J, Tian J, Li D, Qu C, Yang Z, Li F, Luo C. Odorant-Binding Protein 1 Plays a Crucial Role in the Olfactory Response of Bemisia tabaci to R-Curcumene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12785-12793. [PMID: 34669397 DOI: 10.1021/acs.jafc.1c03825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cultivated tomato Solanum lycopersicum suffered a severe attack by the whitefly Bemisia tabaci (Gennadius), causing damage to leaves by feeding as well as transmitting the tomato yellow leaf curl virus (TYLCV), while the wild tomato S. habrochaites is considerably less appealing to this insect species. It is reported that B. tabaci shows innate avoidance to R-curcumene, which is produced naturally by S. habrochaites. However, the mechanisms involved in the avoidance behavior of B. tabaci in response to this chiral compound are still unclear yet. In this study, the functional and binding characterization of odorant-binding protein 1 of B. tabaci (BtOBP1) were examined in vivo and in vitro against R-curcumene. The obtained results showed that BtOBP1 exhibits specific binding activity to R-curcumene, which acts as repellents to B. tabaci. By using a fluorescence-based binding assay, the difference of binding-affinity for R-curcumene between wild type BtOBP1 and the mutant BtOBP1 to R-curcumene was performed, which resulted in a single amino acid mutation (ASN108 > SER); moreover, BtOBP1-N108 displays significantly decreased binding affinities to R-curcumene. Most interestingly, a knock-down experiment with the BtOBP1 showed that the whitefly responses to R-curcumene are impaired. This study illustrated that BtOBP1 is a crucial protein involved in the perception and discrimination of R-curcumene. Our findings may provide an excellent chance of finding a suitable antagonist of eco-friendly features that can block the perception of chemosensory signals in insects, preventing behaviors like food-finding.
Collapse
Affiliation(s)
- Haixia Zhan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiahui Tian
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Du Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhen Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Fengqi Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chen Luo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
16
|
Cao S, Liu Y, Wang B, Wang G. A single point mutation causes one-way alteration of pheromone receptor function in two Heliothis species. iScience 2021; 24:102981. [PMID: 34485863 PMCID: PMC8403742 DOI: 10.1016/j.isci.2021.102981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022] Open
Abstract
The sex pheromone processing system of moths has been a major focus of research on olfaction and speciation, as it is highly specific and closely related to reproductive isolation. The two noctuid moths Heliothis virescens and Heliothis subflexa have been used as a model for deciphering the mechanisms underlying differentiation in pheromone communication, but no information exist regarding the functions of the pheromone receptors (PRs) of H. subflexa. Here, we functionally characterized all candidate PRs of H. subflexa, and found that only the response profile of OR6 differed between the two species. Through domain swapping and site-directed mutation followed by functional characterization, we identified a critical amino acid in OR6 caused a one-way alteration in specificity. This result suggests HsubOR6 evolved from an ancestral OR6 gene with a HvirOR6-like function and implies that the evolutionary direction of the receptor specificity was from the H. virescens-like pattern to H. subflexa-like pattern.
Collapse
Affiliation(s)
- Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
17
|
Toh YP, Dion E, Monteiro A. Dissections of Larval, Pupal and Adult Butterfly Brains for Immunostaining and Molecular Analysis. Methods Protoc 2021; 4:53. [PMID: 34449688 PMCID: PMC8395752 DOI: 10.3390/mps4030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 11/21/2022] Open
Abstract
Butterflies possess impressive cognitive abilities, and investigations into the neural mechanisms underlying these abilities are increasingly being conducted. Exploring butterfly neurobiology may require the isolation of larval, pupal, and/or adult brains for further molecular and histological experiments. This procedure has been largely described in the fruit fly, but a detailed description of butterfly brain dissections is still lacking. Here, we provide a detailed written and video protocol for the removal of Bicyclus anynana adult, pupal, and larval brains. This species is gradually becoming a popular model because it uses a large set of sensory modalities, displays plastic and hormonally controlled courtship behaviour, and learns visual mate preference and olfactory preferences that can be passed on to its offspring. The extracted brain can be used for downstream analyses, such as immunostaining, DNA or RNA extraction, and the procedure can be easily adapted to other lepidopteran species and life stages.
Collapse
Affiliation(s)
- Yi Peng Toh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
| | - Emilie Dion
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
- Yale-NUS College, 10 College Avenue West, Singapore 138609, Singapore
| |
Collapse
|
18
|
Wei H, Tan S, Li Z, Li J, Moural TW, Zhu F, Liu X. Odorant degrading carboxylesterases modulate foraging and mating behaviors of Grapholita molesta. CHEMOSPHERE 2021; 270:128647. [PMID: 33757271 DOI: 10.1016/j.chemosphere.2020.128647] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Odorant degrading carboxylesterases (CXEs) play key roles in the process of odor signal reception via degrading ester odorants. But the functional mechanisms of CXEs in modulating insect behaviors are unclear. Herein, we studied the roles that CXEs played in mating, foraging, and signal receptions of sex pheromones and host volatiles in Grapholita molesta. As a result, 23 candidate CXEs were identified by transcriptome analysis of G. molesta. The GmolCXE1 and 5 highly expressed in the antennae of male moths and GmolCXE14 and 21 abundantly expressed in larval heads, were significantly upregulated after exposure with odors from female adults or fresh ripe fruits respectively. After knockdown of GmolCXE1 and 5, or GmolCXE14 and 21 by RNA interference, the behavioral responses of G. molesta to ester sex pheromones or host volatiles were decreased, by exhibiting an inhibited searching behavior of G. molesta for females or fruits, respectively. Then evidence form GC-MS analysis, showed that the protein GmolCXE1 and GmolCXE5 could metabolize the sex pheromone components (Z/E)-8-dodecenyl acetate to their metabolites products (Z/E)-8-dodecenol, and that GmolCXE14 and GmolCXE21 could metabolize ethyl butanoate and ethyl hexanoate of ripe pears. In addition, fluorescent binding assays verified that GmolCXEs could degrade the free ester odor molecules, but not degrade the odor molecules protected by odorant-binding proteins. Our study not only demonstrated CXEs modulated the mating and foraging behaviors of G. molesta through inactivation of ester sex pheromone and host volatiles, but also discovered great potential molecular targets to develop behavioral inhibitors for pest management.
Collapse
Affiliation(s)
- Hongshuang Wei
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Shuqian Tan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Jiancheng Li
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding, 071000, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
19
|
Wang C, Wang B, Wang G. Functional Characterization of Sex Pheromone Neurons and Receptors in the Armyworm, Mythimna separata (Walker). Front Neuroanat 2021; 15:673420. [PMID: 33994962 PMCID: PMC8113758 DOI: 10.3389/fnana.2021.673420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pheromone receptors (PRs) of moths are expressed on the dendritic membrane of odorant receptor neurons (ORNs) housed in the long trichoid sensilla (TS) of antennae and are essential to sex pheromone reception. The function of peripheral neurons of Mythimna separata in recognizing sex pheromones is still unclear. In this study, electroantennogram recordings were performed from male and female antennae of M. separata, and showed that the major component of sex pheromones, (Z)-11-hexadecenal (Z11-16:Ald), evoked the strongest response of male antennae with significant differences between sexes. Single sensillum recording was used to record responses of neurons housed in TS of male M. separata. The results revealed four types of TS with three neurons housed in each type, based on profiles of responses to sex pheromone components and pheromone analogs. ORN-B of type-I TS was specifically tuned to the major sex pheromone component Z11-16:Ald; ORN-Bs in type-III and type-IV TSs were, respectively, activated by minor components (Z)-11-hexadecen-1-yl acetate (Z11-16:OAc) and hexadecenal (16:Ald); and ORNs in type-II TS were mainly activated by the sex pheromone analogs. We further cloned full-length sequences of six putative PR genes and an Orco gene. Functional characterization of PRs in the Xenopus oocyte system demonstrated that male antennae-biased MsepPR1 responded strongly to (Z)-9-tetradecenal (Z9-14:Ald), suggesting that MsepPR1 may be expressed in type-II TS. MsepPR6 was exclusively tuned to (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc). MsepPR2 and MsepPR4 showed no responses to any tested components. Female antennae-biased MespPR5 was broadly tuned to Z9-14:Ald, Z9-14:OAc, Z11-16:Ald, and (Z)-11-hexadecen-1-ol (Z11-16:OH). Our results further enriched the sex pheromone recognition mechanism in the peripheral nervous system of moth M. separata.
Collapse
Affiliation(s)
- Chan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
20
|
Liu J, Li R, Zhou T, Cheng S, Li C, Ye X, Li Y, Tian Z. Structural evidence for pheromone discrimination by the pheromone binding protein 3 from Plutella xylostella. Int J Biol Macromol 2020; 169:396-406. [PMID: 33352161 DOI: 10.1016/j.ijbiomac.2020.12.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022]
Abstract
Insect pheromone binding proteins (PBPs) are believed to have a high degree of pheromone selectivity, acting as the first filter to discriminate specific pheromones from other volatile compounds. Herein, we provide evidence using homology-based model for the pheromone discrimination of Plutella xylostella pheromone binding protein 3 (PxPBP3). Combining molecular dynamics simulations and in vitro binding assays, two dominant sites are determined to be essential for the PxPBP3 to discriminate (Z)-11-hexadecenyl acetate (Hexadecenyl) from (Z)-11-hexadecenal (Hexadecenal). As the first key site for pheromone discrimination, Arg111 is indispensable to the PxPBP3-Hexadecenyl interaction. However, its importance in the binding of Hexadecenal to PxPBP3 is greatly reduced. A second site where pheromone discrimination occurs is a small loop (residues 34-38) in PxPBP3. It is shown that the hydrophobic strength provided by three hydrophobic residues (Phe34, Tyr37, and Trp38) in the small loop is significantly biased in the two complexes formed by PxPBP3 and the two pheromones. The discrimination capacity of PxPBP3 indicates that the P. xylostella pheromones may not share the same peri-receptor pathway, although they both show high affinity to PxPBP3.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China
| | - Shichang Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China
| | - Chaoxia Li
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
21
|
Wu S, Deng W, Li M, Xiao Y, Li J, Teng K, Xiao Z, Li X, Zhou Z, Li Y. Analysis of Chemosensory Genes in Full and Hungry Adults of Arma chinensis (Pentatomidae) Through Antennal Transcriptome. Front Physiol 2020; 11:588291. [PMID: 33240109 PMCID: PMC7677363 DOI: 10.3389/fphys.2020.588291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023] Open
Abstract
The predatory insect Arma chinensis (Hemiptera: Pentatomidae) is widely distributed in China, where it is also used to control many agricultural and forest pests. The chemosensory genes expressed in its antennae play crucial roles in food-seeking and mating behaviors. To better understand the olfaction of A. chinensis antennae, we identified the genes related to food-seeking and mating. Sequencing of the antennal transcriptomes of full and hungry male and female A. chinensis revealed 38 odorant-binding proteins (OBPs), 1 chemosensory protein (CSP), 1 Niemann-Pick C2 protein (NPC2), 3 odorant receptors (ORs), 12 ionotropic receptors (IRs), 2 gustatory receptors (GRs), and 3 sensory neuron membrane proteins (SNMPs). These results were used to construct phylogenetic trees. A quantitative real-time PCR (qRT-PCR) analysis showed that the relative transcript levels of AchiGR1, AchiGR2, and AchiOBP28 were higher in female than in male antennae in both full and hungry insects, but that the expression of AchiOBP13 and AchiOBP16 was higher only in full A. chinensis females. Thus, the latter genes may encode proteins involved in oviposition selection behavior. AchiGRs (1 and 2), AchiIR6, and AchiOBPs (6-8, 12, 20-22, 28, and 34) were highly expressed only in the antennae of full males, indicating the participation of these genes in mate-searching or male pheromone recognition. The expression of AchiOBP31 in the antennae of starved males, AchiOBPs (15, 18, and 29) in the antennae of starved females, and AchiOBPs (3, 4, and 24) in the antennae of starved males and females suggested that these genes encode food-seeking functions. Our identification of chemosensory genes in A. chinensis antennae and their differential expression in full and hungry insects provides the basis for further functional studies on the chemoreception system of A. chinensis and the sex hormones of predatory insects.
Collapse
Affiliation(s)
- Shaolong Wu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Province Tobacco Company, Changsha, China
| | - Wan Deng
- Hunan Academy of Forestry, Changsha, China
| | - Mi Li
- Hunan Academy of Forestry, Changsha, China
| | | | - Jiaying Li
- Hunan Province Tobacco Company, Changsha, China
| | - Kai Teng
- Hunan Province Tobacco Company, Changsha, China
| | | | - Xiaohong Li
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, China
| | | | - Youzhi Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
22
|
Genome-Wide Analysis of Chemosensory Protein Genes (CSPs) Family in Fig Wasps (Hymenoptera, Chalcidoidea). Genes (Basel) 2020; 11:genes11101149. [PMID: 33003564 PMCID: PMC7599541 DOI: 10.3390/genes11101149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Chemosensory proteins (CSP) are a class of acidic soluble proteins which have various functions in chemoreception, resistance and immunity, but we still have very little knowledge on this gene family in fig wasps, a peculiar insects group (Hymenoptera, Chalcidoidea) that shelter in the fig syconia of Ficus trees. Here, we made the first comprehensive analysis of CSP gene family in the 11 fig wasps at whole-genome level. We manually annotated 104 CSP genes in the genomes of the 11 fig wasps, comprehensively analyzed them in gene characteristics, conserved cysteine patterns, motif orders, phylogeny, genome distribution, gene tandem duplication, and expansion and contraction patterns of the gene family. We also approximately predicted the gene expression by codon adaptation index analysis. Our study shows that the CSP gene family is conserved in the 11 fig wasps; the CSP gene numbers in pollinating fig wasps are less than in non-pollinating fig wasps, which may be due to their longer history of adaptation to fig syconia; the expansion of CSP gene in two non-pollinating fig wasps, Philotrypesis tridentata and Sycophaga agraensis, may be a species-specific phenomenon. These results provide us with useful information for understanding the evolution of the CSP gene family of insects in diverse living environments.
Collapse
|
23
|
Qiu L, He L, Tan X, Zhang Z, Wang Y, Li X, He H, Ding W, Li Y. Identification and phylogenetics of Spodoptera frugiperda chemosensory proteins based on antennal transcriptome data. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100680. [PMID: 32278289 DOI: 10.1016/j.cbd.2020.100680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Abstract
Understanding the interaction between the insect olfactory system and the environment is crucial for fully explaining the molecular mechanisms underlying insect behavior, and providing new strategies for integrated pest management. Although there is good evidence that olfactory proteins play a vital role in mediating insect behaviors, the olfactory mechanism of insects remains poorly understood. We identified a total of 71 chemosensory genes; 25 odorant-binding proteins (OBPs), 27 odorant receptors (ORs), 8 ionotropic receptors (IRs), 8 chemosensory proteins (CSPs) and 3 sensory neuron membrane proteins (SNMPs), in the antennae of male and female fall armyworms, Spodoptera frugiperda, an invasive global pest that causes significant economic damage worldwide. We used differential gene expression (DGE) and fragments per kilobase per million fragments (FPKM) values to compare the transcript levels of candidate chemosensory genes, and qRT-PCR to compare the expression levels of the OR gene, in male and female antennae. The expression of candidate OR genes in male and female antennae was consistent with the DGE data, and the expression of the SfruCL4419.Contig1-All and SfruUnigene1070-All genes was sex-biased. These results not only provide new information on the olfactory mechanism of S. frugiperda, and insects in general, but also suggest new gene targets for pest control.
Collapse
Affiliation(s)
- Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Li He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoping Tan
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha 410005, China
| | - Zhengbing Zhang
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha 410005, China
| | - Yong Wang
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha 410005, China
| | - Xinwen Li
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha 410005, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wenbing Ding
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, China.
| |
Collapse
|
24
|
Identification of candidate chemosensory genes of Ophraella communa LeSage (Coleoptera: Chrysomelidae) based on antennal transcriptome analysis. Sci Rep 2019; 9:15551. [PMID: 31664149 PMCID: PMC6820725 DOI: 10.1038/s41598-019-52149-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022] Open
Abstract
Antennal olfaction plays a key role in insect survival, which mediates important behaviors like host search, mate choice, and oviposition site selection. As an oligophagous insect, olfaction is extremely important for Ophraella communa to locate host plants. However, information on the olfactory genes has been lacking in O. communa. Using next generation sequencing, we assembled the antennal transcriptome of O. communa and first reported the major chemosensory genes necessary for olfaction in this species. In this study, a total 105 candidate chemosensory genes were identified in O. communa antennae, including 25 odorant-binding proteins (OBPs), 11 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 30 odorant receptors (ORs), 18 ionotropic receptors (IRs), and 17 gustatory receptors (GRs). We also identified full-length sequences of the highly conserved ORco and IR8a/25a family in O. communa. In addition, the expression profile of 15 ORs and four OBPs were validated by quantitative real-time polymerase chain reaction (qPCR). We found that OcomOR2/4/19 and OcomOBP19/20 had a biased expression in male antennae, and OcomOR8 had a biased expression in the female antennae. This large number of chemosensory genes handled by homology analysis and qPCR results will provide the first insights into molecular basis for the olfactory systems of O. communa as well as advance our understanding of olfactory mechanisms in Coleoptera.
Collapse
|
25
|
Jing D, Zhang T, Bai S, Prabu S, He K, Dewer Y, Wang Z. GOBP1 Plays a Key Role in Sex Pheromones and Plant Volatiles Recognition in Yellow Peach Moth, Conogethes punctiferalis (Lepidoptera: Crambidae). INSECTS 2019; 10:insects10090302. [PMID: 31533342 PMCID: PMC6780721 DOI: 10.3390/insects10090302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 02/02/2023]
Abstract
Insects recognize odorous compounds using sensory neurons organized in olfactory sensilla. The process odor detection in insects requires an ensemble of proteins, including odorant binding proteins, olfactory receptors, and odor degrading enzymes; each of them are encoded by multigene families. Most functional proteins seem to be broadly tuned, responding to multiple chemical compounds with different, but mostly quite similar structures. Based on the hypothesis that insects recognize host volatiles by means of general odorant binding proteins (GOBPs), the current study aimed to characterize GOBPs of the yellow peach moth, Conogethes punctiferalis (Guenée). In oviposition preference tests, it was found that the yellow peach moth preferred volatiles from Prunus persica (peach) in finding their host plant. Exposure of the moth to volatiles from peaches affected the expression level of GOBP genes. Binding affinity of GOBPs from yellow peach moth was assessed for 16 host plant volatiles and 2 sex pheromones. The fluorescence ligand-binding assays revealed highest affinities for hexadecanal, farnesol, and limonene with KD values of 0.55 ± 0.08, 0.35 ± 0.04, and 1.54 ± 0.39, respectively. The binding sites of GOBPs from yellow peach moth were predicted using homology modeling and characterized using molecular docking approaches. The results indicated the best binding affinity of both GOBP1 and GOBP2 for farnesol, with scores of −7.4 and −8.5 kcal/mol. Thus, GOBPs may play an important role in the process of finding host plants.
Collapse
Affiliation(s)
- Dapeng Jing
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria 21616, Egypt.
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Sun L, Wang Q, Zhang Y, Tu X, Yan Y, Wang Q, Dong K, Zhang Y, Xiao Q. The sensilla trichodea-biased EoblPBP1 binds sex pheromones and green leaf volatiles in Ectropis obliqua Prout, a geometrid moth pest that uses Type-II sex pheromones. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:17-24. [PMID: 31009623 DOI: 10.1016/j.jinsphys.2019.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Pheromone-binding proteins (PBPs) are considered to play critical roles in sex pheromone detection. Lepidopteran moths can be divided into two taxa, those that use Type-I sex pheromones, such as C10-C18 unsaturated aldehydes, alcohols and acetates, and those that use Type-II pheromones, which are C17-C23 polyunsaturated hydrocarbons and their epoxide derivatives. To date, nearly all the characterized PBPs have been reported in moths with Type-I sex pheromones, and the physiological functions of PBPs in moths that use Type-II sex pheromones remains unclear. In the present study we functionally examine EoblPBP1 in Ectropis obliqua Prout, an important geometrid moth pest that uses Type-II sex pheromones. The phylogenetic analysis of the sequence indicated that EoblPBP1 clustered together with ScerPBP1, a geometrid PBP for detecting Type-II sex pheromones. Scanning electron microscopy showed that E. obliqua moths of both sexes mainly had six types of antennal sensilla, including two types of sensilla trichodea, Str-I and Str-II, sensilla basiconica (Sba), sensilla styloconica (Sst), sensilla chaetica (Sch) and sensilla auricillica (Sau). Of these, Str-I was confirmed to be male moth-specific and had five different subtypes. Fluorescence in situ hybridization revealed that EoblPBP1 was primarily expressed at the base of Str-I. A comparative binding assay showed that recombinant EoblPBP1 bound three sex pheromone components of E. obliqua, demonstrating its involvement in the detection of Type-II sex pheromones. Besides, EoblPBP1 also highly bound unsaturated acetates pheromones and the green leaf volatiles. These results indicate that PBP1 is associated with detecting Type-II sex pheromones in E. obliqua but cannot differentiate Type-II sex pheromones from Type-I sex pheromones or green leaf volatiles. Our findings provide a foundation for further study on molecular basis of Type-II sex pheromone recognition in lepidopteran moths.
Collapse
Affiliation(s)
- Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Qian Wang
- College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Yuxing Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiaohui Tu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuting Yan
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kun Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
27
|
Liu XL, Sun SJ, Khuhro SA, Elzaki MEA, Yan Q, Dong SL. Functional characterization of pheromone receptors in the moth Athetis dissimilis (Lepidoptera: Noctuidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:69-76. [PMID: 31378363 DOI: 10.1016/j.pestbp.2019.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 06/10/2023]
Abstract
Sex pheromones are crucial for communication between females and males in moths, and pheromone receptors (PRs) play a key role in peripheral coding of sex pheromones. During the last decade, many PR candidates have been identified based on transcriptome sequencing and bioinformatic analysis, but their detailed functions remain mostly unknown. Here, focusing on four PR candidates of Athetis dissimilis (AdisOR1, AdisOR6, AdisOR11 and AdisOR14) identified in a previous study, we first cloned the full-length cDNAs and determined the tissue expression profiles by quantitative real-time PCR (qPCR). The results revealed that expression of three of these genes were male antennae-specific, while AdisOR11 was similar in expression between male and female antennae. Furthermore, the expression level of AdisOR1 was much higher than those of the other three genes. Then, functional analysis was conducted using Xenopus oocyte system. AdisOR1 responded strongly to the sex pheromone component Z9-14:OH and the potential pheromone component Z9,E12-14:OH, suggesting its important role in the sex pheromone perception; AdisOR14 showed specificity for Z9,E12-14:OH; while AdisOR6 and AdisOR11 did not respond to any of the pheromone components and analogs tested. Taken together, this study contributes to elucidate the molecular mechanism of sex pheromone reception and provides potential targets for development of OR based pest control techniques in A. dissimilis.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Jie Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Sajjad Ali Khuhro
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Qi Yan
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Li J, Wang X, Zhang L. Identification of putative odorant binding proteins in the peach fruit borer Carposina sasakii Matsumura (Lepidoptera: Carposinidae) by transcriptome analysis and their expression profile. Biochem Biophys Res Commun 2019; 508:1024-1030. [DOI: 10.1016/j.bbrc.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 02/07/2023]
|
29
|
Qiu L, Tao S, He H, Ding W, Li Y. Transcriptomics reveal the molecular underpinnings of chemosensory proteins in Chlorops oryzae. BMC Genomics 2018; 19:890. [PMID: 30526496 PMCID: PMC6286535 DOI: 10.1186/s12864-018-5315-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemosensory proteins are a family of insect-specific chemical sensors that sense specific chemical cues and regulate insect behavior. Chemosensory proteins have been identified and analyzed in many insect species, such as Drosophila melanogaster, Bactrocera dorsalis and Calliphora stygia. This research has revealed that these proteins play a crucial role in insect orientation, predation and oviposition. However, little is known about the chemosensory proteins of Chlorops oryzae, a major pest of rice crops throughout Asia. RESULTS Comparative transcription analysis of the genes of Chlorops oryzae larvae, pupae and adults identified a total of 104 chemosensory genes, including 25 odorant receptors (ORs), 26 odorant-binding proteins (OBPs), 19 ionotropic receptors (IRs), 23 gustatory receptors (GRs) and 11 sensory neuron membrane proteins (SNMPs). The sequences of these candidate chemosensory genes were confirmed and used to construct phylogenetic trees. Quantitative real-time PCR (qRT-PCR) confirmed that the expression of candidate OR genes in different developmental stages was consistent with the fragments per kilobase per million fragments (FPKM) values of differentially expressed genes (DEGs). CONCLUSIONS The identification of chemosensory genes in C. oryzae provides a foundation for the investigation of the function of chemosensory proteins in this species, which, in turn, could allow the development of new, improved methods of controlling this pest.
Collapse
Affiliation(s)
- Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Shunjie Tao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Wenbing Ding
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China. .,Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China.
| |
Collapse
|
30
|
Wang S, Liu Y, Zhou JJ, Yi JK, Pan Y, Wang J, Zhang XX, Wang JX, Yang S, Xi JH. Identification and tissue expression profiling of candidate UDP-glycosyltransferase genes expressed in Holotrichia parallela motschulsky antennae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:807-816. [PMID: 29397056 DOI: 10.1017/s0007485318000068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is difficult to control Holotrichia parallela Motschulsky with chemical insecticides due to the larvae's soil-living habit, thus the pest has caused great economic losses in agriculture. In addition, uridine diphosphate-glycosyltransferases (UGTs) catalyze the glycosylation process of a variety of small lipophilic molecules with sugars to produce water-soluble glycosides, and play multiple roles in detoxification, endobiotic modulation, and sequestration in an insect. Some UGTs were found specifically expressed in antennae of Drosophila melanogaster and Spodoptera littoralis, and glucurono-conjugated odorants could not elicit any olfactory signals, suggesting that the UGTs may play roles in odorant inactivation by biotransformation. In the current study, we performed a genome-wide analysis of the candidate UGT family in the dark black chafer, H. parallela. Based on a UGT gene signature and the similarity of these genes to UGT homologs from other organisms, 20 putative H. parallela UGT genes were identified. Bioinformatics analysis was used to predict sequence and structural features of H. parallela UGT proteins, and revealed important domains and residues involved in sugar donor binding and catalysis by comparison with human UGT2B7. Phylogenetic analysis of these 20 UGT protein sequences revealed eight major groups, including both order-specific and conserved groups, which are common to more than one order. Of these 20 UGT genes, HparUGT1265-1, HparUGT3119, and HparUGT8312 were highly (>100-fold change) expressed in antennae, suggesting a possible role in olfactory tissue, and most likely in odorant inactivation and olfactory processing. The remaining UGT genes were expressed in all tissues (head, thorax, abdomen, leg, and wing), indicating that these UGTs likely have different biological functions. This study provides the fundamental basis for determining the function of UGTs in a highly specialized olfactory organ, the H. parallela antenna.
Collapse
Affiliation(s)
- S Wang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - Y Liu
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - J-J Zhou
- Department of Biointeractions and Crop Protection,Rothamsted Research,Harpenden AL5 2JQ,UK
| | - J-K Yi
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - Y Pan
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - J Wang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - X-X Zhang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - J-X Wang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - S Yang
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| | - J-H Xi
- College of Plant Science, Jilin University,Changchun 130062,P.R. China
| |
Collapse
|
31
|
Transcriptome characterization and gene expression analysis related to chemoreception in Trichogramma chilonis, an egg parasitoid. Gene 2018; 678:288-301. [DOI: 10.1016/j.gene.2018.07.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023]
|
32
|
Liu Y, Liu Y, Jiang X, Wang G. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:14-22. [PMID: 29438663 DOI: 10.1016/j.jinsphys.2018.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingchuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
33
|
Sun L, Wang Q, Wang Q, Zhang Y, Tang M, Guo H, Fu J, Xiao Q, Zhang Y, Zhang Y. Identification and Expression Patterns of Putative Diversified Carboxylesterases in the Tea Geometrid Ectropis obliqua Prout. Front Physiol 2017; 8:1085. [PMID: 29326608 PMCID: PMC5741679 DOI: 10.3389/fphys.2017.01085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Carboxylesterases (CXEs) belong to a family of metabolic enzymes. Some CXEs act as odorant-degrading enzymes (ODEs), which are reportedly highly expressed in insect olfactory organs and participate in the rapid deactivation of ester pheromone components and plant volatiles. The tea geometrid Ectropis obliqua Prout produces sex pheromones consisting of non-ester functional compounds but relies heavily on acetic ester plant volatiles to search for host plants and locate oviposition sites. However, studies characterizing putative candidate ODEs in this important tea plant pest are still relatively scarce. In the present study, we identified 35 candidate EoblCXE genes from E. obliqua chemosensory organs based on previously obtained transcriptomic data. The deduced amino acid sequences possessed the typical characteristics of the insect CXE family, including oxyanion hole residues, the Ser-Glu-His catalytic triad, and the Ser active included in the conserved pentapeptide characteristic of esterases, Gly-X-Ser-X-Gly. Phylogenetic analyses revealed that the EoblCXEs were diverse, belonging to several different insect esterase clades. Tissue- and sex-related expression patterns were studied via reverse-transcription and quantitative real-time polymerase chain reaction analyses (RT- and qRT-PCR). The results showed that 35 EoblCXE genes presented a diversified expression profile; among these, 12 EoblCXEs appeared to be antenna-biased, two EoblCXEs were non-chemosensory organ-biased, 12 EoblCXEs were ubiquitous, and nine EoblCXEs showed heterogeneous expression levels among different tissues. Intriguingly, two EoblCXE genes, EoblCXE7 and EoblCXE13, were not only strongly localized to antennal sensilla tuned to odorants, such as the sensilla trichodea (Str I and II) and sensilla basiconica (Sba), but were also expressed in the putative gustatory sensilla styloconica (Sst), indicating that these two CXEs might play multiple physiological roles in the E. obliqua chemosensory processing system. This study provides the first elucidation of CXEs in the chemosensory system of a geometrid moth species and will enable a more comprehensive understanding of the functions of insect CXEs across lepidopteran species.
Collapse
Affiliation(s)
- Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxing Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Meijun Tang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Huawei Guo
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Lombardo F, Salvemini M, Fiorillo C, Nolan T, Zwiebel LJ, Ribeiro JM, Arcà B. Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus. BMC Genomics 2017; 18:770. [PMID: 29020917 PMCID: PMC5637092 DOI: 10.1186/s12864-017-4144-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Asian tiger mosquito Aedes albopictus is a highly invasive species and competent vector of several arboviruses (e.g. dengue, chikungunya, Zika) and parasites (e.g. dirofilaria) of public health importance. Compared to other mosquito species, Ae. albopictus females exhibit a generalist host seeking as well as a very aggressive biting behaviour that are responsible for its high degree of nuisance. Several complex mosquito behaviours such as host seeking, feeding, mating or oviposition rely on olfactory stimuli that target a range of sensory neurons localized mainly on specialized head appendages such as antennae, maxillary palps and the mouthparts. RESULTS With the aim to describe the Ae. albopictus olfactory repertoire we have used RNA-seq to reveal the transcriptome profiles of female antennae and maxillary palps. Male heads and whole female bodies were employed as reference for differential expression analysis. The relative transcript abundance within each tissue (TPM, transcripts per kilobase per million) and the pairwise differential abundance in the different tissues (fold change values and false discovery rates) were evaluated. Contigs upregulated in the antennae (620) and maxillary palps (268) were identified and relative GO and PFAM enrichment profiles analysed. Chemosensory genes were described: overall, 77 odorant binding proteins (OBP), 82 odorant receptors (OR), 60 ionotropic receptors (IR) and 30 gustatory receptors (GR) were identified by comparative genomics and transcriptomics. In addition, orthologs of genes expressed in the female/male maxillary palps and/or antennae and involved in thermosensation (e.g. pyrexia and arrestin1), mechanosensation (e.g. piezo and painless) and neuromodulation were classified. CONCLUSIONS We provide here the first detailed transcriptome of the main Ae. albopictus sensory appendages, i.e. antennae and maxillary palps. A deeper knowledge of the olfactory repertoire of the tiger mosquito will help to better understand its biology and may pave the way to design new attractants/repellents.
Collapse
Affiliation(s)
- Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carmine Fiorillo
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, London, UK
| | | | - José M. Ribeiro
- NIAID, Laboratory of Malaria and Vector Research, NIH, Rockville, 20852 MD USA
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Steiner C, Bozzolan F, Montagné N, Maïbèche M, Chertemps T. Neofunctionalization of "Juvenile Hormone Esterase Duplication" in Drosophila as an odorant-degrading enzyme towards food odorants. Sci Rep 2017; 7:12629. [PMID: 28974761 PMCID: PMC5626784 DOI: 10.1038/s41598-017-13015-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 11/08/2022] Open
Abstract
Odorant degrading enzymes (ODEs) are thought to be responsible, at least in part, for olfactory signal termination in the chemosensory system by rapid degradation of odorants in the vicinity of the receptors. A carboxylesterase, specifically expressed in Drosophila antennae, called "juvenile hormone esterase duplication (JHEdup)" has been previously reported to hydrolyse different fruit esters in vitro. Here we functionally characterize JHEdup in vivo. We show that the jhedup gene is highly expressed in large basiconic sensilla that have been reported to detect several food esters. An electrophysiological analysis demonstrates that ab1A olfactory neurons of jhedup mutant flies exhibit an increased response to certain food acetates. Furthermore, mutant flies show a higher sensitivity towards the same odorants in behavioural assays. A phylogenetic analysis reveals that jhedup arose as a duplication of the juvenile hormone esterase gene during the evolution of Diptera, most likely in the ancestor of Schizophora, and has been conserved in all the 12 sequenced Drosophila species. Jhedup exhibits also an olfactory-predominant expression pattern in other Drosophila species. Our results support the implication of JHEdup in the degradation of food odorants in D. melanogaster and propose a neofunctionalization of this enzyme as a bona fide ODE in Drosophilids.
Collapse
Affiliation(s)
- Claudia Steiner
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Françoise Bozzolan
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Nicolas Montagné
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Martine Maïbèche
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France.
| | - Thomas Chertemps
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
36
|
Gao XK, Zhang S, Luo JY, Wang CY, Lü LM, Zhang LJ, Zhu XZ, Wang L, Lu H, Cui JJ. Comprehensive evaluation of candidate reference genes for gene expression studies in Lysiphlebia japonica (Hymenoptera: Aphidiidae) using RT-qPCR. Gene 2017; 637:211-218. [PMID: 28964897 DOI: 10.1016/j.gene.2017.09.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Lysiphlebia japonica (Ashmead) is a predominant parasitoid of cotton-melon aphids in the fields of northern China with a proven ability to effectively control cotton aphid populations in early summer. For accurate normalization of gene expression in L. japonica using quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), reference genes with stable gene expression patterns are essential. However, no appropriate reference genes is L. japonica have been investigated to date. In the present study, 12 selected housekeeping genes from L. japonica were cloned. We evaluated the stability of these genes under various experimental treatments by RT-qPCR using four independent (geNorm, NormFinder, BestKeeper and Delta Ct) and one comparative (RefFinder) algorithm. We identified genes showing the most stable levels of expression: DIMT, 18S rRNA, and RPL13 during different stages; AK, RPL13, and TBP among sexes; EF1A, PPI, and RPL27 in different tissues, and EF1A, RPL13, and PPI in adults fed on different diets. Moreover, the expression profile of a target gene (odorant receptor 1, OR1) studied during the developmental stages confirms the reliability of the chosen selected reference genes. This study provides for the first time a comprehensive list of suitable reference genes for gene expression studies in L. japonica and will benefit subsequent genomics and functional genomics research on this natural enemy.
Collapse
Affiliation(s)
- Xue-Ke Gao
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Shuai Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Jun-Yu Luo
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Chun-Yi Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Li-Min Lü
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Li-Juan Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Xiang-Zhen Zhu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Hui Lu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Jin-Jie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China.
| |
Collapse
|
37
|
Wang SN, Shan S, Zheng Y, Peng Y, Lu ZY, Yang YQ, Li RJ, Zhang YJ, Guo YY. Gene structure and expression characteristic of a novel odorant receptor gene cluster in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae). INSECT MOLECULAR BIOLOGY 2017; 26:420-431. [PMID: 28432783 DOI: 10.1111/imb.12306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Odorant receptors (ORs) expressed in the antennae of parasitoid wasps are responsible for detection of various lipophilic airborne molecules. In the present study, 107 novel OR genes were identified from Microplitis mediator antennal transcriptome data. Phylogenetic analysis of the set of OR genes from M. mediator and Microplitis demolitor revealed that M. mediator OR (MmedOR) genes can be classified into different subfamilies, and the majority of MmedORs in each subfamily shared high sequence identities and clear orthologous relationships to M. demolitor ORs. Within a subfamily, six MmedOR genes, MmedOR98, 124, 125, 126, 131 and 155, shared a similar gene structure and were tightly linked in the genome. To evaluate whether the clustered MmedOR genes share common regulatory features, the transcription profile and expression characteristics of the six closely related OR genes were investigated in M. mediator. Rapid amplification of cDNA ends-PCR experiments revealed that the OR genes within the cluster were transcribed as single mRNAs, and a bicistronic mRNA for two adjacent genes (MmedOR124 and MmedOR98) was also detected in female antennae by reverse transcription PCR. In situ hybridization experiments indicated that each OR gene within the cluster was expressed in a different number of cells. Moreover, there was no co-expression of the two highly related OR genes, MmedOR124 and MmedOR98, which appeared to be individually expressed in a distinct population of neurons. Overall, there were distinct expression profiles of closely related MmedOR genes from the same cluster in M. mediator. These data provide a basic understanding of the olfactory coding in parasitoid wasps.
Collapse
Affiliation(s)
- S-N Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Y Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Z-Y Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, China
| | - Y-Q Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - R-J Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Y-J Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y-Y Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Oliveira DS, Brito NF, Nogueira FCS, Moreira MF, Leal WS, Soares MR, Melo ACA. Proteomic analysis of the kissing bug Rhodnius prolixus antenna. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:108-118. [PMID: 28606853 DOI: 10.1016/j.jinsphys.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Reception of odorants is essential in insects' life since the chemical signals in the environment (=semiochemicals) convey information about availability of hosts for a blood meal, mates for reproduction, sites for oviposition and other relevant information for fitness in the environment. Once they reach the antennae, these semiochemicals bind to odorant-binding proteins and are transported through the sensillar lymph until reach the odorant receptors. Such perireceptor events, particularly the interactions with transport proteins, are the liaison between the external environment and the entire neuroethological system and, therefore, a potential target to disrupt insect chemical communication. In this study, a proteomic profile of female and male antennae of Rhodnius prolixus, a vector of Chagas disease, was obtained in an attempt to unravel the entire repertoire of olfactory proteins involved in perireceptor events. Using shotgun proteomics and two-dimensional gel electrophoresis approaches followed by nano liquid chromatography coupled with tandem LTQ Velos Orbitrap mass spectrometry, we have identified 581 unique proteins. Putative olfactory proteins, including 17 odorant binding proteins, 6 chemosensory proteins, 2 odorant receptors, 3 transient receptor channels and 1 gustatory receptor were identified. Proteins involved in general cellular functions such as generation of precursor metabolites, energy generation and catabolism were expressed at high levels. Additionally, proteins that take part in signal transduction, ion binding, and stress response, kinase and oxidoreductase activity were frequent in antennae from both sexes. This proteome strategy unraveled for the first time the complex nature of perireceptor and other olfactory events that occur in R. prolixus antennae, including evidence for phosphorylation of odorant-binding and chemosensory proteins. These findings not only increase our understanding of the olfactory process in triatomine species, but also identify potential molecular targets to be explored for population control of such insect vectors.
Collapse
Affiliation(s)
- Daniele S Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Nathalia F Brito
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Fabio C S Nogueira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Walter S Leal
- University of California-Davis, Department of Molecular and Cellular Biology, 95616 Davis, CA, USA
| | - Marcia R Soares
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Sun L, Mao TF, Zhang YX, Wu JJ, Bai JH, Zhang YN, Jiang XC, Yin KS, Guo YY, Zhang YJ, Xiao Q. Characterization of candidate odorant-binding proteins and chemosensory proteins in the tea geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 94:e21383. [PMID: 28321909 DOI: 10.1002/arch.21383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insects rely heavily on their sophisticated chemosensory systems to locate host plants and find conspecific mates. Although the molecular mechanisms of odorant recognition in many Lepidoptera species have been well explored, limited information has been reported on the geometrid moth Ectropis obliqua Prout, an economically important pest of tea plants. In the current study, we first attempted to identify and characterize the putative olfactory carrier proteins, including odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). By analyzing previously obtained transcriptomic data of third-instar larvae, five OBPs and 14 CSPs in E. obliqua were identified. Sequence alignment, conserved motif identification, and phylogenetic analysis suggested that candidate proteins have typical characteristics of the insect OBP or CSP family. The expression patterns regarding life stages and different tissues were determined by quantitative real-time PCR. The results revealed that four transcripts (OBP2, OBP4 and CSP8, CSP10) had larvae preferential expression profiles and nine candidate genes (PBP1, OBP1 and CSP2, CSP4, CSP5, CSP6, CSP7, CSP11, and CSP13) were adult-biased expressed. Further specific tissue expression profile evaluation showed that OBP1, OBP2, OBP4, and PBP1 were highly expressed at olfactory organs, implying their potential involvement in chemical cue detection, whereas CSPs were ubiquitously detected among all of the tested tissues and could be associated with multiple physiological functions. This study provided a foundation for understanding the physiological functions of OBPs and CSPs in E. obliqua and will help pave the way for the development of a new environmental friendly pest management strategy against the tea geometrid moth.
Collapse
Affiliation(s)
- Liang Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teng-Fei Mao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yu-Xing Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jian-Jian Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jia-He Bai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xing-Chuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Kun-Shan Yin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Xiao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
40
|
Tian Z, Zhang Y. Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.). INSECT MOLECULAR BIOLOGY 2016; 25:769-777. [PMID: 27491022 DOI: 10.1111/imb.12261] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A full-length cDNA encoding Cydia pomonella pheromone binding protein 1 (CpomPBP1) was cloned and characterized. CpomPBP1, possessing the typical characteristics of lepidopteran odorant binding proteins, was detected to be specifically expressed in the antennae of male and female moths at the mRNA and protein level. Soluble recombinant CpomPBP1 was subjected to in vitro binding to analyse its binding properties and to search for potentially active semiochemicals. A competitive binding assay showed that three 12-carbon ligands, codlemone, 1-dodecanol and E,E-2,4-dodecadienal, were able to bind to CpomPBP1 in decreasing order of affinity. Moreover, unlike the wild-type CpomPBP1, the C-terminus truncated CpomPBP1 exhibited high affinity to ligands even in an acidic environment, suggesting that the C-terminus plays a role in preventing ligands from binding to CpomPBP1 in a lower pH environment.
Collapse
Affiliation(s)
- Z Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
41
|
Liu J, Tian Z, Zhang Y. Structure-based discovery of potentially active semiochemicals for Cydia pomonella (L.). Sci Rep 2016; 6:34600. [PMID: 27708370 PMCID: PMC5052595 DOI: 10.1038/srep34600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/15/2016] [Indexed: 12/03/2022] Open
Abstract
The development of physiologically active semiochemicals is largely limited by the labor-consuming searching process. How to screen active semiochemicals efficiently is of significance to the extension of behavior regulation in pest control. Here pharmacophore modeling and shape-based virtual screening were combined to predict candidate ligands for Cydia pomonella pheromone binding protein 1 (CpomPBP1). Out of the predicted compounds, ETrME displayed the highest affinity to CpomPBP1. Further studies on the interaction between CpomPBP1 and ETrME, not only depicted the binding mode, but also revealed residues providing negative and positive contributions to the ETrME binding. Moreover, key residues involved in interacting with ETrME of CpomPBP1 were determined as well. These findings were significant to providing insights for the future searching and optimization of active semiochemicals.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.,Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
42
|
Soffan A, Antony B, Abdelazim M, Shukla P, Witjaksono W, Aldosari SA, Aldawood AS. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus. PLoS One 2016; 11:e0162203. [PMID: 27606688 PMCID: PMC5015987 DOI: 10.1371/journal.pone.0162203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/18/2016] [Indexed: 01/01/2023] Open
Abstract
The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies.
Collapse
Affiliation(s)
- Alan Soffan
- King Saud University, Chair of Date Palm Research, Plant Protection Department, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Binu Antony
- King Saud University, Chair of Date Palm Research, Plant Protection Department, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Mahmoud Abdelazim
- King Saud University, Chair of Date Palm Research, Plant Protection Department, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Paraj Shukla
- King Saud University, Chair of Date Palm Research, Plant Protection Department, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Witjaksono Witjaksono
- Gadjah Mada University, Plant Protection Department, College of Agriculture, Yogyakarta 55281, Indonesia
| | - Saleh A. Aldosari
- King Saud University, Chair of Date Palm Research, Plant Protection Department, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| | - Abdulrahman S. Aldawood
- King Saud University, Plant Protection Department, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Martini JWR, Schlather M, Schütz S. A Model for Carrier-Mediated Biological Signal Transduction Based on Equilibrium Ligand Binding Theory. Bull Math Biol 2016; 78:1039-57. [PMID: 27230608 DOI: 10.1007/s11538-016-0173-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Different variants of a mathematical model for carrier-mediated signal transduction are introduced with focus on the odor dose-electrophysiological response curve of insect olfaction. The latter offers a unique opportunity to observe experimentally the effect of an alteration in the carrier molecule composition on the signal molecule-dependent response curve. Our work highlights the role of involved carrier molecules, which have largely been ignored in mathematical models for response curves in the past. The resulting model explains how the involvement of more than one carrier molecule in signal molecule transport can cause dose-response curves as observed in experiments, without the need of more than one receptor per neuron. In particular, the model has the following features: (1) An extended sensitivity range of neuronal response is implemented by a system consisting of only one receptor but several carrier molecules with different affinities for the signal molecule. (2) Given that the sensitivity range is extended by the involvement of different carrier molecules, the model implies that a strong difference in the expression levels of the carrier molecules is absolutely essential for wide range responses. (3) Complex changes in dose-response curves which can be observed when the expression levels of carrier molecules are altered experimentally can be explained by interactions between different carrier molecules. The principles we demonstrate here for electrophysiological responses can also be applied to any other carrier-mediated biological signal transduction process. The presented concept provides a framework for modeling and statistical analysis of signal transduction processes if sufficient information on the underlying biology is available.
Collapse
Affiliation(s)
- Johannes W R Martini
- Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August University, Göttingen, Germany.
| | - Martin Schlather
- Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik, Universität Mannhein, Mannheim, Germany
| | - Stefan Schütz
- Büsgen-Institut, Abteilung Forstzoologie und Waldschutz, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
44
|
Zhou CX, Min SF, Yan-Long T, Wang MQ. Analysis of antennal transcriptome and odorant binding protein expression profiles of the recently identified parasitoid wasp, Sclerodermus sp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:10-9. [DOI: 10.1016/j.cbd.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/28/2015] [Accepted: 06/24/2015] [Indexed: 01/07/2023]
|
45
|
Gonzalez F, Bengtsson JM, Walker WB, Sousa MFR, Cattaneo AM, Montagné N, de Fouchier A, Anfora G, Jacquin-Joly E, Witzgall P, Ignell R, Bengtsson M. A Conserved Odorant Receptor Detects the Same 1-Indanone Analogs in a Tortricid and a Noctuid Moth. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Chertemps T, Younus F, Steiner C, Durand N, Coppin CW, Pandey G, Oakeshott JG, Maïbèche M. An antennal carboxylesterase from Drosophila melanogaster, esterase 6, is a candidate odorant-degrading enzyme toward food odorants. Front Physiol 2015; 6:315. [PMID: 26594178 PMCID: PMC4633494 DOI: 10.3389/fphys.2015.00315] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/19/2015] [Indexed: 01/04/2023] Open
Abstract
Reception of odorant molecules within insect olfactory organs involves several sequential steps, including their transport through the sensillar lymph, interaction with the respective sensory receptors, and subsequent inactivation. Odorant-degrading enzymes (ODEs) putatively play a role in signal dynamics by rapid degradation of odorants in the vicinity of the receptors, but this hypothesis is mainly supported by in vitro results. We have recently shown that an extracellular carboxylesterase, esterase-6 (EST-6), is involved in the physiological and behavioral dynamics of the response of Drosophila melanogaster to its volatile pheromone ester, cis-vaccenyl acetate. However, as the expression pattern of the Est-6 gene in the antennae is not restricted to the pheromone responding sensilla, we tested here if EST-6 could play a broader function in the antennae. We found that recombinant EST-6 is able to efficiently hydrolyse several volatile esters that would be emitted by its natural food in vitro. Electrophysiological comparisons of mutant Est-6 null flies and a control strain (on the same genetic background) showed that the dynamics of the antennal response to these compounds is influenced by EST-6, with the antennae of the null mutants showing prolonged activity in response to them. Antennal responses to the strongest odorant, pentyl acetate, were then studied in more detail, showing that the repolarization dynamics were modified even at low doses but without modification of the detection threshold. Behavioral choice experiments with pentyl acetate also showed differences between genotypes; attraction to this compound was observed at a lower dose among the null than control flies. As EST-6 is able to degrade various bioactive odorants emitted by food and plays a role in the response to these compounds, we hypothesize a role as an ODE for this enzyme toward food volatiles.
Collapse
Affiliation(s)
- Thomas Chertemps
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, CNRS, IRD, UPEC Paris, France
| | - Faisal Younus
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water Flagship Canberra, ACT, Australia ; Research School of Chemistry, ANU College of Physical and Mathematical Sciences, Australian National University Canberra, ACT, Australia
| | - Claudia Steiner
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, CNRS, IRD, UPEC Paris, France
| | - Nicolas Durand
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, CNRS, IRD, UPEC Paris, France
| | - Chris W Coppin
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water Flagship Canberra, ACT, Australia
| | - Gunjan Pandey
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water Flagship Canberra, ACT, Australia
| | - John G Oakeshott
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water Flagship Canberra, ACT, Australia
| | - Martine Maïbèche
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, CNRS, IRD, UPEC Paris, France
| |
Collapse
|
47
|
Li ZQ, Zhang S, Luo JY, Wang SB, Wang CY, Lv LM, Dong SL, Cui JJ. Identification and expression pattern of candidate olfactory genes in Chrysoperla sinica by antennal transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:28-38. [PMID: 26072463 DOI: 10.1016/j.cbd.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 11/28/2022]
Abstract
Chrysoperla sinica is one of the most prominent natural enemies of many agricultural pests. Host seeking in insects is strongly mediated by olfaction. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. sinica in biological control. Obtaining olfactory genes is a research priority for investigating the olfactory system in this species. However, no olfaction sequence information is available for C. sinica. Consequently, we sequenced female- and male-antennae transcriptome of C. sinica. Many candidate chemosensory genes were identified, including 12 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 37 odorant receptors (ORs), and 64 ionotropic receptors from C. sinica. The expression patterns of 12 OBPs, 19 CSPs and 37 ORs were determined by RT-PCR, and demonstrated antennae-dominantly expression of most OBP and OR genes. Our finding provided large scale genes for further investigation on the olfactory system of C. sinica at the molecular level.
Collapse
Affiliation(s)
- Zhao-Qun Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Si-Bao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Yi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Li-Min Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| |
Collapse
|
48
|
Gholizadeh S, Firooziyan S, Ladonni H, Hajipirloo HM, Djadid ND, Hosseini A, Raz A. The Anopheles stephensi odorant binding protein 1 (AsteObp1) gene: a new molecular marker for biological forms diagnosis. Acta Trop 2015; 146:101-13. [PMID: 25795618 DOI: 10.1016/j.actatropica.2015.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Anopheles (Cellia) stephensi Liston 1901 is known as an Asian malaria vector. Three biological forms, namely "mysorensis", "intermediate", and "type" have been earlier reported in this species. Nevertheless, the present morphological and molecular information is insufficient to diagnose these forms. During this investigation, An. stephensi biological forms were morphologically identified and sequenced for odorant-binding protein 1 (Obp1) gene. Also, intron I sequences were used to construct phylogenetic trees. Despite nucleotide sequence variation in exon of AsteObp1, nearly 100% identity was observed at the amino acid level among the three biological forms. In order to overcome difficulties in using egg morphology characters, intron I sequences of An. stephensi Obp1 opens new molecular way to the identification of the main Asian malaria vector biological forms. However, multidisciplinary studies are needed to establish the taxonomic status of An. stephensi.
Collapse
|
49
|
Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, Liu Q. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron 2015; 67:662-9. [DOI: 10.1016/j.bios.2014.09.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/06/2014] [Accepted: 09/29/2014] [Indexed: 11/16/2022]
|
50
|
Zhang J, Wang B, Dong S, Cao D, Dong J, Walker WB, Liu Y, Wang G. Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS One 2015; 10:e0117054. [PMID: 25659090 PMCID: PMC4319919 DOI: 10.1371/journal.pone.0117054] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
To better understand the olfactory mechanisms in the two lepidopteran pest model species, the Helicoverpa armigera and H. assulta, we conducted transcriptome analysis of the adult antennae using Illumina sequencing technology and compared the chemosensory genes between these two related species. Combined with the chemosensory genes we had identified previously in H. armigera by 454 sequencing, we identified 133 putative chemosensory unigenes in H. armigera including 60 odorant receptors (ORs), 19 ionotropic receptors (IRs), 34 odorant binding proteins (OBPs), 18 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). Consistent with these results, 131 putative chemosensory genes including 64 ORs, 19 IRs, 29 OBPs, 17 CSPs, and 2 SNMPs were identified through male and female antennal transcriptome analysis in H. assulta. Reverse Transcription-PCR (RT-PCR) was conducted in H. assulta to examine the accuracy of the assembly and annotation of the transcriptome and the expression profile of these unigenes in different tissues. Most of the ORs, IRs and OBPs were enriched in adult antennae, while almost all the CSPs were expressed in antennae as well as legs. We compared the differences of the chemosensory genes between these two species in detail. Our work will surely provide valuable information for further functional studies of pheromones and host volatile recognition genes in these two related species.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuanglin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Depan Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junfeng Dong
- College of Forestry, Henan University of Science and Technology, Luoyang, 471003, China
| | - William B. Walker
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Research Group, Alnarp, Sweden
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- * E-mail: (GW); (YL)
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- * E-mail: (GW); (YL)
| |
Collapse
|