1
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Wang Y, Liu N, Zhang X, Dai M, Zhang N, Huang G. Study on the repair function of radiation-induced salivary gland injury using human amniotic mesenchymal stem cells pre treated with hypoxia. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025; 126:102223. [PMID: 39800062 DOI: 10.1016/j.jormas.2025.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
OBJECTIVE To investigate the reparative effect of hypoxia pretreated hAMSCs on radiation-induced damage to salivary gland function in mice. METHODS hAMSCs were separated from human amniotic tissues by mechanical and enzymatic digestion methods and a 15 Gy electron beam was used to locally irradiate the neck of mouse to create a salivary gland injury model. The mouse models were randomly divided into four groups: control group, IR+PBS group, IR+Nor group and IR+HP group. RESULT Two months after hAMSCs injection, the saliva flow of mice in the IR+PBS group was significantly lower than that of the control group (P < 0.05). The saliva flow of mice in the IR+Nor group and IR+HP group were significantly increased compared to the IR+PBS group (P < 0.05). The cell apoptosis rate of the IR+PBS group was sensibly higher than that of the blank control group (P < 0.05). The cell apoptosis rates of the IR+Nor group and the IR+HP group were lower than that of the IR+PBS group. In addition, the apoptosis rate of the IR+HP group was lower than that of the IR+Nor group (P < 0.05). The changes of IOD of α-Amy in each group showed that the expression of α - Amy in the IR+PBS group was significantly lower than that in the blank control group (P < 0.05). Compared with the IR+PBS group, the IR+Nor group and the IR+HP group showed an obvious increase in the expression of α-Amy (P < 0.05). CONCLUSION Low oxygen pretreatment of hAMSCs could more effectively repair the function of radiation-induced salivary gland compared to normoxic cultivation.
Collapse
Affiliation(s)
- Yingxin Wang
- Department of Oral Maxillofacial Surgery, Suzhou Stomatological Hospital, Suzhou 215004, PR China
| | - Nana Liu
- Department of Periodontology, Suzhou Stomatological Hospital, Suzhou 215004, PR China
| | - Xin Zhang
- Department of Oral Maxillofacial Surgery, Suzhou Stomatological Hospital, Suzhou 215004, PR China
| | - Min Dai
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Zunyi Medical University, Zunyi City, Guizhou Province 563099, PR China
| | - Nini Zhang
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Zunyi Medical University, Zunyi City, Guizhou Province 563099, PR China.
| | - Guilin Huang
- Department of Stomatology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519090, PR China.
| |
Collapse
|
3
|
Liu H, Mei M, Lin S, Luo J, Huang S, Zhou J. Wuling San regulates AVPR2-cAMP-PKA-CREB pathway to delay cellular senescence and ameliorate acute kidney injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119679. [PMID: 40216046 DOI: 10.1016/j.jep.2025.119679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cellular senescence in renal resident cells plays a pivotal role in the progression of acute kidney injury (AKI), necessitating the expansion of effective drug targets. Traditional Chinese medicine (TCM) formulations, characterized by their multi-target effects, offer a promising perspective for advancing research on AKI. Wuling San (WLS), a well-established compound used in treating urological disorders, has yet to elucidate its potential pharmacological targets and mechanisms in ameliorating AKI and delaying cellular senescence. AIM OF THE STUDY This study sought to elucidate the mechanisms by which WLS modulates the AVPR2-cAMP-PKA-CREB pathway to mitigate cellular senescence and promote recovery from AKI. METHODS We first prepared WLS-containing serum and performed RT-qPCR experiments to screen for GPCRs that were differentially expressed in response to WLS. Next, we established an in vitro AKI mouse model to assess the renal protective effects of the WLS by measuring renal function, renal pathology, and oxidative stress levels. After this, we performed RNA sequencing (RNA-Seq) profiling to identify differentially expressed genes (DEGs) affected by WLS treatment. We also conducted Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify potential signaling pathways involved. We then utilized the Gene Expression Omnibus (GEO) data to screen for cellular senescence related differentially expressed genes (CSRDEGs) in AKI patients and performed enrichment analysis, as well as a joint analysis of specific genes in relation to the RNA-Seq profiling results. We also examined how WLS affects the expression of proteins linked to cellular senescence in the AKI mouse model by targeting the AVPR2-cAMP-PKA-CREB pathway. RESULTS WLS markedly enhanced the expression of Arginine Vasopressin Receptor 2 (AVPR2) and ameliorated renal function indicators, as well as pathological changes and oxidative stress levels in the mouse model of AKI. RNA-Seq profiling revealed significant enrichment of the cAMP signaling pathway following WLS intervention. Bioinformatics analysis indicated that genes associated with cellular senescence in AKI patients were notably enriched in the p53 signaling pathway. Data mining from the GEO database, in conjunction with RNA-Seq profiling, demonstrated a substantial reduction in key genes after WLS treatment. Additionally, WLS elevated both the expression and phosphorylation of pivotal proteins within the AVPR2-cAMP-PKA-CREB pathway, while concurrently decreasing proteins associated with cellular senescence. CONCLUSION The results demonstrated that WLS significantly elevated the expression of AVPR2, which may underlie its nephroprotective effects and facilitate the mitigation of AKI by modulating the AVPR2-cAMP-PKA-CREB pathway, ultimately contributing to a delay in cellular senescence.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Manxue Mei
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Shuyin Lin
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiahui Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Sirong Huang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Guo M, Watanabe T, Shinoka T. Injectable Stem Cell-Based Therapies for Myocardial Regeneration: A Review of the Literature. J Funct Biomater 2025; 16:152. [PMID: 40422817 DOI: 10.3390/jfb16050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Stem cell-based therapies are an emerging treatment modality aimed at replenishing lost cardiomyocytes and improving myocardial function after cardiac injury. This review examines the current state of research on injectable stem cell therapies in the setting of cardiovascular disease given their relative simplicity and ability for deep myocardial tissue penetration. Various methods of cell delivery, ranging in level of invasiveness and procedural complexity, have been developed, and numerous cell types have been studied as potential sources of stem cells, each with distinct advantages and disadvantages. We discuss key challenges associated with this approach, including low stem cell retention after transplantation and the innovative biomolecular strategies that have been explored to address this issue. Overall, investigations into the application of stem cells toward cardiac regeneration remain predominantly in the preclinical stage with a number of small, early-phase clinical trials. However, continued scientific advancements in stem cell technology may provide transformative treatment options for patients with heart failure, offering improved survival and quality of life.
Collapse
Affiliation(s)
- Marissa Guo
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tatsuya Watanabe
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
5
|
Lin J, Huang X, Zhang J, Yang W, Sun F, Huang B, Lu W, Wang X. Amniotic fluid-derived exosomal miR-146a-5p ameliorates preeclampsia phenotypes by inhibiting HIF-1α/FLT-1 expression. Placenta 2025; 162:35-44. [PMID: 39987849 DOI: 10.1016/j.placenta.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Preeclampsia (PE) is a pregnancy-specific complication that begins with hypertension and proteinuria and seriously threatens the health of pregnant women and fetuses. Abnormal expression of amniotic fluid-derived exosomal miR-146a-5p was observed in PE. However, the role of human amniotic fluid-derived exosomes (AF-Exos) and miR-146a-5p in PE remains unclear. METHODS We determined the miR-146a-5p expression pattern in the AF-Exos. AF-Exos, Cobalt chloride (CoCl2) and miR-146a-5p mimic were added to trophoblast cell lines HTR-8/SVneo and JEG-3, respectively. Then the proliferation and migration function of HTR-8/SVneo and JEG-3 cells were examined. The expression of miR-146a-5p, HIF-1α and FLT-1 in HTR-8/SVneo and JEG-3 cells were detected by RT-qPCR and western blotting. Finally, we determined the effect of AF-Exos in PE rat models. RESULTS MiR-146a-5p was down-regulated in AF-Exos of PE compared to normal. Co-cultured with normal AF-Exos significantly promoted proliferation and migration of HTR-8/SVneo and JEG-3 cells. CoCl2 inhibited proliferation and migration of HTR-8/SVneo and JEG-3 cells, while miR-146a-5p mimic reversed them by suppressing HIF-1α/FLT-1 expression. After treatment of AF-Exos, the blood pressure and 24-h urinary protein of PE rats were substantially decreased, the quality of fetuses and placenta exhibited improved, and HIF-1α/FLT-1 expression of placenta, sFlt-1 and sEng levels of blood, were substantial suppressed. CONCLUSION The study provided experimental evidence for the protective effects of normal AF-Exos on ameliorating preeclampsia phenotypes, and miR-146a-5p may act an important role in enhancing the proliferation and migration of trophoblast cells by targeting HIF-1α.
Collapse
Affiliation(s)
- Jin Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaohong Huang
- Department of Pathology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fan Sun
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Wan Lu
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, China.
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
6
|
Wu H, Li YL, Liu PM, Yang JJ. Global status and trends of exosomes in neurodegenerative diseases from 2014 to 2023: a bibliometric and visual analysis. Front Aging Neurosci 2025; 17:1496252. [PMID: 40134534 PMCID: PMC11933124 DOI: 10.3389/fnagi.2025.1496252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Background Neurodegenerative diseases (NDs) are chronic and progressive conditions that significantly impact global public health. Recent years have highlighted exosomes as key mechanisms involved in these diseases. This study aims to visualize and analyze the structure and content of exosomes in NDs based on past research to identify new research ideas and directions. Through bibliometric analysis, we assess the current state of research on exosomes in the field of NDs worldwide over the past decade, highlighting significant findings, major research areas, and emerging trends. Methods Publications on exosomes in NDs research were obtained from the Web of Science Core Collection (WOSCC) database. Eligible literature was analyzed using Bibliometric R, VOSviewer, and Citespace. Results Between 2014 and 2023, 2,393 publications on exosomes in NDs were included in the analysis. The number of relevant publications has been increasing yearly, with China leading in international collaboration, followed by the United States. And China has the largest number of academic scholars as leading and corresponding authors in all the countries, known as the great research society and community. Notable institutions contributing to these publications include Nia, the University of San Francisco California, and Capital Medical University, which rank highly in both publication volume and citations. Dimitrios Kapogiannis is a pivotal figure in the author collaboration network, having produced the highest number of publications (Sato et al., 2011) and amassed 3,921 citations. The journal with the most published articles in this field is The International Journal of Molecular Sciences, which has published 131 articles and received 3,347 citations. A recent analysis of keyword clusters indicates that "Exosome-like liposomes," "Independent mechanisms," and "Therapeutic potential" are emerging research hotspots. Conclusion This is the first bibliometric study to provide a comprehensive summary of the research trends and developments regarding exosomes in NDs studies. Future research in this area may explore the role of mesenchymal stromal cells, microRNAs (miRNAs), and targeted drug delivery systems to further investigate the underlying mechanisms and develop new therapeutics.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao-lei Li
- National Institutes for Food and Drug Control, Beijing, China
| | - Pan-miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Sulaiman E, Yellon DM, Davidson SM. A cautionary note on the potential pitfalls of using N-terminal truncated CD63 to label small extracellular vesicles. Sci Rep 2025; 15:7261. [PMID: 40025121 PMCID: PMC11873209 DOI: 10.1038/s41598-025-91597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Small extracellular vesicles (sEV) are nanosized vesicles that facilitate intracellular communication. A significant research obstacle is the isolation of sEV devoid of non-sEV contaminants. Immunoaffinity capture with sEV-specific antibodies is an attractive approach to purifying sEV, but it risks disrupting the vesicles during antibody dissociation. Furthermore, immunoaffinity capture may require the modification of EV-specific proteins for the incorporation of tags on the EV surface, with unknown implications on EV production and function. The aim of this study was to investigate whether a previously reported CD63 truncation is efficient for the incorporation of small tags on the extravesicular surface. We therefore conjugated ALFA-tag to N-terminal-truncated CD63, and included nanoluciferase at the C-terminus, for luminescent tracing of the sEV. Full-length CD63-nanoluciferase was used as a control. Plasmid constructs expressing these proteins were transfected into HEK293 cells. In contrast to a previous report, the N-terminal truncation of CD63 impaired its membrane localisation and reduced the yield of EVs. Further investigation revealed that some of the tagged CD63 was co-localized with aggresomes and was preferentially secreted from the cells as soluble protein rather than being associated with sEV. These results demonstrate that CD63 truncation can impair its function and EV yield, potentially generating misleading results.
Collapse
Affiliation(s)
- Elias Sulaiman
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
8
|
Rashidi N, Liu C, Guillot PV, Tamaddon M. Isolation, Characterization, and In Vitro Cell Studies of Plant-Based Exosome-like Nanovesicles for Treatment of Early Osteoarthritis. Int J Mol Sci 2025; 26:2211. [PMID: 40076829 PMCID: PMC11900001 DOI: 10.3390/ijms26052211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Osteoarthritis, affecting over 8 million people in the UK, remains a debilitating condition with limited treatment options. Current therapies primarily address symptoms and can exacerbate joint damage over time. Developing disease-modifying drugs that alleviate inflammation and promote joint regeneration is crucial for long-term patient benefit. This study investigates the potential of exosome-like nano-vesicles isolated from grapefruit juice (GEVs) as a novel therapeutic approach for osteoarthritis. GEVs possess regenerative properties and present a promising avenue for clinical translation. In this study, nano-vesicles were isolated and characterized in terms of protein quantification, size, and morphology. In vitro studies demonstrated the safety and efficacy of GEVs, showing an enhancement in human chondrocyte migratory activity of over 13%. GEVs exhibited a dual mechanism of action, reducing inflammation and oxidative stress while promoting cellular regeneration. Specifically, they reduced the expression of COX2 and PTGS2, markers associated with inflammation and pain sensitization, and enhanced the expression of antioxidant genes SD2 and GPX in osteoarthritic-like chondrocytes. Additionally, GEVs downregulated the expression of ADAMTS-5 and hypertrophic COL10 while upregulating chondrogenic markers ACAN, COL2, and SOX9. This research signifies a significant advancement in osteoarthritis therapy, offering a natural, safe, and cost-effective treatment option with the potential for long-lasting benefits. Clinical translation of GEV therapy holds promise for improving patient outcomes and reducing the burden on healthcare systems.
Collapse
Affiliation(s)
- Narjes Rashidi
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, Royal National Orthopaedic Hospital, University College London, London HA7 4LP, UK; (N.R.); (C.L.)
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, Royal National Orthopaedic Hospital, University College London, London HA7 4LP, UK; (N.R.); (C.L.)
| | - Pascale V. Guillot
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London WC1E 6DB, UK;
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, Royal National Orthopaedic Hospital, University College London, London HA7 4LP, UK; (N.R.); (C.L.)
| |
Collapse
|
9
|
Sun Q, Chang H, Wang H, Zheng L, Weng Y, Zheng D, Zheng D. Regulatory roles of extracellular vesicles in pregnancy complications. J Adv Res 2025:S2090-1232(25)00108-0. [PMID: 39938794 DOI: 10.1016/j.jare.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are heterogeneous membranous structures released by various cell types, including large vesicles, microvesicles (MVs), and exosomes. These vesicles play crucial roles in intercellular communication within interstitial fluids and are involved in numerous physiological and pathological processes. AIM OF REVIEW This review aims to examine the regulatory roles of EVs in pregnancy complications, focusing on their involvement in gestational diabetes mellitus (GDM), preeclampsia (PE), and preterm birth (PTB). KEY SCIENTIFIC CONCEPTS OF REVIEW Placenta- and embryo-derived EVs have gained significant attention for their biological roles due to their effects on inflammation, immune response and immunomodulation. Recent research highlights the importance of EVs in embryonic development and gestation. During pregnancy, several EVs functioned in complex endocrine regulation and pregnancy complications that can affect both the mother and fetus, with long-term cardiovascular and metabolic risks. This review discusses the current evidence on how EVs modulate pregnancy outcomes and explores their biological roles in the pathology of GDM, PE, and PTB. In spite of the current difficulties in relating these findings to the pathogenesis of pregnancy complications and the insufficient evidence for clinical practice, the potential impact of specific proteins and miRNAs transported by EVs is noteworthy on the emergence of pregnancy complications. Future research should continue to explore the complex interactions mediated by EVs to develop novel diagnostic and therapeutic strategies for pregnancy-related disorders.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Hua Chang
- Department Gynecology, The First Hospital of China Medical University, No.155 Nanjing Rd, Heping District, Shenyang 110001, Liaoning, China
| | - Huan Wang
- Department Gynecology, The First Hospital of China Medical University, No.155 Nanjing Rd, Heping District, Shenyang 110001, Liaoning, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, China.
| | - Yang Weng
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, Shengyang 110032, China.
| | - Donghan Zheng
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Dongming Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
10
|
Rayat Pisheh H, Sani M. Mesenchymal stem cells derived exosomes: a new era in cardiac regeneration. Stem Cell Res Ther 2025; 16:16. [PMID: 39849585 PMCID: PMC11756228 DOI: 10.1186/s13287-024-04123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Despite significant strides in medical treatments and surgical procedures for cardiovascular diseases, these conditions continue to be a major global health concern. The persistent need for innovative therapeutic approaches to mend damaged heart tissue highlights the complexity and urgency of this medical challenge. In recent years, stem cells have emerged as a promising tool for tissue regeneration, but challenges such as graft rejection and tumor formation have limited their clinical application. Exosomes, extracellular vesicles containing a diverse array of biomolecules, have garnered significant attention for their potential in regenerative medicine. The cardioprotective and reparative properties of mesenchymal stem cell-derived exosomes hold promise for the treatment of heart diseases. These exosomes can modulate various cellular processes, including angiogenesis, apoptosis, and inflammation, thereby enhancing cardiac function. Despite the growing interest, there remains a lack of comprehensive reviews synthesizing the molecular mechanisms, preclinical, and clinical evidence related to the specific role of MSC-derived exosomes in cardiac therapies. This review aims to fill that gap by exploring the potential of MSC-derived exosomes as a therapeutic strategy for cardiac diseases. This review explores the potential of mesenchymal stem cell-derived exosomes as a therapeutic strategy for cardiac diseases. We discuss the molecular mechanisms underlying their cardioprotective effects, summarize preclinical and clinical studies investigating their efficacy, and address the challenges and future perspectives of exosome-based therapies. The collective evidence suggests that MSC-derived exosomes hold promise as a novel and effective therapeutic approach for cardiac diseases.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Guerricchio L, Barile L, Bollini S. Evolving Strategies for Extracellular Vesicles as Future Cardiac Therapeutics: From Macro- to Nano-Applications. Int J Mol Sci 2024; 25:6187. [PMID: 38892376 PMCID: PMC11173118 DOI: 10.3390/ijms25116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.
Collapse
Affiliation(s)
- Laura Guerricchio
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland;
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sveva Bollini
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
12
|
Manni G, Gargaro M, Ricciuti D, Fontana S, Padiglioni E, Cipolloni M, Mazza T, Rosati J, di Veroli A, Mencarelli G, Pieroni B, Silva Barcelos EC, Scalisi G, Sarnari F, di Michele A, Pascucci L, de Franco F, Zelante T, Antognelli C, Cruciani G, Talesa VN, Romani R, Fallarino F. Amniotic fluid stem cell-derived extracellular vesicles educate type 2 conventional dendritic cells to rescue autoimmune disorders in a multiple sclerosis mouse model. J Extracell Vesicles 2024; 13:e12446. [PMID: 38844736 PMCID: PMC11156524 DOI: 10.1002/jev2.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 06/10/2024] Open
Abstract
Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.
Collapse
Affiliation(s)
- Giorgia Manni
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
| | - Marco Gargaro
- Department of Pharmaceutical ScienceUniversity of PerugiaPerugiaItaly
| | - Doriana Ricciuti
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and advanced Diagnostics (Bi.N.D) School of MedicineUniversity of PalermoPalermoItaly
| | | | | | - Tommaso Mazza
- Bioinformatics unit, Fondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Alessandra di Veroli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | | | | | | | - Giulia Scalisi
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Alessandro di Michele
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
- Department of Physics and GeologyUniversity of PerugiaPerugiaItaly
| | - Luisa Pascucci
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
- Department of Veterinary MedicineUniversity of PerugiaPerugiaItaly
| | | | - Teresa Zelante
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Gabriele Cruciani
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | | | - Rita Romani
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
| | - Francesca Fallarino
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
| |
Collapse
|
13
|
Atukorala I, Hannan N, Hui L. Immersed in a reservoir of potential: amniotic fluid-derived extracellular vesicles. J Transl Med 2024; 22:348. [PMID: 38609955 PMCID: PMC11010396 DOI: 10.1186/s12967-024-05154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
This review aims to encapsulate the current knowledge in extracellular vesicles extracted from amniotic fluid and amniotic fluid derived stem/stromal cells. Amniotic fluid (AF) bathes the developing fetus, providing nutrients and protection from biological and mechanical dangers. In addition to containing a myriad of proteins, immunoglobulins and growth factors, AF is a rich source of extracellular vesicles (EVs). These vesicles originate from cells in the fetoplacental unit. They are biological messengers carrying an active cargo enveloped within the lipid bilayer. EVs in reproduction are known to play key roles in all stages of pregnancy, starting from fertilisation through to parturition. The intriguing biology of AF-derived EVs (AF-EVs) in pregnancy and their untapped potential as biomarkers is currently gaining attention. EV studies in numerous animal and human disease models have raised expectations of their utility as therapeutics. Amniotic fluid stem cell and mesenchymal stromal cell-derived EVs (AFSC-EVs) provide an established supply of laboratory-made EVs. This cell-free mode of therapy is popular as an alternative to stem cell therapy, revealing similar, if not better therapeutic outcomes. Research has demonstrated the successful application of AF-EVs and AFSC-EVs in therapy, harnessing their anti-inflammatory, angiogenic and regenerative properties. This review provides an overview of such studies and discusses concerns in this emerging field of research.
Collapse
Affiliation(s)
- Ishara Atukorala
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia.
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia.
| | - Natalie Hannan
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia
| | - Lisa Hui
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia
- Department of Perinatal Medicine, Mercy Hospital for Women, Mercy Health, Heidelberg, VIC, Australia
- Reproductive Epidemiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
14
|
Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS OMEGA 2024; 9:6184-6218. [PMID: 38371801 PMCID: PMC10870307 DOI: 10.1021/acsomega.3c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.
Collapse
Affiliation(s)
- Amir Hashemi
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Masoumeh Ezati
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Minoo Partovi Nasr
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Inna Zumberg
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Valentine Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| |
Collapse
|
15
|
Chanda D, Del Rivero T, Ghimire R, More S, Mitrani MI, Bellio MA, Channappanavar R. Acellular Human Amniotic Fluid-Derived Extracellular Vesicles as Novel Anti-Inflammatory Therapeutics against SARS-CoV-2 Infection. Viruses 2024; 16:273. [PMID: 38400048 PMCID: PMC10892347 DOI: 10.3390/v16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 is associated with acute respiratory distress syndrome (ARDS) and fatal pneumonia. Excessive inflammation caused by SARS-CoV-2 is the key driver of ARDS and lethal disease. Several FDA-approved drugs that suppress virus replication are in clinical use. However, despite strong evidence for the role of virus-induced inflammation in severe COVID-19, no effective anti-inflammatory drug is available to control fatal inflammation as well as efficiently clear the virus. Therefore, there is an urgent need to identify biologically derived immunomodulators that suppress inflammation and promote antiviral immunity. In this study, we evaluated acellular human amniotic fluid (acAF) containing extracellular vesicles (hAF-EVs) as a potential non-toxic and safe biologic for immunomodulation during COVID-19. Our in vitro results showed that acAF significantly reduced inflammatory cytokine production in TLR2/4/7 and SARS-CoV-2 structural protein-stimulated mouse macrophages. Importantly, an intraperitoneal administration of acAF reduced morbidity and mortality in SARS-CoV-2-infected mice. A detailed examination of SARS-CoV-2-infected lungs revealed that the increased protection in acAF-treated mice was associated with reduced viral titers and levels of inflammatory myeloid cell infiltration. Collectively, our results identify a novel biologic that has potential to suppress excessive inflammation and enhance survival following SARS-CoV-2 infection, highlighting the translational potential of acAF against COVID-19.
Collapse
Affiliation(s)
- Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Tania Del Rivero
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Maria Ines Mitrani
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Michael A. Bellio
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| |
Collapse
|
16
|
Ahmed W, Huang S, Chen L. Engineered exosomes derived from stem cells: a new brain-targeted strategy. Expert Opin Drug Deliv 2024; 21:91-110. [PMID: 38258509 DOI: 10.1080/17425247.2024.2306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Using engineered exosomes produced from stem cells is an experimental therapeutic approach for treating brain diseases. According to reports, preclinical research has demonstrated notable neurogenesis and angiogenesis effects using modified stem cell-derived exosomes. These biological nanoparticles have a variety of anti-apoptotic, anti-inflammatory, and antioxidant properties that make them very promising for treating nervous system disorders. AREAS COVERED This review examines different ways to enhance the delivery of modified stem cell-derived exosomes, how they infiltrate the blood-brain barrier (BBB), and how they facilitate their access to the brain. We would also like to determine whether these nanoparticles have the most significant transmission rates through BBB when targeting brain lesions. EXPERT OPINION Using engineered stem cell-derived exosomes for treating brain disorders has generated considerable attention toward clinical research and application. However, stem cell-derived exosomes lack consistency, and their mechanisms of action are uncertain. Therefore, upcoming research needs to prioritize examining the underlying mechanisms and strategies via which these nanoparticles combat neurological disorders.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Songze Huang
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Li Q, Feng Q, Zhou H, Lin C, Sun X, Ma C, Sun L, Guo G, Wang D. Mechanisms and therapeutic strategies of extracellular vesicles in cardiovascular diseases. MedComm (Beijing) 2023; 4:e454. [PMID: 38124785 PMCID: PMC10732331 DOI: 10.1002/mco2.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiovascular disease (CVD) significantly impacts global society since it is the leading cause of death and disability worldwide, and extracellular vesicle (EV)-based therapies have been extensively investigated. EV delivery is involved in mediating the progression of CVDs and has great potential to be biomarker and therapeutic molecular carrier. Besides, EVs from stem cells and cardiac cells can effectively protect the heart from various pathologic conditions, and then serve as an alternative treatment for CVDs. Moreover, the research of using EVs as delivery carriers of therapeutic molecules, membrane engineering modification of EVs, or combining EVs with biomaterials further improves the application potential of EVs in clinical treatment. However, currently there are only a few articles summarizing the application of EVs in CVDs. This review provides an overview of the role of EVs in the pathogenesis and diagnosis of CVDs. It also focuses on how EVs promote the repair of myocardial injury and therapeutic methods of CVDs. In conclusion, it is of great significance to review the research on the application of EVs in the treatment of CVDs, which lays a foundation for further exploration of the role of EVs, and clarifies the prospect of EVs in the treatment of myocardial injury.
Collapse
Affiliation(s)
- Qirong Li
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Xiaoming Sun
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Chaoyang Ma
- Hepatology Hospital of Jilin ProvinceChangchunChina
| | - Liqun Sun
- Department of PathogenobiologyJilin University Mycology Research CenterCollege of Basic Medical SciencesJilin UniversityChangchunChina
| | - Gongliang Guo
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| |
Collapse
|
18
|
Wu R, Hu X, Wang J. Current optimized strategies for stem cell-derived extracellular vesicle/exosomes in cardiac repair. J Mol Cell Cardiol 2023; 184:13-25. [PMID: 37801756 DOI: 10.1016/j.yjmcc.2023.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Ischemic heart diseases remain the leading cause of death globally, and stem cell-based therapy has been investigated as a potential approach for cardiac repair. Due to poor survival and engraftment in the cardiac ischemic milieu post transplantation, the predominant therapeutic effects of stem cells act via paracrine actions, by secreting extracellular vesicles (EVs) and/or other factors. Exosomes are nano-sized EVs of endosomal origin, and now viewed as a major contributor in facilitating myocardial repair and regeneration. However, EV/exosome therapy has major obstacles before entering clinical settings, such as limited production yield, unstable biological activity, poor homing efficiency, and low tissue retention. This review aims to provide an overview of the biogenesis and mechanisms of stem cell-derived EV/exosomes in the process of cardiac repair and discuss the current advancements in different optimized strategies to produce high-yield EV/exosomes with higher bioactivity, or engineer them with improved homing efficiency and therapeutic potency. In particular, we outline recent findings toward preclinical and clinical translation of EV/exosome therapy in ischemic heart diseases, and discuss the potential barriers in regard to clinical translation of EV/exosome therapy.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, PR China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China.
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China.
| |
Collapse
|
19
|
Zhang H, Wan X, Tian J, An Z, Liu L, Zhao X, Zhou Y, Zhang L, Ge C, Song X. The therapeutic efficacy and clinical translation of mesenchymal stem cell-derived exosomes in cardiovascular diseases. Biomed Pharmacother 2023; 167:115551. [PMID: 37783149 DOI: 10.1016/j.biopha.2023.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Exosomes, mainly derived from mesenchymal stem cells, provide a good reference for cardiac function repair and clinical application in cardiac and vascular diseases by regulating cardiomyocyte viability, inflammatory levels, angiogenesis, and ventricular remodeling after a heart injury. This review presents the cardioprotective efficacy of mesenchymal stem cell-originated exosomes and explores the underlying molecular mechanisms. Furthermore, we expound on several efficient approaches to transporting exosomes into the heart in clinical application and comment on the advantages and disadvantages of each method.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China; The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, PR China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Yuquan Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
20
|
Zhang HN, Zhang M, Tian W, Quan W, Song F, Liu SY, Liu XX, Mo D, Sun Y, Gao YY, Ye W, Feng YD, Xing CY, Ye C, Zhou L, Meng JR, Cao W, Li XQ. Canonical transient receptor potential channel 1 aggravates myocardial ischemia-and-reperfusion injury by upregulating reactive oxygen species. J Pharm Anal 2023; 13:1309-1325. [PMID: 38174113 PMCID: PMC10759261 DOI: 10.1016/j.jpha.2023.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
The canonical transient receptor potential channel (TRPC) proteins form Ca2+-permeable cation channels that are involved in various heart diseases. However, the roles of specific TRPC proteins in myocardial ischemia/reperfusion (I/R) injury remain poorly understood. We observed that TRPC1 and TRPC6 were highly expressed in the area at risk (AAR) in a coronary artery ligation induced I/R model. Trpc1-/- mice exhibited improved cardiac function, lower serum Troponin T and serum creatine kinase level, smaller infarct volume, less fibrotic scars, and fewer apoptotic cells after myocardial-I/R than wild-type or Trpc6-/- mice. Cardiomyocyte-specific knockdown of Trpc1 using adeno-associated virus 9 mitigated myocardial I/R injury. Furthermore, Trpc1 deficiency protected adult mouse ventricular myocytes (AMVMs) and HL-1 cells from death during hypoxia/reoxygenation (H/R) injury. RNA-sequencing-based transcriptome analysis revealed differential expression of genes related to reactive oxygen species (ROS) generation in Trpc1-/- cardiomyocytes. Among these genes, oxoglutarate dehydrogenase-like (Ogdhl) was markedly downregulated. Moreover, Trpc1 deficiency impaired the calcineurin (CaN)/nuclear factor-kappa B (NF-κB) signaling pathway in AMVMs. Suppression of this pathway inhibited Ogdhl upregulation and ROS generation in HL-1 cells under H/R conditions. Chromatin immunoprecipitation assays confirmed NF-κB binding to the Ogdhl promoter. The cardioprotective effect of Trpc1 deficiency was canceled out by overexpression of NF-κB and Ogdhl in cardiomyocytes. In conclusion, our findings reveal that TRPC1 is upregulated in the AAR following myocardial I/R, leading to increased Ca2+ influx into associated cardiomyocytes. Subsequently, this upregulates Ogdhl expression through the CaN/NF-κB signaling pathway, ultimately exacerbating ROS production and aggravating myocardial I/R injury.
Collapse
Affiliation(s)
- Hui-Nan Zhang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Wen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Wei Quan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Fan Song
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shao-Yuan Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Xiao-Xiao Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Mo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Sun
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-Yuan Gao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Ye
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Ying-Da Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Chang-Yang Xing
- Department of Ultrasound Diagnostics, Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chen Ye
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Zhou
- Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing-Ru Meng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Shaanxi Key Laboratory of “Qin Medicine” Research and Development, Shaanxi Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| |
Collapse
|
21
|
Blondeel J, Gilbo N, De Bondt S, Monbaliu D. Stem cell Derived Extracellular Vesicles to Alleviate ischemia-reperfusion Injury of Transplantable Organs. A Systematic Review. Stem Cell Rev Rep 2023; 19:2225-2250. [PMID: 37548807 DOI: 10.1007/s12015-023-10573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The possible beneficial effects of stem cell-derived EV on ischemia-reperfusion injury (IRI) in organ transplantation have been frequently investigated; however, the source of EV, as well as the methods of isolation and administration vary widely. We conducted a systematic review to summarize current pre-clinical evidence on stem cell-derived EV therapy for IRI of transplantable organs. METHODS PubMed, Embase and Web of Science were searched from inception until August 19th, 2022, for studies on stem cell-derived EV therapy for IRI after heart, kidney, liver, pancreas, lung and intestine transplantation. The Systematic Review Center for Laboratory animal Experiments (SYRCLE) guidelines were followed to assess potential risk of bias. RESULTS The search yielded 4153 unique articles, of which 96 were retained. We identified 32 studies on cardiac IRI, 38 studies on renal IRI, 21 studies on liver IRI, four studies on lung IRI and one study on intestinal IRI. Most studies used rodent models of transient ischemic injury followed by in situ reperfusion. In all studies, EV therapy was associated with improved outcome albeit to a variable degree. EV-therapy reduced organ injury and improved function while displaying anti-inflammatory-, immunomodulatory- and pro-regenerative properties. CONCLUSION A multitude of animal studies support the potential of stem cell-derived EV-therapy to alleviate IRI after solid organ transplantation but suffer from low reporting quality and wide methodological variability. Future studies should focus on determining optimal stem cell source, dosage, and timing of treatment, as well as long-term efficacy in transplant models.
Collapse
Affiliation(s)
- Joris Blondeel
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery and Coordination, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Nicholas Gilbo
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Surgery and Transplantation, CHU Liege, Liege, Belgium
| | | | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium.
- Department of Abdominal Transplant Surgery and Coordination, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
22
|
Yellon DM, Beikoghli Kalkhoran S, Davidson SM. The RISK pathway leading to mitochondria and cardioprotection: how everything started. Basic Res Cardiol 2023; 118:22. [PMID: 37233787 PMCID: PMC10220132 DOI: 10.1007/s00395-023-00992-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Ischaemic heart disease, which often manifests clinically as myocardial infarction (MI), remains a major cause of mortality worldwide. Despite the development of effective pre-clinical cardioprotective therapies, clinical translation has been disappointing. Nevertheless, the 'reperfusion injury salvage kinase' (RISK) pathway appears to be a promising target for cardioprotection. This pathway is crucial for the induction of cardioprotection by numerous pharmacological and non-pharmacological interventions, such as ischaemic conditioning. An important component of the cardioprotective effects of the RISK pathway involves the prevention of mitochondrial permeability transition pore (MPTP) opening and subsequent cardiac cell death. Here, we will review the historical perspective of the RISK pathway and focus on its interaction with mitochondria in the setting of cardioprotection.
Collapse
Affiliation(s)
- Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| | | | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
23
|
Wright A, Snyder OL, He H, Christenson LK, Fleming S, Weiss ML. Procoagulant Activity of Umbilical Cord-Derived Mesenchymal Stromal Cells' Extracellular Vesicles (MSC-EVs). Int J Mol Sci 2023; 24:ijms24119216. [PMID: 37298168 DOI: 10.3390/ijms24119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Many cell types, including cancer cells, release tissue factor (TF)-exposing extracellular vesicles (EVs). It is unknown whether MSC-EVs pose a thromboembolism risk due to TF expression. Knowing that MSCs express TF and are procoagulant, we hypothesize that MSC-EVs also might. Here, we examined the expression of TF and the procoagulant activity of MSC-EVs and the impact of EV isolation methods and cell culture expansion on EV yield, characterization, and potential risk using a design of experiments methodology. MSC-EVs were found to express TF and have procoagulant activity. Thus, when MSC-derived EVs are employed as a therapeutic agent, one might consider TF, procoagulant activity, and thromboembolism risk and take steps to prevent them.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Orman Larry Snyder
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Hong He
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sherry Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
24
|
Herrera-Zelada N, Zúñiga-Cuevas Ú, Ramírez-Reyes A, Norambuena-Soto I, Venegas-Zamora L, Troncoso MF, Hernández A, Sánchez G, Pedrozo Z, Lavandero S, Riquelme JA. Endothelial activation impairs the function of small extracellular vesicles. Front Pharmacol 2023; 14:1143888. [PMID: 37050899 PMCID: PMC10083389 DOI: 10.3389/fphar.2023.1143888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles are nanosized vesicles (30–200 nm) that can ferry proteins, nucleic acids, and lipids between cells and therefore, have significant potential as biomarkers, drug delivery tools or therapeutic agents. SEVs of endothelial origin have been shown to -among other functions-reduce in vitro ischemia/reperfusion (I/R) injury in cardiomyocytes, but whether a pro-inflammatory state of the endothelium impairs the functionality of these SEVs remains to be elucidated. To test this, human umbilical vein endothelial cells cells were treated with TNF-α 10 ng/mL and the expression of the pro-inflammatory parameters VCAM-1, ICAM-1 and eNOS were determined by Western blot. SEVs were isolated from endothelial cells treated with or without TNF-α 10 ng/mL using size exclusion chromatography. The size and concentration of SEVs was measured by Nanoparticle Tracking Analysis. The expression of the surface marker CD81 was determined by immunoassay, whereas their morphology was assessed by electron microscopy. The function of endothelial SEVs was assessed by evaluating their cardioprotective effect in an ex vivo model of global I/R using isolated hearts from adult C57BL/6 mice. Treatment of HUVECs with TNF-α induced the expression of VCAM-1 and ICAM-1, whereas eNOS levels were decreased. TNF-α did not affect the production, size, morphology, or expression of CD81. SEVs significantly reduced the infarct size as compared with untreated mice hearts, but SEVs isolated from TNF-α treated cells were unable to achieve this effect. Therefore, a pro-inflammatory state induced by TNF-α does not alter the production of endothelial SEVs but impairs their function in the setting of I/R injury.
Collapse
Affiliation(s)
- Nicolas Herrera-Zelada
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Úrsula Zúñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Ramírez-Reyes
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leslye Venegas-Zamora
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Hernández
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jaime A. Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Interuniversity Center for Healthy Aging, Santiago, Chile
- *Correspondence: Jaime A. Riquelme,
| |
Collapse
|
25
|
Davidson SM, Boulanger CM, Aikawa E, Badimon L, Barile L, Binder CJ, Brisson A, Buzas E, Emanueli C, Jansen F, Katsur M, Lacroix R, Lim SK, Mackman N, Mayr M, Menasché P, Nieuwland R, Sahoo S, Takov K, Thum T, Vader P, Wauben MHM, Witwer K, Sluijter JPG. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc Res 2023; 119:45-63. [PMID: 35325061 PMCID: PMC10233250 DOI: 10.1093/cvr/cvac031] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of the cardiovascular system, and are considered important mediators of intercellular and extracellular communications. Two types of EVs of particular interest are exosomes and microvesicles, which have been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. Despite their promise, technical challenges related to their small size make it challenging to accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to provide the reader with an overview of the techniques and technologies available for the separation and characterization of EVs from different sources. Methods for determining the protein, RNA, and lipid content of EVs are discussed. The aim of this document is to provide guidance on critical methodological issues and highlight key points for consideration for the investigation of EVs in cardiovascular studies.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Chantal M Boulanger
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
| | - Elena Aikawa
- Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lina Badimon
- Cardiovascular Science Program-ICCC, IR-Hospital de la Santa Creu i Santa Pau-IIBSantPau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Svizzera italiana, 6900 Lugano, Switzerland
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alain Brisson
- Molecular Imaging and NanoBioTechnology, UMR-5248-CBMN, CNRS-University of Bordeaux-IPB, Bat. B14, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, HCEMM-SU and ELKH-SE Immune Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Felix Jansen
- Department of Internal Medicine II, Heart Center, University Hospital Bonn, Bonn, Germany
| | - Miroslava Katsur
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Romaric Lacroix
- Aix Marseille University, INSERM 1263, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
- Department of Haematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rienk Nieuwland
- Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Pieter Vader
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marca H M Wauben
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 2, Utrecht, The Netherlands
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Bretherton RC, Reichardt IM, Zabrecky KA, Goldstein AJ, Bailey LRJ, Bugg D, McMillen TS, Kooiker KB, Flint GV, Martinson A, Gunaje J, Koser F, Plaster E, Linke WA, Regnier M, Moussavi-Harami F, Sniadecki NJ, DeForest CA, Davis J. Correcting dilated cardiomyopathy with fibroblast-targeted p38 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.523684. [PMID: 36747691 PMCID: PMC9900749 DOI: 10.1101/2023.01.23.523684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inherited mutations in contractile and structural genes, which decrease cardiomyocyte tension generation, are principal drivers of dilated cardiomyopathy (DCM)- the leading cause of heart failure 1,2 . Progress towards developing precision therapeutics for and defining the underlying determinants of DCM has been cardiomyocyte centric with negligible attention directed towards fibroblasts despite their role in regulating the best predictor of DCM severity, cardiac fibrosis 3,4 . Given that failure to reverse fibrosis is a major limitation of both standard of care and first in class precision therapeutics for DCM, this study examined whether cardiac fibroblast-mediated regulation of the heart's material properties is essential for the DCM phenotype. Here we report in a mouse model of inherited DCM that prior to the onset of fibrosis and dilated myocardial remodeling both the myocardium and extracellular matrix (ECM) stiffen from switches in titin isoform expression, enhanced collagen fiber alignment, and expansion of the cardiac fibroblast population, which we blocked by genetically suppressing p38α in cardiac fibroblasts. This fibroblast-targeted intervention unexpectedly improved the primary cardiomyocyte defect in contractile function and reversed ECM and dilated myocardial remodeling. Together these findings challenge the long-standing paradigm that ECM remodeling is a secondary complication to inherited defects in cardiomyocyte contractile function and instead demonstrate cardiac fibroblasts are essential contributors to the DCM phenotype, thus suggesting DCM-specific therapeutics will require fibroblast-specific strategies.
Collapse
|
27
|
Abstract
Pulmonary fibrosis (PF) is a chronic and relentlessly progressive interstitial lung disease in which the accumulation of fibroblasts and extracellular matrix (ECM) induces the destruction of normal alveolar structures, ultimately leading to respiratory failure. Patients with advanced PF are unable to perform physical labor and often have concomitant cough and dyspnea, which markedly impair their quality of life. However, there is a paucity of available pharmacological therapies, and to date, lung transplantation remains the only possible treatment for patients suffering from end-stage PF; moreover, the complexity of transplantation surgery and the paucity of donors greatly restrict the application of this treatment. Therefore, there is a pressing need for alternative therapeutic strategies for this complex disease. Due to their capacity for pluripotency and paracrine actions, stem cells are promising therapeutic agents for the treatment of interstitial lung disease, and an extensive body of literature supports the therapeutic efficacy of stem cells in lung fibrosis. Although stem cell transplantation may play an important role in the treatment of PF, some key issues, such as safety and therapeutic efficacy, remain to be resolved. In this review, we summarize recent preclinical and clinical studies on the stem cell-mediated regeneration of fibrotic lungs and present an analysis of concerning issues related to stem cell therapy to guide therapeutic development for this complex disease.
Collapse
|
28
|
Pozzobon M, D’Agostino S, Roubelakis MG, Cargnoni A, Gramignoli R, Wolbank S, Gindraux F, Bollini S, Kerdjoudj H, Fenelon M, Di Pietro R, Basile M, Borutinskaitė V, Piva R, Schoeberlein A, Eissner G, Giebel B, Ponsaerts P. General consensus on multimodal functions and validation analysis of perinatal derivatives for regenerative medicine applications. Front Bioeng Biotechnol 2022; 10:961987. [PMID: 36263355 PMCID: PMC9574482 DOI: 10.3389/fbioe.2022.961987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Stefania D’Agostino
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Maria G. Roubelakis
- Laboratory of Biology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA Trauma Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et plastique, CHU Besançon, Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, University Bourgogne Franche-Comté, Besançon, France
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Halima Kerdjoudj
- University of Reims Champagne Ardenne, EA 4691 BIOS “Biomatériaux et Inflammation en Site Osseux”, UFR d’Odontologie, Reims, France
| | | | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Guenther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Zhou W, Wang C, Liu Z, Gou S. Hypoxia-Activated Prodrugs with Dual COX-2/CA Inhibitory Effects on Attenuating Cardiac Inflammation under Hypoxia. J Med Chem 2022; 65:13436-13451. [PMID: 36170566 DOI: 10.1021/acs.jmedchem.2c01355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cardiac inflammation is generally accompanied by hypoxia, while myocardial injury and an abnormal microenvironment caused by hypoxia tend to suppress the efficacy of common anti-inflammatory drugs. To improve the anti-inflammatory effect under hypoxia, a hypoxia-activated prodrug HAP1 consisting of a cyclooxygenase-2 (COX-2) inhibitor Ind and a carbonic anhydrase (CA) inhibitor Ace was synthesized. HAP1 was found to be activated by nitroreductase (NTR) under hypoxia to release two pharmacophores and achieve the combinatory medication intensively at the hypoxic site, better than Ind or Ace alone. When NTR activity was inhibited by Na2WO4 under hypoxia, no pharmacophores were found to release from HAP1 without exhibiting its activity. However, the efficacy of the Ind and Ace combination group (I&A) was not affected. Furthermore, HAP1 showed advantages over I&A in vivo not only in improving bioavailability but also in reducing side effects. The HAP approach turns out to inhibit cardiac inflammation efficiently and safely under hypoxia.
Collapse
Affiliation(s)
- Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, Jiangsu, P. R. China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Chunping Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Zhikun Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, Jiangsu, P. R. China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| |
Collapse
|
30
|
Csöbönyeiová M, Beerová N, Klein M, Debreová-Čeháková M, Danišovič Ľ. Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options? Int J Mol Sci 2022; 23:10314. [PMID: 36142245 PMCID: PMC9499607 DOI: 10.3390/ijms231810314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Because of cardiomyocyte death or dysfunction frequently caused by myocardial infarction (MI), heart failure is a leading cause of morbidity and mortality in modern society. Paradoxically, only limited and non-curative therapies for heart failure or MI are currently available. As a result, over the past two decades research has focused on developing cell-based approaches promoting the regeneration of infarcted tissue. Cell-based therapies for myocardial regeneration include powerful candidates, such as multipotent stem cells (mesenchymal stem cells (MSCs), bone-marrow-derived stem cells, endothelial progenitor cells, and hematopoietic stem cells) and induced pluripotent stem cells (iPSCs). These possess unique properties, such as potency to differentiate into desired cell types, proliferation capacity, and patient specificity. Preclinical and clinical studies have demonstrated modest improvement in the myocardial regeneration and reduced infarcted areas upon transplantation of pluripotent or multipotent stem cells. Another cell population that need to be considered as a potential source for cardiac regeneration are telocytes found in different organs, including the heart. Their therapeutic effect has been studied in various heart pathologies, such as MI, arrhythmias, or atrial amyloidosis. The most recent cell-free therapeutic tool relies on the cardioprotective effect of complex cargo carried by small membrane-bound vesicles-exosomes-released from stem cells via exocytosis. The MSC/iPSC-derived exosomes could be considered a novel exosome-based therapy for cardiovascular diseases thanks to their unique content. There are also other cell-free approaches, e.g., gene therapy, or acellular cardiac patches. Therefore, our review provides the most recent insights into the novel strategies for myocardial repair based on the regenerative potential of different cell types and cell-free approaches.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Nikoleta Beerová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Debreová-Čeháková
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
31
|
Gebara N, Scheel J, Skovronova R, Grange C, Marozio L, Gupta S, Giorgione V, Caicci F, Benedetto C, Khalil A, Bussolati B. Single extracellular vesicle analysis in human amniotic fluid shows evidence of phenotype alterations in preeclampsia. J Extracell Vesicles 2022; 11:e12217. [PMID: 35582873 PMCID: PMC9115584 DOI: 10.1002/jev2.12217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/24/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Amniotic fluid surrounding the developing fetus is a complex biological fluid rich in metabolically active bio-factors. The presence of extracellular vesicles (EVs) in amniotic fluid has been mainly related to foetal urine. We here characterized EVs from term amniotic fluid in terms of surface marker expression using different orthogonal techniques. EVs appeared to be a heterogeneous population expressing markers of renal, placental, epithelial and stem cells. Moreover, we compared amniotic fluid EVs from normal pregnancies with those of preeclampsia, a hypertensive disorder affecting up to 8% of pregnancies worldwide. An increase of CD105 (endoglin) expressing EVs was observed in preeclamptic amniotic fluid by bead-based cytofluorimetric analysis, and further confirmed using a chip-based analysis. HLA-G, a typical placental marker, was not co-expressed by the majority of CD105+ EVs, in analogy with amniotic fluid stromal cell derived-EVs. At a functional level, preeclampsia-derived EVs, but not normal pregnancy EVs, showed an antiangiogenic effect, possibly due to the decoy effect of endoglin. Our results provide a characterization of term amniotic fluid-EVs, supporting their origin from foetal and placental cells. In preeclampsia, the observed antiangiogenic characteristics of amniotic fluid-EVs may reflect the hypoxic and antiangiogenic microenvironment and could possibly impact on the developing fetus or on the surrounding foetal membranes.
Collapse
Affiliation(s)
- Natalia Gebara
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Julia Scheel
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Renata Skovronova
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology, University of TurinTurinItaly
| | - Shailendra Gupta
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Veronica Giorgione
- Vascular Biology Research CentreMolecular and Clinical Sciences Research InstituteSt George's University of LondonLondonUK
| | | | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology, University of TurinTurinItaly
| | - Asma Khalil
- Vascular Biology Research CentreMolecular and Clinical Sciences Research InstituteSt George's University of LondonLondonUK
- Foetal Medicine UnitSt George's University Hospitals NHS Foundation TrustSt George's University of LondonLondonUK
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| |
Collapse
|
32
|
Li D, You J, Mao C, Zhou E, Han Z, Zhang J, Zhang T, Wang C. Circular RNA Fbxl5 Regulates Cardiomyocyte Apoptosis During Ischemia Reperfusion Injury via Sponging microRNA-146a. J Inflamm Res 2022; 15:2539-2550. [PMID: 35479829 PMCID: PMC9037744 DOI: 10.2147/jir.s360129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Affiliation(s)
- Dongjiu Li
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Jiayin You
- Department of Emergency, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Chengyu Mao
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - En Zhou
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Zhihua Han
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- Correspondence: Tiantian Zhang; Changqian Wang, Email ;
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
33
|
Yin Y, Wang Q, Xie C, Chen H, Jin J, Miao D. Amniotic membrane mesenchymal stem cells-based therapy improves Bmi-1-deficient mandible osteoporosis through stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. J Tissue Eng Regen Med 2022; 16:538-549. [PMID: 35319819 DOI: 10.1002/term.3300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/10/2022]
Abstract
Mandible osteoporosis with age is characterized by greater fragility and accompanied with abnormal oral function. Mesenchymal stem cell transplantation can ameliorate osteoporosis. Bmi-1 is a transcriptional repressor which is an important regulator of cell cycle, stem cells self-renewal, and cell senescence. Here, we use a new kind of membrane mesenchymal stem cells (MSCs), amniotic membrane mesenchymal stem cells (AMSCs), to explore therapeutic effects on Bmi-1-deficient caused mandible osteoporosis. Phenotypes of mandibles from 5-week-old Bmi-1-deficient mice with AMSCs-based therapy were compared with age-matched Bmi-1-deficient mandibles without AMSCs-based therapy and wild-type mice. Bmi-1-deficient mice without AMSCs-based therapy displayed mandible osteoporosis accompanied with the rising senescence-associated molecules and imbalance redox homeostasis. Results showed that the alveolar bone volume, cortical thickness, type I collagen and osteocalcin immunopositive areas, mRNA expression levels of alkaline phosphatase, superoxide dismutase, gluathione reductase, and protein expression level of Runx2 were all reduced significantly in Bmi-1-/- mandibles. Protein levels of PPARγ, p16, p21, p53, and redox gene levels of Bnip3l, Cdo1, Duox1, and Duox2 were up-regulated in mandibles from vehicle-transplanted Bmi-1-/- mice. Also, osteoclasts were activated in Bmi-1-/- alveolar bone. Transplanted AMSCs migrated into mandibles and improved all the parameters in Bmi-1-/- mandibles with AMSCs-based therapy. These findings indicate that AMSCs-based therapy could rescue mandible osteoporosis induced by Bmi-1 deficiency through stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Our findings implied that AMSCs-based therapy had preventative and therapeutic potential for mandible osteoporosis.
Collapse
Affiliation(s)
- Ying Yin
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Qiujiao Wang
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,Department of Stomatology, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| | - Chunfeng Xie
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Haiyun Chen
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Mezzasoma L, Bellezza I, Orvietani P, Manni G, Gargaro M, Sagini K, Llorente A, Scarpelli P, Pascucci L, Cellini B, Talesa VN, Fallarino F, Romani R. Amniotic fluid stem cell-derived extracellular vesicles are independent metabolic units capable of modulating inflammasome activation in THP-1 cells. FASEB J 2022; 36:e22218. [PMID: 35218567 DOI: 10.1096/fj.202101657r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.
Collapse
Affiliation(s)
- Letizia Mezzasoma
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Pierluigi Orvietani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Paolo Scarpelli
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | | | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Rita Romani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| |
Collapse
|
35
|
Khan K, Caron C, Mahmoud I, Derish I, Schwertani A, Cecere R. Extracellular Vesicles as a Cell-free Therapy for Cardiac Repair: a Systematic Review and Meta-analysis of Randomized Controlled Preclinical Trials in Animal Myocardial Infarction Models. Stem Cell Rev Rep 2022; 18:1143-1167. [PMID: 35107768 DOI: 10.1007/s12015-021-10289-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Stem cell therapy for cardiac regeneration has been gaining traction as a possible intervention for the reduction of the burden associated with MI and heart failure. However, stem cell therapies have several shortcomings, including poor engraftment, limited improvements in cardiac function, and possible teratogenicity. Recently, extracellular vesicles (EVs) from stem cell sources have been explored as a novel therapy to regenerate the injured myocardium in several animal MI trials. In this systematic review and meta-analysis, we investigate the use of stem cell-derived EVs for cardiac repair preclinical trials in animal MI models. Cochrane Library, Medline, Embase, PubMed, Scopus and Web of Science and grey literature (Canadian Agency for Drugs, Technologies in Health, and Google Scholar) were searched through August 20, 2020 and 37 articles were included in the final analysis. The overall effect size observed in EV-treated small animals after MI for ejection fraction (EF) was 10.85 [95 %CI: 8.79, 12.90] and for fractional shortening (FS) was 7.19 [95 %CI: 5.43, 8.96] compared to control-treated animals. The most abundant stem cell source used were mesenchymal stem cells which showed robust improvements in EF and FS (MD = 11.89 [95 % CI: 9.44, 14.34] and MD = 6.96 [95 % CI: 4.97, 8.96], respectively). Significant publication bias was detected for EF and FS outcomes. This study supports the use of EVs derived from stem cells as a novel therapy for cardiac repair after MI. Further investigation in larger animal studies may be necessary before clinical trials.PROSPERO registration number: CRD42019142218.
Collapse
Affiliation(s)
- Kashif Khan
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Christophe Caron
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Ibtisam Mahmoud
- McConnell Resource Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ida Derish
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Adel Schwertani
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Renzo Cecere
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Thomas SC, Kim JW, Pauletti GM, Hassett DJ, Kotagiri N. Exosomes: Biological Pharmaceutical Nanovectors for Theranostics. Front Bioeng Biotechnol 2022; 9:808614. [PMID: 35096795 PMCID: PMC8790084 DOI: 10.3389/fbioe.2021.808614] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are natural cell-derived nanovesicles of endocytic origin that enable cellular crosstalk by transferring encapsulated molecular cargos across biological barriers, thereby holding significantly complex implications in the etiology and progression of diverse disease states. Consequently, the development of exosomes-based nano-theranostic strategies has received immense consideration for advancing therapeutic interventions and disease prognosis. Their favorable biopharmaceutical properties make exosomes a unique nanoparticulate carrier for pharmaceutical drug delivery. This review provides an update on the contemporary strategies utilizing exosomes for theranostic applications in nanomedicine. In addition, we provide a synopsis of exosomal features and insights into strategic modifications that control in vivo biodistribution. We further discuss their opportunities, merits and pitfalls for cell/tissue targeted drug delivery in personalized nanotherapy.
Collapse
Affiliation(s)
- Shindu C Thomas
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Giovanni M Pauletti
- St. Louis College of Pharmacy, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, United States
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
37
|
Dehkordi NR, Dehkordi NR, Farjoo MH. Therapeutic properties of stem cell-derived exosomes in ischemic heart disease. Eur J Pharmacol 2022; 920:174839. [DOI: 10.1016/j.ejphar.2022.174839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
|
38
|
Lee YS, Javan H, Reems JA, Li L, Lusty Beech J, Schaaf CI, Pierce J, Phillips JD, Selzman CH. Acellular human amniotic fluid protects the ischemic/reperfused rat myocardium. Am J Physiol Heart Circ Physiol 2022; 322:H406-H416. [DOI: 10.1152/ajpheart.00331.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amniotic products are potent immunomodulators utilized clinically to repair tissue injury. Little information exists regarding the potential of cell-free human amniotic fluid (hAF) to treat cardiovascular disease. Herein, we sought to determine the influence and efficacy of acellular hAF on myocardial ischemia/reperfusion injury. Processed hAF was obtained from volunteer donors at the time of elective caesarean section and manufactured using proprietary methods. Left anterior descending coronary artery ligation was performed on rats for 60 minutes. Thirty minutes after release and reperfusion, either saline or hAF was injected intramyocardially. Serial echocardiography revealed that compared to saline injected rats, hAF animals maintained their ejection fraction and did not adversely remodel through the 4-week period. This preserved ventricular function correlated with decreased infarct size, less fibrosis, and reduced expression of cytokines and infiltrating inflammatory cells. Comparative arrays of different donor hAF lots confirmed the presence of a wide array of immunomodulatory and host-defense proteins. The observed functional cardioprotection was furthermore evident when given intravenously and across multiple hAF donors. In conclusion, our data demonstrate, for the first time, the cardioprotective effect of acellular hAF on myocardial injury. These observations spanned across diverse donors and likely result from the mixture of a plethora of naturally produced cytokines, chemokines, and immune-modulating proteins rather than a single, defined mechanistic culprit. The ubiquitous availability of hAF as a cell-free solution further suggests its potential for widespread adoption as a therapy for myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Young Sook Lee
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Hadi Javan
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jo-Anna Reems
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ling Li
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jessica Lusty Beech
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Christine I. Schaaf
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jan Pierce
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - John D. Phillips
- Cell Therapy and Regenerative Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Craig H. Selzman
- Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
39
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
40
|
Wang J, Wang X, Du W, Xue Z, Huang W, Guan Z, Wang H. BI-1 ameliorates myocardial injury by activating the mitochondrial unfolded protein response and FUNDC1-related mitophagy in cardiorenal syndrome type 3. Cell Signal 2021; 91:110218. [PMID: 34921980 DOI: 10.1016/j.cellsig.2021.110218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/25/2023]
Abstract
It has been suggested that mitochondrial dysfunction underlies the myocardial injury seen following cardiorenal syndrome type 3 (CRS-3). Both mitophagy and the mitochondrial unfolded protein response (UPRmt) are protective programs that preserve mitochondrial homeostasis. Here, we explored whether Bax inhibitor-1 (BI-1) overexpression attenuates CRS-3-related myocardial injury through activation of mitophagy and the UPRmt in cardiomyocytes. Following CRS-3 induction via renal ischemia-reperfusion injury, BI-1 transgenic (BI1TG) mice showed greater preservation of myocardial integrity and relaxation function and less cardiomyocyte apoptosis than wild-type (WT) mice. Moreover, BI-1 overexpression attenuated CRS-3-mediated myocardial inflammation, as indicated by decreased MCP-1 and IL-6 expression and normalized ATP production in cardiomyocytes. After CRS-3 induction, mitophagy was inhibited in cardiomyocytes from WT mice, as indicated by both decreased Fundc1 transcription and mt-Keima fluorescence, and modest activation of the UPRmt, denoted by a slight increase in Atf6 mRNA levels. By contrast, activation of mitophagy and marked UPRmt upregulation were observed in cardiac tissue from BI1TG mice. shRNA-mediated silencing of Fundc1 or Atf6 greatly impaired mitochondrial metabolism and survival in cultured cardiomyocytes overexpressing BI-1. Thus, upregulation of BI-1 expression aimed at activating mitophagy and the UPRmt may represent a useful therapeutic approach for the treatment of CRS-3.
Collapse
Affiliation(s)
- Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China.
| | - Xiaohua Wang
- National Clinical Research Center for Geriatric Diseases, People's Liberation Army General Hospital, Beijing, China
| | - Wenjuan Du
- Laboratory of Radiation Injury Treatment, Medical Innovation Research Division, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhe Xue
- Department of Orthopedics, Peking University Shougang Hospital, Beijing 100144, China
| | - Wei Huang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China
| | - Zhenpeng Guan
- Department of Orthopedics, Peking University Shougang Hospital, Beijing 100144, China
| | - Hongyu Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China.
| |
Collapse
|
41
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
42
|
Sánchez-Sánchez R, Gómez-Ferrer M, Reinal I, Buigues M, Villanueva-Bádenas E, Ontoria-Oviedo I, Hernándiz A, González-King H, Peiró-Molina E, Dorronsoro A, Sepúlveda P. miR-4732-3p in Extracellular Vesicles From Mesenchymal Stromal Cells Is Cardioprotective During Myocardial Ischemia. Front Cell Dev Biol 2021; 9:734143. [PMID: 34532322 PMCID: PMC8439391 DOI: 10.3389/fcell.2021.734143] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are an emerging alternative to cell-based therapies to treat many diseases. However, the complexity of producing homogeneous populations of EVs in sufficient amount hampers their clinical use. To address these limitations, we immortalized dental pulp-derived MSC using a human telomerase lentiviral vector and investigated the cardioprotective potential of a hypoxia-regulated EV-derived cargo microRNA, miR-4732-3p. We tested the compared the capacity of a synthetic miR-4732-3p mimic with EVs to confer protection to cardiomyocytes, fibroblasts and endothelial cells against oxygen-glucose deprivation (OGD). Results showed that OGD-induced cardiomyocytes treated with either EVs or miR-4732-3p showed prolonged spontaneous beating, lowered ROS levels, and less apoptosis. Transfection of the miR-4732-3p mimic was more effective than EVs in stimulating angiogenesis in vitro and in vivo and in reducing fibroblast differentiation upon transforming growth factor beta treatment. Finally, the miR-4732-3p mimic reduced scar tissue and preserved cardiac function when transplanted intramyocardially in infarcted nude rats. Overall, these results indicate that miR-4732-3p is regulated by hypoxia and exerts cardioprotective actions against ischemic insult, with potential application in cell-free-based therapeutic strategies.
Collapse
Affiliation(s)
- Rafael Sánchez-Sánchez
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Ignacio Reinal
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Marc Buigues
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Estela Villanueva-Bádenas
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Amparo Hernándiz
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Hernán González-King
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Akaitz Dorronsoro
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
43
|
Chen M, Chen J, Li C, Yu R, Chen W, Chen C. Improvement of cardiac function by mesenchymal stem cells derived extracellular vesicles through targeting miR-497/Smad7 axis. Aging (Albany NY) 2021; 13:22276-22285. [PMID: 34528899 PMCID: PMC8507268 DOI: 10.18632/aging.203533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Background: The extracellular vesicles (EVs) secreted by bone marrow mesenchymal stromal cells (MSCs) have the ability to improve Myocardial infarction (MI). Some microRNAs (miRNAs) including miR-497 and related target genes have been proved to be closely linked with heart diseases. However, EVs could regulate MI process through miR-497, and the mechanisms have not been fully reported. Methods: Ligation of left anterior descending artery was performed to established MI animals model. Hypoxia cell model was established through lowering the level of oxygen. The cell invasion, migration, and proliferation were measured using tanswell, wound heating, and MTT assays. HE, Masson trichrome, and Sirius Red staining were used to investigate the morphological changes. Results: Overexpression of miR-497 reversed the promotion of cell migration, invasion, and proliferation caused by EVs. The improvement of cardiac function induced by EVs could also be reversed by overexpression of miR-497. Direct binding site between Smad7 and miR-497 was identified. Knockdown of Smad7 reversed the improvement of cardiac function induced by EVs. Conclusions: We found that EVs isolated from MSCs might improve the cardiac injury caused by MI through targeting miR497/Smad7. This study provides novel potential therapeutic thought for the prevention and treatment of MI through targeting miR-497/Smad7.
Collapse
Affiliation(s)
- Min Chen
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian 351100, Fujian, China
| | - Jianfei Chen
- Department of Critical Care Medicine, Affiliated Hospital of Putian University, Putian 351100, Fujian, China
| | - Caiting Li
- Department of Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Ranjie Yu
- Department of Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Weiwen Chen
- Department of Intensive Care Unit, Quan Zhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Cunrong Chen
- Department of Critical Care Medicine, Union Hospital of Fujian Medical University, Fuzhou 350001, Fujian, China
| |
Collapse
|
44
|
Yuan Z, Huang W. New Developments in Exosomal lncRNAs in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709169. [PMID: 34307511 PMCID: PMC8295603 DOI: 10.3389/fcvm.2021.709169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs with lengths >200 nt and are involved in the occurrence and development of cardiovascular diseases (CVDs). Exosomes are secreted and produced by various cell types. Exosome contents include various ncRNAs, proteins and lipids. Exosomes are also important mediators of intercellular communication. The proportion of lncRNAs in exosomes is low, but increasing evidence suggests that exosomal lncRNAs play important roles in CVDs. We focused on research progress in exosomal lncRNAs in atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury, cardiac angiogenesis, cardiac aging, rheumatic heart disease, and chronic kidney disease combined with CVD. The potential diagnostic and therapeutic effects of exosomal lncRNAs in CVDs are summarized based on preclinical studies involving animal and cell models and circulating exosomes in clinical patients. Finally, the challenges and possible prospects of exosomes and exosomal lncRNAs in clinical applications related to CVD are discussed.
Collapse
Affiliation(s)
- Zhu Yuan
- Department of Geriatric Cardiology, Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Jiang X, Wu D, Jiang Z, Ling W, Qian G. Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4665632. [PMID: 34285763 PMCID: PMC8275446 DOI: 10.1155/2021/4665632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A major shortcoming of postischemic therapy for myocardial infarction is the no-reflow phenomenon due to impaired cardiac microvascular function including microcirculatory barrier function, loss of endothelial activity, local inflammatory cell accumulation, and increased oxidative stress. Consequently, inadequate reperfusion of the microcirculation causes secondary ischemia, aggravating the myocardial reperfusion injury. ATP-sensitive potassium ion (KATP) channels regulate the coronary blood flow and protect cardiomyocytes from ischemia-reperfusion injury. Studies in animal models of myocardial ischemia-reperfusion have illustrated that the opening of mitochondrial KATP (mito-KATP) channels alleviates endothelial dysfunction and reduces myocardial necrosis. By contrast, blocking mito-KATP channels aggravates microvascular necrosis and no-reflow phenomenon following ischemia-reperfusion injury. Nicorandil, as an antianginal drug, has been used for ischemic preconditioning (IPC) due to its mito-KATP channel-opening effect, thereby limiting infarct size and subsequent severe ischemic insult. In this review, we analyze the protective actions of nicorandil against microcirculation reperfusion injury with a focus on improving mitochondrial integrity. In addition, we discuss the function of mitochondria in the pathogenesis of myocardial ischemia.
Collapse
Affiliation(s)
- Xiaosi Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zichao Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiwei Ling
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Shi X, Jiang N, Mao J, Luo D, Liu Y. Mesenchymal stem cell‐derived exosomes for organ development and cell‐free therapy. NANO SELECT 2021. [DOI: 10.1002/nano.202000286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xin Shi
- Center and School of Stomatology Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan P.R. China
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| | - Nan Jiang
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
- Central Laboratory National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| | - Jing Mao
- Center and School of Stomatology Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan P.R. China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing P.R. China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| |
Collapse
|
47
|
Ji H, Wu D, Kimberlee O, Li R, Qian G. Molecular Perspectives of Mitophagy in Myocardial Stress: Pathophysiology and Therapeutic Targets. Front Physiol 2021; 12:700585. [PMID: 34276422 PMCID: PMC8279814 DOI: 10.3389/fphys.2021.700585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/15/2023] Open
Abstract
A variety of complex risk factors and pathological mechanisms contribute to myocardial stress, which ultimately promotes the development of cardiovascular diseases, including acute cardiac insufficiency, myocardial ischemia, myocardial infarction, high-glycemic myocardial injury, and acute alcoholic cardiotoxicity. Myocardial stress is characterized by abnormal metabolism, excessive reactive oxygen species production, an insufficient energy supply, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. Mitochondria, the main organelles contributing to the energy supply of cardiomyocytes, are key determinants of cell survival and death. Mitophagy is important for cardiomyocyte function and metabolism because it removes damaged and aged mitochondria in a timely manner, thereby maintaining the proper number of normal mitochondria. In this review, we first introduce the general characteristics and regulatory mechanisms of mitophagy. We then describe the three classic mitophagy regulatory pathways and their involvement in myocardial stress. Finally, we discuss the two completely opposite effects of mitophagy on the fate of cardiomyocytes. Our summary of the molecular pathways underlying mitophagy in myocardial stress may provide therapeutic targets for myocardial protection interventions.
Collapse
Affiliation(s)
- Haizhe Ji
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China.,Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| | - O'Maley Kimberlee
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Center, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese People's Liberation Army Hospital, Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
48
|
Zhang Y, Yan J, Liu Y, Chen Z, Li X, Tang L, Li J, Duan M, Zhang G. Human Amniotic Fluid Stem Cell-Derived Exosomes as a Novel Cell-Free Therapy for Cutaneous Regeneration. Front Cell Dev Biol 2021; 9:685873. [PMID: 34235150 PMCID: PMC8255501 DOI: 10.3389/fcell.2021.685873] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Adult wound healing often results in fibrotic scarring that is caused by myofibroblast aggregation. Human amniotic fluid stem cells (hAFSCs) exhibit significantly anti-fibrotic scarring properties during wound healing. However, it is little known whether hAFSCs directly or indirectly (paracrine) contribute to this process. Using the full-thickness skin-wounded rats, we investigated the therapeutic potential of hAFSC-derived exosomes (hAFSC-exo). Our results showed that hAFSC-exo accelerated the wound healing rate and improved the regeneration of hair follicles, nerves, and vessels, as well as increased proliferation of cutaneous cells and the natural distribution of collagen during wound healing. Additionally, hAFSC-exo suppressed the excessive aggregation of myofibroblasts and the extracellular matrix. We identified several miRNAs, including let-7-5p, miR-22-3p, miR-27a-3p, miR-21-5p, and miR-23a-3p, that were presented in hAFSC-exo. The functional analysis demonstrated that these hAFSC-exo-miRNAs contribute to the inhibition of the transforming growth factor-β (TGF-β) signaling pathway by targeting the TGF-β receptor type I (TGF-βR1) and TGF-β receptor type II (TGF-βR2). The reduction of TGF-βR1 and TGF-βR2 expression induced by hAFSC-exo was also confirmed in the healing tissue. Finally, using mimics of miRNAs, we found that hAFSC-exo-miRNAs were essential for myofibroblast suppression during the TGF-β1-induced human dermal fibroblast-to-myofibroblast transition in vitro. In summary, this study is the first to show that exosomal miRNAs used in hAFSC-based therapy inhibit myofibroblast differentiation. Our study suggests that hAFSC-exo may represent a strategic tool for suppressing fibrotic scarring during wound healing.
Collapse
Affiliation(s)
- Yan Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Jiaqing Yan
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Chen
- Chengnan Branch, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Xiheng Li
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Liang Tang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Jiang Li
- Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengna Duan
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
49
|
Lin YN, Ibrahim A, Marbán E, Cingolani E. Pathogenesis of arrhythmogenic cardiomyopathy: role of inflammation. Basic Res Cardiol 2021; 116:39. [PMID: 34089132 DOI: 10.1007/s00395-021-00877-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Arrhythmogenic cardiomyopathy (AC) is an inherited disease characterized by progressive breakdown of heart muscle, myocardial tissue death, and fibrofatty replacement. In most cases of AC, the primary lesion occurs in one of the genes encoding desmosomal proteins, disruption of which increases membrane fragility at the intercalated disc. Disrupted, exposed desmosomal proteins also serve as epitopes that can trigger an autoimmune reaction. Damage to cell membranes and autoimmunity provoke myocardial inflammation, a key feature in early stages of the disease. In several preclinical models, targeting inflammation has been shown to blunt disease progression, but translation to the clinic has been sparse. Here we review current understanding of inflammatory pathways and how they interact with injured tissue and the immune system in AC. We further discuss the potential role of immunomodulatory therapies in AC.
Collapse
Affiliation(s)
- Yen-Nien Lin
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.,Division of Cardiovascular Medicine, Department of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Ahmed Ibrahim
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Eugenio Cingolani
- Cedars-Sinai Medical Center, Smidt Heart Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
50
|
Alfì E, Thairi C, Femminò S, Alloatti G, Moccia F, Brizzi MF, Pagliaro P, Penna C. Extracellular vesicles (EVs) in ischemic conditioning and angiogenesis: Focus on endothelial derived EVs. Vascul Pharmacol 2021; 140:106873. [PMID: 33992781 DOI: 10.1016/j.vph.2021.106873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023]
Abstract
During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. However, reperfusion further exacerbates the damage of the ischemic heart. This type of injury is known as ischemia-reperfusion injury (IRI). Ischemic conditioning is a procedure which consists of brief cycles of ischemia and reperfusion in order to protect the myocardium against IRI. Remote ischemic conditioning (RIC), namely transient brief episodes of ischemia at a remote site before a subsequent damaging ischemia/reperfusion procedure of the target organ (e.g., the heart), protects against IRI. However, how the stimulus of RIC is transduced from the remote organ to the ischemic heart is still unknown. Recently, extracellular vesicles (EVs) have been proposed to have a role in the RIC procedure. The endothelium releases EVs and is also one of the tissues mostly exposed to EVs during their journey to the target organ. Moreover, EVs may have important roles in angiogenesis and, therefore, in the remodeling of post-ischemic organs. Here we analyze how EVs may contribute to the overall cardioprotective effect and the implication of the endothelium and its EVs in RIC mediated acute cardioprotection as well as in angiogenesis.
Collapse
Affiliation(s)
- Edoardo Alfì
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Saveria Femminò
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Giuseppe Alloatti
- Uni-Astiss, Polo Universitario Rita Levi Montalcini, 14100 Asti, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, University of Pavia, Laboratory of General Physiology, 27100 Pavia, Italy
| | - Maria F Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| |
Collapse
|