1
|
Shintaku M. Non-Neoplastic Lesions of the Ependyma: A Neuropathological Overview. Neuropathology 2025:e70014. [PMID: 40448387 DOI: 10.1111/neup.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Revised: 05/09/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025]
Abstract
Non-neoplastic lesions of the ependyma have been neglected to date in comparison with neoplastic lesions derived from the ependyma, that is, ependymoma. The ependyma has a simple structure: mono-layered cuboidal cells covering the surface of the cerebral ventricles and the central canal of the spinal cord. In this review, the histopathological appearances of various non-neoplastic ependymal lesions are shown based on the author's personal experience, along with a review of the relevant literature. Following the introductory remarks about the normal histology and functions of ependymal cells including tanycytes, non-neoplastic lesions are then presented including, obliteration of the spinal central canal; the "ventriculus terminalis"; shedding of ependymal cells and "granular ependymitis"; "ependymal incorporation"; ependymal cells in hydrocephalus; ependymal reactions to various noxious stimuli; ependymal changes in cerebral dysgenesis; infections involving ependymal cells; glio-ependymal cyst; and finally, various intracellular inclusions in ependymal cells. Non-neoplastic ependymal lesions are intriguing and merit further investigations, which may provide deeper understanding of various brain lesions and of ependymal neoplasms.
Collapse
Affiliation(s)
- Masayuki Shintaku
- Department of Pathology, Kansai Medical University Hospital, Osaka, Japan
| |
Collapse
|
2
|
Sun YQ, Huang XX, Guo W, Hong C, Ji J, Zhang XY, Yang J, Hu G, Sun XL. IFN-γ signaling links ventriculomegaly to choroid plexus and ependyma dysfunction following maternal immune activation. J Neuroinflammation 2025; 22:83. [PMID: 40089736 PMCID: PMC11909946 DOI: 10.1186/s12974-025-03409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Maternal immune activation (MIA) is a principal environmental risk factor contributing to autism spectrum disorder (ASD) and can be causally linked to ASD symptoms. In our study, we found that MIA triggered by poly (I: C) injection caused ventriculomegaly in offspring due to the dysfunction of the choroid plexus (Chp) and ependyma. We subsequently identified a sustained enhancement of interferon-γ (IFN-γ) signaling in the brain and serum of MIA offspring. Further study revealed that increased IFN-γ signaling could disrupt the barrier function of Chp epithelial cells by activating macrophages, and suppress the differentiation of primary ependymal cells via the signal transducer and activator of transcription 1/3 signaling. The effects of MIA on the offspring were mitigated by administration of IFNGR-blocking antibody in pregnant dams, while systemic maternal administration of IFN-γ was sufficient to mimic the effect of MIA. Overall, our findings revealed that ventriculomegaly caused by IFN-γ signaling could be a critical factor in compromising fetal brain development in MIA-induced ASD and provide a mechanistic framework for the association between maternal inflammation and abnormal development of ventricles in the offspring.
Collapse
Affiliation(s)
- Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Guo
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chen Hong
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Gang Hu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, State key laboratory of reproductive medicine and offspring health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Pang X, Gu L, Han QY, Xing JQ, Zhao M, Huang SY, Yi JX, Pan J, Hong H, Xue W, Zhou XQ, Su ZH, Zhang XR, Sun LM, Jiang SZ, Luo D, Chen L, Wang ZJ, Yu Y, Xia T, Zhang XM, Li AL, Zhou T, Cai H, Li T. RGS22 maintains the physiological function of ependymal cells to prevent hydrocephalus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:441-453. [PMID: 39400871 DOI: 10.1007/s11427-024-2720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Ependymal cells line the wall of cerebral ventricles and ensure the unidirectional cerebrospinal fluid (CSF) flow by beating their motile cilia coordinately. The ependymal denudation or ciliary dysfunction causes hydrocephalus. Here, we report that the deficiency of regulator of G-protein signaling 22 (RGS22) results in severe congenital hydrocephalus in both mice and rats. Interestingly, RGS22 is specifically expressed in ependymal cells within the brain. Using conditional knock-out mice, we further demonstrate that the deletion of Rgs22 exclusively in nervous system is sufficient to induce hydrocephalus. Mechanistically, we show that Rgs22 deficiency leads to the ependymal denudation and impaired ciliogenesis. This phenomenon can be attributed to the excessive activation of lysophosphatidic acid receptor (LPAR) signaling under Rgs22-/- condition, as the LPAR blockade effectively alleviates hydrocephalus in Rgs22-/- rats. Therefore, our findings unveil a previously unrecognized role of RGS22 in the central nervous system, and present RGS22 as a potential diagnostic and therapeutic target for hydrocephalus.
Collapse
Affiliation(s)
- Xue Pang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Lin Gu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jia-Qing Xing
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Ming Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Yi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jun-Xi Yi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hao Hong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Wen Xue
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Qing Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Zhi-Hui Su
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xin-Ran Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Li-Ming Sun
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Zhen Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Luo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ling Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zheng-Jie Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Yu Yu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ai-Ling Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hong Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Jin K, Yao Z, van Velthoven CTJ, Kaplan ES, Glattfelder K, Barlow ST, Boyer G, Carey D, Casper T, Chakka AB, Chakrabarty R, Clark M, Departee M, Desierto M, Gary A, Gloe J, Goldy J, Guilford N, Guzman J, Hirschstein D, Lee C, Liang E, Pham T, Reding M, Ronellenfitch K, Ruiz A, Sevigny J, Shapovalova N, Shulga L, Sulc J, Torkelson A, Tung H, Levi B, Sunkin SM, Dee N, Esposito L, Smith KA, Tasic B, Zeng H. Brain-wide cell-type-specific transcriptomic signatures of healthy ageing in mice. Nature 2025; 638:182-196. [PMID: 39743592 PMCID: PMC11798837 DOI: 10.1038/s41586-024-08350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Biological ageing can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function1,2. Mammalian brains consist of thousands of cell types3, which may be differentially susceptible or resilient to ageing. Here we present a comprehensive single-cell RNA sequencing dataset containing roughly 1.2 million high-quality single-cell transcriptomes of brain cells from young adult and aged mice of both sexes, from regions spanning the forebrain, midbrain and hindbrain. High-resolution clustering of all cells results in 847 cell clusters and reveals at least 14 age-biased clusters that are mostly glial types. At the broader cell subclass and supertype levels, we find age-associated gene expression signatures and provide a list of 2,449 unique differentially expressed genes (age-DE genes) for many neuronal and non-neuronal cell types. Whereas most age-DE genes are unique to specific cell types, we observe common signatures with ageing across cell types, including a decrease in expression of genes related to neuronal structure and function in many neuron types, major astrocyte types and mature oligodendrocytes, and an increase in expression of genes related to immune function, antigen presentation, inflammation, and cell motility in immune cell types and some vascular cell types. Finally, we observe that some of the cell types that demonstrate the greatest sensitivity to ageing are concentrated around the third ventricle in the hypothalamus, including tanycytes, ependymal cells, and certain neuron types in the arcuate nucleus, dorsomedial nucleus and paraventricular nucleus that express genes canonically related to energy homeostasis. Many of these types demonstrate both a decrease in neuronal function and an increase in immune response. These findings suggest that the third ventricle in the hypothalamus may be a hub for ageing in the mouse brain. Overall, this study systematically delineates a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal ageing that will serve as a foundation for the investigation of functional changes in ageing and the interaction of ageing and disease.
Collapse
Affiliation(s)
- Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Max Departee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Josh Sevigny
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
5
|
D'Gama PP, Jeong I, Nygård AM, Jamali A, Yaksi E, Jurisch-Yaksi N. Motile cilia modulate neuronal and astroglial activity in the zebrafish larval brain. Cell Rep 2025; 44:115195. [PMID: 39798091 DOI: 10.1016/j.celrep.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/11/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood. Using zebrafish larvae as a model system, we identify that loss of ciliary motility does not alter progenitor proliferation, brain morphology, or spontaneous neural activity despite leading to an enlarged telencephalic ventricle. We observe altered neuronal responses to photic stimulations in the optic tectum and hindbrain and brain asymmetry defects in the habenula. Finally, we investigate astroglia since they contact CSF and regulate neuronal activity. Our analyses reveal a reduction in astroglial calcium signals during both spontaneous and light-evoked activity. Our findings highlight a role of motile cilia in regulating brain physiology through the modulation of neural and astroglial networks.
Collapse
Affiliation(s)
- Percival P D'Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı, Istanbul 34010, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.
| |
Collapse
|
6
|
Zhang Q, Wu X, Fan Y, Zhang H, Yin M, Xue X, Yin Y, Jin C, Quan R, Jiang P, Liu Y, Yu C, Kuang W, Chen B, Li J, Chen Z, Hu Y, Xiao Z, Zhao Y, Dai J. Characterizing progenitor cells in developing and injured spinal cord: Insights from single-nucleus transcriptomics and lineage tracing. Proc Natl Acad Sci U S A 2025; 122:e2413140122. [PMID: 39761400 PMCID: PMC11745359 DOI: 10.1073/pnas.2413140122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 01/23/2025] Open
Abstract
Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury. We used single-nucleus transcriptomic sequencing and genetic lineage tracing to characterize neural cells in the spinal cord. Our findings show that ciliated ependymal cells lose neural progenitor gene signatures and proliferation ability following the differentiation of NPCs within the ventricular zone. By combining single-nucleus transcriptome datasets from the rhesus macaque spinal cord injury (SCI) model with developmental human spinal cord datasets, we revealed that ciliated ependymal cells respond minimally to injury and cannot revert to a developmental progenitor state. Intriguingly, we observed astrocytes transdifferentiating into mature oligodendrocytes postinjury through lineage tracing experiments. Further analysis identifies an intermediate-state glial cell population expressing both astrocyte and oligodendrocyte feature genes in adult spinal cords. The transition ratio from astrocytes into oligodendrocytes increased after remodeling injury microenvironment by functional scaffolds. Overall, our results highlight the remarkable multilineage potential of astrocytes in the adult spinal cord.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou510515, China
| | - Chen Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Rui Quan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Peipei Jiang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing210008, China
| | - Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou510515, China
| | - Cheng Yu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou510515, China
| | - Wenhao Kuang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou510515, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Zhong Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou510515, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing210008, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100080, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin300192, China
| |
Collapse
|
7
|
Deng X, Chen Y, Duan Q, Ding J, Wang Z, Wang J, Chen X, Zhou L, Zhao L. Genetic and molecular mechanisms of hydrocephalus. Front Mol Neurosci 2025; 17:1512455. [PMID: 39839745 PMCID: PMC11746911 DOI: 10.3389/fnmol.2024.1512455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yiqian Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Junchi Wang
- School of Dentistry, North Sichuan Medical College, Nanchong, China
| | - Xinlong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
8
|
Maugeri G, Amato A, Evola G, D'Agata V, Musumeci G. Addressing the Effect of Exercise on Glial Cells: Focus on Ependymal Cells. J Integr Neurosci 2024; 23:216. [PMID: 39735958 DOI: 10.31083/j.jin2312216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 12/31/2024] Open
Abstract
A growing body of research highlights the positive impact of regular physical activity on improving physical and mental health. On the other hand, physical inactivity is one of the leading risk factors for noncommunicable diseases and death worldwide. Exercise profoundly impacts various body districts, including the central nervous system. Here, overwhelming evidence exists that physical exercise affects neurons and glial cells, by promoting their interaction. Physical exercise directly acts on ependymal cells by promoting their proliferation and activation, maintaing brain homeostasis in healthy animals and promote locomotor recovery after spinal cord injury. This review aims to describe the main anatomical characteristics and functions of ependymal cells and provide an overview of the effects of different types of physical exercise on glial cells, focusing on the ependymal cells.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Evola
- Department of General and Emergency Surgery, Garibaldi Hospital, 95124 Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
9
|
Zhang L, Xu YM, Bian MM, Yan HZ, Gao JX, Bao QH, Chen YQ, Ding SQ, Wang R, Zhang N, Hu JG, Lü HZ. Ezrin, a novel marker of ependymal cells, can be used to demonstrate their proliferation regulation after spinal cord injury in mice. Neurobiol Dis 2024; 203:106746. [PMID: 39603280 DOI: 10.1016/j.nbd.2024.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Ependymal cells (EpCs), as a potential stem cell niche, have gained interest for their potential in vivo stem cell therapy for spinal cord injury (SCI). Heterogeneity of spinal EpCs may contribute to differences in the ability of spinal EpCs to proliferate, differentiate and transition after injury, while there is limited understanding of the regulation of these events. Our research found that ezrin (Ezr) was expressed highly in EpCs of the spinal cord, and its upregulation rapidly occurred after injury (6 h). It remained consistently highly expressed in proliferating EpCs, this occurs before pathological accumulation of it occurs in other glial and immune-related cells. Differential expression of Ezr, Arg3, Pvalb, Ccnd1, and Gmpr characterized distinct responses of EpCs to injury activity. Also, we uncovered the dynamic regulatory behavior of immature EpCs after injury. In contrast to constitutive expression in parenchymal tissues, injury factors upregulated guanosine monophosphate reductase (Gmpr) in arrested EpCs, unveiling a distinctive mechanism to regulate proliferation in EpCs following spinal cord injury.
Collapse
Affiliation(s)
- Lin Zhang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; School of life Science, Bengbu Medical University, Anhui 233030, PR China
| | - Yao-Mei Xu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Ming-Ming Bian
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Qian-Hui Bao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Nan Zhang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases,Bengbu Medical University, Anhui 233030, PR China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical University, Anhui 233004, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases,Bengbu Medical University, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases,Bengbu Medical University, Anhui 233030, PR China.
| |
Collapse
|
10
|
Anwar F, Zhang K, Sun C, Pang M, Zhou W, Li H, He R, Liu X, Ming D. Hydrocephalus: An update on latest progress in pathophysiological and therapeutic research. Biomed Pharmacother 2024; 181:117702. [PMID: 39581146 DOI: 10.1016/j.biopha.2024.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hydrocephalus is a severe and life-threatening disease associated with the imbalance of CSF dynamics and affects millions globally at any age, including infants. One cause of pathology that is wide-ranging is genetic mutations to post-traumatic injury. The most effective current pharmacological treatments provide only symptomatic relief and do not address the underlying pathology. At the same time, surgical procedures such as VP shunts performed in lower-income countries are often poorly tolerated due to insufficient diagnostic resources and suboptimal outcomes partially attributable to inferior materials. These problems are compounded by an overall lack of funding that keeps high-quality medical devices out of reach for all but the most developed countries and even among those states. There is a massive variance in treatment effectiveness. This review indicates the necessity for innovative and low-cost, accessible treatment strategies to close these gaps, focusing on current advances in novel therapies, including Pharmacological, gene therapy, and nano-based technologies, which are currently at different stages of clinical trial phases. This review provides an overview of pathophysiology, current treatments, and promising new therapeutic strategies for hydrocephalus.
Collapse
Affiliation(s)
- Faheem Anwar
- Medical School, Tianjin University, Tianjin 300072, China
| | - Kuo Zhang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Changcheng Sun
- Medical School, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300380, China
| | - Meijun Pang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Wanqi Zhou
- Medical School, Tianjin University, Tianjin 300072, China
| | - Haodong Li
- Medical School, Tianjin University, Tianjin 300072, China
| | - Runnan He
- Medical School, Tianjin University, Tianjin 300072, China
| | - Xiuyun Liu
- Medical School, Tianjin University, Tianjin 300072, China; School of Pharmaceutical Science and Technology, Tianjin University, 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300380, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin 300072, China.
| | - Dong Ming
- Medical School, Tianjin University, Tianjin 300072, China; School of Pharmaceutical Science and Technology, Tianjin University, 300072, China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin 300380, China.
| |
Collapse
|
11
|
Li X, Wang S, Zhang D, Feng Y, Liu Y, Yu W, Cui L, Harkany T, Verkhratsky A, Xia M, Li B. The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs. Proc Natl Acad Sci U S A 2024; 121:e2400024121. [PMID: 39485799 PMCID: PMC11551422 DOI: 10.1073/pnas.2400024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
Mechanisms controlling the movement of the cerebrospinal fluid (CSF) toward peripheral nerves are poorly characterized. We found that, in addition to the foramina Magendie and Luschka for CSF flow toward the subarachnoid space and glymphatic system, CSF outflow could also occur along periaxonal spaces (termed "PAS pathway") from the spinal cord to peripheral organs, such as the liver and pancreas. When interrogating the latter route, we found that serotonin, acting through 5-HT2B receptors expressed in ependymocytes that line the central canal, triggered Ca2+ signals to induce polymerization of F-actin, a cytoskeletal protein, to reduce the volume of ependymal cells. This paralleled an increased rate of PAS-mediated CSF redistribution toward peripheral organs. In the liver, CSF was received by hepatic stellate cells. CSF efflux toward peripheral organs through the PAS pathway represents a mechanism dynamically connecting the nervous system with the periphery. Our findings are compatible with the traditional theory of CSF efflux into the glymphatic system to clear metabolic waste from the cerebral parenchyma. Thus, we extend the knowledge of CSF flow and expand the understanding of connectivity between the CNS and peripheral organs.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Yuliang Feng
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna1090, Austria
- Department of Neuroscience, Biomedicum, Karolinska Institutet, Solna17165, Sweden
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Faculty of Biology, Medicine and Health, The University of Manchester, ManchesterM13 9PL, United Kingdom
- Department of Neurosciences, University of the Basque Country, Leioa48940, Bizkaia, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, VilniusLT-01102, Lithuania
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang110002, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang110122, China
- China Medical University Centre of Forensic Investigation, Shenyang110122, China
| |
Collapse
|
12
|
Chen X, Xu D, Gu X, Li Z, Zhang Y, Wu P, Huang Z, Zhang J, Li Y. Machine learning in prenatal MRI predicts postnatal ventricular abnormalities in fetuses with isolated ventriculomegaly. Eur Radiol 2024; 34:7115-7124. [PMID: 38730032 DOI: 10.1007/s00330-024-10785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES To evaluate the intracranial structures and brain parenchyma radiomics surrounding the occipital horn of the lateral ventricle in normal fetuses (NFs) and fetuses with ventriculomegaly (FVs), as well as to predict postnatally enlarged lateral ventricle alterations in FVs. METHODS Between January 2014 and August 2023, 141 NFs and 101 FVs underwent 1.5 T balanced steady-state free precession (BSSFP), including 68 FVs with resolved lateral ventricles (FVM-resolved) and 33 FVs with stable lateral ventricles (FVM-stable). Demographic data and intracranial structures were analyzed. To predict the enlarged ventricle alterations of FVs postnatally, logistic regression models with 5-fold cross-validation were developed based on lateral ventricle morphology, blended-cortical or/and subcortical radiomics characteristics. Validation of the models' performance was conducted using the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS Significant alterations in cerebral structures were observed between NFs and FVs (p < 0.05), excluding the maximum frontal horn diameter (FD). However, there was no notable distinction between the FVM-resolved and FVM-stable groups (all p > 0.05). Based on subcortical-radiomics on the aberrant sides of FVs, this approach exhibited high efficacy in distinguishing NFs from FVs in the training/validation set, yielding an impressive AUC of 1/0.992. With an AUC value of 0.822/0.743 in the training/validation set, the Subcortical-radiomics model demonstrated its ability to predict lateral ventricle alterations in FVs, which had the greatest predictive advantages indicated by DCA. CONCLUSIONS Microstructural alterations in subcortical parenchyma associated with ventriculomegaly can serve as predictive indicators for postnatal lateral ventricle variations in FVs. CLINICAL RELEVANCE STATEMENT It is critical to gain pertinent information from a solitary fetal MRI to anticipate postnatal lateral ventricle alterations in fetuses with ventriculomegaly. This approach holds the potential to diminish the necessity for recurrent prenatal ultrasound or MRI examinations. KEY POINTS Fetal ventriculomegaly is a dynamic condition that affects postnatal neurodevelopment. Machine learning and subcortical-radiomics can predict postnatal alterations in the lateral ventricle. Machine learning, applied to single-fetal MRI, might reduce required antenatal testing.
Collapse
Affiliation(s)
- Xue Chen
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou City, Jiangsu Province, 215002, China
| | - Daqiang Xu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou City, Jiangsu Province, 215002, China
| | - Xiaowen Gu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou City, Jiangsu Province, 215002, China
| | - Zhisen Li
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou City, Jiangsu Province, 215002, China
| | - Yisha Zhang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou City, Jiangsu Province, 215002, China
| | - Peng Wu
- Philips Healthcare, Shanghai, 200072, China
| | - Zhou Huang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China.
| | - Jibin Zhang
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou City, Jiangsu Province, 215002, China.
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, 215006, China.
- Institute of Medical Imaging, Soochow University, Suzhou City, Jiangsu Province, 215000, China.
| |
Collapse
|
13
|
Wang F, Guo B, Jia Z, Jing Z, Wang Q, Li M, Lu B, Liang W, Hu W, Fu X. The Role of CXCR3 in Nervous System-Related Diseases. Mediators Inflamm 2024; 2024:8347647. [PMID: 39429695 PMCID: PMC11488998 DOI: 10.1155/2024/8347647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Inflammatory chemokines are a group of G-protein receptor ligands characterized by conserved cysteine residues, which can be divided into four main subfamilies: CC, CXC, XC, and CX3C. The C-X-C chemokine receptor (CXCR) 3 and its ligands, C-X-C chemokine ligands (CXCLs), are widely expressed in both the peripheral nervous system (PNS) and central nervous system (CNS). This comprehensive literature review aims to examine the functions and pathways of CXCR3 and its ligands in nervous system-related diseases. In summary, while the related pathways and the expression levels of CXCR3 and its ligands are varied among different cells in PNS and CNS, the MPAK pathway is the core via which CXCR3 exerts physiological functions. It is not only the core pathway of CXCR3 after activation but also participates in the expression of CXCR3 ligands in the nervous system. In addition, despite CXCR3 being a common inflammatory chemokine receptor, there is no consensus on its precise roles in various diseases. This uncertainty may be attributable to distinct inflammatory characteristics, that inflammation simultaneously possesses the dual properties of damage induction and repair facilitation.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bing Guo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ziyang Jia
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qingyi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bingqi Lu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Xie S, Li F. Ependymal cells: roles in central nervous system infections and therapeutic application. J Neuroinflammation 2024; 21:255. [PMID: 39385253 PMCID: PMC11465851 DOI: 10.1186/s12974-024-03240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Ependymal cells are arranged along the inner surfaces of the ventricles and the central canal of the spinal cord, providing anatomical, physiological and immunological barriers that maintain cerebrospinal fluid (CSF) homeostasis. Based on this, studies have found that alterations in gene expression, cell junctions, cytokine secretion and metabolic disturbances can lead to dysfunction of ependymal cells, thereby participating in the onset and progression of central nervous system (CNS) infections. Additionally, ependymal cells can exhibit proliferative and regenerative potential as well as secretory functions during CNS injury, contributing to neuroprotection and post-injury recovery. Currently, studies on ependymal cell primarily focus on the basic investigations of their morphology, function and gene expression; however, there is a notable lack of clinical translational studies examining the molecular mechanisms by which ependymal cells are involved in disease onset and progression. This limits our understanding of ependymal cells in CNS infections and the development of therapeutic applications. Therefore, this review will discuss the molecular mechanism underlying the involvement of ependymal cells in CNS infections, and explore their potential for application in clinical treatment modalities.
Collapse
Affiliation(s)
- Shiqi Xie
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, 130 Dong An Road, Xuhui District, Shanghai, China.
- Tuberculosis Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Jinshan District, Shanghai, China.
| |
Collapse
|
15
|
Shi H, Prayer D, Kienast P, Khalaveh F, Tischer J, Binder J, Weber M, Stuempflen M, Kasprian G. Revisiting the Pathophysiology of Intracranial Hemorrhage in Fetuses with Chiari II Malformation: Novel Imaging Biomarkers of Disease Severity? AJNR Am J Neuroradiol 2024; 45:1562-1569. [PMID: 38719608 PMCID: PMC11449001 DOI: 10.3174/ajnr.a8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND PURPOSE Intracranial hemorrhage (ICH) has emerged as a notable concern in Chiari II malformation (CM II), yet its origins and clinical implications remain elusive. This study aims to validate the in utero prevalence of ICH in CM II and investigate contributing factors, and visualize the findings in a network format. MATERIALS AND METHODS A single-center retrospective review of fetal MRI scans obtained in fetuses with CM II (presenting January 2007 to December 2022) was performed for ICH utilizing EPI-T2* blood-sensitive sequence. Fetuses with aqueduct stenosis (AS) were included as a control group. The incidence of ICH and corresponding gestational ages were compared between CM II and AS cases, and morphometric measurements (inner/outer CSF spaces, posterior fossa, venous structure) were compared among the 4 1:1 age-matched groups: CM II+ICH, CM II-ICH, AS+ICH, and AS-ICH. Additionally, a co-occurrence network was constructed to visualize associations between phenotypic features in ICH cases. RESULTS A total of 101 fetuses with CM II and 90 controls with AS at a median gestational age of 24.4 weeks and 22.8 weeks (P = .138) were included. Prevalence of ICH in fetuses with CM II was higher compared with the AS cases (28.7% versus 18.9%, P = .023), accompanied by congested veins (deep vein congestion mainly in young fetuses, and cortical veins may also be affected in older fetuses). ICH was notably correlated with specific anatomic features, essentially characterized by reduced outer CSF spaces and clivus-supraocciput angle. The co-occurrence network analysis reveals complex connections including bony defects, small posterior fossa dimensions, vermis ectopia, reduced CSF spaces, as well as venous congestion and venous sinus stenosis as pivotal components within the network. CONCLUSIONS The high prevalence of ICH-detected by fetal MRI-among fetuses with CM emphasizes the pathophysiologic importance of venous congestion, ICH, and vasogenic edema. As indicators of disease severity, these features may serve as helpful additional imaging biomarkers for the identification of potential candidates for fetal surgery.
Collapse
Affiliation(s)
- Hui Shi
- From the Department of Radiology (H.S.), Zhu Jiang Hospital, Southern Medical University, Guangzhou, China
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy (D.P., P.K., J.T., M.W., M.S., G.K.), Medical University of Vienna, Vienna, Austria
| | - Patric Kienast
- Department of Biomedical Imaging and Image-guided Therapy (D.P., P.K., J.T., M.W., M.S., G.K.), Medical University of Vienna, Vienna, Austria
| | - Farjad Khalaveh
- Department of Neurosurgery (F.K.), Medical University of Vienna, Vienna, Austria
| | - Johannes Tischer
- Department of Biomedical Imaging and Image-guided Therapy (D.P., P.K., J.T., M.W., M.S., G.K.), Medical University of Vienna, Vienna, Austria
| | - Julia Binder
- Department of Obstetrics and Feto-maternal Medicine (J.B.), Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy (D.P., P.K., J.T., M.W., M.S., G.K.), Medical University of Vienna, Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-guided Therapy (D.P., P.K., J.T., M.W., M.S., G.K.), Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy (D.P., P.K., J.T., M.W., M.S., G.K.), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Groh AMR, Caporicci-Dinucci N, Afanasiev E, Bigotte M, Lu B, Gertsvolf J, Smith MD, Garton T, Callahan-Martin L, Allot A, Hatrock DJ, Mamane V, Drake S, Tai H, Ding J, Fournier AE, Larochelle C, Calabresi PA, Stratton JA. Ependymal cells undergo astrocyte-like reactivity in response to neuroinflammation. J Neurochem 2024; 168:3449-3466. [PMID: 38702968 DOI: 10.1111/jnc.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Ependymal cells form a specialized brain-cerebrospinal fluid (CSF) interface and regulate local CSF microcirculation. It is becoming increasingly recognized that ependymal cells assume a reactive state in response to aging and disease, including conditions involving hypoxia, hydrocephalus, neurodegeneration, and neuroinflammation. Yet what transcriptional signatures govern these reactive states and whether this reactivity shares any similarities with classical descriptions of glial reactivity (i.e., in astrocytes) remain largely unexplored. Using single-cell transcriptomics, we interrogated this phenomenon by directly comparing the reactive ependymal cell transcriptome to the reactive astrocyte transcriptome using a well-established model of autoimmune-mediated neuroinflammation (MOG35-55 EAE). In doing so, we unveiled core glial reactivity-associated genes that defined the reactive ependymal cell and astrocyte response to MOG35-55 EAE. Interestingly, known reactive astrocyte genes from other CNS injury/disease contexts were also up-regulated by MOG35-55 EAE ependymal cells, suggesting that this state may be conserved in response to a variety of pathologies. We were also able to recapitulate features of the reactive ependymal cell state acutely using a classic neuroinflammatory cocktail (IFNγ/LPS) both in vitro and in vivo. Taken together, by comparing reactive ependymal cells and astrocytes, we identified a conserved signature underlying glial reactivity that was present in several neuroinflammatory contexts. Future work will explore the mechanisms driving ependymal reactivity and assess downstream functional consequences.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Nina Caporicci-Dinucci
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Joshua Gertsvolf
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Matthew D Smith
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Garton
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liam Callahan-Martin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Dale J Hatrock
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Victoria Mamane
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Sienna Drake
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Huilin Tai
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Jun Ding
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Catherine Larochelle
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Peter A Calabresi
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
17
|
Niazi SK. Bioavailability as Proof to Authorize the Clinical Testing of Neurodegenerative Drugs-Protocols and Advice for the FDA to Meet the ALS Act Vision. Int J Mol Sci 2024; 25:10211. [PMID: 39337696 PMCID: PMC11432374 DOI: 10.3390/ijms251810211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Although decades of intensive drug discovery efforts to treat neurodegenerative disorders (NDs) have failed, around half a million patients in more than 2000 studies continue being tested, costing over USD 100 billion, despite the conclusion that even those drugs which have been approved have no better effect than a placebo. The US Food and Drug Administration (FDA) has established multiple programs to innovate the treatment of rare diseases, particularly NDs, providing millions of USD in funding primarily by encouraging novel clinical trials to account for issues related to study sizes and adopting multi-arm studies to account for patient dropouts. Instead, the FDA should focus on the primary reason for failure: the poor bioavailability of drugs reaching the brain (generally 0.1% at most) due to the blood-brain barrier (BBB). There are several solutions to enhance entry into the brain, and the FDA must require proof of significant entry into the brain as the prerequisite to approving Investigational New Drug (IND) applications. The FDA should also rely on factors other than biomarkers to confirm efficacy, as these are rarely relevant to clinical use. This study summarizes how the drugs used to treat NDs can be made effective and how the FDA should change its guidelines for IND approval of these drugs.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
18
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
19
|
Tomita Y, Yagi M, Seki F, Komaki Y, Matsumoto M, Nakamura M. Cerebrospinal Fluid Dynamics Analysis Using Time-Spatial Labeling Inversion Pulse (Time-SLIP) Magnetic Resonance Imaging in Mice. J Clin Med 2024; 13:4550. [PMID: 39124818 PMCID: PMC11312514 DOI: 10.3390/jcm13154550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Abnormalities in cerebrospinal fluid (CSF) dynamics cause diverse conditions, such as hydrocephalus, but the underlying mechanism is still unknown. Methods to study CSF dynamics in small animals have not been established due to the lack of an evaluation system. Therefore, the purpose of this research study is to establish the time-spatial labeling inversion pulse (Time-SLIP) MRI technique for the evaluation of CSF dynamics in mice. Methods: We performed the Time-SLIP technique on 10 wild-type mice and 20 Tiptoe-walking Yoshimura (TWY) mice, a mouse model of ossification of the posterior longitudinal ligament (OPLL). We defined the stir distance as the distance of CSF stirring and calculated the mean ± standard deviation. The intraclass correlation coefficient of intraobserver reliability was also calculated. Furthermore, in TWY mice, the correlation coefficient between stir distance and canal stenosis ratio (CSR) was calculated. Results: The stir distance was significantly lower in TWY mice at 12 weeks and 17 weeks of age (1.20 ± 0.16, 1.21 ± 0.06, and 1.21 ± 0.15 mm at 12 weeks and 1.32 ± 0.21, 1.28 ± 0.23, and 1.38 ± 0.31 mm at 17 weeks for examiners A, B, and C). The intrarater reliability of the three examiners was excellent (>0.90) and there was a strongly negative correlation between stir distance and CSR in TWY mice (>-0.80). Conclusions: In this study, we established the Time-SLIP technique in experimental mice. This technique allows for a better understanding of CSF dynamics in small laboratory animals.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.T.)
| | - Mitsuru Yagi
- Department of Orthopedic Surgery, School of Medicine, International University of Health and Welfare, Chiba 286-8520, Japan
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Bioimaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki 210-0821, Kanagawa, Japan
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Bioimaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki 210-0821, Kanagawa, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.T.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (Y.T.)
| |
Collapse
|
20
|
Herman J, Rittenhouse N, Mandino F, Majid M, Wang Y, Mezger A, Kump A, Kadian S, Lake EMR, Verardi PH, Conover JC. Ventricular-subventricular zone stem cell niche adaptations in a mouse model of post-infectious hydrocephalus. Front Neurosci 2024; 18:1429829. [PMID: 39145299 PMCID: PMC11322059 DOI: 10.3389/fnins.2024.1429829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
Congenital post-infectious hydrocephalus (PIH) is a condition characterized by enlargement of the ventricular system, consequently imposing a burden on the associated stem cell niche, the ventricular-subventricular zone (V-SVZ). To investigate how the V-SVZ adapts in PIH, we developed a mouse model of influenza virus-induced PIH based on direct intracerebroventricular injection of mouse-adapted influenza virus at two distinct time points: embryonic day 16 (E16), when stem cells line the ventricle, and postnatal day 4 (P4), when an ependymal monolayer covers the ventricle surface and stem cells retain only a thin ventricle-contacting process. Global hydrocephalus with associated regions of astrogliosis along the lateral ventricle was found in 82% of the mice infected at P4. Increased ependymogenesis was observed at gliotic borders and throughout areas exhibiting intact ependyma based on tracking of newly divided cells. Additionally, in areas of intact ependyma, stem cell numbers were reduced; however, we found no significant reduction in new neurons reaching the olfactory bulb following onset of ventriculomegaly. At P4, injection of only the non-infectious viral component neuraminidase resulted in limited, region-specific ventriculomegaly due to absence of cell-to-cell transmission. In contrast, at E16 intracerebroventricular injection of influenza virus resulted in death at birth due to hypoxia and multiorgan hemorrhage, suggesting an age-dependent advantage in neonates, while the viral component neuraminidase resulted in minimal, or no, ventriculomegaly. In summary, we tracked acute adaptations of the V-SVZ stem cell niche following onset of ventriculomegaly and describe developmental changes that help mitigate the severity of congenital PIH.
Collapse
Affiliation(s)
- Julianna Herman
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Nicole Rittenhouse
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - Mushirah Majid
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Yuxiang Wang
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Amelia Mezger
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Aidan Kump
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Sumeet Kadian
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Evelyn M. R. Lake
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Paulo H. Verardi
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Joanne C. Conover
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
21
|
Mayo F, González-Vinceiro L, Hiraldo-González L, Rodríguez-Gómez FD, Calle-Castillejo C, Mayo M, Netti V, Ramírez-Lorca R, Echevarría M. Impact of aquaporin-4 and CD11c + microglia in the development of ependymal cells in the aqueduct: inferences to hydrocephalus. Fluids Barriers CNS 2024; 21:53. [PMID: 38956598 PMCID: PMC11221146 DOI: 10.1186/s12987-024-00548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/07/2024] [Indexed: 07/04/2024] Open
Abstract
AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.
Collapse
Affiliation(s)
- Francisco Mayo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009, Seville, Spain
| | - Lourdes González-Vinceiro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009, Seville, Spain
| | - Laura Hiraldo-González
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009, Seville, Spain
| | - Francisco D Rodríguez-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013, Seville, Spain
| | - Claudia Calle-Castillejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013, Seville, Spain
| | - Manuel Mayo
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, 41080, Seville, Spain
| | - Vanina Netti
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires- CONICET, Instituto de Fisiología y Biofísica ''Bernardo Houssay'' (IFIBIO-HOUSSAY), Buenos Aires, Argentina
| | - Reposo Ramírez-Lorca
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009, Seville, Spain
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009, Seville, Spain.
| |
Collapse
|
22
|
D’Gama PP, Jeong I, Nygård AM, Trinh AT, Yaksi E, Jurisch-Yaksi N. Ciliogenesis defects after neurulation impact brain development and neuronal activity in larval zebrafish. iScience 2024; 27:110078. [PMID: 38868197 PMCID: PMC11167523 DOI: 10.1016/j.isci.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Cilia are slender, hair-like structures extending from cell surfaces and playing essential roles in diverse physiological processes. Within the nervous system, primary cilia contribute to signaling and sensory perception, while motile cilia facilitate cerebrospinal fluid flow. Here, we investigated the impact of ciliary loss on neural circuit development using a zebrafish line displaying ciliogenesis defects. We found that cilia defects after neurulation affect neurogenesis and brain morphology, especially in the cerebellum, and lead to altered gene expression profiles. Using whole brain calcium imaging, we measured reduced light-evoked and spontaneous neuronal activity in all brain regions. By shedding light on the intricate role of cilia in neural circuit formation and function in the zebrafish, our work highlights their evolutionary conserved role in the brain and sets the stage for future analysis of ciliopathy models.
Collapse
Affiliation(s)
- Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Anh-Tuan Trinh
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı 34010, Istanbul, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| |
Collapse
|
23
|
Del Bigio MR. Comment About: Incidental Subventricular Ependymal Cell Rests-A Rare Case Report by Sharma et al. Am J Forensic Med Pathol 2024; 45:188. [PMID: 38127666 DOI: 10.1097/paf.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
24
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
25
|
Kahle KT, Klinge PM, Koschnitzky JE, Kulkarni AV, MacAulay N, Robinson S, Schiff SJ, Strahle JM. Paediatric hydrocephalus. Nat Rev Dis Primers 2024; 10:35. [PMID: 38755194 DOI: 10.1038/s41572-024-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Hydrocephalus is classically considered as a failure of cerebrospinal fluid (CSF) homeostasis that results in the active expansion of the cerebral ventricles. Infants with hydrocephalus can present with progressive increases in head circumference whereas older children often present with signs and symptoms of elevated intracranial pressure. Congenital hydrocephalus is present at or near birth and some cases have been linked to gene mutations that disrupt brain morphogenesis and alter the biomechanics of the CSF-brain interface. Acquired hydrocephalus can develop at any time after birth, is often caused by central nervous system infection or haemorrhage and has been associated with blockage of CSF pathways and inflammation-dependent dysregulation of CSF secretion and clearance. Treatments for hydrocephalus mainly include surgical CSF shunting or endoscopic third ventriculostomy with or without choroid plexus cauterization. In utero treatment of fetal hydrocephalus is possible via surgical closure of associated neural tube defects. Long-term outcomes for children with hydrocephalus vary widely and depend on intrinsic (genetic) and extrinsic factors. Advances in genomics, brain imaging and other technologies are beginning to refine the definition of hydrocephalus, increase precision of prognostication and identify nonsurgical treatment strategies.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Neurosurgery and Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| | - Petra M Klinge
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jenna E Koschnitzky
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhaya V Kulkarni
- Division of Paediatric Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Shenandoah Robinson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Paediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
26
|
Xie S, Xie X, Tang J, Luo B, Chen J, Wen Q, Zhou J, Chen G. Cerebral furin deficiency causes hydrocephalus in mice. Genes Dis 2024; 11:101009. [PMID: 38292192 PMCID: PMC10825277 DOI: 10.1016/j.gendis.2023.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 02/01/2024] Open
Abstract
Furin is a pro-protein convertase that moves between the trans-Golgi network and cell surface in the secretory pathway. We have previously reported that cerebral overexpression of furin promotes cognitive functions in mice. Here, by generating the brain-specific furin conditional knockout (cKO) mice, we investigated the role of furin in brain development. We found that furin deficiency caused early death and growth retardation. Magnetic resonance imaging showed severe hydrocephalus. In the brain of furin cKO mice, impaired ciliogenesis and the derangement of microtubule structures appeared along with the down-regulated expression of RAB28, a ciliary vesicle protein. In line with the widespread neuronal loss, ependymal cell layers were damaged. Further proteomics analysis revealed that cell adhesion molecules including astrocyte-enriched ITGB8 and BCAR1 were altered in furin cKO mice; and astrocyte overgrowth was accompanied by the reduced expression of SOX9, indicating a disrupted differentiation into ependymal cells. Together, whereas alteration of RAB28 expression correlated with the role of vesicle trafficking in ciliogenesis, dysfunctional astrocytes might be involved in ependymal damage contributing to hydrocephalus in furin cKO mice. The structural and molecular alterations provided a clue for further studying the potential mechanisms of furin.
Collapse
Affiliation(s)
- Shiqi Xie
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Qixin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jianrong Zhou
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
27
|
Kang R, Kim K, Jung Y, Choi SH, Lee C, Im GH, Shin M, Ryu K, Choi S, Yang E, Shin W, Lee S, Lee S, Papadopoulos Z, Ahn JH, Koh GY, Kipnis J, Kang H, Kim H, Cho WK, Park S, Kim SG, Kim E. Loss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice. PLoS Biol 2024; 22:e3002596. [PMID: 38718086 PMCID: PMC11104772 DOI: 10.1371/journal.pbio.3002596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/20/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.
Collapse
Affiliation(s)
- Ryeonghwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Kyungdeok Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yewon Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sang-Han Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Kwangmin Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Subin Choi
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Esther Yang
- Department of Anatomy, Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Zachary Papadopoulos
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Jonathan Kipnis
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea
| | - Hyun Kim
- Department of Anatomy, Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| |
Collapse
|
28
|
Arreguin AJ, Shao Z, Colognato H. Dmd mdx mice have defective oligodendrogenesis, delayed myelin compaction and persistent hypomyelination. Dis Model Mech 2024; 17:dmm050115. [PMID: 38721692 PMCID: PMC11095635 DOI: 10.1242/dmm.050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.
Collapse
Affiliation(s)
- Andrea J. Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Zijian Shao
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
29
|
Rodriguez-Perez LM, Ojeda-Pérez B, López-de-San-Sebastián J, García-Bonilla M, González-García M, Fernández-Muñoz B, Sánchez-Pernaute R, García-Martín ML, Domínguez-Pinos D, Cárdenas-García C, Jiménez AJ, Paez-Gonzalez P. Design of a Stem Cell-Based Therapy for Ependymal Repair in Hydrocephalus Associated With Germinal Matrix Hemorrhages. Stroke 2024; 55:1062-1074. [PMID: 38436063 PMCID: PMC10962438 DOI: 10.1161/strokeaha.123.044677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.
Collapse
Affiliation(s)
- Luis M Rodriguez-Perez
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, University of Malaga, Spain. (L.M.R.-P.)
| | - Betsaida Ojeda-Pérez
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | - Javier López-de-San-Sebastián
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
| | - María García-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, MO (M.G.-B.)
| | - Marcos González-García
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza para el diseño y traslación de Terapias Avanzadas, Sevilla, Spain (B.F.-M.)
| | - Rosario Sánchez-Pernaute
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain (R.S.-P.)
- Instituto de Investigación Sanitaria Biobizkai, Barakaldo, Spain (R.S.-P.)
| | - María L García-Martín
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, Spain (M.L.G.-M.)
| | - Dolores Domínguez-Pinos
- Departamento de Radiología y Medicina Física, Oftalmología y Otorrinolaringología, University of Malaga, Spain. (D.D.-P.)
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | | | - Antonio J Jiménez
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | - Patricia Paez-Gonzalez
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| |
Collapse
|
30
|
Del Bigio MR. History of research concerning the ependyma: a view from inside the human brain. Front Cell Neurosci 2024; 17:1320369. [PMID: 38259502 PMCID: PMC10800557 DOI: 10.3389/fncel.2023.1320369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The history of research concerning ependymal cells is reviewed. Cilia were identified along the surface of the cerebral ventricles c1835. Numerous anatomical and histopathological studies in the late 1800's showed irregularities in the ependymal surface that were thought to be indicative of specific pathologies such as syphilis; this was subsequently disproven. The evolution of thoughts about functions of cilia, the possible role of ependyma in the brain-cerebrospinal fluid barrier, and the relationship of ependyma to the subventricular zone germinal cells is discussed. How advances in light and electron microscopy and cell culture contributed to our understanding of the ependyma is described. Discoveries of the supraependymal serotoninergic axon network and supraependymal macrophages are recounted. Finally, the consequences of loss of ependymal cells from different regions of the central nervous system are considered.
Collapse
Affiliation(s)
- Marc R. Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
31
|
Hidalgo-Alvarez V, Madl CM. Leveraging Biomaterial Platforms to Study Aging-Related Neural and Muscular Degeneration. Biomolecules 2024; 14:69. [PMID: 38254669 PMCID: PMC10813704 DOI: 10.3390/biom14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a complex multifactorial process that results in tissue function impairment across the whole organism. One of the common consequences of this process is the loss of muscle mass and the associated decline in muscle function, known as sarcopenia. Aging also presents with an increased risk of developing other pathological conditions such as neurodegeneration. Muscular and neuronal degeneration cause mobility issues and cognitive impairment, hence having a major impact on the quality of life of the older population. The development of novel therapies that can ameliorate the effects of aging is currently hindered by our limited knowledge of the underlying mechanisms and the use of models that fail to recapitulate the structure and composition of the cell microenvironment. The emergence of bioengineering techniques based on the use of biomimetic materials and biofabrication methods has opened the possibility of generating 3D models of muscular and nervous tissues that better mimic the native extracellular matrix. These platforms are particularly advantageous for drug testing and mechanistic studies. In this review, we discuss the developments made in the creation of 3D models of aging-related neuronal and muscular degeneration and we provide a perspective on the future directions for the field.
Collapse
Affiliation(s)
| | - Christopher M. Madl
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
32
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Kawaguchi K, Tsuji S, Hirao T, Liu Y, Boshi Z, Asano S. Adenosine Stimulates Beating of Neonatal Brain-Derived Cilia through Adenosine A 2B Receptor on the Cilia and Activation of Protein Kinase A Pathway. Biol Pharm Bull 2024; 47:1113-1118. [PMID: 38839362 DOI: 10.1248/bpb.b23-00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Motile cilia in the ependymal cells that line the brain ventricles play pivotal roles in cerebrospinal fluid (CSF) flow in well-defined directions. However, the substances and pathways which regulate their beating have not been well studied. Here, we used primary cultured cells derived from neonatal mouse brain that possess motile cilia and found that adenosine (ADO) stimulates ciliary beating by increasing the ciliary beat frequency (CBF) in a concentration-dependent manner, with the ED50 value being 5 µM. Ciliary beating stimulated by ADO was inhibited by A2B receptor (A2BR) antagonist MRS1754 without any inhibition by antagonists of other ADO receptor subtypes. The expression of A2BR on the cilia was also confirmed by immunofluorescence. The values of CBF were also increased by forskolin, which is an activator of adenylate cyclase, whereas they were not further increased by the addition of ADO. Furthermore, ciliary beating was not stimulated by ADO in the presence of a protein kinase A (PKA) inhibitors. These results altogether suggest that ADO stimulates ciliary beating through A2BR on the cilia, and activation of PKA.
Collapse
Affiliation(s)
- Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Suzuka Tsuji
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Takuya Hirao
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yixin Liu
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Zhao Boshi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
34
|
Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella LJ, Jackson HK, Moreira LR, Palacio PL, Hill AF, Quinn JF, Van Keuren‐Jensen KR, McFarland TJ, Palade J, Sribnick EA, Su H, Vekrellis K, Coyle B, Yang Y, Falcón‐Perez JM, Nieuwland R, Saugstad JA, International Society for Extracellular Vesicles Cerebrospinal Fluid Task Force. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles 2024; 13:e12397. [PMID: 38158550 PMCID: PMC10756860 DOI: 10.1002/jev2.12397] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Setty M. Magaña
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa, Avenida da RepúblicaOeirasPortugal
| | - John P. Nolan
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Laura J. Vella
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | - Hannah K. Jackson
- Department of PathologyUniversity of CambridgeCambridgeUK
- Exosis, Inc.Palm BeachFloridaUSA
| | - Lissette Retana Moreira
- Department of Parasitology, Faculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica, Central America
- Centro de Investigación en Enfermedades TropicalesUniversity of Costa RicaSan JoséCosta Rica, Central America
| | - Paola Loreto Palacio
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Joseph F. Quinn
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Portland VA Medical CenterPortlandOregonUSA
| | | | - Trevor J. McFarland
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Joanna Palade
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixArizonaUSA
| | - Eric A. Sribnick
- Department of NeurosurgeryNationwide Children's Hospital, The Ohio State UniversityColumbusOhioUSA
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | | | - Beth Coyle
- Children's Brain Tumour Research Centre, School of MedicineUniversity of Nottingham Biodiscovery Institute, University of NottinghamNottinghamNottinghamshireUK
| | - You Yang
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Juan M. Falcón‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | |
Collapse
|
35
|
Chae S, Park TJ, Kwon T. Convergent differentiation of multiciliated cells. Sci Rep 2023; 13:23028. [PMID: 38155158 PMCID: PMC10754865 DOI: 10.1038/s41598-023-50077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Multiciliated cells (MCCs) are epithelial cells that control body fluid flow and contribute to the clearance of pathogenic microbes and other particles from the airways, egg transport in oviducts, and circulation of cerebrospinal fluid in the central nervous system. Although MCCs have shared functions to control fluid flow via coordinated motility of multiple ciliary structures, they are found in multiple mammalian tissues originating from distinct germ layers and differentiate via distinct developmental pathways. To understand the similarities and differences of MCCs in multiple tissues, we investigated single-cell transcriptome data of nasal epithelial cells, bronchial tubes, fallopian tubes, and ependymal cells in the subventricular zone from humans and mice by cross-species data integration. Expression of cilia-associated genes was indistinguishable between these MCCs, although cell populations had unique properties by the species and tissue, demonstrating that they share the same final differentiation status for ciliary functions. We further analyzed the final differentiation step of MCCs from their distinctive progenitors and confirmed their convergent gene set expression for ciliogenesis at the final step. These results may provide new insight into understanding ciliogenesis during the developmental process.
Collapse
Affiliation(s)
- Shinhyeok Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
36
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
37
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Tipton PW, Atik M, Soto-Beasley AI, Day GS, Grewal SS, Chaichana K, Fermo OP, Ball CT, Heckman MG, White LJ, Quicksall ZS, Reddy JS, Ramanan VK, Vemuri P, Elder BD, Ertekin-Taner N, Ross O, Graff-Radford N. CWH43 Variants Are Associated With Disease Risk and Clinical Phenotypic Measures in Patients With Normal Pressure Hydrocephalus. Neurol Genet 2023; 9:e200086. [PMID: 37476022 PMCID: PMC10356132 DOI: 10.1212/nxg.0000000000200086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/25/2023] [Indexed: 07/22/2023]
Abstract
Background and Objectives Variants in the CWH43 gene have been associated with normal pressure hydrocephalus (NPH). We aimed to replicate these findings, identify additional CWH43 variants, and further define the clinical phenotype associated with CWH43 variants. Methods We determined the prevalence of CWH43 variants by whole-genome sequencing (WGS) in 94 patients with NPH. The odds of having CWH43 variant carriers develop NPH were determined through comparison with 532 Mayo Clinic Biobank volunteers without a history of NPH. For patients with NPH, we documented the head circumference, prevalence of disproportionate enlargement of subarachnoid hydrocephalus (DESH), microvascular changes on MRI quantified by the Fazekas scale, and ambulatory response to ventriculoperitoneal shunting. Results We identified rare (MAF <0.05) coding CWH43 variants in 15 patients with NPH. Ten patients (Leu533Terfs, n = 8; Lys696Asnfs, n = 2) harbored previously reported predicted loss-of-function variants, and combined burden analysis confirmed risk association with NPH (OR 2.60, 95% CI 1.12-6.03, p = 0.027). Additional missense variations observed included Ile292Thr (n = 2), Ala469Ser (n = 2), and Ala626Val (n = 1). Though not quite statistically significant, in single variable analysis, the odds of having a head circumference above the 75th percentile of normal controls was more than 5 times higher for CWH43 variant carriers compared with that for noncarriers (unadjusted OR 5.67, 95% CI 0.96-108.55, p = 0.057), and this was consistent after adjusting for sex and height (OR 5.42, 95% CI 0.87-106.37, p = 0.073). DESH was present in 56.7% of noncarriers and only 21.4% of carriers (p = 0.016), while sulcal trapping was also more prevalent among noncarriers (67.2% vs 35.7%, p = 0.030). All 8 of the 15 variant carriers who underwent ventriculoperitoneal shunting at our institution experienced ambulatory improvements. Discussion CWH43 variants are frequent in patients with NPH. Predicted loss-of-function mutations were the most common; we identified missense mutations that require further study. Our findings suggest that congenital factors, rather than malabsorption or vascular dysfunction, are primary contributors to the CWH43-related NPH clinical syndrome.
Collapse
Affiliation(s)
- Philip W Tipton
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Merve Atik
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Alexandra I Soto-Beasley
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Gregory S Day
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Sanjeet S Grewal
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Kaisorn Chaichana
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Olga P Fermo
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Colleen T Ball
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Michael G Heckman
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Launia J White
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Zachary S Quicksall
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Joseph S Reddy
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Vijay K Ramanan
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Prashanthi Vemuri
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Benjamin D Elder
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Nilufer Ertekin-Taner
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Owen Ross
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| | - Neill Graff-Radford
- From the Department of Neurology (P.W.T., G.S.D., O.P.F., N.E.-T., N.G.-R.), Department of Neuroscience (M.A., A.I.S.-B., Z.S.Q., J.S.R., N.E.-T., O.R.), Department of Neurosurgery (S.S.G., K.C.), Division of Clinical Trials and Biostatistics (C.T.B., M.G.H., L.J.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (V.K.R.), Department of Radiology (P.V.), and Department of Neurosurgery (B.D.E.), Mayo Clinic, Rochester, MN
| |
Collapse
|
39
|
Orrico-Sanchez A, Guiard BP, Manta S, Callebert J, Launay JM, Louis F, Paccard A, Gruszczynski C, Betancur C, Vialou V, Gautron S. Organic cation transporter 2 contributes to SSRI antidepressant efficacy by controlling tryptophan availability in the brain. Transl Psychiatry 2023; 13:302. [PMID: 37775532 PMCID: PMC10542329 DOI: 10.1038/s41398-023-02596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common first-line treatments for major depression. However, a significant number of depressed patients do not respond adequately to these pharmacological treatments. In the present preclinical study, we demonstrate that organic cation transporter 2 (OCT2), an atypical monoamine transporter, contributes to the effects of SSRI by regulating the routing of the essential amino acid tryptophan to the brain. Contrarily to wild-type mice, OCT2-invalidated mice failed to respond to prolonged fluoxetine treatment in a chronic depression model induced by corticosterone exposure recapitulating core symptoms of depression, i.e., anhedonia, social withdrawal, anxiety, and memory impairment. After corticosterone and fluoxetine treatment, the levels of tryptophan and its metabolites serotonin and kynurenine were decreased in the brain of OCT2 mutant mice compared to wild-type mice and reciprocally tryptophan and kynurenine levels were increased in mutants' plasma. OCT2 was detected by immunofluorescence in several structures at the blood-cerebrospinal fluid (CSF) or brain-CSF interface. Tryptophan supplementation during fluoxetine treatment increased brain concentrations of tryptophan and, more discreetly, of 5-HT in wild-type and OCT2 mutant mice. Importantly, tryptophan supplementation improved the sensitivity to fluoxetine treatment of OCT2 mutant mice, impacting chiefly anhedonia and short-term memory. Western blot analysis showed that glycogen synthase kinase-3β (GSK3β) and mammalian/mechanistic target of rapamycin (mTOR) intracellular signaling was impaired in OCT2 mutant mice brain after corticosterone and fluoxetine treatment and, conversely, tryptophan supplementation recruited selectively the mTOR protein complex 2. This study provides the first evidence of the physiological relevance of OCT2-mediated tryptophan transport, and its biological consequences on serotonin homeostasis in the brain and SSRI efficacy.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Stella Manta
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Jacques Callebert
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Antoine Paccard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
40
|
Bigotte M, Groh AMR, Marignier R, Stratton JA. Pathogenic role of autoantibodies at the ependyma in autoimmune disorders of the central nervous system. Front Cell Neurosci 2023; 17:1257000. [PMID: 37771929 PMCID: PMC10525373 DOI: 10.3389/fncel.2023.1257000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Ependymal cells make up the epithelial monolayer that lines the brain ventricles and the spinal cord central canal that are filled with cerebrospinal fluid. The ependyma has several functions, including regulating solute exchange between the cerebrospinal fluid and parenchyma, controlling microcirculation of cerebrospinal fluid via coordinated ciliary beating, and acting as a partial barrier. Dysregulation of these functions can lead to waste clearance impairment, cerebrospinal fluid accumulation, hydrocephalus, and more. A role for ependymal cells in a variety of neurological disorders has been proposed, including in neuromyelitis optica and multiple sclerosis, two autoimmune demyelinating diseases of the central nervous system, where periventricular damage is common. What is not known is the mechanisms behind how ependymal cells become dysregulated in these diseases. In neuromyelitis optica, it is well established that autoantibodies directed against Aquaporin-4 are drivers of disease, and it has been shown recently that these autoantibodies can drive ependymal cell dysregulation. We propose a similar mechanism is at play in multiple sclerosis, where autoantibodies targeting a glial cell protein called GlialCAM on ependymal cells are contributing to disease. GlialCAM shares high molecular similarities with the Epstein-Barr virus (EBV) protein EBNA1. EBV has recently been shown to be necessary for multiple sclerosis initiation, yet how EBV mediates pathogenesis, especially in the periventricular area, remains elusive. In this perspective article, we discuss how ependymal cells could be targeted by antibody-related autoimmune mechanisms in autoimmune demyelinating diseases and how this is implicated in ventricular/periventricular pathology.
Collapse
Affiliation(s)
- Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Adam M. R. Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Romain Marignier
- Forgetting Team—Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, Claude Bernard Lyon 1 University, Bron, France
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuroinflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
41
|
Makibatake R, Oda S, Yagi Y, Tatsumi H. Amyloid-β slows cilia movement along the ventricle, impairs fluid flow, and exacerbates its neurotoxicity in explant culture. Sci Rep 2023; 13:13586. [PMID: 37605005 PMCID: PMC10442439 DOI: 10.1038/s41598-023-40742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by extensive and selective death of neurons and deterioration of synapses and circuits in the brain. The Aβ1-42 concentration is higher in an AD brain than in cognitively normal elderly individuals, and Aβ1-42 exhibits neurotoxicity. Brain-derived Aβ is transported into the cerebrospinal fluid (CSF), and CSF flow is driven in part by the beating of cilia and CSF secretion into ventricles. Ventricles are lined with ependyma whose apical surface is covered with motile cilia. Herein, we constructed an experimental system to measure the movement of ependymal cilia and examined the effects of Aβ1-42 to the beating of cilia and neurons. The circadian rhythm of the beating frequency of ependymal cilia was detected using brain wall explant-cultures containing ependymal cilia and neurons; the beating frequency was high at midday and low at midnight. Aβ1-42 decreased the peak frequency of ciliary beating at midday and slightly increased it at midnight. Aβ1-42 exhibited neurotoxicity to neurons on the non-ciliated side of the explant culture, while the neurotoxicity was less evident in neurons on the ciliated side. The neurotoxic effect of Aβ1-42 was diminished when 1 mPa of shear stress was generated using a flow chamber system that mimicked the flow by cilia. These results indicate that Aβ1-42 affects the circadian rhythm of ciliary beating, decreases the medium flow by the cilia-beating, and enhances the neurotoxic action of Aβ1-42 in the brain explant culture.
Collapse
Affiliation(s)
- Ryota Makibatake
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Sora Oda
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Yoshiki Yagi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan.
| |
Collapse
|
42
|
Jin K, Yao Z, van Velthoven CTJ, Kaplan ES, Glattfelder K, Barlow ST, Boyer G, Carey D, Casper T, Chakka AB, Chakrabarty R, Clark M, Departee M, Desierto M, Gary A, Gloe J, Goldy J, Guilford N, Guzman J, Hirschstein D, Lee C, Liang E, Pham T, Reding M, Ronellenfitch K, Ruiz A, Sevigny J, Shapovalova N, Shulga L, Sulc J, Torkelson A, Tung H, Levi B, Sunkin SM, Dee N, Esposito L, Smith K, Tasic B, Zeng H. Cell-type specific molecular signatures of aging revealed in a brain-wide transcriptomic cell-type atlas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550355. [PMID: 38168182 PMCID: PMC10760145 DOI: 10.1101/2023.07.26.550355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and subcortical regions of the brain, and specific gene expression changes associated with cell senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal aging that will serve as a foundation for the investigation of functional changes in the aging process and the interaction of aging and diseases.
Collapse
Affiliation(s)
- Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Max Departee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Josh Sevigny
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
43
|
Visser VL, Caçoilo A, Rusinek H, Weickenmeier J. Mechanical loading of the ventricular wall as a spatial indicator for periventricular white matter degeneration. J Mech Behav Biomed Mater 2023; 143:105921. [PMID: 37269602 PMCID: PMC10266836 DOI: 10.1016/j.jmbbm.2023.105921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
Progressive white matter degeneration in periventricular and deep white matter regions appears as white matter hyperintensities (WMH) on MRI scans. To date, periventricular WMHs are often associated with vascular dysfunction. Here, we demonstrate that ventricular inflation resulting from cerebral atrophy and hemodynamic pulsation with every heartbeat leads to a mechanical loading state of periventricular tissues that significantly affects the ventricular wall. Specifically, we present a physics-based modeling approach that provides a rationale for ependymal cell involvement in periventricular WMH formation. Building on eight previously created 2D finite element brain models, we introduce novel mechanomarkers for ependymal cell loading and geometric measures that characterize lateral ventricular shape. We show that our novel mechanomarkers, such as maximum ependymal cell deformations and maximum curvature of the ventricular wall, spatially overlap with periventricular WMH locations and are sensitive predictors for WMH formation. We also explore the role of the septum pellucidum in mitigating mechanical loading of the ventricular wall by constraining the radial expansion of the lateral ventricles during loading. Our models consistently show that ependymal cells are stretched thin only in the horns of the ventricles irrespective of ventricular shape. We therefore pose that periventricular WMH etiology is strongly linked to the deterioration of the over-stretched ventricular wall resulting in CSF leakage into periventricular white matter. Subsequent secondary damage mechanisms, including vascular degeneration, exacerbate lesion formation and lead to progressive growth into deep white matter regions.
Collapse
Affiliation(s)
- Valery L Visser
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America; Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Andreia Caçoilo
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America
| | - Henry Rusinek
- Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, United States of America
| | - Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America.
| |
Collapse
|
44
|
Siddiqi MM, Khawar WI, Donnelly BM, Lim J, Kuo CC, Monteiro A, Baig AA, Waqas M, Soliman MAR, Davies JM, Snyder KV, Levy EI, Siddiqui AH, Vakharia K. Pretreatment and Posttreatment Factors Associated with Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. World Neurosurg 2023; 175:e925-e939. [PMID: 37075897 DOI: 10.1016/j.wneu.2023.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Hydrocephalus is a common complication after aneurysmal subarachnoid hemorrhage (aSAH). This study aimed to evaluate novel preoperative and postoperative risk factors for shunt-dependent hydrocephalus (SDHC) after aSAH via a systematic review and meta-analysis. METHODS A systematic search was conducted using PubMed and Embase databases for studies pertaining to aSAH and SDHC. Articles were assessed by meta-analysis if the number of risk factors for SDHC was reported by >4 studies and could be extracted separately for patients who did or did not develop SDHC. RESULTS Thirty-seven studies were included, comprising 12,667 patients with aSAH (SDHC 2214 vs. non-SDHC 10,453). In a primary analysis of 15 novel potential risk factors, 8 were identified to be significantly associated with increased prevalence of SDHC after aSAH, including high World Federation of Neurological Surgeons grades (odds ratio [OR], 2.43), hypertension (OR, 1.33), anterior cerebral artery (OR, 1.36), middle cerebral artery (OR, 0.65), and vertebrobasilar artery (2.21) involvement, decompressive craniectomy (OR, 3.27), delayed cerebral ischemia (OR, 1.65), and intracerebral hematoma (OR, 3.91). CONCLUSIONS Several new factors associated with increased odds of developing SDHC after aSAH were found to be significant. By providing evidence-based risk factors for shunt dependency, we describe an identifiable list of preoperative and postoperative prognosticators that may influence how surgeons recognize, treat, and manage patients with aSAH at high risk for developing SDHC.
Collapse
Affiliation(s)
- Manhal M Siddiqi
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
| | - Wasiq I Khawar
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Brianna M Donnelly
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Jaims Lim
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Cathleen C Kuo
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Andre Monteiro
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Ammad A Baig
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Muhammad Waqas
- Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
| | - Mohammed A R Soliman
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Neurosurgery Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jason M Davies
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA; Jacobs Institute, Buffalo, New York, USA; Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA; Department of Radiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Bioinformatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Kenneth V Snyder
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA; Jacobs Institute, Buffalo, New York, USA; Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
| | - Elad I Levy
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA; Jacobs Institute, Buffalo, New York, USA; Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA; Department of Radiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Adnan H Siddiqui
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA; Jacobs Institute, Buffalo, New York, USA; Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA; Department of Radiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Kunal Vakharia
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA; Department of Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA; Department of Neurosurgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
45
|
Turkheimer FE, Veronese M, Mondelli V, Cash D, Pariante CM. Sickness behaviour and depression: An updated model of peripheral-central immunity interactions. Brain Behav Immun 2023; 111:202-210. [PMID: 37076054 DOI: 10.1016/j.bbi.2023.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023] Open
Abstract
Current research into mood disorders indicates that circulating immune mediators participating in the pathophysiology of chronic somatic disorders have potent influences on brain function. This paradigm has brought to the fore the use of anti-inflammatory therapies as adjunctive to standard antidepressant therapy to improve treatment efficacy, particularly in subjects that do not respond to standard medication. Such new practice requires biomarkers to tailor these new therapies to those most likely to benefit but also validated mechanisms of action describing the interaction between peripheral immunity and brain function to optimize target intervention. These mechanisms are generally studied in preclinical models that try to recapitulate the human disease, MDD, through peripherally induced sickness behaviour. In this proposal paper, after an appraisal of the data in rodent models and their adherence to the data in clinical cohorts, we put forward a modified model of periphery-brain interactions that goes beyond the currently established view of microglia cells as the drivers of depression. Instead, we suggest that, for most patients with mild levels of peripheral inflammation, brain barriers are the primary actors in the pathophysiology of the disease and in treatment resistance. We then highlight data gaps in this proposal and suggest novel lines of research.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Information Engineering, University of Padova, Padova, Italy
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
46
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
47
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
48
|
Michalickova D, Kramarikova I, Ozturk HK, Kucera T, Vacik T, Hrncir T, Kutinova Canova N, Sima M, Slanar O. Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:36-42. [PMID: 35147137 DOI: 10.5507/bp.2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The aims of the present study were to investigate the expression of galanin receptors (GalR1, GalR2, GalR3) in the spinal cords in a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) using qPCR analysis and to determine GalR1 cellular localization (oligodendrocytes, microglia, astrocytes, ependymal cells, and endothelial cells in the capillaries) by immunohistochemistry. METHODS Twelve samples from the EAE group and 14 samples from the control group were analyzed. Spinal cords samples were obtained at the peak of the EAE disease. RESULTS The GalR1 mRNA level was significantly decreased in the EAE mice compared with the controls (P=0.016), whereas the mRNA levels of GalR2 and GalR3 were not significantly different for the EAE and the control mice. No significant correlations were found between the severity of the EAE disease and the mRNA levels of GalR1, GalR2 and GalR3. Immunochemical detection of the GalR1 revealed its expression in the ependymal and endothelial cells. Additionally, a weak GalR1 immunoreactivity was occasionally detected in the oligodendrocytes. CONCLUSION This study provides additional evidence of galanin involvement in EAE pathophysiology, but this has to be further investigated.
Collapse
Affiliation(s)
- Danica Michalickova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ivana Kramarikova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Hatice Kubra Ozturk
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Kucera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Hrncir
- Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Nikolina Kutinova Canova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Martin Sima
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondrej Slanar
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
49
|
Kravetz Z, Rainald SK. New aspects for the brain in Hartnup disease based on mining of high-resolution cellular mRNA expression data for SLC6A19. IBRO Neurosci Rep 2023; 14:393-397. [PMID: 37101820 PMCID: PMC10123343 DOI: 10.1016/j.ibneur.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Hartnup disease is an autosomal recessive, metabolic disorder caused by mutations of the neutral amino acid transporter, SLC6A19/B0AT1. Reduced absorption in the intestine and kidney results in deficiencies in neutral amino acids and their down-stream metabolites, including niacin, associated with skin lesions and neurological symptoms. The effects on the nervous system such as ataxia have been related to systemic deficiencies of tryptophan (and other neutral amino acids) as no expression of the B0AT1 transporter was found in the brain. In the intestine, SLC6A19 cooperates with ACE2 which has received major attention as the cellular receptor for SARS-CoV-2. When transcriptomics data for ACE2 and its partner proteins were examined, a previously unrecognized expression of Slc6a19 mRNA in the ependymal cells of the mouse brain was encountered that is set into the context of neurological manifestations of Hartnup disease with this communication. A novel role for SLC6A19/B0AT1 in amino acid transport from CSF into ependymal cells is proposed and a role of niacin in ependymal cells highlighted.
Collapse
|
50
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|