1
|
Freiburghaus T, Pawlik D, Oliveira Hauer K, Ossenkoppele R, Strandberg O, Leuzy A, Rittmo J, Tremblay C, Serrano GE, Pontecorvo MJ, Beach TG, Smith R, Hansson O. Association of in vivo retention of [ 18f] flortaucipir pet with tau neuropathology in corresponding brain regions. Acta Neuropathol 2024; 148:44. [PMID: 39297933 DOI: 10.1007/s00401-024-02801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
[18F]Flortaucipir is an FDA-approved tau-PET tracer that is increasingly utilized in clinical settings for the diagnosis of Alzheimer's disease. Still, a large-scale comparison of the in vivo PET uptake to quantitative post-mortem tau pathology and to other co-pathologies is lacking. Here, we examined the correlation between in vivo [18F]flortaucipir PET uptake and quantitative post-mortem tau pathology in corresponding brain regions from the AVID A16 end-of-life study (n = 63). All participants underwent [18F]flortaucipir PET scans prior to death, followed by a detailed post-mortem neuropathological examination using AT8 (tau) immunohistochemistry. Correlations between [18F]flortaucipir standardized uptake value ratios (SUVRs) and AT8 immunohistochemistry were assessed across 18 regions-of-interest (ROIs). To assess [18F]flortaucipir specificity and level of detection for tau pathology, correlations between [18F]flortaucipir SUVR and neuritic plaque score and TDP-43 stage were also computed and retention was further assessed in individuals with possible primary age-related tauopathy (PART), defined as Thal phase ≤ 2 and Braak stage I-IV. We found modest-to-strong correlations between in vivo [18F]flortaucipir SUVR and post-mortem tau pathology density in corresponding brain regions in all neocortical regions analyzed (rho-range = 0.61-0.79, p < 0.0001 for all). The detection threshold of [18F]flortaucipir PET was determined to be 0.85% of surface area affected by tau pathology in a temporal meta-ROI, and 0.15% in a larger cortical meta-ROI. No significant associations were found between [18F]flortaucipir SUVRs and post-mortem tau pathology in individuals with possible PART. Further, there was no correlation observed between [18F]flortaucipir and level of amyloid-β neuritic plaque load (rho-range = - 0.16-0.12; p = 0.48-0.61) or TDP-43 stage (rho-range = - 0.10 to - 0.30; p = 0.18-0.65). In conclusion, our in vivo vs post-mortem study shows that the in vivo [18F]flortaucipir PET signal primarily reflects tau pathology, also at relatively low densities of tau proteinopathy, and does not bind substantially to tau neurites in neuritic plaques or in individuals with PART.
Collapse
Affiliation(s)
- Tove Freiburghaus
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Daria Pawlik
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Kevin Oliveira Hauer
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jonathan Rittmo
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | | | | | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden.
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden.
| |
Collapse
|
2
|
Mastenbroek SE, Vogel JW, Collij LE, Serrano GE, Tremblay C, Young AL, Arce RA, Shill HA, Driver-Dunckley ED, Mehta SH, Belden CM, Atri A, Choudhury P, Barkhof F, Adler CH, Ossenkoppele R, Beach TG, Hansson O. Disease progression modelling reveals heterogeneity in trajectories of Lewy-type α-synuclein pathology. Nat Commun 2024; 15:5133. [PMID: 38879548 PMCID: PMC11180185 DOI: 10.1038/s41467-024-49402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.
Collapse
Affiliation(s)
- Sophie E Mastenbroek
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Jacob W Vogel
- Department of Clinical Sciences Malmö, Faculty of Medicine, SciLifeLab, Lund University, Lund, Sweden
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | - Alexandra L Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | | | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Erika D Driver-Dunckley
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Shyamal H Mehta
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Charles H Adler
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
3
|
Maskey D, Stevens J, Smith CC, Novelli M, Sutherland GT. Double Chromogen-based Immunohistochemical Staining: An Efficient Approach for Utilizing Long-term Formalin-fixed Tissue in Biobanks. Appl Immunohistochem Mol Morphol 2024; 32:207-214. [PMID: 38712585 DOI: 10.1097/pai.0000000000001199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
The New South Wales Brain Tissue Resource Centre is a human brain bank that provides top-quality brain tissue for cutting-edge neuroscience research spanning various conditions from alcohol use disorder to neurodegenerative diseases. However, the conventional practice of preserving brain tissue in formalin poses challenges for immunofluorescent staining primarily due to the formalin's tendency, over time, to create cross-links between antigens, which can obscure epitopes of interest. In addition, researchers can encounter issues such as spectral bleeding, limitations in using multiple colors, autofluorescence, and cross-reactivity when working with long-term formalin-fixed brain tissue. The purpose of the study was to test chromogen-based double immunolabeling to negate the issues with immunofluorescent staining. Colocalization of antigens was explored using chromogens 3-amino-9-ethylcarbazole (AEC) and 3,3,-diaminobenzidine in a sequential staining procedure where the AEC signal was eliminated by alcohol treatment. Combinations of 2 or 3 primary antibodies from the same or different species were trialed successfully with this protocol. The colocalization of antigens was also demonstrated with pseudocoloring that mimicked immunofluorescence staining. This staining technique increases the utility of archival formalin-fixed tissue samples.
Collapse
Affiliation(s)
- Dhiraj Maskey
- Department of Neuroscience, New South Wales Brain Tissue Research Centre, Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | | | | | | | | |
Collapse
|
4
|
Wilson EN, Wang C, Swarovski MS, Zera KA, Ennerfelt HE, Wang Q, Chaney A, Gauba E, Ramos Benitez JA, Le Guen Y, Minhas PS, Panchal M, Tan YJ, Blacher E, A Iweka C, Cropper H, Jain P, Liu Q, Mehta SS, Zuckerman AJ, Xin M, Umans J, Huang J, Durairaj AS, Serrano GE, Beach TG, Greicius MD, James ML, Buckwalter MS, McReynolds MR, Rabinowitz JD, Andreasson KI. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat Neurosci 2024; 27:873-885. [PMID: 38539014 PMCID: PMC11102654 DOI: 10.1038/s41593-024-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 02/22/2024] [Indexed: 04/21/2024]
Abstract
Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-β42 oligomer-induced bioenergetic changes, suggesting that amyloid-β42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.
Collapse
Affiliation(s)
- Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Congcong Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Swarovski
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah E Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aisling Chaney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Gauba
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Javier A Ramos Benitez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Paras S Minhas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maharshi Panchal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuting J Tan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eran Blacher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Chinyere A Iweka
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Haley Cropper
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Poorva Jain
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qingkun Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Swapnil S Mehta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Abigail J Zuckerman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Xin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacob Umans
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jolie Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Aarooran S Durairaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Mastenbroek SE, Vogel JW, Collij LE, Serrano GE, Tremblay C, Young AL, Arce RA, Shill HA, Driver-Dunckley ED, Mehta SH, Belden CM, Atri A, Choudhury P, Barkhof F, Adler CH, Ossenkoppele R, Beach TG, Hansson O. Disease progression modelling reveals heterogeneity in trajectories of Lewy-type α-synuclein pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.569878. [PMID: 38106128 PMCID: PMC10723322 DOI: 10.1101/2023.12.05.569878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Lewy body (LB) disorders, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. By applying data-driven disease progression modelling to regional neuropathological LB density scores from 814 brain donors, we describe three inferred trajectories of LB pathology that were characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) showed earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) exhibited the first abnormalities in brainstem regions. Early limbic pathology was associated with Alzheimer's disease-associated characteristics. Meanwhile, brainstem-first pathology was associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in LBDs.
Collapse
Affiliation(s)
- Sophie E. Mastenbroek
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jacob W. Vogel
- Department of Clinical Sciences Malmö, Faculty of Medicine, SciLifLab, Lund University, Lund, Sweden
| | - Lyduine E. Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Cecilia Tremblay
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alexandra L. Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Richard A. Arce
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Holly A. Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Erika D. Driver-Dunckley
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Shyamal H. Mehta
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Christine M. Belden
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women’s Hospital & Harvard Medical School, Boston, Massachusetts, United States of America
| | - Parichita Choudhury
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, United Kingdom
| | - Charles H. Adler
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Beach TG, Sue LI, Scott S, Intorcia AJ, Walker JE, Arce RA, Glass MJ, Borja CI, Cline MP, Hemmingsen SJ, Qiji S, Stewart A, Martinez KN, Krupp A, McHattie R, Mariner M, Lorenzini I, Kuramoto A, Long KE, Tremblay C, Caselli RJ, Woodruff BK, Rapscak SZ, Belden CM, Goldfarb D, Choudhury P, Driver-Dunckley ED, Mehta SH, Sabbagh MN, Shill HA, Atri A, Adler CH, Serrano GE. Cerebral white matter rarefaction has both neurodegenerative and vascular causes and may primarily be a distal axonopathy. J Neuropathol Exp Neurol 2023; 82:457-466. [PMID: 37071794 PMCID: PMC10209646 DOI: 10.1093/jnen/nlad026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Cerebral white matter rarefaction (CWMR) was considered by Binswanger and Alzheimer to be due to cerebral arteriolosclerosis. Renewed attention came with CT and MR brain imaging, and neuropathological studies finding a high rate of CWMR in Alzheimer disease (AD). The relative contributions of cerebrovascular disease and AD to CWMR are still uncertain. In 1181 autopsies by the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), large-format brain sections were used to grade CWMR and determine its vascular and neurodegenerative correlates. Almost all neurodegenerative diseases had more severe CWMR than the normal control group. Multivariable logistic regression models indicated that Braak neurofibrillary stage was the strongest predictor of CWMR, with additional independently significant predictors including age, cortical and diencephalic lacunar and microinfarcts, body mass index, and female sex. It appears that while AD and cerebrovascular pathology may be additive in causing CWMR, both may be solely capable of this. The typical periventricular pattern suggests that CWMR is primarily a distal axonopathy caused by dysfunction of the cell bodies of long-association corticocortical projection neurons. A consequence of these findings is that CWMR should not be viewed simply as "small vessel disease" or as a pathognomonic indicator of vascular cognitive impairment or vascular dementia.
Collapse
Affiliation(s)
- Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Sarah Scott
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Richard A Arce
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Michael J Glass
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Madison P Cline
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Sanaria Qiji
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Analisa Stewart
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Addison Krupp
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Rylee McHattie
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Monica Mariner
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Angela Kuramoto
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Kathy E Long
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | | | | | | | | | - Shyamal H Mehta
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Holly A Shill
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, USA
- Harvard Medical School & Brigham & Women’s Hospital, Boston, Massachusetts, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
7
|
Driver-Dunckley ED, Zhang N, Serrano GE, Dunckley NA, Sue LI, Shill HA, Mehta SH, Belden C, Tremblay C, Atri A, Adler CH, Beach TG. Low clinical sensitivity and unexpectedly high incidence for neuropathologically diagnosed progressive supranuclear palsy. J Neuropathol Exp Neurol 2023; 82:438-451. [PMID: 37040756 PMCID: PMC10117158 DOI: 10.1093/jnen/nlad025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
The objective of this study was to determine the prevalence, incidence, and clinical diagnostic accuracy for neuropathologically diagnosed progressive supranuclear palsy (PSP) with data from a longitudinal clinicopathological study using Rainwater criteria to define neuropathological PSP. Of 954 autopsy cases, 101 met Rainwater criteria for the neuropathologic diagnosis of PSP. Of these, 87 were termed clinicopathological PSP as they also had either dementia or parkinsonism or both. The prevalence of clinicopathologically defined PSP subjects in the entire autopsy dataset was 9.1%, while the incidence rate was estimated at 780 per 100 000 persons per year, roughly 50-fold greater than most previous clinically determined PSP incidence estimates. A clinical diagnosis of PSP was 99.6% specific but only 9.2% sensitive based on first examination, and 99.3% specific and 20.7% sensitive based on the final clinical exam. Of the clinicopathologically defined PSP cases, 35/87 (∼40%) had no form of parkinsonism at first assessment, while this decreased to 18/83 (21.7%) at final assessment. Our study confirms a high specificity but low sensitivity for the clinical diagnosis of PSP. The low clinical sensitivity for PSP is likely primarily responsible for previous underestimates of the PSP population incidence rate.
Collapse
Affiliation(s)
- Erika D Driver-Dunckley
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Nan Zhang
- Department of Quantitative Health Sciences, Section of Biostatistics, Mayo Clinic, Scottsdale, Arizona, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Shyamal H Mehta
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Christine Belden
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| | - Cecilia Tremblay
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women’s Hospital & Harvard Medical School, Boston, Massachusetts, USA
| | - Charles H Adler
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Banner Health, Sun City, Arizona, USA
| |
Collapse
|
8
|
Fiock KL, Betters RK, Hefti MM. Thioflavin S Staining and Amyloid Formation Are Unique to Mixed Tauopathies. J Histochem Cytochem 2023; 71:73-86. [PMID: 36861683 PMCID: PMC10071402 DOI: 10.1369/00221554231158428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.
Collapse
Affiliation(s)
- Kimberly L. Fiock
- Department of Pathology, University of Iowa,
Iowa City, Iowa
- Experimental Pathology Graduate Program,
University of Iowa, Iowa City, Iowa
- Iowa Neuroscience Institute, Iowa City,
Iowa
| | - Ryan K. Betters
- Department of Pathology, University of Iowa,
Iowa City, Iowa
- Interdisciplinary Neuroscience Graduate
Program, University of Iowa, Iowa City, Iowa
- Iowa Neuroscience Institute, Iowa City,
Iowa
| | - Marco M. Hefti
- Department of Pathology, University of Iowa,
Iowa City, Iowa
- Experimental Pathology Graduate Program,
University of Iowa, Iowa City, Iowa
- Iowa Neuroscience Institute, Iowa City,
Iowa
| |
Collapse
|
9
|
Serrano GE, Walker JE, Tremblay C, Piras IS, Huentelman MJ, Belden CM, Goldfarb D, Shprecher D, Atri A, Adler CH, Shill HA, Driver-Dunckley E, Mehta SH, Caselli R, Woodruff BK, Haarer CF, Ruhlen T, Torres M, Nguyen S, Schmitt D, Rapscak SZ, Bime C, Peters JL, Alevritis E, Arce RA, Glass MJ, Vargas D, Sue LI, Intorcia AJ, Nelson CM, Oliver J, Russell A, Suszczewicz KE, Borja CI, Cline MP, Hemmingsen SJ, Qiji S, Hobgood HM, Mizgerd JP, Sahoo MK, Zhang H, Solis D, Montine TJ, Berry GJ, Reiman EM, Röltgen K, Boyd SD, Pinsky BA, Zehnder JL, Talbot P, Desforges M, DeTure M, Dickson DW, Beach TG. SARS-CoV-2 Brain Regional Detection, Histopathology, Gene Expression, and Immunomodulatory Changes in Decedents with COVID-19. J Neuropathol Exp Neurol 2022; 81:666-695. [PMID: 35818336 PMCID: PMC9278252 DOI: 10.1093/jnen/nlac056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brains of 42 COVID-19 decedents and 107 non-COVID-19 controls were studied. RT-PCR screening of 16 regions from 20 COVID-19 autopsies found SARS-CoV-2 E gene viral sequences in 7 regions (2.5% of 320 samples), concentrated in 4/20 subjects (20%). Additional screening of olfactory bulb (OB), amygdala (AMY) and entorhinal area for E, N1, N2, RNA-dependent RNA polymerase, and S gene sequences detected one or more of these in OB in 8/21 subjects (38%). It is uncertain whether these RNA sequences represent viable virus. Significant histopathology was limited to 2/42 cases (4.8%), one with a large acute cerebral infarct and one with hemorrhagic encephalitis. Case-control RNAseq in OB and AMY found more than 5000 and 700 differentially expressed genes, respectively, unrelated to RT-PCR results; these involved immune response, neuronal constituents, and olfactory/taste receptor genes. Olfactory marker protein-1 reduction indicated COVID-19-related loss of OB olfactory mucosa afferents. Iba-1-immunoreactive microglia had reduced area fractions in cerebellar cortex and AMY, and cytokine arrays showed generalized downregulation in AMY and upregulation in blood serum in COVID-19 cases. Although OB is a major brain portal for SARS-CoV-2, COVID-19 brain changes are more likely due to blood-borne immune mediators and trans-synaptic gene expression changes arising from OB deafferentation.
Collapse
Affiliation(s)
- Geidy E Serrano
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Jessica E Walker
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Cécilia Tremblay
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Danielle Goldfarb
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - David Shprecher
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alireza Atri
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles H Adler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Holly A Shill
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Shyamal H Mehta
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Richard Caselli
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bryan K Woodruff
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | | | - Thomas Ruhlen
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Maria Torres
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Steve Nguyen
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Dasan Schmitt
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | | | | | | | | | - Richard A Arce
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Michael J Glass
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Daisy Vargas
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Courtney M Nelson
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Javon Oliver
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Aryck Russell
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA (AR)
| | | | - Claryssa I Borja
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Madison P Cline
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Sanaria Qiji
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly M Hobgood
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Haiyu Zhang
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University, Stanford, California, USA
| | | | - Katharina Röltgen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Stanford, California, USA
- Division of Infectious Disease & Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - James L Zehnder
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pierre Talbot
- Laboratory of Neuroimmunology, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Marc Desforges
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
- Laboratory of Virology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Michael DeTure
- Département de microbiologie, infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Dennis W Dickson
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Thomas G Beach
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
10
|
Wu X, Deng C, Su Y, Zhang C, Chen M, Tian K, Wu H, Xu S. The effect of prolonged formalin fixation on the expression of proteins in human brain tissues. Acta Histochem 2022; 124:151879. [PMID: 35358895 DOI: 10.1016/j.acthis.2022.151879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) tissues have been widely used in researches. Proteins and nucleic acids in prolonged FFPE tissues display different degrees of degradation. We investigated the effect of prolonged formalin fixation on protein expression in human brain tissues. Twenty-eight middle prefrontal front cortex tissue blocks from human brains prefixed in formalin were obtained from a brain bank. The tissue blocks were divided into two groups, the control group and the prolonged fixation group. Quantitative immunocytochemistry was used to analyse the biological markers of Fox-3, Rbfox3 (NeuN), glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule-1 (IBA-1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nissl staining showed that positive signaling of Nissl body was significantly decreased by 16.6% in the prolonged fixation group. In addition, the staining intensity of Nissl body was negatively correlated with fixation time. The level of NeuN immunoreactivity (ir) was significantly reduced by 19.31% in the prolonged fixation group. Moreover, there was a significant negative correlation between NeuN-ir and fixation time. There were no significant changes in GFAP-ir, IBA-1-ir and GAPDH-ir between control group and the prolonged fixation group. Prolonged formalin-fixed tissues showed time- and molecule-dependent protein changes, which may be potential confounders in the clinic and researches. Our study suggested short formalin fixation time is recommended when using PPFE brain tissues.
Collapse
|
11
|
Costa AS, Ferri E, Guerini FR, Rossi PD, Arosio B, Clerici M. VAMP2 Expression and Genotype Are Possible Discriminators in Different Forms of Dementia. Front Aging Neurosci 2022; 14:858162. [PMID: 35360211 PMCID: PMC8964122 DOI: 10.3389/fnagi.2022.858162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular alterations often overlap with neurodegeneration, resulting in mixed forms of dementia (MD) that are hard to differentiate from Alzheimer’s Disease (AD). The 26 bp intergenic polymorphism of VAMP2, a key component of SNARE complex, as well as its mRNA and protein levels are associated with neurological diseases. We evaluated ApoE4 and VAMP2 26 bp Ins/Del genotype distribution in 177 AD, 132 MD, 115 Mild Cognitive Impairment (MCI) and 250 individuals without cognitive decline (CT), as well as VAMP2 gene expression in a subset of 73 AD, 122 MD, 103 MCI and 140 CT. Forty-two MCI evolved to AD (22 MCI-AD) or MD (20 MCI-MD) over time. VAMP2 mRNA was higher in MD compared to AD (p = 0.0013) and CT (p = 0.0017), and in MCI-MD compared to MCI-AD (p < 0.001) after correcting for age, gender, MMSE and ApoE4 +/− covariates (pc = 0.004). A higher VAMP2 expression was observed in subjects carrying the minor allele Del compared to those carrying the Ins/Ins genotype (p = 0.012). Finally, Del/Del genotype was more frequently carried by MD/MCI-MD compared to CT (pc = 0.036). These results suggest that VAMP2 mRNA expression can discriminate mixed form of dementia from AD, possibly being a biomarker of AD evolution in MCI patients.
Collapse
Affiliation(s)
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- *Correspondence: Franca Rosa Guerini,
| | - Paolo Dionigi Rossi
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Rainwater Charitable Foundation criteria for the neuropathologic diagnosis of progressive supranuclear palsy. Acta Neuropathol 2022; 144:603-614. [PMID: 35947184 PMCID: PMC9468104 DOI: 10.1007/s00401-022-02479-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropathologic criteria for progressive supranuclear palsy (PSP) proposed by a National Institute of Neurological Disorders and Stroke (NINDS) working group were published in 1994 and based on the presence of neurofibrillary tangles in basal ganglia and brainstem. These criteria did not stipulate detection methods or incorporate glial tau pathology. In this study, a group of 14 expert neuropathologists scored digital slides from 10 brain regions stained with hematoxylin and eosin (H&E) and phosphorylated tau (AT8) immunohistochemistry. The cases included 15 typical and atypical PSP cases and 10 other tauopathies. Blinded to clinical and neuropathological information, raters provided a categorical diagnosis (PSP or not-PSP) based upon provisional criteria that required neurofibrillary tangles or pretangles in two of three regions (substantia nigra, subthalamic nucleus, globus pallidus) and tufted astrocytes in one of two regions (peri-Rolandic cortices, putamen). The criteria showed high sensitivity (0.97) and specificity (0.91), as well as almost perfect inter-rater reliability for diagnosing PSP and differentiating it from other tauopathies (Fleiss kappa 0.826). Most cases (17/25) had 100% agreement across all 14 raters. The Rainwater Charitable Foundation criteria for the neuropathologic diagnosis of PSP feature a simplified diagnostic algorithm based on phosphorylated tau immunohistochemistry and incorporate tufted astrocytes as an essential diagnostic feature.
Collapse
|
13
|
Pivtoraiko VN, Racic T, Abrahamson EE, Villemagne VL, Handen BL, Lott IT, Head E, Ikonomovic MD. Postmortem Neocortical 3H-PiB Binding and Levels of Unmodified and Pyroglutamate Aβ in Down Syndrome and Sporadic Alzheimer's Disease. Front Aging Neurosci 2021; 13:728739. [PMID: 34489686 PMCID: PMC8416541 DOI: 10.3389/fnagi.2021.728739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
Individuals with Down syndrome (DS) have a genetic predisposition for amyloid-β (Aβ) overproduction and earlier onset of Aβ deposits compared to patients with sporadic late-onset Alzheimer’s disease (AD). Positron emission tomography (PET) with Pittsburgh Compound-B (PiB) detects fibrillar Aβ pathology in living people with DS and AD, but its relationship with heterogeneous Aβ forms aggregated within amyloid deposits is not well understood. We performed quantitative in vitro3H-PiB binding assays and enzyme-linked immunosorbent assays of fibrillar (insoluble) unmodified Aβ40 and Aβ42 forms and N-terminus truncated and pyroglutamate-modified AβNpE3-40 and AβNpE3-42 forms in postmortem frontal cortex and precuneus samples from 18 DS cases aged 43–63 years and 17 late-onset AD cases aged 62–99 years. Both diagnostic groups had frequent neocortical neuritic plaques, while the DS group had more severe vascular amyloid pathology (cerebral amyloid angiopathy, CAA). Compared to the AD group, the DS group had higher levels of Aβ40 and AβNpE3-40, while the two groups did not differ by Aβ42 and AβNpE3-42 levels. This resulted in lower ratios of Aβ42/Aβ40 and AβNpE3-42/AβNpE3-40 in the DS group compared to the AD group. Correlations of Aβ42/Aβ40 and AβNpE3-42/AβNpE3-40 ratios with CAA severity were strong in DS cases and weak in AD cases. Pyroglutamate-modified Aβ levels were lower than unmodified Aβ levels in both diagnostic groups, but within group proportions of both pyroglutamate-modified Aβ forms relative to both unmodified Aβ forms were lower in the DS group but not in the AD group. The two diagnostic groups did not differ by 3H-PiB binding levels. These results demonstrate that compared to late-onset AD cases, adult DS individuals with similar severity of neocortical neuritic plaques and greater CAA pathology have a preponderance of both pyroglutamate-modified AβNpE3-40 and unmodified Aβ40 forms. Despite the distinct molecular profile of Aβ forms and greater vascular amyloidosis in DS cases, cortical 3H-PiB binding does not distinguish between diagnostic groups that are at an advanced level of amyloid plaque pathology. This underscores the need for the development of CAA-selective PET radiopharmaceuticals to detect and track the progression of cerebral vascular amyloid deposits in relation to Aβ plaques in individuals with DS.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tamara Racic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ira T Lott
- Department of Neurology, UC Irvine School of Medicine, Orange, CA, United States
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, CA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Beach TG, Sue LI, Intorcia AJ, Glass MJ, Walker JE, Arce R, Nelson CM, Serrano GE. Acute Brain Ischemia, Infarction and Hemorrhage in Subjects Dying with or Without Autopsy-Proven Acute Pneumonia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.22.21254139. [PMID: 33791728 PMCID: PMC8010760 DOI: 10.1101/2021.03.22.21254139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stroke is one of the most serious complications of Covid-19 disease but it is still unclear whether stroke is more common with Covid-19 pneumonia as compared to non-Covid-19 pneumonia. We investigated the concurrence rate of autopsy-confirmed acute brain ischemia, acute brain infarction and acute brain hemorrhage with autopsy-proven acute non-Covid pneumonia in consecutive autopsies in the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), a longitudinal clinicopathological study of normal aging and neurodegenerative diseases. Of 691 subjects with a mean age of 83.4 years, acute pneumonia was histopathologically diagnosed in 343 (49.6%); the concurrence rates for histopathologically-confirmed acute ischemia, acute infarction or subacute infarction was 14% and did not differ between pneumonia and non-pneumonia groups while the rates of acute brain hemorrhage were 1.4% and 2.0% of those with or without acute pneumonia, respectively. In comparison, in reviews of Covid-19 publications, reported clinically-determined rates of acute brain infarction range from 0.5% to 20% while rates of acute brain hemorrhage range from 0.13% to 2%. In reviews of Covid-19 autopsy studies, concurrence rates for both acute brain infarction and acute brain hemorrhage average about 10%. Covid-19 pneumonia and non-Covid-19 pneumonia may have similar risks tor concurrent acute brain infarction and acute brain hemorrhage when pneumonia is severe enough to cause death. Additionally, acute brain ischemia, infarction or hemorrhage may not be more common in subjects dying of acute pneumonia than in subjects dying without acute pneumonia.
Collapse
Affiliation(s)
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | - Richard Arce
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | |
Collapse
|
15
|
Serrano GE, Walker JE, Arce R, Glass MJ, Vargas D, Sue LI, Intorcia AJ, Nelson CM, Oliver J, Papa J, Russell A, Suszczewicz KE, Borja CI, Belden C, Goldfarb D, Shprecher D, Atri A, Adler CH, Shill HA, Driver-Dunckley E, Mehta SH, Readhead B, Huentelman MJ, Peters JL, Alevritis E, Bimi C, Mizgerd JP, Reiman EM, Montine TJ, Desforges M, Zehnder JL, Sahoo MK, Zhang H, Solis D, Pinsky BA, Deture M, Dickson DW, Beach TG. Mapping of SARS-CoV-2 Brain Invasion and Histopathology in COVID-19 Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.15.21251511. [PMID: 33619496 PMCID: PMC7899461 DOI: 10.1101/2021.02.15.21251511] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The coronavirus SARS-CoV-2 (SCV2) causes acute respiratory distress, termed COVID-19 disease, with substantial morbidity and mortality. As SCV2 is related to previously-studied coronaviruses that have been shown to have the capability for brain invasion, it seems likely that SCV2 may be able to do so as well. To date, although there have been many clinical and autopsy-based reports that describe a broad range of SCV2-associated neurological conditions, it is unclear what fraction of these have been due to direct CNS invasion versus indirect effects caused by systemic reactions to critical illness. Still critically lacking is a comprehensive tissue-based survey of the CNS presence and specific neuropathology of SCV2 in humans. We conducted an extensive neuroanatomical survey of RT-PCR-detected SCV2 in 16 brain regions from 20 subjects who died of COVID-19 disease. Targeted areas were those with cranial nerve nuclei, including the olfactory bulb, medullary dorsal motor nucleus of the vagus nerve and the pontine trigeminal nerve nuclei, as well as areas possibly exposed to hematogenous entry, including the choroid plexus, leptomeninges, median eminence of the hypothalamus and area postrema of the medulla. Subjects ranged in age from 38 to 97 (mean 77) with 9 females and 11 males. Most subjects had typical age-related neuropathological findings. Two subjects had severe neuropathology, one with a large acute cerebral infarction and one with hemorrhagic encephalitis, that was unequivocally related to their COVID-19 disease while most of the 18 other subjects had non-specific histopathology including focal β-amyloid precursor protein white matter immunoreactivity and sparse perivascular mononuclear cell cuffing. Four subjects (20%) had SCV2 RNA in one or more brain regions including the olfactory bulb, amygdala, entorhinal area, temporal and frontal neocortex, dorsal medulla and leptomeninges. The subject with encephalitis was SCV2-positive in a histopathologically-affected area, the entorhinal cortex, while the subject with the large acute cerebral infarct was SCV2-negative in all brain regions. Like other human coronaviruses, SCV2 can inflict acute neuropathology in susceptible patients. Much remains to be understood, including what viral and host factors influence SCV2 brain invasion and whether it is cleared from the brain subsequent to the acute illness.
Collapse
Affiliation(s)
| | | | - Richard Arce
- Banner Sun Health Research Institute, Sun City, AZ
| | | | - Daisy Vargas
- Banner Sun Health Research Institute, Sun City, AZ
| | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | - Javon Oliver
- Banner Sun Health Research Institute, Sun City, AZ
| | - Jaclyn Papa
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | | | | | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Charles H. Adler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | | | | | - Shyamal H. Mehta
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | - Benjamin Readhead
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ
| | | | | | | | | | | | | | - Thomas J. Montine
- Stanford University School of Medicine, Department of Pathology, Stanford, CA
| | - Marc Desforges
- Centre Hospitalier Universitaire Sainte-Justine, Laboratory of Virology, Montreal, Canada
| | - James L. Zehnder
- Stanford University School of Medicine, Department of Pathology, Stanford, CA
| | - Malaya K. Sahoo
- Stanford University School of Medicine, Department of Pathology, Stanford, CA
| | - Haiyu Zhang
- Stanford University School of Medicine, Department of Pathology, Stanford, CA
| | - Daniel Solis
- Stanford University School of Medicine, Department of Pathology, Stanford, CA
| | - Benjamin A. Pinsky
- Stanford University Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford, CA
| | - Michael Deture
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville FL
| | - Dennis W. Dickson
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville FL
| | | |
Collapse
|
16
|
Beach TG, Russell A, Sue LI, Intorcia AJ, Glass MJ, Walker JE, Arce R, Nelson CM, Hidalgo T, Chiarolanza G, Mariner M, Scroggins A, Pullen J, Souders L, Sivananthan K, Carter N, Saxon-LaBelle M, Hoffman B, Garcia A, Callan M, Fornwalt BE, Carew J, Filon J, Cutler B, Papa J, Curry JR, Oliver J, Shprecher D, Atri A, Belden C, Shill HA, Driver-Dunckley E, Mehta SH, Adler CH, Haarer CF, Ruhlen T, Torres M, Nguyen S, Schmitt D, Fietz M, Lue LF, Walker DG, Mizgerd JP, Serrano GE. Increased Risk of Autopsy-Proven Pneumonia with Sex, Season and Neurodegenerative Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.07.21249410. [PMID: 33442709 PMCID: PMC7805471 DOI: 10.1101/2021.01.07.21249410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There has been a markedly renewed interest in factors associated with pneumonia, a leading cause of death worldwide, due to its frequent concurrence with pandemics of influenza and Covid-19 disease. Reported predisposing factors to both bacterial pneumonia and pandemic viral lower respiratory infections are wintertime occurrence, older age, obesity, pre-existing cardiopulmonary conditions and diabetes. Also implicated are age-related neurodegenerative diseases that cause parkinsonism and dementia. We investigated the prevalence of autopsy-proven pneumonia in the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), a longitudinal clinicopathological study, between the years 2006 and 2019 and before the beginning of the Covid-19 pandemic. Of 691 subjects dying at advanced ages (mean 83.4), pneumonia was diagnosed postmortem in 343 (49.6%). There were 185 subjects without dementia or parkinsonism while clinicopathological diagnoses for the other subjects included 319 with Alzheimer's disease dementia, 127 with idiopathic Parkinson's disease, 72 with dementia with Lewy bodies, 49 with progressive supranuclear palsy and 78 with vascular dementia. Subjects with one or more of these neurodegenerative diseases all had higher pneumonia rates, ranging between 50 and 61%, as compared to those without dementia or parkinsonism (40%). In multivariable logistic regression models, male sex and a non-summer death both had independent contributions (ORs of 1.67 and 1.53) towards the presence of pneumonia at autopsy while the absence of parkinsonism or dementia was a significant negative predictor of pneumonia (OR 0.54). Male sex, dementia and parkinsonism may also be risk factors for Covid-19 pneumonia. The apolipoprotein E4 allele, as well as obesity, chronic obstructive pulmonary disease, diabetes, hypertension, congestive heart failure, cardiomegaly and cigarette smoking history, were not significantly associated with pneumonia, in contradistinction to what has been reported for Covid-19 disease.
Collapse
Affiliation(s)
| | | | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | - Richard Arce
- Banner Sun Health Research Institute, Sun City, AZ
| | | | - Tony Hidalgo
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | - Joel Pullen
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | - Niana Carter
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | | | | | | | | | - Brett Cutler
- Banner Sun Health Research Institute, Sun City, AZ
| | - Jaclyn Papa
- Banner Sun Health Research Institute, Sun City, AZ
| | | | - Javon Oliver
- Banner Sun Health Research Institute, Sun City, AZ
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Shyamal H. Mehta
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | - Charles H. Adler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | | | | | | | | | | | | | - Lih-Fen Lue
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | |
Collapse
|
17
|
Pascual B, Funk Q, Zanotti-Fregonara P, Pal N, Rockers E, Yu M, Spann B, Román GC, Schulz PE, Karmonik C, Appel SH, Masdeu JC. Multimodal 18F-AV-1451 and MRI Findings in Nonfluent Variant of Primary Progressive Aphasia: Possible Insights on Nodal Propagation of Tau Protein Across the Syntactic Network. J Nucl Med 2019; 61:263-269. [PMID: 31350322 DOI: 10.2967/jnumed.118.225508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/06/2019] [Indexed: 11/16/2022] Open
Abstract
Although abnormally folded tau protein has been found to self-propagate from neuron to connected neuron, similar propagation through human brain networks has not been fully documented. We studied tau propagation in the left hemispheric syntactic network, which comprises an anterior frontal node and a posterior temporal node connected by the white matter of the left arcuate fasciculus. This network is affected in the nonfluent variant of primary progressive aphasia, a neurodegenerative disorder with tau accumulation. Methods: Eight patients with the nonfluent variant of primary progressive aphasia (age, 67.0 ± 7.4 y; 4 women) and 8 healthy controls (age, 69.6 ± 7.0 y; 4 women) were scanned with 18F-AV-1451 tau PET to determine tau deposition in the brain and with MRI to determine the fractional anisotropy of the arcuate fasciculus. Normal syntactic network characteristics were confirmed with structural MRI diffusion imaging in our healthy controls and with blood oxygenation level-dependent functional imaging in 35 healthy participants from the Alzheimer Disease Neuroimaging Initiative database. Results: Language scores in patients indicated dysfunction of the anterior node. 18F-AV-1451 deposition was greatest in the 2 nodes of the syntactic network. The left arcuate fasciculus had decreased fractional anisotropy, particularly near the anterior node. Normal MRI structural connectivity from an area similar to the one containing tau in the anterior frontal node projected to an area similar to the one containing tau in the patients in the posterior temporal node. Conclusion: Tau accumulation likely started in the more affected anterior node and, at the disease stage at which we studied these patients, appeared as well in the brain region (in the temporal lobe) spatially separate from but most connected with it. The arcuate fasciculus, connecting both of them, was most severely affected anteriorly, as would correspond to a loss of axons from the anterior node. These findings are suggestive of tau propagation from node to connected node in a natural human brain network and support the idea that neurons that wire together die together.
Collapse
Affiliation(s)
- Belen Pascual
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Quentin Funk
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Neha Pal
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Elijah Rockers
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Meixiang Yu
- Cyclotron and Radiopharmaceutical Core, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Bryan Spann
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Gustavo C Román
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | | | - Christof Karmonik
- MRI Core, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas; and
| | - Stanley H Appel
- Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| |
Collapse
|
18
|
Trujillo Diaz D, Hernandez NC, Cortes EP, Faust PL, Vonsattel JPG, Louis ED. Banking brains: a pre-mortem "how to" guide to successful donation. Cell Tissue Bank 2018; 19:473-488. [PMID: 30220002 DOI: 10.1007/s10561-018-9720-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022]
Abstract
A review of the brain banking literature reveals a primary focus either on the factors that influence the decision to become a future donor or on the brain tissue processing that takes place after the individual has died (i.e., the front-end or back-end processes). What has not been sufficiently detailed, however, is the complex and involved process that takes place after this decision to become a future donor is made yet before post-mortem processing occurs (i.e., the large middle-ground). This generally represents a period of many years during which the brain bank is actively engaged with donors to ensure that valuable clinical information is prospectively collected and that their donation is eventually completed. For the past 15 years, the Essential Tremor Centralized Brain Repository has been actively involved in brain banking, and our experience has provided us valuable insights that may be useful for researchers interested in establishing their own brain banking efforts. In this piece, we fill a gap in the literature by detailing the processes of enrolling participants, creating individualized brain donation plans, collecting clinical information and regularly following-up with donors to update that information, and efficiently coordinating the brain harvest when death finally arrives.
Collapse
Affiliation(s)
- Daniel Trujillo Diaz
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nora C Hernandez
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Etty P Cortes
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jean Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA. .,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA. .,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Matschke J, Sehner S, Gallinat J, Siegers J, Murroni M, Püschel K, Glatzel M. No difference in the prevalence of Alzheimer-type neurodegenerative changes in the brains of suicides when compared with controls: an explorative neuropathologic study. Eur Arch Psychiatry Clin Neurosci 2018; 268:509-517. [PMID: 29383449 DOI: 10.1007/s00406-018-0876-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022]
Abstract
Suicide ranks among the leading causes of death for individuals of all ages with highest rates in the elderly. The cause of suicide is considered a multifactorial phenomenon. A variety of neurodegenerative diseases, notably Alzheimer's disease, or, more recently, tauopathies as frontotemporal lobar degeneration or chronic traumatic encephalopathy, has been suggested as risk factor for suicide. Accordingly, we hypothesized that neurodegenerative changes typical of these diseases should be more prevalent in the brains of suicides when compared with controls. Suicides from the German federal state of Hamburg (n = 162) were compared with age- and sex-matched controls who died of other cause. Neuropathological assessment included semiquantitative analysis of neuritic plaques and neurofibrillary tangles visualized with silver stains; in addition, quantitative immunohistochemical analysis of β-amyloid load and counts of tau-positive neurofibrillary tangles and neuropil threads was done. Univariate analysis and multivariable conditional logistic regression models did not show an effect of any parameter associated with the odds of committing suicide. On the contrary, after stratification for age, older suicide victims (over 48 years) showed lower β-amyloid loads when compared to controls in the univariate analysis (suicides: 4.7 ± 12.9; controls: 9.9 ± 20.9; p = 0.031; r = - 0.17). In conclusion, neuropathological characteristics of Alzheimer's disease and common tauopathies associated with age seem to be of limited relevance for suicides. However, intact cognition when planning and carrying out complex acts may be of importance in the context of suicide.
Collapse
Affiliation(s)
- Jakob Matschke
- Forensic Neuropathology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Susanne Sehner
- Department of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julia Siegers
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Melanie Murroni
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
20
|
He Z, Elbaz A, Gao B, Zhang J, Su E, Gu Z. Disposable Morpho menelaus Based Flexible Microfluidic and Electronic Sensor for the Diagnosis of Neurodegenerative Disease. Adv Healthc Mater 2018; 7. [PMID: 29345124 DOI: 10.1002/adhm.201701306] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/29/2017] [Indexed: 01/01/2023]
Abstract
Rapid early disease prevention or precise diagnosis is almost impossible in low-resource settings. Natural ordered structures in nature have great potential for the development of ultrasensitive biosensors. Here, motivated by the unique structures and extraordinary functionalities of ordered structures in nature, a biosensor based on butterfly wings is presented. In this study, a flexible Morpho menelaus (M. menelaus) based wearable sensor is integrated with a microfluidic system and electronic networks to facilitate the diagnosis of neurodegenerative disease (ND). In the microfluidic section, the structural characteristics of the M. menelaus wings up layer are combined with SiO2 nanoparticles to form a heterostructure. The fluorescent enhancement property of the heterostructure is used to increase the fluorescent intensity for multiplex detection of two proteins: IgG and AD7c-NTP. For the electronic section, conductive ink is blade-coated on the under layer of wings for measuring resistance change rate to obtain the frequency of static tremors of ND patients. The disposable M. menelaus based flexible microfluidic and electronic sensor enables biochemical-physiological hybrid monitoring of ND. The sensor is also amenable to a variety of applications, such as comprehensive personal healthcare and human-machine interaction.
Collapse
Affiliation(s)
- Zhenzhu He
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Abdelrahman Elbaz
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Bingbing Gao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Junning Zhang
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| | - Enben Su
- Getein Biotech; Inc. No.9 Bofu Road, Luhe Distric Nanjing 211505 Jiangsu China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| |
Collapse
|
21
|
Abstract
Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain.
Collapse
Affiliation(s)
- Hei Ming Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Wai-Lung Ng
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Steve M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Joint Laboratory of Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Beach TG, Adler CH, Serrano G, Sue LI, Walker D, Dugger BN, Shill HA, Driver-Dunckley E, Caviness JN, Intorcia A, Filon J, Scott S, Garcia A, Hoffman B, Belden CM, Davis KJ, Sabbagh MN. Prevalence of Submandibular Gland Synucleinopathy in Parkinson's Disease, Dementia with Lewy Bodies and other Lewy Body Disorders. JOURNAL OF PARKINSON'S DISEASE 2016; 6:153-63. [PMID: 26756744 PMCID: PMC5498170 DOI: 10.3233/jpd-150680] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Clinical misdiagnosis, particularly at early disease stages, is a roadblock to finding new therapies for Lewy body disorders. Biopsy of a peripheral site might provide improved diagnostic accuracy. Previously, we reported, from both autopsy and needle biopsy, a high prevalence of submandibular gland synucleinopathy in Parkinson's disease (PD). Here, we report on an extension of these studies to subjects with dementia with Lewy bodies (DLB) and other Lewy body disorders in 228 autopsied subjects from the Arizona Study of Aging and Neurodegenerative Disorders. OBJECTIVE To provide an estimate of the prevalence of histological synucleinopathy in the submandibular glands of subjects with PD and other Lewy body disorders. METHODS Submandibular gland sections from autopsied subjects were stained with an immunohistochemical method for α-synuclein phosphorylated at serine 129. Included were 146 cases with CNS Lewy-type synucleinopathy (LTS), composed of 46 PD, 28 DLB, 14 incidental Lewy body disease (ILBD), 33 Alzheimer's disease with Lewy bodies (ADLB) and 2 with progressive supranuclear palsy and Lewy bodies (PSPLB). Control subjects included 79 normal elderly, 15 AD, 12 PSP, 2 conticobasal degeneration (CBD) and 2 multiple system atrophy (MSA). RESULTS Submandibular gland LTS was found in 42/47 (89%) of the PD subjects, 20/28 (71%) DLB, 4/33 (12%) ADLB and 1/9 (11%) ILBD subjects but none of the 110 control subjects. CONCLUSIONS These results provide support for further clinical trials of in vivo submandibular gland diagnostic biopsy for PD and DLB. An accurate peripheral biopsy diagnosis would assist subject selection for clinical trials and could also be used to verify other biomarkers.
Collapse
Affiliation(s)
| | | | | | - Lucia I. Sue
- Banner Sun Health Research Institute, Sun City, AZ
| | - D.G. Walker
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | | | | | | | - Sarah Scott
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | | | | | | |
Collapse
|
23
|
Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE, Dugger BN, Maarouf C, Birdsill AC, Intorcia A, Saxon-Labelle M, Pullen J, Scroggins A, Filon J, Scott S, Hoffman B, Garcia A, Caviness JN, Hentz JG, Driver-Dunckley E, Jacobson SA, Davis KJ, Belden CM, Long KE, Malek-Ahmadi M, Powell JJ, Gale LD, Nicholson LR, Caselli RJ, Woodruff BK, Rapscak SZ, Ahern GL, Shi J, Burke AD, Reiman EM, Sabbagh MN. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 2015; 35:354-89. [PMID: 25619230 DOI: 10.1111/neup.12189] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022]
Abstract
The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer's disease, Parkinson's disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson's Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson's Research. The Program has made rapid autopsy a priority, with a 3.0-hour median post-mortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than 200 grant-funded projects.
Collapse
Affiliation(s)
- Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly A Shill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - LihFen Lue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex E Roher
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Chera Maarouf
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex C Birdsill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Joel Pullen
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Jessica Filon
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Sarah Scott
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Angelica Garcia
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | - Kathryn J Davis
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Kathy E Long
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Lisa D Gale
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | | | - Jiong Shi
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Anna D Burke
- Banner Alzheimer Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
24
|
Clinicopathological outcomes of prospectively followed normal elderly brain bank volunteers. J Neuropathol Exp Neurol 2014; 73:244-52. [PMID: 24487796 DOI: 10.1097/nen.0000000000000046] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Existing reports on the frequencies of neurodegenerative diseases are typically based on clinical diagnoses. We sought to determine these frequencies in a prospectively assessed, community-based autopsy series. Included subjects had normal cognitive and movement disorder assessments at study entry. Of the 119 cases meeting these criteria, 52% were women; the median age of study entry was 83.5 years (range, 67-99 years), and the median duration from the first visit until death was 4.3 years (range, 0-10 years). At autopsy, clinicopathological diagnoses were made in 30 cases (25%). These diagnoses included 20 with Alzheimer disease (AD) (17%), 7 with vascular dementia (6%), 4 with progressive supranuclear palsy (3%), 3 with Parkinson disease and 1 each with dementia with Lewy bodies, corticobasal degeneration, or multiple system atrophy (0.8% each). Of the 87 subjects still clinically normal at death (73%), 33 had extensive AD pathology (preclinical AD) (38%), 17 had incidental Lewy bodies (20%), and 4 had incidental pathology consistent with progressive supranuclear palsy (5%). The diagnoses were not mutually exclusive. Although limited by a relatively small sample size, the neuropathological outcome of these initially normal elderly subjects represents a rough estimate of the incidence of these neurodegenerative conditions over a defined time period.
Collapse
|
25
|
Dugger BN, Adler CH, Shill HA, Caviness J, Jacobson S, Driver-Dunckley E, Beach TG. Concomitant pathologies among a spectrum of parkinsonian disorders. Parkinsonism Relat Disord 2014; 20:525-9. [PMID: 24637124 DOI: 10.1016/j.parkreldis.2014.02.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/30/2014] [Accepted: 02/12/2014] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Many clinicopathological studies do not specify the presence of other pathologies located within the brain, so disease heterogeneity may be under appreciated. OBJECTIVE The purpose of this study was to determine the frequencies of concomitant pathologies among parkinsonian disorders. METHODS Data from the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND), an ongoing longitudinal clinical-neuropathological study, was used to analyze concomitant pathologies, including Alzheimer's disease (AD), argyrophilic grains (Arg), cerebral amyloid angiopathy (CAA), cerebral white matter rarefaction (CWMR) and overlap of each parkinsonian disorder in clinico-pathologically defined Parkinson's disease (PD; N = 140), dementia with Lewy bodies (DLB; N = 90), progressive supranuclear palsy (PSP; N = 64), multiple system atrophy (MSA; N = 6), corticobasal degeneration (CBD; N = 7); and normal elderly (controls; N = 166). RESULTS Of the neuropathologically-confirmed PD cases, 38% had a concomitant diagnosis of AD, 9% PSP, 25% Arg, 44% CWMR, and 24% CAA. For DLB, 89% had AD, 1% PSP, 21% Arg, 51% CWMR, and 50% CAA. For PSP cases, 36% had AD, 20% PD, 1% DLB, 44% Arg, 52% CWMR and 25% CAA. Similar heterogeneity was seen for MSA and CBD cases. Many cases had more than one of the above additional diagnoses. CONCLUSIONS These data demonstrate a great deal of concomitant pathologies among different types of parkinsonian disorders; this may help explain the heterogeneity of clinical findings.
Collapse
Affiliation(s)
| | | | - Holly A Shill
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | | | | |
Collapse
|
26
|
Samarasekera N, Al-Shahi Salman R, Huitinga I, Klioueva N, McLean CA, Kretzschmar H, Smith C, Ironside JW. Brain banking for neurological disorders. Lancet Neurol 2013; 12:1096-105. [PMID: 24074724 DOI: 10.1016/s1474-4422(13)70202-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain banks are used to gather, store, and provide human brain tissue for research and have been fundamental to improving our knowledge of the brain in health and disease. To maintain this role, the legal and ethical issues relevant to the operations of brain banks need to be more widely understood. In recent years, researchers have reported that shortages of high-quality brain tissue samples from both healthy and diseased people have impaired their efforts. Closer collaborations between brain banks and improved strategies for brain donation programmes will be essential to overcome these problems as the demand for brain tissue increases and new research techniques become more widespread, with the potential for substantial scientific advances in increasingly common neurological disorders.
Collapse
Affiliation(s)
- Neshika Samarasekera
- Division of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Louis ED, Bain PG, Hallett M, Jankovic J, Vonsattel JPG. What is It? Difficult to Pigeon Hole Tremor: a Clinical-Pathological Study of a Man with Jaw Tremor. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2013; 3. [PMID: 23864988 PMCID: PMC3712322 DOI: 10.7916/d8rn36j6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/17/2013] [Indexed: 12/01/2022]
Abstract
Background The phenomenology of tremor is broad and its classification is complicated. Furthermore, the full range of tremor phenomenology with respect to specific neurological and neurodegenerative diseases has not been fully elaborated. Case Report This right-handed man had a chief complaint of jaw tremor, which began approximately 20 years prior to death at age 101 years. He had been diagnosed with essential tremor (ET) by a local doctor. His examination at age 100 years was notable for marked jaw tremor at rest in the absence of other clear features of parkinsonism, mild kinetic tremor of the hands and, in the last year of life, a score of 22/41 on a cognitive screen. A senior movement disorder neurologist raised doubt about the “ET” diagnosis. The history and videotaped examination were reviewed by three additional senior tremor experts, who raised a number of diagnostic possibilities. A complete postmortem examination was performed by a senior neuropathologist, and was notable for the presence of tufted astrocytes, AT8-labeled glial cytoplasmic inclusions, and globose neuronal tangles. These changes were widespread and definitive. A neuropathological diagnosis of progressive supranuclear palsy was assigned. Discussion This case presents with mixed and difficult to clinically classify tremor phenomenology and other neurological findings. The postmortem diagnosis was not predicted based on the clinical features, and it is possible that it does not account for all of the features. The case raises many interesting issues and provides a window into the complexity of the interpretation, nosology, and classification of tremor phenomenology.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America ; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | | | | | | | | |
Collapse
|
28
|
Abstract
The clinical diagnosis of Parkinson disease (PD) is incorrect in 30% or more of subjects particularly at the time of symptom onset. Because Lewy-type α-synucleinopathy is present in the submandibular glands of PD patients, we assessed the feasibility of submandibular gland biopsy for diagnosing PD. We performed immunohistochemical staining for Lewy-type α-synucleinopathy in sections of large segments (simulating open biopsy) and needle cores of submandibular glands from 128 autopsied and neuropathologically classified subjects, including 28 PD, 5 incidental Lewy body disease, 5 progressive supranuclear palsy (3 with concurrent PD), 3 corticobasal degeneration, 2 multiple system atrophy, 22 Alzheimer disease with Lewy bodies, 16 Alzheimer disease without Lewy bodies, and 50 normal elderly. Immunoreactive nerve fibers were present in large submandibular gland sections of all 28 PD subjects (including 3 that also had progressive supranuclear palsy); 3 Alzheimer disease with Lewy bodies subjects were also positive, but none of the other subjects were positive. Cores from frozen submandibular glands taken with 18-gauge needles (total length, 15-38 mm; between 10 and 118 sections per subject examined) were positive for Lewy-type α-synucleinopathy in 17 of 19 PD patients. These results suggest that biopsy of the submandibular gland may be a feasible means of improving PD clinical diagnostic accuracy. This would be particularly advantageous for subject selection in early-stage clinical trials for invasive therapies or for verifying other biomarker studies.
Collapse
|
29
|
Essential tremor followed by progressive supranuclear palsy: postmortem reports of 11 patients. J Neuropathol Exp Neurol 2013; 72:8-17. [PMID: 23242279 DOI: 10.1097/nen.0b013e31827ae56e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
For many years, clinicians have commented on the development of signs of parkinsonism among their essential tremor (ET) patients, but the links between ET and parkinsonism are not well understood. We report 11 (12.4%) of 89 ET patients who were prospectively collected at the Essential Tremor Centralized Brain Repository during the course of its first 9 years. All patients had long-standing ET (median duration, 38 years); there was a 5- to 49-year latency from the onset of ET to the development of either parkinsonism or dementia.Despite the presence of parkinsonism or dementia during life, none had been diagnosed clinically with progressive supranuclear palsy(PSP). All 11 received the postmortem diagnosis of PSP. The prevalence of PSP in this ET sample (12.4%) is clearly larger than the population prevalence of PSP (0.001%-0.0065%). It is also 2 to 5 times the proportion of normal cases with incidental PSP in 2 previous autopsy series. This case series raises the questions of an association between ET and PSP, whether ET patients are at an increased risk of developing PSP, and what the proportion of ET patients who develop presumed Parkinson disease or Alzheimer disease in life actually have PSP (i.e. ET + PSP).
Collapse
|
30
|
Martinez-Saez E, Gelpi E, Rey MJ, Ferrer I, Ribalta T, Botta-Orfila T, Nos C, Yagüe J, Sanchez-Valle R. Hirano body-rich subtypes of Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 2012; 38:153-61. [PMID: 21726270 DOI: 10.1111/j.1365-2990.2011.01208.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In definite Creutzfeldt-Jakob disease (CJD), morphological and immunohistochemical patterns are useful to identify molecular subtypes. Severe cerebellar pathology and hippocampal involvement helps to identify VV subtypes. The rare VV1 variant (<1%), more frequent in young individuals, is additionally characterized by the presence of ballooned neurones in affected areas. In 1985, Cartier et al. described a family cluster of three individuals with an ataxic CJD form, showing, in addition to severe cerebellar and hippocampal involvement, the presence of frequent Hirano bodies (HB) in CA1 pyramidal neurones. HB are frequently found in aged individuals with Alzheimer pathology although they are not a specific finding. AIMS AND METHODS In this study, we evaluated the presence of HB in hippocampi of 54 genetically and molecularly characterized CJD cases, aiming to elucidate whether additional morphological features could be helpful to point to molecular subtypes. RESULTS We identified nine cases (four VV1, one out of three MV2K, three out of six MV2K+2C and one MV carrying a 96-base pair insertion) with abundant, partly bizarre and clustered HB in CA1 sector, not observed in other subtypes. The presence of HB was independent of hippocampal involvement by the disease itself. CONCLUSIONS Clusters of abundant HB might be found in rare CJD subtypes such as VV1, MV2K/MV2K+2C and some genetic cases. In addition to histopathological and PrP immunohistochemical deposition patterns, their presence might be a useful additional morphologic feature that could point to the molecular subtype, especially when genetic and/or Western blot analyses are not available.
Collapse
Affiliation(s)
- E Martinez-Saez
- Neurological Tissue Bank-University of Barcelona CCiT, Hospital Clínic, IDIBAPS Vall d'Hebron Research Institute and Pathology Department, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reichard RR, Parisi JE. A Pragmatic Approach to the Postmortem Neuropathological Diagnosis of Dementia. Acad Forensic Pathol 2012. [DOI: 10.23907/2012.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Increased age is a significant risk factor for the development of dementia, predominately Alzheimer disease (AD). Since the fastest growing population sector in the United States is individuals over the age of 85 years, a surge in cases of dementia is expected. The inherent features of dementia mean those affected will eventually be incapacitated and require a high level of medical care. The majority of individuals dying from the complications of dementia will be under the care of a physician. However, dementia is a significant morbidity and demented patients are at risk from dying of non-natural causes (e.g., neglect/abuse or accidental injury) that necessitates the medical examiner/coroner (ME/C) to determine if the individual was incapacitated by a neurodegenerative process. The definitive diagnosis of a specific type of dementia requires a postmortem neuropathological examination. This paper provides a concise description of and a practical neuropathological algorithmic approach to the diagnosis of the most common neurodegenerative diseases.
Collapse
Affiliation(s)
- R. Ross Reichard
- Associate Consultant with the Mayo Clinic Division of Anatomic Pathology in Rochester, MN
| | - Joseph E. Parisi
- Mayo Clinic Division of Anatomic Pathology in Rochester, MN (JEP)
| |
Collapse
|
32
|
Gaig C, Valldeoriola F, Gelpi E, Ezquerra M, Llufriu S, Buongiorno M, Rey MJ, Martí MJ, Graus F, Tolosa E. Rapidly progressive diffuse Lewy body disease. Mov Disord 2011; 26:1316-23. [DOI: 10.1002/mds.23506] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/05/2022] Open
|
33
|
Evidente VGH, Adler CH, Sabbagh MN, Connor DJ, Hentz JG, Caviness JN, Sue LI, Beach TG. Neuropathological findings of PSP in the elderly without clinical PSP: possible incidental PSP? Parkinsonism Relat Disord 2011; 17:365-71. [PMID: 21420891 DOI: 10.1016/j.parkreldis.2011.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 11/29/2022]
Abstract
AIMS We aimed to describe cases with incidental neuropathological findings of progressive supranuclear palsy (PSP) from the Banner Sun Health Research Institute Brain and Body Donation Program. METHODS We performed a retrospective review of 277 subjects with longitudinal motor and neuropsychological assessments who came to autopsy. The mean Gallyas-positive PSP features grading for subjects with possible incidental neuropathological PSP was compared to those of subjects with clinically manifest disease. RESULTS There were 5 cases with histopathological findings suggestive of PSP, but no parkinsonism, dementia or movement disorder during life. Cognitive evaluation revealed 4 of the 5 cases to be cognitively normal; one case had amnestic mild cognitive impairment (MCI) in her last year of life. The mean age at death of the 5 cases was 88.9 years (range 80-94). All 5 individuals had histopathologic microscopic findings suggestive of PSP. Mean Gallyas-positive PSP features grading was significantly lower in subjects with possible incidental neuropathological PSP than subjects with clinical PSP, particularly in the subthalamic nucleus. CONCLUSIONS We present 5 patients with histopathological findings suggestive of PSP, without clinical PSP, dementia or parkinsonism during life. These incidental neuropathological PSP findings may represent the early or pre-symptomatic stage of PSP. The mean Gallyas-positive PSP features grading was significantly lower in possible incidental PSP than in clinical PSP, thus suggesting that a threshold of pathological burden needs to be reached within the typically affected areas in PSP before clinical signs and symptoms appear.
Collapse
|
34
|
Roher AE, Tyas SL, Maarouf CL, Daugs ID, Kokjohn TA, Emmerling MR, Garami Z, Belohlavek M, Sabbagh MN, Sue LI, Beach TG. Intracranial atherosclerosis as a contributing factor to Alzheimer's disease dementia. Alzheimers Dement 2011; 7:436-44. [PMID: 21388893 DOI: 10.1016/j.jalz.2010.08.228] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/30/2010] [Accepted: 08/06/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND A substantial body of evidence collected from epidemiologic, correlative, and experimental studies strongly associates atherosclerotic vascular disease (AVD) with Alzheimer's disease (AD). Depending on the precise interrelationship between AVD and AD, systematic application of interventions used to maintain vascular health and function as a component of standard AD therapy offers the prospect of mitigating the presently inexorable course of dementia. To assess this hypothesis, it is vital to rigorously establish the measures of AVD that are most strongly associated with an AD diagnosis. METHODS A precise neuropathological diagnosis was established for all subjects, using a battery of genetic, clinical, and histological methods. The severity of atherosclerosis in the circle of Willis was quantified by direct digitized measurement of arterial occlusion in postmortem specimens and was compared between AD and nondemented control groups by calculating a corresponding index of occlusion. RESULTS Atherosclerotic occlusion of the circle of Willis arteries was more extensive in the AD group than in the nondemented control group. Statistically significant differences were also observed between control and AD groups with regard to Braak stage, total plaque score, total neurofibrillary tangle score, total white matter rarefaction score, brain weight, Mini-Mental State Examination scores, and apolipoprotein E allelic frequencies. CONCLUSIONS Our results, combined with a consideration of the multifaceted effects of impaired cerebral circulation, suggest an immediate need for prospective clinical trials to assess the efficacy of AD prevention using antiatherosclerotic agents.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Birdsill AC, Walker DG, Lue L, Sue LI, Beach TG. Postmortem interval effect on RNA and gene expression in human brain tissue. Cell Tissue Bank 2010; 12:311-8. [PMID: 20703815 DOI: 10.1007/s10561-010-9210-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 07/22/2010] [Indexed: 11/29/2022]
Abstract
Banked tissue is essential to the study of neurological disease but using postmortem tissue introduces a number of possible confounds. Foremost amongst these are factors relating to variation in postmortem interval (PMI). Currently there are conflicting reports on how PMI affects overall RNA integrity, and very few reports of how gene expression is affected by PMI. We analyzed total RNA extracted from frozen cerebellar cortex from 79 deceased human subjects enrolled in the Banner Sun Health Research Institute Brain and Body Donation Program. The PMI, which ranged from 1.5 to 45 h, correlated with overall RNA quality measures including RNA Integrity Number (RIN) (r = -0.34, P = 0.002) and RNA quantitative yield (r = -0.25, P = 0.02). Additionally, we determined the expression of 89 genes using a PCR-based gene expression array (RT(2) Profiler™ PCR Array: Human Alzheimer's Disease; SABiosciences™, Frederick, MD). A greater proportion of genes had decreased rather than increased expression with increasing PMI (65/89 vs. 20/89; P < 0.0001). Of these, transcripts from the genes ADAM9, LPL, PRKCG, and SERPINA3 had significantly decreased expression with increasing PMI (P < 0.01). No individual gene transcripts had significantly increased expression with increasing PMI. In conclusion, it is apparent that RNA degrades progressively with increasing PMI and that measurement of gene expression in brain tissue with longer PMI may give artificially low values. For tissue derived from autopsy, a short PMI optimizes its utility for molecular research.
Collapse
Affiliation(s)
- Alex C Birdsill
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA
| | | | | | | | | |
Collapse
|
36
|
Juréus A, Swahn BM, Sandell J, Jeppsson F, Johnson AE, Johnström P, Neelissen JAM, Sunnemark D, Farde L, Svensson SPS. Characterization of AZD4694, a novel fluorinated Abeta plaque neuroimaging PET radioligand. J Neurochem 2010; 114:784-94. [PMID: 20477945 DOI: 10.1111/j.1471-4159.2010.06812.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positron emission tomography (PET) radioligands that bind selectively to beta-amyloid plaques (Abeta) are promising imaging tools aimed at supporting the diagnosis of Alzheimer's disease and the evaluation of new drugs aiming to modify amyloid plaque load. For extended clinical use, there is a particular need for PET tracers labeled with fluorine-18, a radionuclide with 110 min half-life allowing for central synthesis followed by wide distribution. The development of fluorinated radioligands is, however, challenging because of the lipophilic nature of aromatic fluorine, rendering fluorinated ligands more prone to have high non-specific white matter binding. We have here developed the new benzofuran-derived radioligand containing fluorine, AZD4694 that shows high affinity for beta-amyloid fibrils in vitro (K(d) = 2.3 +/- 0.3 nM). In cortical sections from human Alzheimer's disease brain [(3)H]AZD4694 selectively labeled beta-amyloid deposits in gray matter, whereas there was a lower level of non-displaceable binding in plaque devoid white matter. Administration of unlabeled AZD4694 to rat showed that it has a pharmacokinetic profile consistent with good PET radioligands, i.e., it quickly entered and rapidly cleared from normal rat brain tissue. Ex vivo binding data in aged Tg2576 mice after intravenous administration of [(3)H]AZD4694 showed selective binding to beta-amyloid deposits in a reversible manner. In Tg2576 mice, plaque bound [(3)H]AZD4694 could still be detected 80 min after i.v. administration. Taken together, the preclinical profile of AZD4694 suggests that fluorine-18 labeled AZD4694 may have potential for PET-visualization of cerebral beta-amyloid deposits in the living human brain.
Collapse
Affiliation(s)
- Anders Juréus
- Department of Neuroscience, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Roher AE, Maarouf CL, Sue LI, Hu Y, Wilson J, Beach TG. Proteomics-derived cerebrospinal fluid markers of autopsy-confirmed Alzheimer's disease. Biomarkers 2010; 14:493-501. [PMID: 19863188 DOI: 10.3109/13547500903108423] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The diagnostic performance of several candidate cerebrospinal fluid (CSF) protein biomarkers in neuropathologically confirmed Alzheimer's disease (AD), non-demented (ND) elderly controls and non-AD dementias (NADD) was assessed. Candidate markers were selected on the basis of initial two-dimensional gel electrophoresis studies or by literature review. Markers selected by the former method included apolipoprotein A-1 (ApoA1), haemopexin (HPX), transthyretin (TTR) and pigment epithelium-derived factor (PEDF), while markers identified from the literature included Abeta1-40, Abeta1-42, total tau, phosphorylated tau, alpha-1 acid glycoprotein (A1GP), haptoglobin, zinc alpha-2 glycoprotein (Z2GP) and apolipoprotein E (ApoE). Ventricular CSF concentrations of the markers were measured by enzyme-linked immunosorbent assay (ELISA). The concentrations of Abeta1-42, ApoA1, A1GP, ApoE, HPX and Z2GP differed significantly among AD, ND and NADD subjects. Logistic regression analysis for the diagnostic discrimination of AD from ND found that Abeta1-42, ApoA1 and HPX each had significant and independent associations with diagnosis. The CSF concentrations of these three markers distinguished AD from ND subjects with 84% sensitivity and 72% specificity, with 78% of subjects correctly classified. By comparison, using Abeta1-42 alone gave 79% sensitivity and 61% specificity, with 68% of subjects correctly classified. For the diagnostic discrimination of AD from NADD, only the concentration of Abeta1-42 was significantly related to diagnosis, with a sensitivity of 58%, specificity of 86% and 86% correctly classified. The results indicate that for the discrimination of AD from ND control subjects, measurement of a set of markers including Abeta1-42, ApoA1 and HPX improved diagnostic performance over that obtained by measurement of Abeta1-42 alone. For the discrimination of AD from NADD subjects, measurement of Abeta1-42 alone was superior.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA.
| | | | | | | | | | | |
Collapse
|
38
|
The Effect of Prolonged Fixation Time on Immunohistochemical Staining of Common Neurodegenerative Disease Markers. J Neuropathol Exp Neurol 2010; 69:40-52. [DOI: 10.1097/nen.0b013e3181c6c13d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
39
|
Choi SA, Evidente VGH, Caviness JN, Shill HA, Sabbagh MN, Connor DJ, Hentz JG, Adler CH, Beach TG. Are there differences in cerebral white matter lesion burdens between Parkinson's disease patients with or without dementia? Acta Neuropathol 2010; 119:147-9. [PMID: 19956959 DOI: 10.1007/s00401-009-0620-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 01/06/2023]
|
40
|
Kalaitzakis ME, Pearce RKB. The morbid anatomy of dementia in Parkinson's disease. Acta Neuropathol 2009; 118:587-98. [PMID: 19820956 DOI: 10.1007/s00401-009-0597-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 12/31/2022]
Abstract
Dementia in Parkinson's disease (PD/PDD) is a common complication with a prevalence of up to 50%, but the specific changes underlying the cognitive decline remain undefined. Neuronal degeneration resulting in the dysfunction of multiple subcortical neurochemical projection systems has been described along with Lewy body-type pathology in cortical and limbic regions. Advanced alpha-synuclein (alphaSyn) pathology is not necessarily sufficient for producing dementia and concomitant Alzheimer's disease (AD) change has also been proposed as a possible substrate of PDD. A lack of consensus in the extant literature likely stems from clinical heterogeneity and variable reliability in clinical characterisation as well as other historical and methodological issues. The concurrent presence of abnormally deposited alphaSyn, amyloid-beta and tau proteins in the PDD brain and the interaction of these molecules in a linked pathological cascade of AD and PD-related mechanisms may prove important in determining the underlying pathological process for the development of dementia in PD and this concept of combined pathologies awaits further investigation.
Collapse
Affiliation(s)
- Michail E Kalaitzakis
- Neuropathology Unit, Division of Neuroscience and Mental Health, Department of Clinical Neuroscience, Imperial College Healthcare NHS Trust, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK.
| | | |
Collapse
|
41
|
Josephs KA, Stroh A, Dugger B, Dickson DW. Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta Neuropathol 2009; 118:349-58. [PMID: 19455346 DOI: 10.1007/s00401-009-0547-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/06/2009] [Accepted: 05/06/2009] [Indexed: 01/10/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) can be classified as tau-positive (FTLD-tau) and tau-negative FTLD. The most common form of tau-negative FTLD is associated with neuronal inclusions that are composed of TAR DNA-binding protein 43 (TDP-43) (FTLD-TDP). Recent evidence suggests that FTLD-TDP can be further subdivided into at least three major histologic variants based on patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) and dystrophic neurites (DN) in neocortex and hippocampus. The aim of this study was to extend the histologic analysis to other brain regions and to determine if there were distinct clinical and pathologic characteristics of the FTLD-TDP subtypes. Thirty-nine FTLD-TDP cases were analyzed (Mackenzie type 1 n = 24, Mackenzie type 2 n = 9, Mackenzie type 3 n = 6). There was a highly significant association between clinical syndrome and FTLD-TDP subtype, with progressive non-fluent aphasia associated with type 1, semantic dementia with type 2, and behavioral variant frontotemporal dementia with types 1, 2 and 3. Semi-quantitative analysis of NCI and DN demonstrated different patterns of involvement in cortical, subcortical and brainstem areas that were characteristic for each of the three types of FTLD-TDP. Type 1 had a mixture of NCI and DN, as well as intranuclear inclusions in most cases and TDP-43 pathology at all levels of the neuraxis, but less in brainstem than supratentorial structures. Type 2 cases were characterized by predominance of long, thick DN in the cortex, as well as numerous NCI in hippocampus, amygdala and basal ganglia, but virtually no NCI and only sparse DN in diencephalon and brainstem. Type 3 had a paucity of DN at all levels of the neuraxis and significantly more NCI in the hypoglossal nucleus than the other types. These findings extend previously described clinicopathological associations of FTLD-TDP subtypes and support the notion that FTLD-TDP subtypes may be distinct clinicopathologic disorders.
Collapse
|
42
|
Hoozemans JJM, van Haastert ES, Nijholt DAT, Rozemuller AJM, Eikelenboom P, Scheper W. The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1241-51. [PMID: 19264902 DOI: 10.2353/ajpath.2009.080814] [Citation(s) in RCA: 467] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum triggers a cellular stress response called the unfolded protein response (UPR) that protects the cell against the toxic buildup of misfolded proteins. Previously, we reported that UPR activation is increased in Alzheimer's disease (AD) patients. How the UPR relates to the pathological hallmarks of AD is still elusive. In the present study, the involvement of UPR activation in neurofibrillary degeneration in AD was investigated. Immunoreactivity for the phosphorylated UPR activation markers pancreatic ER kinase (pPERK), eukaryotic initiation factor 2alpha, and inositol-requiring enzyme 1alpha was observed in hippocampal neurons associated with granulovacuolar degeneration. The percentage of pPERK-immunoreactive neurons was increased in AD cases compared with nondemented control cases and with the Braak stage for neurofibrillary changes. Although absent from neurofibrillary tangles, pPERK immunoreactivity was most abundant in neurons with diffuse localization of phosphorylated tau protein. Additional analyses showed that pPERK immunoreactivity was associated with ubiquitin and the ubiquitin binding protein p62. A strong co-occurrence of immunoreactivity for both pPERK and glycogen synthase kinase 3beta in neurons was also observed. Together, these data indicate that UPR activation in AD neurons occurs at an early stage of neurofibrillary degeneration and suggest that the prolonged activation of the UPR is involved in both tau phosphorylation and neurodegeneration in AD pathogenesis.
Collapse
Affiliation(s)
- Jeroen J M Hoozemans
- VU University Medical Center, Department of Pathology, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
43
|
Protein-Based Neuropathology and Molecular Classification of Human Neurodegenerative Diseases. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Dementia and motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2008. [PMID: 18631765 DOI: 10.1016/s0072-9752(07)01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
45
|
Beach TG, Sue LI, Walker DG, Roher AE, Lue L, Vedders L, Connor DJ, Sabbagh MN, Rogers J. The Sun Health Research Institute Brain Donation Program: description and experience, 1987-2007. Cell Tissue Bank 2008; 9:229-45. [PMID: 18347928 PMCID: PMC2493521 DOI: 10.1007/s10561-008-9067-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 11/08/2007] [Indexed: 11/30/2022]
Abstract
The Brain Donation Program at Sun Health Research Institute has been in continual operation since 1987, with over 1000 brains banked. The population studied primarily resides in the retirement communities of northwest metropolitan Phoenix, Arizona. The Institute is affiliated with Sun Health, a nonprofit community-owned and operated health care provider. Subjects are enrolled prospectively to allow standardized clinical assessments during life. Funding comes primarily from competitive grants. The Program has made short postmortem brain retrieval a priority, with a 2.75-h median postmortem interval for the entire collection. This maximizes the utility of the resource for molecular studies; frozen tissue from approximately 82% of all cases is suitable for RNA studies. Studies performed in-house have shown that, even with very short postmortem intervals, increasing delays in brain retrieval adversely affect RNA integrity and that cerebrospinal fluid pH increases with postmortem interval but does not predict tissue viability.
Collapse
|
46
|
Papapetropoulos S, Shehadeh L, McCorquodale D. Optimizing human post-mortem brain tissue gene expression profiling in Parkinson's disease and other neurodegenerative disorders: from target "fishing" to translational breakthroughs. J Neurosci Res 2008; 85:3013-24. [PMID: 17503538 DOI: 10.1002/jnr.21355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insights on the etiopathogenesis of common neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD) have been largely based on the discovery of gene mutations in genetically determined forms. Although these discoveries have been helpful in elucidating the basic molecular pathogenesis of familial forms, they represent a small fraction of cases, leaving the large majority classified as idiopathic. In the postgenomic era, brain tissue gene expression profiling has allowed relative quantitative assessment of thousands of genes simultaneously from one tissue sample, providing clues for novel candidate genes and processes implicated in neurodegenerative disorders. Some remain critical of "fishing expedition" science, but gene expression profiling is a discovery-based procedure well suited for the study of largely idiopathic and multifactorial diseases. However, the technology is still under development, and many methodological and biological aspects contribute to the heterogeneous results obtained from gene expression profiling. In this Review, we discuss the advantages and limitations of this technology in simple terms and identify the key variables that influence/limit gene expression profiling-derived translational breakthroughs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Spiridon Papapetropoulos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
47
|
Ye L, Velasco A, Fraser G, Beach TG, Sue L, Osredkar T, Libri V, Spillantini MG, Goedert M, Lockhart A. In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. J Neurochem 2008; 105:1428-37. [PMID: 18221373 PMCID: PMC2408655 DOI: 10.1111/j.1471-4159.2008.05245.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid containing deposits are a defining neuropathological feature of a wide range of dementias and movement disorders. The positron emission tomography tracer PIB (Pittsburgh Compound-B, 2-[4′-(methylamino)phenyl]-6-hydroxybenzothiazole) was developed to target senile plaques, an amyloid containing pathological hallmark of Alzheimer's disease, formed from the amyloid-β peptide. Despite the fact that PIB was developed from the pan-amyloid staining dye thioflavin T, no detailed characterisation of its interaction with other amyloid structures has been reported. In this study, we demonstrate the presence of a high affinity binding site (Kd∼4 nM) for benzothiazole derivatives, including [3H]-PIB, on α-synuclein (AS) filaments generated in vitro, and further characterise this binding site through the use of radioligand displacement assays employing 4-N-methylamino-4′-hydroxystilbene (SB13) (Ki = 87 nM) and 2-(1-{6-[(2-fluoroethyl(methyl)amino]-2-naphthyl}ethylidene)malononitrile (FDDNP) (Ki = 210 nM). Despite the presence of a high-affinity binding site on AS filaments, no discernible interaction of [3H]-PIB was detected with amygdala sections from Parkinson's disease cases containing frequent AS-immunoreactive Lewy bodies and related neurities. These findings suggest that the density and/or accessibility of AS binding sites in vivo are significantly less than those associated with amyloid-β peptide lesions. Lewy bodies pathology is therefore unlikely to contribute significantly to the retention of PIB in positron emission tomography imaging studies. J. Neurochem. (2008) 105, 1428–1437.
Collapse
Affiliation(s)
- Liang Ye
- GlaxoSmithKline, Clinical Science and Technology, Neurology DM, New Frontiers Science Park, Harlow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Beach TG, Sue LI, Walker DG, Roher AE, Lue L, Vedders L, Connor DJ, Sabbagh MN, Rogers J. The Sun Health Research Institute Brain Donation Program: description and experience, 1987–2007. Cell Tissue Bank 2007. [DOI: 10.1007/s10561-007-9056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, Bailey R, Pickering-Brown S, Dickson D, Petrucelli L. Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 2007; 27:10530-4. [PMID: 17898224 PMCID: PMC6673167 DOI: 10.1523/jneurosci.3421-07.2007] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
TAR DNA binding protein-43 (TDP-43) is the pathologic substrate of neuronal and glial inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTDL-U) and in amyotrophic lateral sclerosis (ALS). Mutations in the progranulin gene (PGRN) have been shown to cause familial FTLD-U. The relationship between progranulin and TDP-43 and their respective roles in neurodegeneration is unknown. We report that progranulin mediates proteolytic cleavage of TDP-43 to generate approximately 35 and approximately 25 kDa species. Suppression of PGRN expression with small interfering RNA leads to caspase-dependent accumulation of TDP-43 fragments that can be inhibited with caspase inhibitor treatment. Cells treated with staurosporine also induced caspase-dependent cleavage and redistribution of TDP-43 from its nuclear localization to cytoplasm. Altered cleavage and redistribution of TDP-43 in cell culture models are similar to findings in FTLD-U and ALS. The results suggest that abnormal metabolism of TDP-43 mediated by progranulin may play a pivotal role in neurodegeneration.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Ya-fei Xu
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Chad A. Dickey
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy, and
| | - Francisco Baralle
- International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy, and
| | - Rachel Bailey
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Stuart Pickering-Brown
- Division of Regenerative Medicine, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224
| |
Collapse
|