1
|
Kverka M, Stepan JJ. Associations Among Estrogens, the Gut Microbiome and Osteoporosis. Curr Osteoporos Rep 2024; 23:2. [PMID: 39585466 PMCID: PMC11588883 DOI: 10.1007/s11914-024-00896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF THE REVIEW The purpose of this Review was to summarize the evidence on the associations among estrogen status, cellular senescence, the gut microbiome and osteoporosis. RECENT FINDINGS Indicate that osteoporosis is a global public health problem that impacts individuals and society. In postmenopausal women, a decrease in estrogen levels is associated with a decrease in gut microbial diversity and richness, as well as increased permeability of the gut barrier, which allows for low-grade inflammation. The direct effects of estrogen status on the association between bone and the gut microbiome were observed in untreated and treated ovariectomized women. In addition to the direct effects of estrogens on bone remodeling, estrogen therapy could reduce the risk of postmenopausal osteoporosis by preventing increased gut epithelial permeability, bacterial translocation and inflammaging. However, in studies comparing the gut microbiota of older women, there were no changes at the phylum level, suggesting that age-related comorbidities may have a greater impact on changes in the gut microbiota than menopausal status does. Estrogens modify bone health not only by directly influencing bone remodeling, but also indirectly by influencing the gut microbiota, gut barrier function and the resulting changes in immune system reactivity.
Collapse
Affiliation(s)
- Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan J Stepan
- Institute of Rheumatology, Prague, Czechia.
- Department of Rheumatology, First Faculty of Medicine, Charles University, Kateřinská 32, Praha 2, 121 08, Czech Republic.
| |
Collapse
|
2
|
Pan YJ, Lin MC, Liou JM, Fan CC, Su MH, Chen CY, Wu CS, Chen PC, Huang YT, Wang SH. A population-based study of familial coaggregation and shared genetic etiology of psychiatric and gastrointestinal disorders. COMMUNICATIONS MEDICINE 2024; 4:180. [PMID: 39300237 DOI: 10.1038/s43856-024-00607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND It has been proposed that having a psychiatric disorder could increase the risk of developing a gastrointestinal disorder, and vice versa. The role of familial coaggregation and shared genetic loading between psychiatric and gastrointestinal disorders remains unclear. METHODS This study used the Taiwan National Health Insurance Research Database; 4,504,612 individuals born 1970-1999 with parental information, 51,664 same-sex twins, and 3,322,959 persons with full-sibling(s) were enrolled. Genotyping was available for 106,796 unrelated participants from the Taiwan Biobank. A logistic regression model was used to examine the associations of individual history, affected relatives, and polygenic risk scores (PRS) for schizophrenia (SCZ), bipolar disorder (BPD), major depressive disorder (MDD), and obsessive-compulsive disorder (OCD), with the risk of peptic ulcer disease (PUD), gastroesophageal reflux disease (GERD), irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD), and vice versa. RESULTS Here we show that parental psychiatric disorders are associated with gastrointestinal disorders. Full-siblings of psychiatric cases have an increased risk of gastrointestinal disorders except for SCZ/BPD and IBD; the magnitude of coaggregation is higher in same-sex twins than in full-siblings. The results of bidirectional analyses mostly remain unchanged. PRS for SCZ, MDD, and OCD are associated with IBS, PUD/GERD/IBS/IBD, and PUD/GERD/IBS, respectively. PRS for PUD, GERD, IBS, and IBD are associated with MDD, BPD/MDD, SCZ/BPD/MDD, and BPD, respectively. CONCLUSIONS There is familial coaggregation and shared genetic etiology between psychiatric and gastrointestinal comorbidity. Individuals with psychiatric disorder-affected relatives or with higher genetic risk for psychiatric disorders should be monitored for gastrointestinal disorders, and vice versa.
Collapse
Affiliation(s)
- Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mei-Hsin Su
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Virginia Institute for Psychiatric Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Cheng-Yun Chen
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin branch, Douliu, Taiwan
| | - Pei-Chun Chen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Muthumula CMR, Khare S, Jog R, Wickramaratne B, Lee A, Chakder S, Burgess DJ, Gokulan K. Evaluation of gender differences in the pharmacokinetics of oral zileuton nanocrystalline formulation using a rat model. Int J Pharm X 2024; 7:100254. [PMID: 38774112 PMCID: PMC11107231 DOI: 10.1016/j.ijpx.2024.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Zileuton is a leukotriene inhibitor used to treat asthma. As a BCS class II drug it exhibits challenges with solubility which likely impact its absorption. As patient gender significantly impacts the pharmacokinetics of many drugs, this study aimed to investigate potential gender-based pharmacokinetic differences after oral zileuton administration in rats. Male and female Sprague Dawley rats received single oral gavage doses of pure zileuton as an active pharmaceutical ingredient (30 mg/kg body weight (bw)), physical mixture (PM; at 30 mg/kg bw of the formulation contains zileuton, kollidon VA64 fine, dowfax2A1 and trehalose), and nanocrystalline formulation of zileuton (NfZ; at 30 mg/kg bw of the formulation). Plasma, tissue, and urine concentrations were quantified using high performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis showed higher zileuton levels in the plasma of female versus male rats across all evaluated forms of zileuton (API, PM, and NfZ). Female rats demonstrated higher peak plasma concentrations (Cmax) and increased area under the plasma concentration-time curve (AUC) relative to males, regardless of formulation. These findings reveal substantial gender disparities in the pharmacokinetics of zileuton in the rat model. This study emphasizes the critical need to evaluate gender differences during preclinical drug development to enable gender-based precision dosing strategies for equivalent efficacy/safety outcomes in male and female patients. Additional studies are warranted to investigate underlying mechanisms of such pharmacokinetic gender divergences.
Collapse
Affiliation(s)
- Chandra Mohan Reddy Muthumula
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| | - Rajan Jog
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Bhagya Wickramaratne
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| | - Angela Lee
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| | - Sushanta Chakder
- Center for Drug Evaluation and Research, US Food and Drug Administration, White Oak Campus, Silver Spring, MD 20993, United States of America
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, United States of America
| |
Collapse
|
4
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
5
|
Chang Z, Chen D, Peng J, Liu R, Li B, Kang J, Guo L, Hou R, Xu X, Lee M, Zhang X. Bone-Targeted Supramolecular Nanoagonist Assembled by Accurate Ratiometric Herbal-Derived Therapeutics for Osteoporosis Reversal. NANO LETTERS 2024; 24:5154-5164. [PMID: 38602357 DOI: 10.1021/acs.nanolett.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.
Collapse
Affiliation(s)
- Zhuangpeng Chang
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Dengke Chen
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Jiao Peng
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Rongyan Liu
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Beibei Li
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Jianbang Kang
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Li Guo
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Ruigang Hou
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Min Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Zhang
- School of Pharmacy and Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, P.R. China
| |
Collapse
|
6
|
Saei Ghare Naz M, Ghasemi V, Amirshekari S, Ramezani Tehrani F. Polycystic Ovary Syndrome and Irritable Bowel Syndrome: Is There a Common Pathway? Endocrinol Diabetes Metab 2024; 7:e00477. [PMID: 38494583 PMCID: PMC10944984 DOI: 10.1002/edm2.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE Little is known about how polycystic ovary syndrome (PCOS) is linked to irritable bowel syndrome (IBS). This study aimed to review the existing literature regarding the association between PCOS or its symptoms and complications with IBS. METHODS In this review, studies that investigated the proposed cross-link between features of PCOS and IBS were included. This review collectively focused on recent findings on the mechanism and novel insight regarding the association between IBS and PCOS in future clinical practice. An electronic search of PubMed, Scopus, Epistemonikos, Cochrane Library and Google Scholar was performed. We did not restrict the study setting and publication date. RESULTS The existing evidence has not completely answered the question of whether there is an association between PCOS and IBS and vice versa. Six case-control studies (793 women with PCOS and 547 women in the control group) directly assessed the association between PCOS and IBS. The prevalence of IBS among women with PCOS in these studies has ranged from 10% to 52% compared with 5%-50% in control groups. Evidence suggested the common pathways may have contributed to the interaction between IBS and PCOS, including metabolic syndrome, sex hormone fluctuation, dysregulation of neurotransmitters, psychological problems and environmental and lifestyle factors. To date, it is still ambiguous which of the mentioned components largely contributes to the pathogenesis of both. CONCLUSION Although limited evidence has shown a higher prevalence of IBS in women with PCOS, there are several potential, direct and common indirect pathways contributing to the development of both IBS and PCOS.
Collapse
Affiliation(s)
- Marzieh Saei Ghare Naz
- Reproductive Endocrinology Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | | | - Shabahang Amirshekari
- Reproductive Endocrinology Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
- The Foundation for Research & Education ExcellenceVestavia HillsAlabamaUSA
| |
Collapse
|
7
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
8
|
Chronic GPER activation prompted the proliferation of ileal stem cell in ovariectomized mice depending on Paneth cell-derived Wnt3. Clin Sci (Lond) 2023; 137:109-127. [PMID: 36503938 DOI: 10.1042/cs20220392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Menopausal women often face long-term estrogen treatment. G protein-coupled estrogen receptor (GPER) expressed in intestinal crypt was activated by estrogen therapy, but it was unclear whether chronic GPER activation during menopause had an effect on intestinal stem cells (ISCs). We tested the effect of chronic GPER activation on ISCs of ovariectomized (OVX) mice by injection of the selective GPER agonist G-1 for 28 days, or G-1 stimulation of organoids derived from crypts of OVX mice. G-1 up-regulated crypt depth, the number of Ki67+, bromodeoxyuridine+ cells and Olfm4+ ISCs, and the expression of ISCs marker genes (Lgr5, Olfm4 and Axin2). G-1 administration promoted organoid growth, increased the number of EdU+ cells per organoid and protein expression of Cyclin D1 and cyclin B1 in organoids. After G-1 treatment in vivo or in vitro, Paneth cell-derived Wnt3, Wnt3 effector β-catenin and Wnt target genes c-Myc and Cyclin D1 increased in ileum or organoids. Once blocking the secretion of Wnt3 from Paneth cells, the effects of G-1 on organoids growth, ISCs marker genes and Wnt/β-catenin signaling were abolished. G-1 did not affect the number of Paneth cells in ex vivo organoids, while activated Mmp7/cryptdin program in Paneth cells, promoted their maturation, and increased the expression of lysozyme protein. G-1 pretreatment in OVX mice inhibited radiation-induced ISCs proliferation injury and enhanced the resistance of mice to intestinal injury. In conclusion, chronic GPER activation prompted the Wnt3 synthesis in Paneth cells, thus increased the proliferation of ISCs via activation of Wnt3/β-catenin signaling in OVX mice.
Collapse
|
9
|
Zhou Y, Yan H, Liu W, Hu C, Zhou Y, Sun R, Tang Y, Zheng C, Yang J, Cui Q. A multi-tissue transcriptomic landscape of female mice in estrus and diestrus provides clues for precision medicine. Front Cell Dev Biol 2022; 10:983712. [PMID: 36589755 PMCID: PMC9800588 DOI: 10.3389/fcell.2022.983712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Female reproductive cycle, also known as menstrual cycle or estrous cycle in primate or non-primate mammals, respectively, dominates the reproductive processes in non-pregnant state. However, in addition to reproductive tissues, reproductive cycle could also perform global regulation because the receptors of two major female hormones fluctuating throughout the cycle, estrogen and progesterone, are widely distributed. Therefore, a multi-tissue gene expression landscape is in continuous demand for better understanding the systemic changes during the reproductive cycle but remains largely undefined. Here we delineated a transcriptomic landscape covering 15 tissues of C57BL/6J female mice in two phases of estrous cycle, estrus and diestrus, by RNA-sequencing. Then, a number of genes, pathways, and transcription factors involved in the estrous cycle were revealed. We found the estrous cycle could widely regulate the neuro-functions, immuno-functions, blood coagulation and so on. And behind the transcriptomic alteration between estrus and diestrus, 13 transcription factors may play important roles. Next, bioinformatics modeling with 1,263 manually curated gene signatures of various physiological and pathophysiological states systematically characterized the beneficial/deleterious effects brought by estrus/diestrus on individual tissues. We revealed that the estrous cycle has a significant effect on cardiovascular system (aorta, heart, vein), in which the anti-hypertensive pattern in aorta induced by estrus is one of the most striking findings. Inspired by this point, we validated that two hypotensive drugs, felodipine and acebutolol, could exhibit significantly enhanced efficacy in estrus than diestrus by mouse and rat experiments. Together, this study provides a valuable data resource for investigating reproductive cycle from a transcriptomic perspective, and presents models and clues for investigating precision medicine associated with reproductive cycle.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China,Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China,Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Han Yan
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chengqing Hu
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China,Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ruya Sun
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China,Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yida Tang
- Department of Cardiology, MOE Key Lab of Cardiovascular Sciences, Peking University Third Hospital, Beijing, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Chao Zheng, ; Jichun Yang, ; Qinghua Cui,
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China,*Correspondence: Chao Zheng, ; Jichun Yang, ; Qinghua Cui,
| | - Qinghua Cui
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China,Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China,*Correspondence: Chao Zheng, ; Jichun Yang, ; Qinghua Cui,
| |
Collapse
|
10
|
Camilleri M, Zhernakova A, Bozzarelli I, D'Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 2022; 19:689-702. [PMID: 35948782 DOI: 10.1038/s41575-022-00662-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain. .,Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
11
|
Huang H, Zhang EB, Yi OY, Wu H, Deng G, Huang YM, Liu WL, Yan JY, Cai X. Sex-related differences in safety profiles, pharmacokinetics and tissue distribution of sinomenine hydrochloride in rats. Arch Toxicol 2022; 96:3245-3255. [PMID: 36040703 DOI: 10.1007/s00204-022-03368-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022]
Abstract
Sinomenine is a bioactive alkaloid isolated from the Chinese medicinal plant Sinomenium acutum (Thunb.) Rehd. et Wils which exhibits significant analgesic, anti-inflammatory, and immunosuppressive effects. Sinomenine hydrochloride (SH) preparations, classified as natural disease-modifying antirheumatic drugs, are currently available for the treatment of rheumatoid arthritis and other rheumatic diseases. Our toxicity evaluation demonstrated that the median lethal dose of SH in female Sprague-Dawley (SD) rats was over 11 times greater than that in male SD rats, revealing striking sex-linked differences in the safety profile of SH. The present study was designed to investigate differences in the pharmacokinetics (PKs) and tissue distribution of SH between male and female SD rats after a single oral dose of 25 mg/kg. PK and tissue distribution studies were performed using a validated UPLC-MS/MS method. The results showed that SH-treated SD female rats displayed markedly greater drug exposure, and SH exhibited a longer half-life and slower clearance rate than comparable studies in male rats. Moreover, the tissue distribution study confirmed that the sinomenine concentration in female rats was considerably greater in the internal organs than in male rats. Our study demonstrates, for the first time, significant sex-related differences in the safety profile and PKs of SH, which may be associated with a distinct sex-dependent metabolic mechanism of sinomenine.
Collapse
Affiliation(s)
- Hong Huang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Er-Bing Zhang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.,Shenzhen Institute for Drug Control, Shenzhen, 518057, Guangdong, China
| | - Ou-Yang Yi
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Han Wu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Group Co., Ltd., Huaihua, 418000, Hunan, China
| | - Wen-Liang Liu
- Shenzhen Institute for Drug Control, Shenzhen, 518057, Guangdong, China.
| | - Jian-Ye Yan
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China.
| |
Collapse
|
12
|
Association between the Dietary Inflammatory Index and Gastric Disease Risk: Findings from a Korean Population-Based Cohort Study. Nutrients 2022; 14:nu14132662. [PMID: 35807849 PMCID: PMC9268659 DOI: 10.3390/nu14132662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Evidence suggests that diets with high pro-inflammatory potential may play a substantial role in the origin of gastric inflammation. This study aimed to examine the association between the energy-adjusted dietary inflammatory index (E-DIITM) and gastric diseases at baseline and after a mean follow-up of 7.4 years in a Korean population. A total of 144,196 participants from the Korean Genome and Epidemiology Study_Health Examination (KoGES_HEXA) cohort were included. E-DII scores were computed using a validated semi-quantitative food frequency questionnaire. Multivariate logistic regression and Cox proportional hazards regression were used to assess the association between the E-DII and gastric disease risk. In the prospective analysis, the risk of developing gastric disease was significantly increased among individuals in the highest quartile of E-DII compared to those in the lowest quartile (HRquartile4vs1 = 1.22; 95% CI = 1.08–1.38). Prospective analysis also showed an increased risk in the incidence of gastritis (HRquartile4vs1 = 1.19; 95% CI = 1.04–1.37), gastric ulcers (HRquartile4vs1 = 1.47; 95% CI = 1.16–1.85), and gastric and duodenal ulcers (HRquartile4vs1 = 1.46; 95% CI = 1.17–1.81) in the highest E-DII quartile compared to the lowest quartile. In the cross-sectional analysis, the E-DII score was not associated with the risk of gastric disease. Our results suggest that a pro-inflammatory diet, indicated by high E-DII scores, is prospectively associated with an increased risk of gastric diseases. These results highlight the significance of an anti-inflammatory diet in lowering the risk of gastric disease risk in the general population.
Collapse
|
13
|
Koch T, Therming Jørgensen J, Christensen J, Duun-Henriksen AK, Priskorn L, Kildevaeld Simonsen M, Dehlendorff C, Jovanovic Andersen Z, Juul A, Bräuner EV, Hickey M. Bilateral oophorectomy and rate of colorectal cancer: A prospective cohort study. Int J Cancer 2022; 150:38-46. [PMID: 34449872 DOI: 10.1002/ijc.33776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/11/2022]
Abstract
Worldwide, colorectal cancer is the second most common cancer and third cause of cancer death in women. Estrogen exposure has been inversely associated with colorectal cancer. Oophorectomy reduces circulating estrogen, but the effect on colorectal cancer remains uncertain. The aim of this study was to examine the association between unilateral and bilateral oophorectomy and subsequent risk of colorectal cancer, and whether this association varied by menopausal status at time of oophorectomy, use of hormone replacement therapy (HRT) at baseline, hysterectomy and baseline body mass index (BMI). The study included 25 698 female nurses (aged ≥45 years) participating in the Danish Nurse Cohort. Nurses were followed from baseline until date of colorectal cancer, death, emigration or end of follow-up at December 31, 2018, whichever came first. We examined the association between oophorectomy and colorectal cancer (all ages and stratified by menopausal status). The potential modifying effects of hysterectomy, HRT use at baseline and BMI were investigated. During 542 140 person-years of follow-up, 863 (3.4%) nurses were diagnosed with colorectal cancer. Bilateral oophorectomy was associated with a 79% increased colorectal cancer rate, adjusted rate ratio (aRR) (95% confidence interval [CI]): 1.79 (1.33-2.42). Effect estimates following unilateral oophorectomy also showed higher rate of colorectal cancer, although less pronounced and nonstatistically significant (aRR) (95% CI): 1.25 (0.86-1.82). Similar results were seen when stratifying by menopausal status. The association was not modified by baseline HRT use, hysterectomy or BMI. Oophorectomy was associated with increased rate of colorectal cancer, with highest rates among women with bilateral oophorectomy.
Collapse
Affiliation(s)
- Trine Koch
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Jane Christensen
- Statistics and Data Analysis, Danish Cancer Society, Copenhagen, Denmark
| | | | - Laerke Priskorn
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Centre for Epidemiological Research, Nykøbing F Hospital, Nykøbing F, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Elvira V Bräuner
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Rodrigues LE, Kishibe MM, Keller R, Caetano HRDS, Rufino MN, Sanches ODC, Giometti IC, Giuffrida R, Bremer-Neto H. Prebiotics mannan-oligosaccharides accelerate sexual maturity in rats: A randomized preclinical study. Vet World 2021; 14:1210-1219. [PMID: 34220123 PMCID: PMC8243662 DOI: 10.14202/vetworld.2021.1210-1219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: The prebiotics, mannan-oligosaccharides (MOS), demonstrate the ability to increase probiotic microorganisms and fixation and removal of pathogens associated with chronic systemic inflammation in the digestive system. Inflammatory processes play an important role in modulating the brain-intestinal axis, including maintaining male reproductive function and spermatogenesis and regulating stress. The aim of the present study was to evaluate the action of MOS on testosterone and corticosterone concentrations and the reproductive system development of rats in the growth phase as an animal model. Materials and Methods: In total, 128 male rats were used, randomly divided into four experimental groups (n=32): Control; MOS 1; MOS 2; and MOS 3. From each group, eight animals were sacrificed in four experimental moments (14, 28, 42, and 56 days, respectively, moments 1, 2, 3, and 4) and hormonal measurements and histological evaluations were performed. Results: The results revealed the effect of diet, MOS, and timing on testicle weight (p<0.05). At moments 3 and 4, the groups supplemented with MOS showed higher concentrations of testosterone and decreased corticosterone levels throughout the experimental period. Groups supplemented with MOS showed an increase in the frequency of relative sperm and sperm scores. The radii of the seminiferous tubules presented a significant statistical effect of the diet, moments, and diet + moment interaction. Conclusion: It was concluded that the three different MOS prebiotics brought forward sexual maturity.
Collapse
Affiliation(s)
- Luiz Eduardo Rodrigues
- Department of Functional Sciences, Laboratory of Physiology and Biophysics, Faculty of Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Milena Miyoshi Kishibe
- Department of Functional Sciences, Laboratory of Physiology and Biophysics, Faculty of Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Rogeria Keller
- Department of Functional Sciences, Laboratory of Microbiology, Faculty of Biological Sciences, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Heliard Rodrigues Dos Santos Caetano
- Department of Functional Sciences, Laboratory of Physiology, Faculty of Physiotherapy, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Marcos Natal Rufino
- Department of Functional Sciences, Laboratory of Physiology, Faculty of Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | | | - Ines Cristina Giometti
- Department of Reproduction, Faculty of Veterinary Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Rogério Giuffrida
- Department of Statistics, Faculty of Veterinary Medicine, Universidade do Oeste Paulista, São Paulo, Brazil
| | - Hermann Bremer-Neto
- Department of Functional Sciences, Laboratory of Physiology and Biophysics, Faculty of Medicine, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
15
|
Diviccaro S, Giatti S, Borgo F, Falvo E, Caruso D, Garcia-Segura LM, Melcangi RC. Steroidogenic machinery in the adult rat colon. J Steroid Biochem Mol Biol 2020; 203:105732. [PMID: 32777355 DOI: 10.1016/j.jsbmb.2020.105732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Gastrointestinal function is known to be regulated by steroid molecules produced by the gonads, the adrenal glands and the gut microbiota. However, we have a limited knowledge on the functional significance of local steroid production by gastrointestinal tract tissue. On this basis, we have here evaluated, as a first methodological approach, the expression of steroidogenic molecules and the local levels of key steroids in the male rat colon. Our findings indicate that the colon tissue expresses molecules involved in the early steps of steroidogenesis and in the consecutive synthesis and metabolism of steroid hormones, such as progesterone, testosterone and 17β-estradiol. In addition, the levels of the steroid hormone precursor pregnenolone and the levels of active metabolites of progesterone and testosterone, such as dihydroprogesterone, tetrahydroprogesterone, dihydrotestosterone and 17β-estradiol, were higher in colon than in plasma. Higher levels of the androgen metabolite 3α-diol were detected in the colon in comparison with another non-classical steroidogenic tissue, such as the cerebral cortex. These findings suggest the existence of local steroid synthesis and metabolism in the colon, with the production of active steroid metabolites that may impact on the activity of the enteric nervous system and on the composition of the gut microbiota.
Collapse
Affiliation(s)
- S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F Borgo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - E Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - D Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy,.
| |
Collapse
|
16
|
Comparison of the Status of Interstitial Cells of Cajal in the Smooth Muscle of the Antrum and Pylorus in Diabetic Male and Female Patients with Severe Gastroparesis. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Females dominate in the area of gastroparesis (GP), making up to 70–80% of these patients. One attractive hypothesis is that females have less smooth muscle reserve and thus less resilience to recover from an insult. Our aim was to investigate if there are gender differences in the number of interstitial cells of Cajal (ICC) in the antral and pyloric smooth muscle of diabetic (DM) patients with severe gastroparesis refractory to standard medical management. Full thickness antral and pyloric biopsies were obtained during surgery to implant a gastric electrical stimulation system and perform a pyloroplasty. Thirty-eight DM patients (66% females, n = 25; mean age 44) who failed medical therapies provided antral biopsies. Pyloric tissue samples were also collected from 29 of these patients (65% females, n = 19). Tissues were stained with H&E and c-Kit for the presence of ICC. ICC depletion was defined as less than 10 cells/HPF. In the antrum, 40% of females had significant ICC depletion, similar to 38% in males. In the pylorus, 68% of females had depletion of ICC, compared to 80% depletion in males. When combining both antral and pyloric smooth muscle regions, ICC depletion was similar in males (40%) when compared to females (38%). In diabetic patients with severe GP, females and males showed similar degrees of reduction in antral ICC, while more males had depletion of pyloric smooth muscle ICC compared to their female counterparts. Future larger studies should focus on whether differences in other smooth muscle biomarkers can be identified between males and females.
Collapse
|
17
|
Umer A, Ługowska-Umer H, Schönborn-Kellenberger O, Korolkiewicz PK, Sein-Anand Ł, Kuziemski K, Korolkiewicz RP. Tachykinin Antagonists Reverse Ischemia/Reperfusion Gastrointestinal Motility Impairment in Rats. J Surg Res 2020; 255:510-516. [PMID: 32629333 DOI: 10.1016/j.jss.2020.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/26/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Supraceliac aortic clamping and unclamping produces ischemia-reperfusion (I/R) injury of the splanchnic organs. The protective effects of tachykinin receptor antagonists, SR140333 (NK1 receptor), SR48968 (NK2 receptor), and SB222200 (NK3 receptor), against I/R-induced inhibition of intestinal motility were tested in rats. MATERIAL AND METHODS The intestinal transit of Evans blue was measured in untreated rats and animals subjected to skin incision, I/R (1 h superior mesenteric artery occlusion followed by 24 h reperfusion) or sham operation. Surgical procedures were conducted under diethyl ether anesthesia. RESULTS The gastrointestinal transit has not been markedly affected in rats, which were anesthetized or subjected to skin incision in comparison with untreated animals. In contrast, a sham operation and I/R have significantly reduced the intestinal motility. Pretreatment with NK1-3 blockers (SR140333 [3-30 μg/kg]; SR48968 [3-100 μg/kg]; and SB222200 [10-100 μg/kg]) reversed dose dependently the effects of I/R to the level observed after sham operation only. A combination of NK1+NK2+NK3 inhibitors exerted an additive effect compared with NK1 and NK2 antagonists used as single agents. Similarly, combined NK1+NK2 were more effective than NK2 alone. Sham operation and I/R have shifted the in vitro carbachol concentration-response curves to the right in comparison with untreated animals, a phenomenon partially reversed by NK1-NK3 pretreatment. CONCLUSIONS Single-agent and combined treatment with NK1-3 antagonists markedly attenuated the gastrointestinal dysmotility evoked by I/R injury. The pretreatment with NK3 blocker proved to be the most active in this experimental setting.
Collapse
Affiliation(s)
- Artur Umer
- Department of Thoracic Surgery, Medical University of Gdansk, Smoluchowskiego, Gdańsk, Poland
| | - Hanna Ługowska-Umer
- Department of Dermatology, Venerology, Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Łukasz Sein-Anand
- Department of Clinical Toxicology, Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Kuziemski
- Department of Allergology and Pneumonology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
18
|
Sprouse JC, Sampath C, Gangula PR. Supplementation of 17β-Estradiol Normalizes Rapid Gastric Emptying by Restoring Impaired Nrf2 and nNOS Function in Obesity-Induced Diabetic Ovariectomized Mice. Antioxidants (Basel) 2020; 9:E582. [PMID: 32635208 PMCID: PMC7402187 DOI: 10.3390/antiox9070582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gastroparesis (Gp) is a multifactorial condition commonly observed in females and is characterized by delayed or rapid gastric emptying (GE). The role of ovarian hormones on GE in the pathogenesis of obesity induced type 2 diabetes mellitus (T2DM) is completely unknown. The aims of our study are to investigate whether supplementation of 17β-estradiol (E2) or progesterone (P4) restores impaired nuclear factor erythroid 2-related factor 2 (Nrf2, an oxidative stress-responsive transcription factor) and nitric oxide (NO)-mediated gastric motility in ovariectomized (OVX) mice consuming a high-fat diet (HFD, a model of T2DM). Groups of OVX+HFD mice were administered daily subcutaneous doses of either E2 or P4 for 12 weeks. The effects of E2 and P4 on body weight, metabolic homeostasis, solid GE, gastric antrum NO-mediated relaxation, total nitrite levels, neuronal nitric oxide synthase (nNOSα), and its cofactor expression levels were assessed in OVX+HFD mice. HFD exacerbated hyperglycemia and insulinemia while accelerating GE (p < 0.05) in OVX mice. Exogenous E2, but not P4, attenuated rapid gastric emptying and restored gastric nitrergic relaxation, total nitrite levels, nNOSα, and cofactor expression via normalizing Nrf2-Phase II enzymes, inflammatory response, and mitogen-activated protein kinase (MAPK) protein expression in OVX+HFD mice. We conclude that E2 is beneficial in normalizing metabolic homeostasis and gastric emptying in obese, diabetic OVX mice consuming a fat-rich diet.
Collapse
Affiliation(s)
- Jeremy C. Sprouse
- School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
| | - Chethan Sampath
- Department of ODS & Research, School of Dentistry, Nashville, TN 37208, USA;
| | - Pandu R. Gangula
- Department of ODS & Research, School of Dentistry, Nashville, TN 37208, USA;
| |
Collapse
|
19
|
Meister AL, Jiang Y, Doheny KK, Travagli RA. Correlation between the motility of the proximal antrum and the high-frequency power of heart rate variability in freely moving rats. Neurogastroenterol Motil 2019; 31:e13633. [PMID: 31119854 PMCID: PMC6639127 DOI: 10.1111/nmo.13633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cardiac vagal tone can be monitored non-invasively via electrocardiogram measurements of the high-frequency power spectrum of heart rate variability (HF-HRV). Vagal inputs to the upper GI tract are cumbersome to measure non-invasively. Although cardiac and GI vagal outputs arise from distinct brainstem nuclei, the nucleus ambiguus, and the dorsal motor nucleus of the vagus, respectively, we aim to test the hypotheses that in freely moving rats HF-HRV power is correlated to proximal antral motility and can be altered by high levels of circulating estrogen and vagal-selective treatments known to affect antral motility. METHODS Male and female Sprague-Dawley rats were implanted with a miniaturized strain gauge on the proximal gastric antrum and ECG electrodes to collect simultaneous antral motility and electrocardiogram. After recovery, male rats underwent baseline recordings before and after administration of saline (N = 8), cholecystokinin (CCK; N = 7), ghrelin (N = 6), or food (N = 6). Female rats (N = 6) underwent twice-daily recordings to determine baseline correlations during estrous cycle stages. KEY RESULTS There was a significant positive correlation between HF-HRV and proximal antral motility at baseline in males and females with low, but not high, estrogen levels. In male rats, the significant positive correlation was maintained following CCK, but not ghrelin or food administration. CONCLUSIONS AND INFERENCES Our data suggest that in rodents, HF-HRV positively correlates to proximal antral motility at baseline conditions in males and low-estrogen females or following interventions, such as CCK, known to affect vagal tone. This correlation is not observed when antral motility is influenced by more complex events.
Collapse
Affiliation(s)
- Alissa L. Meister
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA
| | - Yanyan Jiang
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA
| | - Kim K. Doheny
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA,Division of Neonatal-Perinatal Medicine, Penn State College of Medicine, Hershey PA
| | - R. Alberto Travagli
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA,Corresponding author: Dr. R. Alberto Travagli, Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033,
| |
Collapse
|
20
|
Vemuri R, Sylvia KE, Klein SL, Forster SC, Plebanski M, Eri R, Flanagan KL. The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Semin Immunopathol 2019; 41:265-275. [PMID: 30298433 PMCID: PMC6500089 DOI: 10.1007/s00281-018-0716-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
Abstract
Sex differences in immunity are well described in the literature and thought to be mainly driven by sex hormones and sex-linked immune response genes. The gastrointestinal tract (GIT) is one of the largest immune organs in the body and contains multiple immune cells in the GIT-associated lymphoid tissue, Peyer's patches and elsewhere, which together have profound effects on local and systemic inflammation. The GIT is colonised with microbial communities composed of bacteria, fungi and viruses, collectively known as the GIT microbiota. The GIT microbiota drives multiple interactions locally with immune cells that regulate the homeostatic environment and systemically in diverse tissues. It is becoming evident that the microbiota differs between the sexes, both in animal models and in humans, and these sex differences often lead to sex-dependent changes in local GIT inflammation, systemic immunity and susceptibility to a range of inflammatory diseases. The sexually dimorphic microbiome has been termed the 'microgenderome'. Herein, we review the evidence for the microgenderome and contemplate the role it plays in driving sex differences in immunity and disease susceptibility. We further consider the impact that biological sex might play in the response to treatments aimed at manipulating the GIT microbiota, such as prebiotics, live biotherapeutics, (probiotics, synbiotics and bacteriotherapies) and faecal microbial transplant. These alternative therapies hold potential in the treatment of both psychological (e.g., anxiety, depression) and physiological (e.g., irritable bowel disease) disorders differentially affecting males and females.
Collapse
Affiliation(s)
- Ravichandra Vemuri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kristyn E Sylvia
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Samuel C Forster
- Microbiota and Systems Biology Laboratory, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Melbourne, Victoria, Australia
| | - Magdalena Plebanski
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia
| | - Raj Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Katie L Flanagan
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
- School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia.
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Abstract
OBJECTIVE Women exhibit reduced ovarian sex hormones during the menopausal period that result in well-known physical and psychological symptoms. However, symptoms related to gastric motility (GM) have not been thoroughly investigated. We hypothesized that stress response gastric motility (SRGM) is lower in postmenopausal (PM) and perimenopausal (PERIM) women than in premenopausal (PREM) women. Estrogenic decline leads to neuroendocrine changes in different areas of the brain. These changes can result in hypothalamic vasomotor symptoms, disorders in eating behaviours, and altered blood pressure, in addition to psychological disorders such as stress, anxiety, depression, and irritability related to alterations in the limbic system. METHODS In this pilot study, 55 PREM, PERIM, and PM women were clinically evaluated using the Nowack stress profile (SP) and State-Trait Anxiety Inventory (STAI). GM was assessed via electrical bioimpedance using two psychological stress tests (Stroop and Raven tests). RESULTS Basal SP and STAI-anxiety test scores were similar among the three groups of women (P > 0.05). PERIM women had lower GM in the basal state (P < 0.05) than did other women. PREM and PM women had significantly decreased GM during the stress tests (P < 0.05). However, PERIM did not exhibit GM changes during stress tests (P > 0.05). CONCLUSION Changes in sex hormones during PERIM may affect GM and SRGM.
Collapse
|
22
|
Song MY, Li CY, Liu XF, Xiao JY, Zhao H. Effect of 17β-oestradiol on T-type calcium channels in the lateral habenula. J Neuroendocrinol 2018; 30:e12629. [PMID: 29917292 DOI: 10.1111/jne.12629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 06/10/2018] [Accepted: 06/16/2018] [Indexed: 11/27/2022]
Abstract
T-type calcium channels (T-channels) are critical for regulating neuronal excitability. Oestrogen alters neuronal excitability by modulating the expression of T-channels. The lateral habenula (LHb), as a link between the limbic system and midbrain structures, expresses T-channels and ERs. However, little is known about the role of oestrogen with respect to modulating T-channels in the LHb. In the present study, we investigated the distribution of T-channels in 3 LHb subregions (rostral, middle and caudal) in normal female rats. Next, we analysed the influence of 17β-oestradiol (E2 ) on T-channels in the LHb in ovariectomised (OVX) rats (oil and E2 groups) using whole-cell patch clamp recording and a real-time polymerase chain reaction (PCR). In normal rats, the results obtained showed that the peak of T-type calcium current (IT ) was -474.61 ± 48.33 pA and IT density was -29.11 ± 1.93 pA/pF. The IT peak and IT density on LHb neurones gradually decreased across the rostrocaudal axis. The neuronal firing pattern varied depending on the location: burst firing was dominant (53.85%) in the rostral LHb, whereas tonic firing was dominant (79.31%) in the caudal LHb. In OVX rats, real-time PCR analysis revealed that E2 treatment decreased Cav3.3 mRNA expression in the caudal LHb. Patch clamp recording showed that E2 treatment decreased the peak IT and also reduced the low-threshold spikes (LTS) number, amplitude and width of LTS in the caudal LHb. Taken together, the results obtained in the present study suggest that E2 may inhibit T-channel activity by selectively down-regulating Cav3.3 calcium channel in the caudal LHb, leading to reduced the possibility of burst firing.
Collapse
Affiliation(s)
- Mei Ying Song
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chun Ying Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao Feng Liu
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jin Yu Xiao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hua Zhao
- Neuroscience Research Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
23
|
Bonfiglio F, Zheng T, Garcia-Etxebarria K, Hadizadeh F, Bujanda L, Bresso F, Agreus L, Andreasson A, Dlugosz A, Lindberg G, Schmidt PT, Karling P, Ohlsson B, Simren M, Walter S, Nardone G, Cuomo R, Usai-Satta P, Galeazzi F, Neri M, Portincasa P, Bellini M, Barbara G, Latiano A, Hübenthal M, Thijs V, Netea MG, Jonkers D, Chang L, Mayer EA, Wouters MM, Boeckxstaens G, Camilleri M, Franke A, Zhernakova A, D'Amato M. Female-Specific Association Between Variants on Chromosome 9 and Self-Reported Diagnosis of Irritable Bowel Syndrome. Gastroenterology 2018; 155:168-179. [PMID: 29626450 PMCID: PMC6035117 DOI: 10.1053/j.gastro.2018.03.064] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genetic factors are believed to affect risk for irritable bowel syndrome (IBS), but there have been no sufficiently powered and adequately sized studies. To identify DNA variants associated with IBS risk, we performed a genome-wide association study (GWAS) of the large UK Biobank population-based cohort, which includes genotype and health data from 500,000 participants. METHODS We studied 7,287,191 high-quality single nucleotide polymorphisms in individuals who self-reported a doctor's diagnosis of IBS (cases; n = 9576) compared to the remainder of the cohort (controls; n = 336,499) (mean age of study subjects, 40-69 years). Genome-wide significant findings were further investigated in 2045 patients with IBS from tertiary centers and 7955 population controls from Europe and the United States, and a small general population sample from Sweden (n = 249). Functional annotation of GWAS results was carried out by integrating data from multiple biorepositories to obtain biological insights from the observed associations. RESULTS We identified a genome-wide significant association on chromosome 9q31.2 (single nucleotide polymorphism rs10512344; P = 3.57 × 10-8) in a region previously linked to age at menarche, and 13 additional loci of suggestive significance (P < 5.0×10-6). Sex-stratified analyses revealed that the variants at 9q31.2 affect risk of IBS in women only (P = 4.29 × 10-10 in UK Biobank) and also associate with constipation-predominant IBS in women (P = .015 in the tertiary cohort) and harder stools in women (P = .0012 in the population-based sample). Functional annotation of the 9q31.2 locus identified 8 candidate genes, including the elongator complex protein 1 gene (ELP1 or IKBKAP), which is mutated in patients with familial dysautonomia. CONCLUSIONS In a sufficiently powered GWAS of IBS, we associated variants at the locus 9q31.2 with risk of IBS in women. This observation may provide additional rationale for investigating the role of sex hormones and autonomic dysfunction in IBS.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Tenghao Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Koldo Garcia-Etxebarria
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Luis Bujanda
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Universidad del País Vasco, San Sebastián, Spain
| | - Francesca Bresso
- Gastoenterology Unit, Tema inflammation and infection, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Agreus
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Andreasson
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Greger Lindberg
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Peter T Schmidt
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Karling
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital, Department of Internal Medicine, Lund, Sweden
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna Walter
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Rosario Cuomo
- Digestive Motility Diseases, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Paolo Usai-Satta
- SC Gastroenterologia, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | | | - Matteo Neri
- Department of Medicine and Aging Sciences and Center for Excellence on Aging, G. D'Annunzio University and Foundation, Chieti, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy
| | - Massimo Bellini
- Gastroenterology Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola, Malpighi Hospital, Bologna, Italy
| | - Anna Latiano
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vincent Thijs
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Daisy Jonkers
- Department of Internal Medicine, Nutrition and Toxicology Research Institute Maastricht, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Mira M Wouters
- Translational Research Center for Gastro Intestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for Gastro Intestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mauro D'Amato
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
24
|
Nie X, Xie R, Tuo B. Effects of Estrogen on the Gastrointestinal Tract. Dig Dis Sci 2018; 63:583-596. [PMID: 29387989 DOI: 10.1007/s10620-018-4939-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023]
Abstract
Estrogen is a kind of steroid compound that has extensive biologic activities. The effect of estrogen is pleiotropic, affecting multiple systems in the body. There is accumulating evidence that estrogen has important effects on the gastrointestinal tract. Longer exposure to estrogen may decrease the risk of gastric cancer. Use of the anti-estrogen drug tamoxifen might increase the risk of gastric adenocarcinoma. Estrogen receptor β may serve as a target for colorectal cancer prevention. In addition, estrogen has been reported to be closely related to the mucosal barrier, gastrointestinal function and intestinal inflammation. However, the role of estrogen in the gastrointestinal tract has not been systematically summarized. In this review, we aim to provide an overview of the role of estrogen in the gastrointestinal tract and evaluate it from various aspects, including estrogen receptors, the mucosal barrier, intestinal inflammation and gastrointestinal tract tumors, which may provide the basis for the development of therapeutic strategies to manage gastrointestinal diseases.
Collapse
Affiliation(s)
- Xubiao Nie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi, 563003, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi, 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi, 563003, China.
| |
Collapse
|
25
|
The Influence of Low Doses of Zearalenone and T-2 Toxin on Calcitonin Gene Related Peptide-Like Immunoreactive (CGRP-LI) Neurons in the ENS of the Porcine Descending Colon. Toxins (Basel) 2017; 9:toxins9030098. [PMID: 28287437 PMCID: PMC5371853 DOI: 10.3390/toxins9030098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022] Open
Abstract
The enteric nervous system (ENS) can undergo adaptive and reparative changes in response to physiological and pathological stimuli. These manifest primarily as alterations in the levels of active substances expressed by the enteric neuron. While it is known that mycotoxins can affect the function of the central and peripheral nervous systems, knowledge about their influence on the ENS is limited. Therefore, the aim of the present study was to investigate the influence of low doses of zearalenone (ZEN) and T-2 toxin on calcitonin gene related peptide-like immunoreactive (CGRP-LI) neurons in the ENS of the porcine descending colon using a double immunofluorescence technique. Both mycotoxins led to an increase in the percentage of CGRP-LI neurons in all types of enteric plexuses and changed the degree of co-localization of CGRP with other neuronal active substances, such as substance P, galanin, nitric oxide synthase, and cocaine- and amphetamine-regulated transcript peptide. The obtained results demonstrate that even low doses of ZEN and T-2 can affect living organisms and cause changes in the neurochemical profile of enteric neurons.
Collapse
|
26
|
Estrogen Receptors in Regulating Cell Proliferation of Esophageal Squamous Cell Carcinoma: Involvement of Intracellular Ca 2+ Signaling. Pathol Oncol Res 2016; 23:329-334. [PMID: 27595756 DOI: 10.1007/s12253-016-0105-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Esophageal cancer is a deadly disease in the esophagus with a poor prognosis. Over 90 % of esophageal cancer is esophageal squamous cell carcinoma (ESCC) and its pathogenic mechanisms remain unclear. Epidemiology study found a strong gender difference with a sex ratio of 8-9:1 in favor of males, but the molecular mechanisms for so striking gender difference are poorly understood so far. In the present study, we demonstrated the expression of estrogen receptors in human ESCC cells. 17β-E2 but not 17α-E2 was found to dose-dependently suppress the cell proliferation of human ESCC cells, which was attenuated by estrogen receptor antagonist ICI1 82,780. Furthermore, 17β -E2 but not 17α-E2 10 nM markedly induced both intracellular Ca2+ release and extracellular Ca2+ entry into ESCC cells, which was again attenuated by estrogen receptor antagonist ICI182,780. Taken together, our data clearly demonstrate that estrogen exerts anti-proliferative action on human ESCC cells likely through estrogen receptor-Ca2+ signaling pathway, which may provide a reasonable explanation on the striking male predominance of ESCC.
Collapse
|
27
|
Matos JF, Americo MF, Sinzato YK, Volpato GT, Corá LA, Calabresi MFF, Oliveira RB, Damasceno DC, Miranda JRA. Role of sex hormones in gastrointestinal motility in pregnant and non-pregnant rats. World J Gastroenterol 2016; 22:5761-5768. [PMID: 27433089 PMCID: PMC4932211 DOI: 10.3748/wjg.v22.i25.5761] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To correlate gastric contractility, gastrointestinal transit, and hormone levels in non-pregnant (estrous cycle) and pregnant rats using noninvasive techniques.
METHODS: Female rats (n = 23) were randomly divided into (1) non-pregnant, (contractility, n = 6; transit, n = 6); and (2) pregnant (contractility, n = 5; transit, n = 6). In each estrous cycle phase or at 0, 7, 14, and 20 d after the confirmation of pregnancy, gastrointestinal transit was recorded by AC biosusceptometry (ACB), and gastric contractility was recorded by ACB and electromyography. After each recording, blood samples were obtained for progesterone and estradiol determination.
RESULTS: In the estrous cycle, despite fluctuations of sex hormone levels, no significant changes in gastrointestinal motility were observed. Days 7 and 14 of pregnancy were characterized by significant changes in the frequency of contractions (3.90 ± 0.42 cpm and 3.60 ± 0.36 cpm vs 4.33 ± 0.25 cpm) and gastric emptying (168 ± 17 min and 165 ± 15 min vs 113 ± 15 min) compared with day 0. On these same days, progesterone levels significantly increased compared with control (54.23 ± 15.14 ng/mL and 129.96 ± 30.52 ng/mL vs 13.25 ± 6.31 ng/mL). On day 14, we observed the highest level of progesterone and the lowest level of estradiol compared with day 0 (44.3 ± 15.18 pg/mL vs 24.96 ± 5.96 pg/mL).
CONCLUSION: Gastrointestinal motility was unaffected by the estrous cycle. In our data, high progesterone and low estradiol levels can be associated with decreased contraction frequency and slow gastric emptying.
Collapse
|
28
|
Segelman J, Lindström L, Frisell J, Lu Y. Population-based analysis of colorectal cancer risk after oophorectomy. Br J Surg 2016; 103:908-915. [PMID: 27115862 DOI: 10.1002/bjs.10143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND The development of colorectal cancer is influenced by hormonal factors. Oophorectomy alters endogenous levels of sex hormones, but the effect on colorectal cancer risk is unclear. The aim of this cohort study was to examine colorectal cancer risk after oophorectomy for benign indications. METHODS Women who had undergone oophorectomy between 1965 and 2011 were identified from the Swedish Patient Registry. Standard incidence ratios (SIRs) and 95 per cent confidence intervals for colorectal cancer risk were calculated compared with those in the general population. Stratification was carried out for unilateral and bilateral oophorectomy, and hysterectomy without specification of whether the ovaries were removed or not. Associations between the three oophorectomy options and colorectal cancer risk in different locations were assessed by means of hazard ratios (HRs) and 95 per cent confidence intervals calculated by Cox proportional hazards regression modelling. RESULTS Of 195 973 women who had undergone oophorectomy, 3150 (1·6 per cent) were diagnosed with colorectal cancer at a later date (median follow-up 18 years). Colorectal cancer risk was increased after oophorectomy compared with that in the general population (SIR 1·30, 95 per cent c.i. 1·26 to 1·35). The risk was lower for younger age at oophorectomy (15-39 years: SIR 1·10, 0·97 to 1·23; 40-49 years: SIR 1·26, 1·19 to 1·33; P for trend < 0·001). The risk was highest 1-4 years after oophorectomy (SIR 1·66, 1·51 to 1·81; P < 0·001). In the multivariable analysis, women who underwent bilateral oophorectomy had a higher risk of rectal cancer than those who had only unilateral oophorectomy (HR 2·28, 95 per cent c.i. 1·33 to 3·91). CONCLUSION Colorectal cancer risk is increased after oophorectomy for benign indications.
Collapse
Affiliation(s)
- J Segelman
- Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - L Lindström
- Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - J Frisell
- Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Y Lu
- Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| |
Collapse
|
29
|
Lee MC, Yang YC, Chen YC, Chang BS, Li YC, Huang SC. Estrogen and G protein-coupled estrogen receptor agonist G-1 cause relaxation of human gallbladder. Tzu Chi Med J 2016; 28:54-58. [PMID: 28757722 PMCID: PMC5442889 DOI: 10.1016/j.tcmj.2016.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/29/2016] [Accepted: 03/25/2016] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE Estrogen interacts with a membrane receptor, G protein-coupled estrogen receptor (GPER). It was reported that 17β-estradiol was able to inhibit contraction of the human colon and cause relaxation of the guinea pig gallbladder, however, the involvement of GPER was not clarified. The aim of the present study was to investigate the effect of estrogen on human gallbladder motility and the possible role of GPER. MATERIALS AND METHODS Relaxation of human gallbladder strips were measured using isometric transducers. Expression of GPER was evaluated by reverse transcription polymerase chain reaction (PCR), realtime PCR, and immunohistochemistry. RESULTS In human gallbladder strips, 17β-estradiol and G-1 elicited marked and rapid relaxation, whereas tamoxifen produced mild concentration-dependent relaxation. The relative efficacies to cause relaxation were as follows: 17β-estradiol = G-1 > tamoxifen. The relaxant response of 17β-estradiol was not attenuated by tetrodotoxin or conotoxin GVIA. This implies that nerve stimulation was not involved in the 17β-estradiol-induced gallbladder relaxation. Analysis by reverse transcription PCR and real-time PCR showed that GPER was expressed in the human gallbladder. Further analysis by immunohisto-chemistry revealed that GPER was expressed in the gallbladder muscle. This suggests that 17β-estradiol relaxes the human gallbladder via GPER. CONCLUSION These results demonstrate for the first time that 17β-estradiol and GPER agonist G-1 cause relaxation of the human gallbladder, probably through GPER. Estrogen might play an important role in the control of human gallbladder motility.
Collapse
Affiliation(s)
- Ming-Che Lee
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ying-Chin Yang
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Cheng Chen
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bee-Song Chang
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yi-Chen Li
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Shih-Che Huang
- Department of Internal Medicine, Toyotomicho National Health Insurance Hospital, Toyotomi, Hokkaido, Japan
- Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Li Y, Xu J, Jiang F, Jiang Z, Liu C, Li L, Luo Y, Lu R, Mu Y, Liu Y, Xue B. G protein-coupled estrogen receptor is involved in modulating colonic motor function via nitric oxide release in C57BL/6 female mice. Neurogastroenterol Motil 2016; 28:432-42. [PMID: 26661936 DOI: 10.1111/nmo.12743] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Estrogen may regulate gastrointestinal motor functions, but the mechanism(s) is not totally understood. Here, we investigated whether G protein-coupled estrogen receptor (GPER/GPR30) was involved in regulating colonic motor functions and explored the underlying physiological mechanisms. METHODS Adult female C57BL/6 mice were used. The expression and localization of GPER were examined by RT-PCR, western blot, and immuno-labeling. The role of GPER in modulating colonic motor functions was assessed by the bead propulsion test in vivo and organ bath experiments in vitro. KEY RESULTS GPER was expressed in colonic myenteric neurons. The colonic transit time (CTT) in proestrus and estrus was significantly longer than that in diestrus. In vivo treatment with the selective GPER blocker G15 significantly shortened CTT in proestrus and estrus. In ovariectomized mice, acute estrogen supplementation increased CTT, which could be abolished by G15 co-administration. The GPER agonist G-1 caused a concentration-dependent inhibition of carbachol -induced circular muscle strips contraction, which was abolished by tetrodotoxin and the neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-l-arginine. G-1 stimulated NO production in isolated longitudinal muscle myenteric plexus and cultured myenteric neurons, which was dependent on nNOS. Immunofluorescence labeling showed co-localization of GPER with nNOS in the myenteric plexus. CONCLUSIONS & INFERENCES We suggest that activation of GPER exerts an inhibitory effect on colonic motility by promoting NO release from myenteric nitrergic nerves. These results raise a possibility that GPER may be involved in mediating the inhibitory effect of estrogen on colonic motor functions, via a non-genomic, neurogenic mechanism.
Collapse
Affiliation(s)
- Y Li
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - J Xu
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - F Jiang
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - Z Jiang
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - C Liu
- Department of Physiology, Medical School, Shandong University, Jinan, China
| | - L Li
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - Y Luo
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - R Lu
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - Y Mu
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - Y Liu
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| | - B Xue
- Department of Pathophysiology, Medical School, Shandong University, Jinan, China
| |
Collapse
|
31
|
Host responses to the pathogen Mycobacterium avium subsp. paratuberculosis and beneficial microbes exhibit host sex specificity. Appl Environ Microbiol 2015; 80:4481-90. [PMID: 24814797 DOI: 10.1128/aem.01229-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differences between microbial pathogenesis in male and female hosts are well characterized in disease conditions connected to sexual transmission. However, limited biological insight is available on variances attributed to sex specificity in host-microbe interactions, and it is most often a minimized variable outside these transmission events. In this work, we studied two gut microbes-a pathogen, Mycobacterium avium subsp. paratuberculosis, and a probiotic, Lactobacillus animalis NP-51-and the interaction between each agent and the male and female gastrointestinal systems. This trial was conducted in BALB/c mice (n=5 per experimental group and per sex at a given time point), with analysis at four time points over 180 days. Host responses to M.avium subsp. paratuberculosis and L. animalis were sensitive to sex. Cytokines that were significantly different (P ≤ 0.05) betweenthe sexes included interleukin-1α/β (IL-1α/β), IL-17, IL-6, IL-10, IL-12, and gamma interferon (IFN-) and were dependent on experimental conditions. However, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and IL-13/23 showed no sex specificity. A metabolomics study indicated a 0.5- to 2.0-fold (log2 scale) increase in short-chain fatty acids (butyrate and acetate) in males and greater increases in o-phosphocholine or histidine from female colon tissues; variances distinct to each sex were observed with age or long-term probiotic consumption. Two genera, Staphylococcus and Roseburia, were consistently overrepresented in females compared to males; other species were specific to one sex but fluctuated depending on experimental conditions. The differences observed suggest that male and female gut tissues and microbiota respond to newly introduced microorganisms differently and that gut-associated microorganisms with host immune system responses and metabolic activity are supported by biology distinct to the host sex.
Collapse
|
32
|
Mulak A, Taché Y, Larauche M. Sex hormones in the modulation of irritable bowel syndrome. World J Gastroenterol 2014; 20:2433-2448. [PMID: 24627581 PMCID: PMC3949254 DOI: 10.3748/wjg.v20.i10.2433] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/10/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Compelling evidence indicates sex and gender differences in epidemiology, symptomatology, pathophysiology, and treatment outcome in irritable bowel syndrome (IBS). Based on the female predominance as well as the correlation between IBS symptoms and hormonal status, several models have been proposed to examine the role of sex hormones in gastrointestinal (GI) function including differences in GI symptoms expression in distinct phases of the menstrual cycle, in pre- and post-menopausal women, during pregnancy, hormonal treatment or after oophorectomy. Sex hormones may influence peripheral and central regulatory mechanisms of the brain-gut axis involved in the pathophysiology of IBS contributing to the alterations in visceral sensitivity, motility, intestinal barrier function, and immune activation of intestinal mucosa. Sex differences in stress response of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, neuroimmune interactions triggered by stress, as well as estrogen interactions with serotonin and corticotropin-releasing factor signaling systems are being increasingly recognized. A concept of “microgenderome” related to the potential role of sex hormone modulation of the gut microbiota is also emerging. Significant differences between IBS female and male patients regarding symptomatology and comorbidity with other chronic pain syndromes and psychiatric disorders, together with differences in efficacy of serotonergic medications in IBS patients confirm the necessity for more sex-tailored therapeutic approach in this disorder.
Collapse
|
33
|
Expression of oncogenic BARD1 isoforms affects colon cancer progression and correlates with clinical outcome. Br J Cancer 2012; 107:675-83. [PMID: 22814582 PMCID: PMC3419952 DOI: 10.1038/bjc.2012.297] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Colon cancer predisposition is associated with mutations in BRCA1. BRCA1 protein stability depends on binding to BARD1. In different cancers, expression of differentially spliced BARD1 isoforms is correlated with poor prognosis and decreased patient survival. We therefore suspected a role of BARD1 isoforms in colon cancer. Methods: We performed immunohistochemistry in 168 colorectal cancers, using four antibodies directed against differentially expressed regions of BARD1. We determined structure and relative expression of BARD1 mRNA isoforms in 40 tumour and paired normal peri-tumour tissues. BARD1 expression was correlated with clinical outcome. Results: BARD1 isoforms were expressed in 98% of cases and not correlated with BRCA1. BARD1 mRNA isoforms were upregulated in all tumours as compared with paired normal peri-tumour tissues. Non-correlated expression and localisation of different epitopes suggested insignificant expression of full-length (FL) BARD1. Expression of N- and C-terminal epitopes correlated with increased survival, but expression of epitopes mapping to the middle of BARD1 correlated with decreased survival. Middle epitopes are present in oncogenic BARD1 isoforms, which have pro-proliferative functions. Correlated upregulation of only N- and C-terminal epitopes reflects the expression of isoforms BARD1δ and BARD1φ. Conclusion: Our results suggest that BARD1 isoforms, but not FL BARD1, are expressed in colon cancer and affect its progression and clinical outcome.
Collapse
|
34
|
Xu X, Veenstra TD. Concentration of endogenous estrogens and estrogen metabolites in the NCI-60 human tumor cell lines. Genome Med 2012; 4:31. [PMID: 22546321 PMCID: PMC3446259 DOI: 10.1186/gm330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/04/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022] Open
Abstract
Background Endogenous estrogens and estrogen metabolites play an important role in the pathogenesis and development of human breast, endometrial, and ovarian cancers. Increasing evidence also supports their involvement in the development of certain lung, colon and prostate cancers. Methods In this study we systemically surveyed endogenous estrogen and estrogen metabolite levels in each of the NCI-60 human tumor cell lines, which include human breast, central nerve system, colon, ovarian, prostate, kidney and non-small cell lung cancers, as well as melanomas and leukemia. The absolute abundances of these metabolites were measured using a liquid chromatography-tandem mass spectrometry method that has been previously utilized for biological fluids such as serum and urine. Results Endogenous estrogens and estrogen metabolites were found in all NCI-60 human tumor cell lines and some were substantially elevated and exceeded the levels found in well known estrogen-dependent and estrogen receptor-positive tumor cells such as MCF-7 and T-47D. While estrogens were expected to be present at high levels in cell lines representing the female reproductive system (that is, breast and ovarian), other cell lines, such as leukemia and colon, also contained very high levels of these steroid hormones. The leukemia cell line RMPI-8226 contained the highest levels of estrone (182.06 pg/106 cells) and 17β-estradiol (753.45 pg/106 cells). In comparison, the ovarian cancer cell line with the highest levels of these estrogens contained only 19.79 and 139.32 pg/106 cells of estrone and 17β-estradiol, respectively. The highest levels of estrone and 17β-estradiol in breast cancer cell lines were only 8.45 and 87.37 pg/106 cells in BT-549 and T-47D cells, respectively. Conclusions The data provided evidence for the presence of significant amounts of endogenous estrogens and estrogen metabolites in cell lines not commonly associated with these steroid hormones. This broad discovery of endogenous estrogens and estrogen metabolites in these cell lines suggest that several human tumors may be beneficially treated using endocrine therapy aimed at estrogen biosynthesis and estrogen-related signaling pathways.
Collapse
Affiliation(s)
- Xia Xu
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc,, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
35
|
Bassotti G, Villanacci V, Bellomi A, Fante R, Cadei M, Vicenzi L, Tonelli F, Nesi G, Asteria CR. An assessment of enteric nervous system and estroprogestinic receptors in obstructed defecation associated with rectal intussusception. Neurogastroenterol Motil 2012; 24:e155-e161. [PMID: 22188470 DOI: 10.1111/j.1365-2982.2011.01850.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The pathophysiological basis of obstructed defecation (OD) is still incompletely understood. In particular, few or no data are available concerning the enteric nervous system (ENS) in this condition. We investigated ENS abnormalities in patients with OD, undergoing surgery, together with the presence of estrogen (α and β) and progesterone receptors, and compare the results with those obtained in controls. METHODS Full-thickness rectal samples were obtained from 17 patients undergoing stapled transanal rectal resection for OD associated with rectal intussusception. Samples were analyzed by immunohistochemistry for enteric neurons, enteric glial cells, interstitial cells of Cajal (ICC), and for estrogen and progesterone receptors. Data were compared with those obtained in 10 controls. KEY RESULTS No differences between patients and controls were found for enteric neurons, whereas (compared with controls) OD patients displayed a significant decrease of enteric glial cells in both the submucous (P = 0.0006) and the myenteric (P < 0.0001) plexus. ICC were significantly increased in patients in the submucosal surface (P < 0.0001) and the myenteric area (P < 0.0001). Concerning estroprogestinic receptors, both were present on ICC in patients and controls. Estrogen receptors α and progesterone receptors were absent on enteric neurons and enteric glial cells in patients and controls, whereas estrogen receptors β were present in all controls and in 69% of patients' enteric neurons (P = 0.18) and in 12% of patients' glial cells (P = 0.0001). CONCLUSIONS & INFERENCES Patients with OD associated to rectal intussusception display abnormalities of the ENS and of estrogen receptors β.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|